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Abstract: Online iris recognition using distantly acquired images under less imaging constrained 

environment requires the development of efficient iris segmentation approach and recognition strategy 

which can exploit multiple features available for the potential identification. This paper presents an 

effective solution towards addressing such problem. The developed iris segmentation approach exploits 

random walker algorithm to efficiently estimate coarsely segmented iris images. These coarsely 

segmented iris images are post-processed using a sequence of operations which can effectively improve 

the segmentation accuracy. The robustness of the proposed iris segmentation approach is ascertained by 

providing comparison with other state-of-the-art algorithms using publicly available UBIRIS.v2, FRGC 

and CASIA.v4-distance databases. Our experimental results achieve improvement of 9.5%, 4.3% and 

25.7% in the average segmentation accuracy, respectively for the UBIRIS.v2, FRGC and CASIA.v4-

distance databases, as compared to the most competing approaches. We also exploit the simultaneously 

extracted periocular features to achieve significant performance improvement. The joint segmentation 

and combination strategy suggests promising results and achieves average improvement of 132.3%, 7.45% 

and 17.5% in the recognition performance, respectively from the UBIRIS.v2, FRGC and CASIA.v4-

distance databases, as compared to the related competing approaches. 

1. Introduction 

Automated iris recognition for distantly acquired images using visible imaging under less constrained 

conditions has received great attention recently [4]-[17]. Adoption of the visible imaging in the 

acquisition stage provides a few advantages over the conventional NIR-based iris recognition systems 

[18]-[22]. Such conventional acquisition setups operate in stop-and-stare mode which requires full 

cooperation from the subjects to provide images within close distance (1–3 feet) in order to ensure the 

acquired images are in good quality [1], [15] (i.e. the acquired images are in focus and have minimum 

acceptable iris diameter [2]-[3]). The constraints imposed in the conventional NIR-based iris recognition 

systems have limited the applicability of the iris recognition technology for forensic and surveillance 

applications, such as searching missing children and identifying terrorists from the crowd [6], [14]. 

Although recent NIR-based imaging technologies allow the farther reachable acquisition range (3m-8m) 

while controlling the NIR irradiance levels within the safety metrics [23]-[27], such systems are still not 

ideal to be practically considered for the forensic and surveillance applications. For example, [23] 
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requires subjects to walk through a portal to provide their iris images (see Figure 1(a)). In addition, the 

associated setup cost for such NIR-based long range iris acquisition system is relatively higher as 

compared to the visible imaging systems. The incurred cost may due to the additional devices such as the 

NIR illumination panels, band-pass filter and focus module, as the one shown in Figure 1(b). 

 
Figure 1: Examples of long range iris acquisition systems: (a) portal of the “Iris on the Move” project [23], (b) iris 

acquisition system developed in [24] which is capable of acquiring iris images at distance up to 8 meters. 

In contrast, visible imaging offers some advantages over the conventional NIR-based acquisition 

systems. NIR-based long range acquisition system must be cautiously designed and rigorously tested in 

order to ensure the irradiance levels meeting the specifications [26]-[27]. In such case, visible imaging 

acquisition provides better option as it is less constrained by such regulations due to the fact that human 

eyes are naturally responsive to the visible spectrum. In other words, strong illumination in visible 

spectrum will cause uncomfortableness to our eyes and therefore mechanistically responding with the 

actions such as blinking, pupil contraction and aversion [6], [14]-[15]. Significant advancement in the 

visible imaging technologies allow high resolution images to be conveniently acquired at-a-distance of 

3m under less constrained conditions [14], [16]-[17] [51]. However the relaxation of rigid constraints as 

imposed in conventional NIR-based iris acquisition systems in the visible imaging context comes at a 

price. The acquired images are considerably noisier primarily due to the influence of multiple noisy 

artifacts, such as motion/defocus blur, occlusions from eyelashes, hair and eyeglasses, reflections, off-

angle and partial eye images [8], [12], [14]. Therefore, development of robust and efficient iris 

recognition approaches which can work under such relaxed imaging constraints is highly desirable. 

1.1 Related Work 

Iris segmentation method reported in [7] employs a constellation model to perform the iris segmentation 

task. The constellation model places multiple integro-differential operators [3], [20] at the current 

evaluating pixel in order to find the local minimum score. The pixel found to be at local minimum will 

be employed in the next iteration. The process is then iterated until it converges or the predefined 

maximum number of iterations is reached. There are a few limitations observed in this method. Firstly, 

the segmentation model is still relying on the conventional segmentation approach which may not 

effectively segment the real-world acquired images. Secondly, the parameters for initial clustering pixels 
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must be carefully chosen as it will affect the performance of the subsequent segmentation operations. 

Thirdly, the constellation model may lead to a non-optimal iris center. 

Approach [6] shows another promising effort in iris segmentation for the iris images acquired using 

visible imaging. Two neutral network classifiers were trained by exploiting local color features to 

classify image pixels into sclera/non-sclera and iris/non-iris categories. The trained classifiers operated 

in cascade order by firstly classifying sclera and then feeding the classified sclera pixels into the next 

classifier for iris pixels classification. Therefore, there exists a strong dependency between the two 

classifiers and any classification error from the first classifier will be propagated to the subsequent 

classifier which will eventually affect the segmentation accuracy. Furthermore, ref. [6] did not provide a 

complete automated framework to accommodate the situation when the face images are presented. 

Instead, the eye regions were manually cropped from the face images which are not sufficiently to model 

a more realistic case. In [14], localized Zernike features were exploited for classifying image pixels into 

either iris or non-iris category. In their approach, the Zernike features were computed for every single 

pixel which incurred heavily computational cost and therefore did not suitable to be considered for time 

sensitive applications.  

Table 1: Summary of the Related Approaches 

 

 

 

 

 

 

 

 

 

 

 

 

 

Periocular features have invited increasing attention in biometrics and some promising efforts [42]-

[44], [46] have been presented in the literature. Table 1 presents some of such related efforts in the 

literatures. A review on such (Table 1) related work suggests lack of efforts in developing a unified 
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approach that can simultaneously operates under visible and NIR images, which can be fully automated 

and adaptively exploits iris and periocular features for performance improvement. Such a strategy can 

also offer improved operational flexibility when one of the biometrics is degraded, missing or cannot be 

processed. 

1.2 Our Work 

The quality of the distantly acquired iris images, especially those under the visible imaging from the 

unconstrained environments, is usually degraded as compared to those employed in the conventional iris 

recognition systems. This poses several challenges in the development of robust iris segmentation and 

recognition approaches for such degraded images (noisy images). Therefore, this paper aims to provide a 

completely automated framework for remote iris recognition using such noisy images. The proposed 

solution can be broadly categorized into two parts: (1) segmentation and (2) recognition. 

Efficient and robust segmentation algorithm is vital for any successful iris recognition strategy that 

can be deployed for online applications. In the segmentation part, the input image is firstly preprocessed 

for noise attenuation and image quality enhancement. The preprocessed image is then coarsely 

segmented using random walker algorithm followed by a sequence of post-processing operations to 

further refine the coarsely segmented result. The image is modeled based on the graph theory such that 

each pixel corresponds to the vertex (node) and the linkage between any two pixels corresponds to the 

edge of a graph. Such graph-based modeling allows the pixel-level segmentation as similar to [6], [14], 

so that iris segmentation can be performed regardless of iris size. Unlike the previous approaches [6], 

[14], the proposed method does not require to undergo extensive training
*
 for either neural network or 

SVM classifier which can greatly reduce the computational cost in computing image features (see 

Section 3.2 for the discussion on the time complexity). Rigorous experiments were performed on three 

publicly available databases namely UBIRIS.v2 [5], [16], FRGC [36], [37] and CASIA.v4-distance [38] 

in order to ascertain the performance from the proposed segmentation framework. In addition to the 

significantly reduced computational complexity, the experimental results also illustrate marginal 

improvement in the average segmentation errors, i.e. to the extent of 9.5% and 4.3%, for the UBIRIS.v2 

and FRGC databases respectively, while significant improvement up to 25.7% for the CASIA.v4-

distance database, as compared to the most competing approach in [14]. 

Iris recognition performance for the noisy iris images still remains to be poor, despite with the use of 

the best segmentation strategy, i.e. as observed from the ideally segmented iris images using ground 

truth masks in our experiments (Section 3.3). Such poor performance for at-a-distance iris recognition 

has further motivated us to further incorporate additional/available features that are ignored while 

segmenting iris images. Therefore, the features around the eye region (periocular) which have been 

                                                           
* The only training involved is for the parameters optimization. 
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shown to be quite unique are exploited in this work to supplement the iris information. In this work, we 

consider two segmentation schemes for extracting the periocular region. The first scheme is referred as 

the global periocular region, which is the entire eye region
†
 without performing segmentation and 

normalization. The second scheme is referred as local periocular region, which a localized region is 

extracted and normalized with respect to the segmented iris information. Texture analysis is then 

performed on both the extracted global and local periocular regions. 

The matching scores from both iris and periocular features are firstly normalized using min-max 

normalization technique and then combined with the weighted sum technique. An average improvement 

of 52.4% in the rank-one recognition accuracy was observed from the experiments on the UBIRIS.v2, 

FRGC and CASIA.v4-distance databases, as compared to the most competing periocular features 

extraction methods in [43]-[44]. The main contributions of this paper can be summarized as follows: 

 This paper has developed a significantly improved and computationally efficient approach for 

iris segmentation from the remotely acquired iris images under less constrained conditions. As 

compared to the existing competing iris segmentation approaches for the visible illumination 

images, the developed approach not only reduces the computational complexity (Section 3.2) 

but also achieves superior segmentation accuracy. 

 The developed iris segmentation approach does not require rigorous training and therefore 

alleviates such mandatory complexity with the previous approaches [6], [14] for the training of 

statistical classifiers to perform the iris segmentation. 

 Remotely acquired visible illumination eye images also illustrate discriminant periocular region 

which can be simultaneously exploited to improve the iris recognition performance. This paper 

presents such joint strategy to acquire multiple features and achieve superior performance. The 

experimental results are validated and compared on three publicly available databases, i.e. 

UBIRIS.v2 (visible), FRGC (visible) and CASIA.v4-distance (NIR), which illustrates superior 

performance, both in the identification and verification problems. 

 This paper also presents comprehensive analysis of the global and local periocular regions to 

improve iris recognition from the visible and NIR illumination databases. The experimental 

results (Section 3.4) suggest superiority of combining global periocular details when 

discriminant features from the sufficient periocular regions can be segmented/extracted. 

The remainder of this paper is organized as follows. In Section 2, the developed framework for 

simultaneously exploiting iris and periocular features is detailed. The experiments and performance 

evaluation are discussed in Section 3. Finally, conclusion is provided in Section 4. 

                                                           
† It is also referred to eye region detected by eye detector. 
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2. Iris and Periocular Segmentation from Less Constrained Acquired Face Images  

 
(a) 

 
(b) 

Figure 2: Block diagrams of the proposed multimodal recognition framework which generally consists of two parts: 

(a) Segmentation, (b) Recognition. 

The proposed framework for jointly exploiting iris and periocular features from distantly acquired face 

images, under less constrained imaging environment, is shown in Figure 2. The proposed framework can 

be broadly categorized into two parts: part (a) is focusing on the segmentation of iris and periocular 

regions; while part (b) is concentrating on the human recognition utilizing the segmented information 

from part (a). In part (a), we employ the AdaBoost face and eye-pair detectors
‡
 [34], [35] to 

automatically detect the face and eye-pair if face images are presented. Iris images are coarsely 

segmented using random walker algorithm and subjected to further refinement with a set of post-

processing operations. Given the localized iris, the information such as iris center and radius can be 

approximated. Such information is employed to extract the periocular region and perform the scale 

normalization of the extracted region. 

2.1 Preprocessing 

                                                           
‡ Note that the objective of this paper is not to further improve the performance of face and eye detection but intentionally to 

present a completely automated iris recognition framework for distantly acquired images which can operate under real/varying 

imaging conditions. 
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Illumination variation is a common problem for imaging in real environment mainly due to the 

uncontrolled light source. Illumination variation not only poses difficulty in iris segmentation but also 

affects the recognition performance. Therefore, we adopt Retinex algorithm as detailed in [28]-[30] to 

address such problem. The algorithm provides high dynamic range compression which has been shown 

to be effective in improving the overall image quality, especially for those iris images acquired under 

real imaging conditions. After that, Gaussian filter with standard deviation       is applied to the 

image in order to suppress high frequency contents in the acquired images and help in segmentation. 

Also, the reflection removal technique reported in [14] is adopted in order to mitigate the influence from 

the source reflection in the subsequence iris segmentation operations. 

2.2 Coarse Iris Segmentation 

 

Figure 3: Flow chart of coarse segmentation using random walker algorithm. 

The objective of the coarse iris segmentation is to provide a simplistic model to “classify” each image 

pixel into either iris or non-iris category. Such model is intended to provide the classification 

performance as close to the reported classification method in [14], but with significantly reduced 

computational cost and complexity. Although it is expected that such simplistic model may not produce 

classification result as good as to the statistically trained model [14], such limitation is addressed with 

the post-processing operations (see Section 2.3-2.7) which provide robust solution to further refine the 

coarsely segmented iris images. 

In this work, random walker (RW) algorithm [31] is exploited to provide solution for obtaining the 

coarsely segmented binary iris mask   . The RW algorithm is a general interactive segmentation 

algorithm and the general procedure is illustrated in Figure 3. In RW algorithm, images are modeled 

based on the graph theory [32], such that image pixels corresponding to the vertices     of an 

undirected graph   (   ). An edge           is attributed by two vertices    and   . Each 

edge is associated with a weight (cost),    (       ), and is calculated by exploiting the gradient 

information, i.e.:        (      ), (1) 

where      is the normalized square difference between the intensities at nodes   and   which can be 

calculated as follows: 
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     (     )    {           }(     ) . (2) 

The parameter   is the only free parameter which will affect the weighting function (eq. (2)).  

The RW-based iris segmentation requires initialization of seed points which forms a subset of the 

labeled nodes   , and the remaining unlabeled nodes are denoted as    , such that         . The    
contains the nodes labeled as either foreground (+1) or background (-1), which constitute two initial 

models to estimate labels for    . In order to provide automated initialization of seed points, the 

following rules are employed: 

    {                 ( )     ( )          ( )     ( )           (      )  (3) 

where    ( )  and  ( )  are the mode and standard deviation of input image    (preprocessed). The 

weights were empirically computed during the training phase and were set as    {           } and    {            }, respectively for the UBIRIS.v2, FRGC and CASIA.v4-distance databases. Then 

the relationship between the labeled and unlabeled nodes can be expressed using Dirichlet integral, as 

follows:   ( ̃ )    [ ̃   ̃  ] [        ] [  ̃  ̃ ]    ( ̃     ̃    ̃     ̃   ̃     ̃ )  (4) 

where  ̃  and  ̃  denote the responses of the labeled and unlabeled nodes, respectively.   denotes the 

combinatorial Laplacian matrix defined as: 

    {∑          
                                                 (5) 

Nodes    are assigned with labels by solving the minimizer  ̃  as in (6) iteratively.    ̃      ̃ . (6) 

 

2.3 Initial Iris Center Estimation 

The iris image and the corresponding binary iris mask    obtained from the coarse iris segmentation 

stage are exploited to provide information in estimating the initial iris center. In [14], the initial iris 

center was obtained by measuring the center of mass of the classified iris mask, under the assumption 

that the classified iris mask is proximate to the actual iris region. However, the    obtained from the 

coarse segmentation stage may not always produce the iris mask which is proximate to the actual iris 

region. By directly measuring the center of masses from those    can cause serious deviation of the 

initial iris center from the actual one, as illustrated in Figure 4(a)-(c). More importantly, such 

measurement error will be propagated to the subsequence operations and affect the overall iris 

segmentation performance. Therefore, it is essential to refine the    in order to mitigate the influence 
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from the noisy artifact, or in particular, the eyelashes. As such, the mean of the heights    from the 

masked region of    is employed to compute an adaptive threshold            , which will be 

utilized to eliminate the column           where   indicates the height of the column        . The 

motivation to threshold the    is that the heights of the eyelashes regions beyond the iris region are 

observed to be shorter than the average height of the iris region, as shown from the third and the fourth 

sample images in Figure 4(d). The center of mass   (     ) is then obtained from the refined binary 

mask  ̃ , as shown in Figure 4(e). 

 

Figure 4: Initial center estimation, (a) Input enhanced image (color images are presented to provide better 

visualization), (b) Coarse segmented iris mask, (c) The estimated initial center (yellow mark) using (b), (d) Refined   , (e) The initial estimated iris center. 

The   is obtained exclusively from the  ̃ , which does not exploit any of the underlying image 

feature such as the intensity/color information. Therefore, such additional intensity information will be 

exploited to further improve the accuracy of the initial estimation of the iris center. Similar as in [14], the 

red channel plane    of the input color image I is employed throughout the experiment. A 2D median 

filter with respective size of {7×7, 3×3, 9×9} for UBIRIS.v2, FRGC and CASIA.v4-distance is applied 

to    in order to smoothen the intensity variations across image pixels. After that, the smoothened    is 

subject to gamma correction, which takes the following mathematical form:   (   )      (  (   )   ) , 

where    is the gamma corrected of image    and (x,y) indicates the image coordinate. The   is the 

parameter for gamma correction (  {           }  is empirically determined for three respective 

databases, i.e., UBIRIS.v2, FRGC and CASIA.v4-distance databases employed in the experiments). 

Given the refined mask  ̃  and let’s denotes    (     ) as the coarsely segmented iris pixels in  ̃ , 
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average intensity of a rectangular region of size     centered at    is then computed, where           and    denotes one half of the height of the bounding region of  ̃ . The region    which 

produces the minimum average intensity will be employed for further processing and other regions are 

ignored. It is to be noted that such refinement step narrows down the search region for estimating the 

initial center. The average intensity at each    can be computed using the intermediate image 

representation, i.e., integral image (see [35]), which allows the fast computation of the regional mean 

with just single image scan. Figure 5 illustrates the described refinement process and it can be observed 

from Figure 5(d) that the search region for estimating initial center has been reduced. By applying a 

weighted thresholding method            to the localized region, a binary mask    is then 

generated. The       denotes the threshold obtained by using Otsu’s thresholding method; the   denotes 

the weight and is set to 0.65 for all the employed databases in the experiments. The center of mass  ̃  (  ̃    ̃) of     is then computed, as illustrated in Figure 5(e). 

Both of the acquired centers   and  ̃ provide the information to estimate the initial center and it is 

expected that   and  ̃ should be close to each other. As such, the Euclidean distance between   and  ̃ is 

measured, i.e.  (   ̃)  √(     ̃)  (     ̃) . The distance metric is employed in helping to 

make decision how should the acquired centers   and  ̃ to be utilized, with the following rule applied: 

Rule 1: 

              
The distance threshold is set to 15 for all the employed databases. Note that all the presented parameters 

are empirically estimated using the training dataset (see Table 2), which is completely independent from 

the testing dataset. 

 

 

 

 

 

 

 

 

 

 

Figure 5: Initial center estimation using localized intensity information. (a) Extracted red channel plane, (b) 

Gamma corrected of image (a), with      , (c) The corresponding refined mask  ̃  superimposed with a 

rectangle indicates the bounding region, (d) The region with the minimum average intensity, (e) Binary mask    

and its center of mass. The estimated distance between   and  ̃,  (   ̃) = 20.8945. 
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2.4 Iris and Pupil Localization 

 

The coarse segmented iris mask from the previous stage does not provide detailed information about 

limbic and pupillary boundaries, i.e., the radii of pupil and iris. By exploiting the information such as the 

coarse segmented iris mask    and the estimated center   from the previous stages, the limbic and 

pupillary boundaries will be approximated using circular model. Here, approximation to the limbic 

boundary shall be used as an example to illustrate the method and the localization of pupil boundary can 

be obtained in the similar manner
§
. The detailed steps of localizing the limbic boundary are as follows: 

i. Firstly, an edge map   is obtained by applying Canny edge detector [33] to the smoothed 

image  . The iris radius is obtained by searching the maximum response A using the formula (7):            (     ) ∑            (  (     )   (     ))    (7) 

                                  (     )          (     )      , 
where   and   denote the coordinates within a bounding region calculated from the estimated 

center   and a predefined offset       . The   denotes the search radius which is calculated 

using the weighted half-height    and half-width    of the bounding region of  ̃ . The weights    and    are set to 0.7 (0.3) and 1.3 (0.8) for UBIRIS.v2 and FRGC (CASIA.v4-distance
**

) 

databases. The quantized N contour points (   ) are calculated as   (     )             

and   (     )             respectively. 

ii. In case of two estimated centers are obtained from section 2.3, the step (i) is repeated for  ̃, 

which yields  ̃. Here, a simple heuristic is employed to check for the segmentation quality    for 

both   and  ̃, which can be computed as follows:      , (8) 

where   is the number of sampling points which acts as a normalization factor so that the    [   ]. The response which calculates the highest score will be employed and the other one 

is discarded. 

                                                           
§ For NIR iris images, the order of localization is different, i.e. pupillary boundary is localized first then only followed by 

localizing limbic boundary. 
** The weights are for localizing pupillary boundary as the order of localization is different for the NIR images. 
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Figure 6: Limbic and pupillary boundaries localization. (a) Input smoothed image   , (b) Edgemap of (a), (c) 

Localized limbic and pupillary boundaries. 

The parameters which describe the limbic boundary (           ) should be obtained and are employed 

to approximate the pupillary boundary (           ). The (       ) serves as the initial center and the 

predefined offset       . The search radius is calculated using     with the weights    and    set to 

0.2 and 0.6 for UBIRIS.v2 and FRGC databases.For localizing the limbic boundary of NIR-acquired iris 

images, we adopted different strategy for calculating the search radius, i.e.     (            (     )  ⁄ )          (     ), with       . Figure 6 illustrates the described 

procedures for limbic and pupillary boundaries localization for both VW-acquired (first row) and NIR-

acquired (second row) iris images.  

2.5 Boundary Refinement 

Iris segmentation for the iris images acquired under less constrained conditions is highly challenging. 

The simple circular model to approximate the limbic boundary as employed in Section 2.4 is not 

sufficient to accommodate the inherent image variations for the images acquired under such challenging 

environments. Therefore, boundary refinement approach as developed in this section aims to address for 

such limitation to further refine the localized limbic boundary as obtained from Section 2.4. Statistical 

intensity information is exploited from two defined regions    and    in order to compute the adaptive 

threshold to remove non-iris pixels near to the limbic boundary. Such two regions can be obtained with 

respect to the localized iris (           ) and localized pupil (           ) information. The region    is 

defined as    {(   )                                     } . The offset     

delimits the maximum size of the region to be considered, which is set to 20 for all the databases 

employed in the experiments. In order to mitigate the influence from the eyelid region which may 

potentially affect the performance, the lower part region of    (half circular ring region) as illustrated in 

Figure 7(a), is considered. Mean     and standard deviation     are computed from such half-ring region 

to represent the statistical information of the iris region. An adaptive threshold is then calculated as                      , with the parameter   set to 2 for all the databases employed in the 
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experiments. The region    can be obtained similarly as to   , with the                , as 

illustrated in Figure 7(b). The computed adaptive threshold is then applied to the   , i.e.      , and the 

pixels belong to    are retained. The thresholded pixels can be considered as the outliers whose 

intensities are deviated to a certain degree from the statistical information of   . In order to improve the 

robustness of the algorithm, an additional constraint is imposed which only the connected pixels to the 

limbic boundary are retained. Note that our method is different from [7] which they considered the 

statistical information from two consecutive annular rings near the limbic boundary. The information 

near to the limbic boundary is observed to be unstable due to the poorly localized limbic boundary. As 

such, the developed approach exploits the statistical information from the half-ring region (  ) near to 

the pupillary boundary for computing the adaptive threshold to refine limbic boundary. The half-ring 

region is considered to be more stable as it is less likely to be influenced from the eyelashes and eyelid 

region. Figure 7 presents two sample results of the proposed boundary refinement method obtained from 

two of the employed databases, i.e., UBIRIS.v2 (first row) and CASIA.v4-distance (second row). 

 

Figure 7: Boundary refinement. (a) Half-ring region   , (b) Region   , (c) Thresholded region, (d) Refined limbic 

boundary mask. 

2.6 Eyelid Localization with Adaptive Eyelid Models 

 

Figure 8: Eyelid localization steps. 

Figure 8 shows the procedure of the developed adaptive eyelid location approach. The localized limbic 

information     (           ) is employed to define the upper and lower eyelid regions. The upper 

eyelid region can be computed as follows:        {                                           }. 
The edge points           (          ) within the intersection region of        and     (see Figure 

9(b)) are extracted as the candidate points for the construction of the eyelid models. Three eyelid 

models    {     } which represent the general eyelid shapes are adaptively constructed by exploiting the 
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information of the bounding region of    . Each of the model requires three control points which can be 

obtained from the bounding region of    , as defined as follows:     {(         ) (     ) (       )},     {(         ) (     ) (         )} , and     {(       ) (     ) (         )} . The           

(         ) denote the minimum (maximum) x- and y-coordinate of the bounding region while       
denote the middle point of the bounding region. The three eyelid models are then constructed by 

applying a second degree polynomial interpolation to the calculated control points    , as illustrated in 

Figure 9(c)-(e). In order to measure the best representative eyelid model among   , L1 distance    

between     and      is firstly calculated. The model which produces the minimum    is considered as 

the best representative eyelid model and is employed as a reference model to eliminate outlier edge 

points. 

 

Figure 9: Adaptive eyelid models construction. Note that the edge points shown in the figures were enhanced for 

better visualization. (a) Input image, (b) Extracted edge points for upper eyelid from the delimited area, (c) 

Constructed upper eyelid model    (         ), (d) Constructed upper eyelid model    (   105.85), (e) 

Constructed upper eyelid model    (         ) (Note (c)-(e): Control points    are denoted using red ‘o’, 
bounding region is shown using yellow box and the constructed model is shown as green curve). 

Let’s denote     ̃  and     ̃  respectively as the mean and standard deviation of the distance    ̃  |         | between the nominated eyelid model and the   . Outlier edge points can be detected by 

performing the following statistical test: 

   (   ̃     ̃)     ̃   . (9) 

The edge point      whose      is considered as the outlier point and is excluded for the subsequent 

operation. A second degree polynomial curve is fitted to the remaining candidate edge points in order to 

eliminate the non-iris region (upper/lower eyelid region). Figure 10 presents some sample results 

obtained from the developed eyelid localization technique. Localization of the lower eyelid region can be 
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performed similarly as to the upper eyelid region. The proposed eyelid localization using adaptive eyelid 

models is inspired by the work in [18] which three representative eyelid models were trained for each 

upper and lower eyelid to eliminate the outlier points. One of the advantages of the proposed localization 

method is required no prior training for the eyelid models while providing the similar functionality as in 

[18] to regulate the extracted edge points. The eyelid models are adaptively constructed by exploiting the 

localized information from each segmented iris and therefore provide superior localization capability 

than the globally trained models. 

 

Figure 10: Sample eyelid localization results obtained using the adaptive eyelid model. 

2.7 Eyelashes and Shadow Masking 

 

 Figure 11: Eyelashes and shadow masking. (a) Input image, (b) ES (red) and IR (green) regions, (c) & (d) Iris 

masks before and after the ES masking, respectively. 

Eyelashes and shadow (ES) are one of the commonly observed noisy artifacts which occlude portion of 

iris region. The proposed ES masking method is similarly as to [14] by exploiting statistical information 

of the localized iris region to detect those noisy pixels. Firstly, the localized iris region is virtually 

divided into two regions namely ES region and IR region. ES region is defined as the region calculated 

from the localized upper eyelid to a distance           while IR region is defined as the lower half 

annular region of the localized iris, as illustrated in Figure 11(b). Mean  (  ) and standard deviation  (  ) of the IR region which describe the intensity distribution of the localized iris region are calculated. 

Such information is then employed to calculate two adaptive thresholds:        (  )     (  ) and         (  )     (  ), with the weights set to        and       . The computed thresholds are 

employed to detect noisy pixels within ES region whose intensity        or        . In addition, the       serves as the complementary to the Section 2.6 to further eliminate eyelid pixels which may not be 

successfully removed in the earlier operation. Figure 11 illustrates the described ES masking method and 

it can be observed that the proposed method was effectively eliminated outlier pixels within the ES 

region. 
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2.8 Segmentation of Periocular Region 

Periocular is referred to the region around the eye [44]. Currently, there is no clear definition about what 

the size of the periocular region should be, e.g. ref. [44], [46] use the periocular region which is quite 

different from the [43]. However, the automated segmentation of periocular region, e.g. those in [44], 

[46], is more challenging in less constrained imaging environment as the size of the periocular region is 

highly dependent on the distance between subjects and the camera. Ref. [44] provides a promising 

solution to address such issue which the authors suggested to utilize the localized iris as a reference for 

segmenting the periocular region. Scale and translation-invariant are achieved by employing segmented 

iris information (           ) as a reference to normalize and segment the periocular region. Firstly, the 

input image is normalized (upscaling/downscaling) w.r.t the scale factor,            ⁄ , where       

corresponds to the normalized iris radius. The normalization operation results in shifting of the iris 

center (       ) in the scaled image    , and the updated iris center can be calculated as (   ̃     ̃)    (       ). The periocular region     is then defined as the rectangular region of size  ̀   ̀ centered at (   ̃     ̃). The  ̀  and  ̀  correspond to the width and the height of     , which can be calculated as  ̀           and  ̀          , respectively. The factors    and     are fixed for all the images on 

the same dataset to ensure the consistent size of the     to be segmented. We set    {     } and    {     } respectively for the UBIRIS.v2, FRGC and CASIA.v4-distance databases. Figure 12 shows 

the sample normalization and segmentation results of the periocular region from the same subject. 

 
Figure 12: Segmentation and normalization of the periocular region from face images acquired at-a-distance (left 

eyes are employed for better illustration and comparison).  

3. Experiments and Results 

3.1 Databases  

Three publicly available databases namely: (a) UBIRIS.v2 [5], (b) FRGC [36], and (c) CASIA.v4-

distance [38] were employed to evaluate the performance of the proposed method. The images from the 

first two databases were distantly acquired using visible imaging while the images from the third 

database were acquired using NIR imaging. Table 2 provides summarized information about the 

employed databases for the conducted experiments. 
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Table 2: Overview of the three employed databases 

 
(*) denotes different numbers of images / subjects employed in the evaluation of recognition performance 

a. UBIRIS.v2: The full database consists of a total of 11102 images from 261 subjects. The images 

were acquired under unconstrained conditions with subjects at-a-distance and on the move. The 

standoff distance (distance between subject and the camera) spanning from 4 to 9 meters. As 

similar to [14], only subset of the images was employed in the experiment. The subset consists of 

1000 images from 171 subjects. Images of the first 19 subjects were employed as train images for 

parameters training and the rest of 904 images were employed as test images
††

. 

b. FRGC: The images from the high resolution still images category were considered in our 

experiments. As similar to [14], only subset of images was employed. The subset images were 

selected from the session 2002-269 to 2002-317 of Fall 2002. We employed the same procedure 

as reported in [14] for automatically localizing eye regions from these subject images. 

c. CASIA.v4-distance: The full database consists of a total of 2567 images from 142 subjects. The 

images were acquired using NIR imaging with the subjects 3 meters away from the camera. 

Images from the first 10 subjects were employed as train images. For test images, images from 

the subjects 11 – 77 were employed in evaluating segmentation performance while images from 

the subjects 11 – 141 (i.e., all subjects exclusive the train images) were employed in evaluating 

recognition performance. Note that only the first eight left/right eye images were considered in 

the experiments. 

3.2 Segmentation Accuracy and Complexity 

Performance of the proposed iris segmentation method was evaluated using the protocol as adopted in 

NICE.I competition [16]. The average segmentation error,   ̅̅ ̅ is given as:    ̅̅ ̅        ∑ ∑  (     )   (     )        , (10) 

where   and   respectively correspond to the ground truth
‡‡

and segmented iris masks,   and   denote 

the total numbers of columns and rows of the image;   is the total number of images. The XOR operator 

‘ ’ served to evaluate the disagreeing pixels between   and  . The proposed iris segmentation method 

reports average segmentation errors of 1.72%, 1.76% and 0.81% on UBIRIS.v2, FRGC and CASIA.v4-

                                                           
†† All the employed train images were independent from the test images. 
‡‡ Ground truth masks for the three employed databases are available from [39]. 
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distance databases
§§

. The improvement over the method reported in [14] was respectively 9.5%, 4.3% 

and 25.7% on these three databases. Comparison is also performed against other state-of-the-art methods 

[6], [7], [14], [19], [40], [41], as summarized in Figure 13. This figure also illustrates statistical 

significance of the performance improvement over respective state-of-art approaches (p-value at 

significance level of  = 0.05 using independent two-sample test technique [54]). It can be observed that 

the proposed segmentation method outperforms the methods [6], [7], [14], [19], [40], [41] for 

UBIRIS.v2 and FRGC databases. The improvement over [6], [7], [14], [19], [40] can also observed for 

the experiment on CASIA.v4-distance database. The approach [41] reports similar average segmentation 

error as the develop approach. Note that approaches [40], [41] employ the post-processing operations as 

developed in this paper (Section 2.3 – 2.7) to further refine the coarsely segmented iris images. The 

robustness of the developed post-processing operations is further ascertained from the competitive 

segmentation performance obtained for the approaches [40], [41]. The proposed segmentation technique 

not only achieved better segmentation accuracy but also has the advantage in time efficiency. Table 3 

summarizes the comparison of the average execution time for computation of image features in the 

segmentation stage. All the implementations were performed in Matlab environment and executed on 

Intel 2.93 GHz processor with 4 GB RAM. Figure 14 shows some sample segmentation results obtained 

from the three employed databases. As can be observed from Table 3, the proposed segmentation 

technique significantly reduced the computational complexity in performing the iris segmentation. In 

[14], localized Zernike features are computed for every single pixel, which may explains the reason why 

significant amount of time is required. 

 

 

 

 

 

 

 

 

 

 

 

 

                                         (a)                                                                                                          (b)  

Figure 13: Performance of the iris segmentation methods. (a) Average segmentation error (  ̅̅ ̅),  (b) Statistically 

significant difference of different segmentation approaches as compared to the proposed method. 

                                                           
§§ The results will be presented in this order unless otherwise specified. 
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      (a)                                              (b)                                                        (c) 

Figure 14: Sample segmentation results on (a) UBIRIS.v2, (b) FRGC, (c) CASIA.v4-distance. 

Table 3: Average execution time 

 

3.3 Iris Recognition Accuracy 

The segmented iris image is firstly normalized into a predefined size
***

 based on the rubber sheet model 

as proposed in [3], [20] to make the segmented iris image invariant to the pupillary dilation/constriction 

and the iris size. For iris feature extraction, log-Gabor filter [22] with the parameters as in [14] is 

employed. The recognition results for both the databases acquired using visible imaging (UBIRIS.v2 and 

FRGC) are poor and not encouraging. In order to investigate into such matter, the iris recognition 

performance for the ideally segmented cases (i.e. iris segmentation using the ground truth masks [39]) is 

employed as baseline to benchmark the recognition performance of the developed iris segmentation 

approach, as shown in Figure 15 and 16. The reported recognition performance suggests that the poor 

recognition performance may not be entirely attributed to the poorly segmented iris images.  

 
Figure 15: Iris recognition performance for UBIRIS.v2 database. (a) ROC and, (b) CMC for the proposed method 

and the baseline. 

                                                           
***

The normalized templates for the segmented images from the UBIRIS.v2, FRGC and CASIA.v4 are 512 × 64, 256 × 32 and 

512 × 64 respectively. 
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Figure 16: Iris recognition performance for FRGC database. (a) ROC and, (b) CMC for the proposed method and 

the baseline. 

 
Figure 17: Iris pigmentation. (a) Darkly pigmented iris, (b) Lightly pigmented iris. 

 

 
Figure 18: Iris recognition performance for developed method on CASIA.v4-distance database. (a) ROC and, (b) 

CMC. 

Such discouraging recognition performance may due to the fact that noise level influencing the visible 

illumination images is significantly higher (highly degraded image quality) than the iris images acquired 

under rigidly constrained environment. In addition, although human eye has higher sensitivity to the 

visible light, complex iris patterns for darkly pigmented iris can hardly be revealed using visible 

spectrum [47], [1], [6], as depicted in Figure 17. On the other hand, the recognition performance for 

distantly acquired iris images using NIR imaging is observed to be significantly better than those 
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observed for acquisition using visible imaging, as shown in Figure 18. For such database, the rank-one 

identification rate achieved 90.5% when only subset of the images (67 subjects employed in evaluating 

segmentation performance) was employed. The identification rate read 86.5% when the first eight 

images from all the subjects (141 subjects) were employed in the experiments. 

3.4 Combining Iris and Periocular Features Matching Scores 

 

 

 

 

 

 

 

 

Figure 19: Distribution of matching scores from iris and periocular features for  (a) UBIRIS.v2, (b) FRGC, (c) 

CASIA.v4-distance. 

Joint strategy maybe provides the solution to improve the recognition performance for such noisy images. 

Periocular region is of particular interest in this paper as such region is usually simultaneously acquired 

with the eye without incurring additional hardware cost. Several promising efforts such as [42]-[44], [46] 

have shown encouraging recognition performance by employing the periocular region. As such, rigorous 

experiments were carried out in this paper to further investigate recognition performance using joint 

strategy at score level. The employed joint strategy combines the simultaneously acquired iris and 

periocular matching scores based on the weighted sum rule. In this paper, several commonly employed 

feature extraction approaches such as SIFT [49], [50], GIST [47], LBP [52], HoG [53] and LMF (Leung-

Malik Filters) [48] were exploited for computing periocular features. Two types of the experiments: 

Experiment I and II were carried out to rigorously evaluate those periocular feature extraction methods 

(as elaborated below). The detailed procedure of the best performing feature extraction approach 

obtained from the Experiment I and II is then provided. Figure 19 shows the distribution of the 

simultaneously generated genuine and imposter scores for UBIRIS.v2, FRGC and CASIA.v4-distance. 

The periocular scores in this figure were generated using the best performing DSIFT and LMF features 

(Experiment I & II). The distribution of genuine and imposter scores in Figure 18 suggest that there may 

exist complementary information from the iris and periocular, which can be jointly exploited. Such joint 

strategy is expected to achieve superior recognition performance that may not be possible by using either 

iris or periocular. The combination of the scores obtained from the multiple periocular features was also 

analyzed before performing the comparison with some of the existing competing approaches for the 

periocular biometrics.  
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 Experiment I: The segmented periocular region     (see Section 2.8) was employed in experiment I. 

Such segmented region is referred as local periocular region in this paper. The experimental results 

from the three employed databases for the fusion of scores obtained from the local periocular and 

iris features are shown in Figure 20-22. The best of the rank-one recognition rates of 39.6% and 53.2% 

were observed for the joint scores obtained from the periocular (dense SIFT / DSIFT) and iris 

features on the UBIRIS.v2 and FRGC databases respectively. For CASIA.v4-distance database, the 

best rank-one recognition rate was observed to be 93.2% for the fusion of the scores obtained from 

the periocular (LMF) and iris features. However, joint score obtained from the periocular (DSIFT) 

and iris features was observed to provide an overall best recognition performance on the CASIA.v4-

distance database, with marginal decrement of 0.3% in the rank-one recognition rate. 

 
Figure 20: Recognition performance for the score fusion from the periocular and iris features for UBIRIS.v2 

database. (a) ROC, (b) CMC. 

 
Figure 21: Recognition performance for the score fusion from the periocular and iris features for FRGC database. 

(a) ROC, (b) CMC. 
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Figure 22: Recognition performance for the score fusion from the periocular and iris features for CASIA.v4-

distance database. (a) ROC, (b) CMC. 

 Experiment II: In [43], periocular features were directly computed from the localized eye region 

(the detected eye region) without involving segmentation step as described in Section 2.8. Therefore, 

the periocular region is considered as the immediate region detected by the eye detector
†††

, which is 

referred as the global periocular region in this paper. Such global periocular region is particularly 

useful if the iris segmentation fails or the quality of the segmented iris image do not meet the 

minimum requirements. Unlike the local periocular region, the size and the location of the global 

periocular region is less consistent as such region is highly dependent on the detected eye region. For 

that reason, experiment II was carried out to objectively evaluate the performance of the various 

feature extraction methods [47]-[50], [52]-[53] for the global periocular region. The experimental 

results for the fusion of the scores obtained from the global periocular and iris features on the three 

employed databases are respectively shown in Figure 23-25. The best recognition performance is 

observed for the score combination from the periocular (DSIFT) and iris features on the UBIRIS.v2 

and FRGC databases, which respectively reports the rank-one recognition rate of 39.4% and 59.9%. 

As compared to the experiment I, the achieved rank-one recognition rate reports an improvement of 

12.6% for the experiment using FRGC database. In contrast, a 18% decrement on the rank-one 

recognition rate is observed as compared to the experiment I for the combination of global periocular 

(DSIFT) and iris features on the URIBIS.v2 database. For the experiment using CASIA.v4-distance 

database, the best recognition performance is observed for the score fusion of periocular (LMF) and 

iris features, which reports the rank-one recognition rate of 93.9%. 

 Periocular feature extraction: Promising recognition performance using periocular and iris features 

have been ascertained through the experiment I and II. Therefore, the procedure of the best 

performing periocular feature extraction methods, i.e., DSIFT and LMF are further detailed in this 

                                                           
††† Note that the UBIRIS.v2 provides the localized eye images and therefore eye detection is not required for the images from 

this database. 
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paper. Figure 26 illustrates the general training and the matching processes for the periocular 

biometrics using either DSIFT or LMF as features. During the training phase, a k-texton dictionary is 

constructed. Given the   training images, DSIFT/LMF features are computed from the periocular 

region (local/global) of each training image. The texton dictionary is then constructed by clustering 

the computed   DSIFT/LMF feature vectors using k-means clustering approach. In order to select 

the best k representative textons, a discrete set of k-values was evaluated for both DSIFT and LMF 

methods, as shown in Figure 27. In the matching process, the periocular features are extracted 

similarly as in the training process. The extracted periocular features are then classified using the 

trained texton dictionary and number of occurrences of each classified texton is computed to form a 

k-bin histogram. Matching score between two templates is computed using the Chi-square distance.  

` 
Figure 23: Recognition performance using the joint score from the periocular and iris features for UBIRIS.v2 

database. (a) ROC, (b) CMC. 

 
Figure 24: Recognition performance using the joint score from the periocular and iris features for FRGC 

database. (a) ROC, (b) CMC. 
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Figure 25: Recognition performance for the score fusion of the periocular and iris features for CASIA.v4-

distance database. (a) ROC, (b) CMC. 

 
(a) 

 
(b) 

Figure 26: Illustration of periocular training and matching processes: (a) training of texton dictionary, (b) 

Example of matching process. 

 
Figure 27: Training of parameter k for clustering the best k textons using (a) DSIFT, (b) LMF features. 

 Score fusion: The matching scores for the periocular and iris features are computed based on two 

different score systems. Therefore, score normalization is performed prior to the score fusion. The 

min-max normalization technique is employed for such purpose to normalize the matching scores 
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computed from the periocular and iris features. The normalized scores are combined using the 

weighted sum rule. 

 
Figure 28: CMCs for the fusion of multiple features. (a) FRGC, (b) CASIA.v4-distance. 

 Joint scores from multiple features: Joint scores obtained from multiple features were also 

exploited in this paper. The recognition performance for the experiments on FRGC and CASIA.v4-

distance databases are shown using the CMC curves in Figure 28. The recognition performance for 

the experiment on UBIRIS.v2 is not provided as no significant improvement was observed for the 

score combination from the multiple features. The improvement in rank-one recognition rates is 

observed to be 5.3% and 0.2% respectively for the FRGC and CASIA.v4-distance databases when 

score fusion from multiple features was employed. 

 Comparison with existing methods: Previous approaches as reported in [43] and [44] compute 

multiple periocular features and exploit the score fusion of the computed features to improve the 

recognition accuracy. The best performing joint strategy obtained from the experiments as 

described earlier is compared with the competing approaches [43] and [44], as shown by the 

CMC curves in Figure 29. The recognition performance of each considered periocular feature in 

the best performing joint strategy is also provided. Such joint strategy suggests that they may 

exist complementary information from multiple periocular and iris features which can be 

exploited to achieve superior recognition accuracy. An overall improvement of 52.4% in rank-

one recognition accuracy was observed, as compared to the methods [43] and [44]. It can be 

noticed that the experimental results obtained from the UBIRIS.v2 database achieved the lowest 

accuracy among all the employed databases. One of the possible reasons to explain for such 

discouraging performance may due to the lack of sufficient periocular regions for better feature 

representation. The localized eye images provided from the UBIRIS.v2 database do not have 

sufficient periocular regions (e.g. eyebrow, malar fold, nasojugal fold, etc.) as compared to 

FRGC and CASIA.v4-distance databases. Figure 30 provides several sample images from each 

of the employed databases. As can be observed from such figure, sufficient periocular regions 
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can be extracted from the face (or partial face) images provided in FRGC and CASIA.v4-

distance databases. 

 
                              (a)                                                           (b)                                                           (c) 

Figure 29: Comparisons with the existing methods on database: (a) UBIRIS.v2, (b) FRGC, (b) CASIA.v4-

distance. 

 
Figure 30: Sample images from (a) UBIRIS.v2, (b) FRGC (automatically cropped face), and (c) CASIA.v4-

distance databases. 

 

4. Conclusion 

This paper has presented a promising approach for automated human recognition by simultaneously 

exploiting iris and periocular features to provide improved recognition performance. The developed iris 

segmentation approach is computationally attractive (Table 3) than previously proposed approaches 

especially for visible illumination databases. However, further efforts are still required to improve the 

efficiency of the iris segmentation algorithm in order to make it feasible for any possible online 

deployment in applications like remote surveillance. The experimental results obtained from the three 

publicly available at-a-distance databases, i.e., UBIRIS.v2, FRGC and CASIA.v4-distance, clearly 

demonstrate the superior performance of the proposed segmentation technique, which suggest the 
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average improvement of 9.5%, 4.3% and 25.7% in segmentation accuracy respectively for the three 

employed databases. The developed segmentation approach not only achieves better segmentation 

accuracy but also with significantly reduced of computational cost and complexity as compared to the 

previous approaches. In order to improve the recognition accuracy, this paper exploits the joint strategy 

using the iris and periocular features. Rigorous experiments were carried out to evaluate the performance 

of various periocular feature extraction methods on the three employed databases. The best learned joint 

features from the experiments are also compared with the existing state-of-art algorithms, evaluated 

using the three employed databases, which reported an overall improvement of 52.4% in rank-one 

recognition accuracy. It is worth noting that only the single eye (left/right) images are employed in our 

work. The recognition accuracy is expected to be further improved if the information from both eyes can 

be simultaneously exploited. Such efforts for the performance improvement require new experiments 

and analysis which is to be pursued during our future work. 
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