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Abstract

Deep networks have produced significant gains for var-

ious visual recognition problems, leading to high impact

academic and commercial applications. Recent work in

deep networks highlighted that it is easy to generate images

that humans would never classify as a particular object

class, yet networks classify such images high confidence

as that given class – deep network are easily fooled with

images humans do not consider meaningful. The closed set

nature of deep networks forces them to choose from one of

the known classes leading to such artifacts. Recognition in

the real world is open set, i.e. the recognition system should

reject unknown/unseen classes at test time. We present a

methodology to adapt deep networks for open set recogni-

tion, by introducing a new model layer, OpenMax, which

estimates the probability of an input being from an unknown

class. A key element of estimating the unknown probabil-

ity is adapting Meta-Recognition concepts to the activation

patterns in the penultimate layer of the network. Open-

Max allows rejection of “fooling” and unrelated open set

images presented to the system; OpenMax greatly reduces

the number of obvious errors made by a deep network. We

prove that the OpenMax concept provides bounded open

space risk, thereby formally providing an open set recog-

nition solution. We evaluate the resulting open set deep net-

works using pre-trained networks from the Caffe Model-zoo

on ImageNet 2012 validation data, and thousands of fooling

and open set images. The proposed OpenMax model signif-

icantly outperforms open set recognition accuracy of basic

deep networks as well as deep networks with thresholding

of SoftMax probabilities.

1 Introduction
Computer Vision datasets have grown from few hundred

images to millions of images and from few categories to

thousands of categories, thanks to research advances in
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vision and learning. Recent research in deep networks has

significantly improved many aspects of visual recognition

[26, 3, 11]. Co-evolution of rich representations, scalable

classification methods and large datasets have resulted in

many commercial applications [5, 28, 16, 6]. However, a

wide range of operational challenges occur while deploying

recognition systems in the dynamic and ever-changing real

world. A vast majority of recognition systems are designed

for a static closed world, where the primary assumption is

that all categories are known a priori. Deep networks, like

many classic machine learning tools, are designed to per-

form closed set recognition.

Recent work on open set recognition [20, 21] and

open world recognition [1], has formalized processes for

performing recognition in settings that require rejecting

unknown objects during testing. While one can always

train with an “other” class for uninteresting classes (known

unknowns), it is impossible to train with all possible exam-

ples of unknown objects. Hence the need arises for design-

ing visual recognition tools that formally account for the

“unknown unknowns”[18]. Altough a range of algorithms

has been developed to address this issue [4, 20, 21, 25, 2],

performing open set recognition with deep networks has

remained an unsolved problem.

In the majority of deep networks [11, 26, 3], the output of

the last fully-connected layer is fed to the SoftMax function,

which produces a probability distribution over the N known

class labels. While a deep network will always have a most-

likely class, one might hope that for an unknown input all

classes would have low probability and that thresholding on

uncertainty would reject unknown classes. Recent papers

have shown how to produce “fooling” [14] or “rubbish”

[8] images that are visually far from the desired class but

produce high-probability/confidence scores. They strongly

suggests that thresholding on uncertainty is not sufficient

to determine what is unknown. In Sec. 3, we show that

extending deep networks to threshold SoftMax probabil-

ity improves open set recognition somewhat, but does not

resolve the issue of fooling images. Nothing in the the-

ory/practice of deep networks, even with thresholded prob-

abilities, satisfies the formal definition of open set recog-

11563



MODEL 

Real Image 

Fooling 

OpenSet 

Real: SM 0.94  OM 0.94  

Baseball

Fooling: SM 1.0, OM 0.00 

Openset: 0.15,  OM: 0.17 

Hammerhead �


Baseball 

Hammerhead Shark 

Great White Shark 

Scuba Diver 

Adversarial Scuba Diver (from Hammerhead) 

MODEL 

Real Image 

Fooling 

OpenSet 

MODEL 

Real Image 

Fooling 

OpenSet 

MODEL 

Real Image 

Fooling 

OpenSet 

Sharks Whales Fish Baseball

Real: SM 0.57, OM 0.58 

Fooling: SM 0.98, OM 0.00 

Openset: SM 0.25, OM 0.10 

Adversarial Scuba Diver  

SM 0.32 Scuba Diver  

OM 0.49 Unknown 

 

ALer Blur OM 0.79 Hammerhead 
Dogs

Figure 1. Examples showing how an activation vector model provides sufficient information for our Meta-Recognition and OpenMax

extension of a deep network to support open-set recognition. The OpenMax algorithm measures distance between an activation vector

(AV) for an input and the model vector for the top few classes, adjusting scores and providing an estimate of probability of being unknown.

The left side shows activation vectors (AV) for different images, with different AVs separated by black lines. Each input image becomes

an AV, displayed as 10x450 color pixels, with the vertical being one pixel for each of 10 deep network channel activation energy and the

horizontal dimension showing the response for the first 450 ImageNet classes. Ranges of various category indices (sharks, whales, dogs,

fish, etc.) are identified on the bottom of the image. For each of four classes (baseball, hammerhead shark, great white shark and scuba

diver), we show an AV for 4 types of images: the model, a real image, a fooling image and an open set image. The AVs show patterns of

activation in which, for real images, related classes are often responding together, e.g., sharks share many visual features, hence correlated

responses, with other sharks, whales, large fishes, but not with dogs or with baseballs. Visual inspection of the AVs shows significant

difference between the response patterns for fooling and open set images compared to a real image or the model AV. For example, note

the darker (deep blue) lines in many fooling images and different green patterns in many open set images. The bottom AV is from an

“adversarial” image, wherein a hammerhead image was converted, by adding nearly invisible pixel changes, into something classified as

scuba-diver. On the right are two columns showing the associated images for two of the classes. Each example shows the SoftMax (SM)

and OpenMax (OM) scores for the real image, the fooling and open set image that produced the AV shown on the left. The red OM scores

implies the OM algorithm classified the image as unknown, but for completeness we show the OM probability of baseball/hammerhead

class for which there was originally confusion. The bottom right shows the adversarial image and its associated scores – despite the

network classifying it as a scuba diver, the visual similarity to the hammerhead is clearly stronger. OpenMax rejects the adversarial image

as an outlier from the scuba diver class. As an example of recovery from failure, we note that if the image is Gaussian blurred OpenMax

classifies it as a hammerhead shark with .79 OM probability.

nition offered in [20]. This leads to the first question

addressed in this paper, “how to adapt deep networks sup-

port to open set recognition?”

The SoftMax layer is a significant component of the

problem because of its closed nature. We propose an alter-

native, OpenMax, which extends SoftMax layer by enabling

it to predict an unknown class. OpenMax incorporates like-

lihood of the recognition system failure. This likelihood is

used to estimate the probability for a given input belong-

ing to an unknown class. For this estimation, we adapt the

concept of Meta-Recognition[22, 32, 9] to deep networks.

We use the scores from the penultimate layer of deep net-

works (the fully connected layer before SoftMax, e.g., FC8)

to estimate if the input is “far” from known training data.

We call scores in that layer the activation vector(AV). This

information is incorporated in our OpenMax model and

used to characterize failure of recognition system. By drop-

ping the restriction for the probability for known classes

to sum to 1, and rejecting inputs far from known inputs,

OpenMax can formally handle unknown/unseen classes

during operation. Our experiments demonstrate that the

proposed combination of OpenMax and Meta-Recognition

ideas readily address open set recognition for deep networks

and reject high confidence fooling images [14].

While fooling/rubbish images are, to human observers,

clearly not from a class of interest, adversarial images

[8, 27] present a more difficult challenge. These adversarial

images are visually indistinguishable from a training sam-

ple but are designed so that deep networks produce high-

confidence but incorrect answers. This is different from
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standard open space risk because adversarial images are

“near” a training sample in input space, for any given output

class.

A key insight in our opening deep networks is noting

that “open space risk” should be measured in feature space,

rather than in pixel space. In prior work, open space risk

is not measured in pixel space for the majority of problems

[20, 21, 1]. Thus, we ask “is there a feature space, ide-

ally a layer in the deep network, where these adversarial

images are far away from training examples, i.e., a layer

where unknown, fooling and adversarial images become

outliers in an open set recognition problem?” In Sec. 2.1,

we investigate the choice of the feature space/layer in deep

networks for measuring open space risk. We show that

an extreme-value meta-recognition inspired distance nor-

malization process on the overall activation patterns of the

penultimate network layer provides a rejection probability

for OpenMax normalization for unknown images, fooling

images and even for many adversarial images. In Fig. 1, we

show examples of activation patterns for our model, input

images, fooling images, adversarial images (that the system

can reject) and open set images.

In summary the contributions of this paper are:

1. Multi-class Meta-Recognition using Activation Vec-

tors to estimate the probability of deep network failure

2. Formalization of open set deep networks using Meta-

Recognition and OpenMax, along with the proof

showing that proposed approach manages open space

risk for deep networks

3. Experimental analysis of the effectiveness of open set

deep networks at rejecting unknown classes, fooling

images and obvious errors from adversarial images,

while maintaining its accuracy on testing images

2 Open Set Deep Networks
A natural approach for opening a deep network is to apply

a threshold on the output probability. We consider this

as rejecting uncertain predictions, rather than rejecting

unknown classes. It is expected images from unknown

classes will all have low probabilities, i.e., be very uncer-

tain. This is true only for a small fraction of unknown

inputs. Our experiments in Sec. 3 show that thresholding

uncertain inputs helps, but is still relatively weak tool for

open set recognition. Scheirer et al. [20] defined open space

risk as the risk associated with labeling data that is “far”

from known training samples. That work provides only a

general definition and does not prescribe how to measure

distance, nor does it specify the space in which such dis-

tance is to be measured. In order to adapt deep networks

to handle open set recognition, we must ensure they man-

age/minimize their open space risk and have the ability to

reject unknown inputs.

Building on the concepts in [21, 1], we seek to choose a

layer (feature space) in which we can build a compact abat-

ing probability model that can be thresholded to limit open

space risk. We develop this model as a decaying probability

model based on distance from a learned model. In follow-

ing section, we elaborate on the space and meta-recognition

approach for estimating distance from known training data,

followed by a methodology to incorporate such distance in

decision function of deep networks. We call our method-

ology OpenMax, an alternative for the SoftMax function

as the final layer of the network. Finally, we show that

the overall model is a compact abating probability model,

hence, it satisfies the definition for an open set recognition.

2.1 Multi-class Meta-Recognition

Our first step is to determine when an input is likely not

from a known class, i.e., we want to add a meta-recognition

algorithm [22, 32] to analyze scores and recognize when

deep networks are likely incorrect in their assessment. Prior

work on meta-recognition used the final system scores, ana-

lyzed their distribution based on Extreme Value Theory

(EVT) and found these distributions follow Weibull distri-

bution. Although one might use the per class scores inde-

pendently and consider their distribution using EVT, that

would not produce a compact abating probability because

the fooling images show that the scores themselves were not

from a compact space close to known input training data.

Furthermore, a direct EVT fitting on the set of class post

recognition scores (SoftMax layer) is not meaningful with

deep networks, because the final SoftMax layer is intention-

ally renormalized to follow a logistic distribution. Thus, we

analyze the penultimate layer, which is generally viewed

as a per-class estimation. This per-class estimation is con-

verted by SoftMax function into the final output probabili-

ties.

We take the approach that the network values from

penultimate layer (hereafter the Activation Vector (AV)), are

not an independent per-class score estimate, but rather they

provide a distribution of what classes are “related.” In

Sec. 2.2 we discuss an illustrative example based on Fig. 1.

Our overall EVT meta-recognition algorithm is summa-

rized in Alg. 1. To recognize outliers using AVs, we adapt

the concepts of Nearest Class Mean [29, 12] or Nearest

Non-Outlier [1] and apply them per class within the activa-

tion vector, as a first approximation. While more complex

models, such as nearest class multiple centroids (NCMC)

[13] or NCM forests [17], could provide more accurate

modeling, for simplicity this paper focuses on just using a

single mean. Each class is represented as a point, a mean

activation vector (MAV) with the mean computed over only

the correctly classified training examples (line 2 of Alg. 1).

Given the MAV and an input image, we measure dis-

tance between them. We could directly threshold distance,

e.g., use the cross-class validation approach of [1] to deter-
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Algorithm 1 EVT Meta-Recognition Calibration for Open Set

Deep Networks, with per class Weibull fit to η largest distance to

mean activation vector. Returns libMR models ρj which includes

parameters τi for shifting the data as well as the Weibull shape and

scale parameters:κi, λi.

Require: FitHigh function from libMR

Require: Activation levels in the penultimate network

layer v(x) = v1(x) . . . vN (x)
Require: For each class j let Si,j = vj(xi,j) for each cor-

rectly classified training example xi,j .

1: for j = 1 . . . N do

2: Compute mean AV, µj = meani(Si,j)

3: EVT Fit ρj = (τj , κj , λj) = FitHigh(‖Ŝj−µj‖, η)
4: end for

5: Return means µj and libMR models ρj

mine an overall maximum distance threshold. In [1], the

features were subject to metric learning to normalize them,

which makes a single shared threshold viable. However, the

lack of uniformity in the AV for different classes presents

a greater challenge and, hence, we seek a per class meta-

recognition model. In particular, on line 3 of Alg. 1 we use

the libMR [22] FitHigh function to do Weibull fitting on the

largest of the distances between all correct positive training

instances and the associated µi. This results in a parame-

ter ρi, which is used to estimate the probability of an input

being an outlier with respect to class i.

Given ρi, a simple rejection model would be for the

user to define a threshold that decides if an input should

be rejected, e.g., ensuring 90% of all training data will have

probability near zero of being rejected as an outlier. While

simple to implement, it is difficult to calibrate an abso-

lute Meta-Recognition threshold because it depends on the

unknown unknowns. Therefore, we choose to use this in the

OpenMax algorithm described in Sec. 2 which has a contin-

uous adjustment.

We note that our calibration process uses only correctly

classified data, for which class j is rank 1. At testing,

for input x assume class j has the largest probability, then

ρj(x) provides the MR estimated probability that x is an

outlier and should be rejected. We use one calibration for

high-ranking (e.g., top 10), but as an extension separate cal-

ibration for different ranks is possible. Note when there

are multiple channels per example we compute per channel

per class mean vectors µj,c and Weibull parameters ρj,c. It

is worth remembering that the goal is not to determine the

training class of the input, rather this is a meta-recognition

process used to determine if the given input is from an

unknown class and hence should be rejected.

2.2 Interpretation of Activation Vectors

In this section, we present the concept of activation vectors

and meta-recognition with illustrative examples based on

Fig. 1.

Closed Set: Presume the input is a valid input of say

a hammerhead shark, i.e., the second group of activation

records from Fig. 1. The activation vector shows high

scores for the AV dimension associated with a great white

shark. All sharks share many direct visual features and

many contextual visual features with other sharks, whales

and large fish, which is why Fig. 1 shows multiple higher

activations (bright yellow-green) for many ImageNet cate-

gories in those groups. We hypothesize that for most cat-

egories, there is a relatively consistent pattern of related

activations. The MAV captures that distribution as a sin-

gle point. The AVs present a space where we measure the

distance from an input image in terms of the activation of

each class; if it is a great white shark we also expect higher

activations from say tiger and hammerhead sharks as well as

whales, but very weak or no activations from birds or base-

balls. Intuitively, this seems like the right space in which to

measure the distance during training.

Open Set: First let us consider an open set image, i.e., a

real image from an unknown category. These will always be

mapped by the deep network to the class for which SoftMax

provides the maximum response, e.g., the images of rocks

in Fig. 1 is mapped to baseball and the fish on the right is

mapped to a hammerhead. Sometimes open set images will

have lower confidence, but the maximum score will yield

a corresponding class. Comparing the activation vectors of

the input with the MAV for a class for which the input pro-

duced maximum response, we observe it is often far from

the mean. However, for some open set images the response

provided is close to the AV but still has an overall low acti-

vation level. This can occur if the input is an “unknown”

class that is closely related to a known class, or if the object

is small enough that it is not well distinguished. For exam-

ple, if the input is from a different type of shark or large

fish, it may provide a low activation, but the AV may not

be different enough to be rejected. For this reason, it is still

necessary for open set recognition to threshold uncertainty,

in addition to directly estimating if a class is unknown.

Fooling Set: Consider a fooling input image, which

was artificially constructed to make a particular class (e.g.,

baseball or hammerhead) have high activation score and,

hence, to be detected with high confidence. While the artifi-

cial construction increases the class of interest’s probability,

the image generation process did not simultaneously adjust

the scores of all related classes, resulting in an AV that is

“far” from the model AV. Examine the 3rd element of each

class group in Fig. 1 which show activations from fooling

images. Many fooling images are visually quite different

and so are their activation vectors. The many regions of very

low activation (dark blue/purple) are likely because one can

increase the output of SoftMax for a given class by reduc-

ing the activation of other classes, which in turn reduces the

denominator of the SoftMax computation.
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Adversarial Set: Finally, consider an adversarial input

image [8, 27, 31], which is constructed to be close to one

class but is mislabeled as another. An example is shown

on the bottom right of Fig. 1. If the adversarial image is

constructed to a nearby class, e.g., from hammerhead to

great white, then the approach proposed herein will fail to

detect it as a problem – fine-grained category differences

are not captured in the MAV. However, adversarial images

can be constructed between any pair of image classes, see

[27]. When the target class is far enough, e.g., the ham-

merhead and scuba example here, or even farther such as

hammerhead and baseball, the adversarial image will have

a significant difference in activation score and hence can

be rejected. We do not consider adversarial images in our

experiments because the outcome would be more a function

of that adversarial images we choose to generate – and we

know of no meaningful distribution for that. If, for example,

we choose random class pairs (a, b) and generated adver-

sarial images from a to b, most of those would have large

hierarchy distance and likely be rejected. If we choose the

closest adversarial images, likely from nearby classes, the

activations will be close and they will not be rejected.

The result of our OpenMax process is that open set

as well as fooling or adversarial images will generally be

rejected. Building a fooling or adversarial image that is

not rejected means not only getting a high score for the

class of interest, it means maintaining the relative scores

for the 999 other classes. At a minimum, the space of

adversarial/fooling images is significantly reduced by these

constraints. Hopefully, any input that satisfies all the con-

straints is an image that also gets human support for the

class label, as did some of the fooling images in Figure 3 of

[14], and as one sees in adversarial image pairs fine-grain

separated categories such as bull and great white sharks.

One may wonder if a single MAV is sufficient to repre-

sent complex objects with different aspects/views. While

future work should examine more complex models that

can capture different views/exemplars, e.g., NCMC [13]

or NCM forests [17]. If the deep network has actually

achieved the goal of view independent recognition, then the

distribution of penultimate activation should be nearly view

independent. While the open-jaw and side views of a shark

are visually quite different, and a multi-exemplar model

may be more effective in capturing the different features

in different views, the open-jaws of different sharks are still

quite similar, as are their side views. Hence, each view may

present a relatively consistent AV, allowing a single MAV

to capture both. Intuitively, while image features may vary

greatly with view, the relative strength of “related classes”

represented by the AV should be far more view independent.

Algorithm 2 OpenMax probability estimation with rejection of

unknown or uncertain inputs.

Require: Activation vector for v(x) = v1(x), . . . , vN (x)
Require: means µj and libMR models ρj = (τi, λi, κi)
Require: α, the numer of “top” classes to revise

1: Let s(i) = argsort(vj(x)); Let ωj = 1
2: for i = 1, . . . , α do

3: ωs(i)(x) = 1− α−i
α

e
−

(

‖x−τ
s(i)‖

λ
s(i)

)

κ
s(i)

4: end for

5: Revise activation vector v̂(x) = v(x) ◦ ω(x)
6: Define v̂0(x) =

∑
i vi(x)(1− ωi(x)).

7:

P̂ (y = j|x) =
ev̂j(x)

∑N

i=0 e
v̂i(x)

(2)

8: Let y∗ = argmaxj P (y = j|x)
9: Reject input if y∗ == 0 or P (y = y∗|x) < ǫ

2.3 OpenMax

The standard SoftMax function is a gradient-log-normalizer

of the categorical probability distribution – a primary reason

that it is commonly used as the last fully connected layer of

a network. The traditional definition has per-node weights

in their computation. The scores in the penultimate network

layer of Caffe-based deep networks [10], what we call the

activation vector, has the weighting performed in the con-

volution that produced it. Let v(x) = v1(x), . . . , vN (x) be

the activation level for each class, y = 1, . . . , N . After deep

network training, an input image x yields activation vector

v(x), the SoftMax layer computes:

P (y = j|x) =
evj(x)

∑N

i=1 e
vi(x)

(1)

where the denominator sums over all classes to ensure the

probabilities over all classes sum to 1. However, in open

set recognition there are unknown classes that will occur

at test time and, hence, it is not appropriate to require the

probabilities to sum to 1.

To adapt SoftMax for open set, let ρ be a vector of meta-

recognition models for each class estimated by Alg. 1. In

Alg. 2 we summarize the steps for OpenMax computation.

For convenience we define the unknown unknown class to

be at index 0. We use the Weibull CDF probability (line 3 of

Alg. 2) on the distance between x and µi for the core of the

rejection estimation. The model µi is computed using the

images associated with category i, images that were clas-

sified correctly (top-1) during training process. We expect

the EVT function of distance to provide a meaningful prob-

ability only for few top ranks. Thus in line 3 of Alg. 2,

we compute weights for the α largest activation classes and

use it to scale the Weibull CDF probability. We then com-

pute revised activation vector with the top scores changed.

We compute a pseudo-activation for the unknown unknown
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Figure 2. A plot of OpenMax probabilities vs SoftMax proba-

bilities for the fooling (triangle), open set (square) and valida-

tion (circle) for 100 categories from ImageNet 2012. The more

off-diagonal a point, the more OpenMax altered the probabili-

ties. Below the diagonal means OpenMax estimation reduced the

inputs probability of being in the class. For some inputs Open-

Max increased the classes probability, which occurs when the lead-

ing class is partially rejected thereby reducing its probability and

increasing a second or higher ranked class. Uncertainty-based

rejection threshold (ǫ) selection can optimize F-measure between

correctly classifying the training examples while rejecting open

set examples. (Fooling images are not used for threshold selec-

tion.) The number of triangles and squares below the diagonal

means that uncertainty thresholding on OpenMax threshold (ver-

tical direction), is better than thresholding on SoftMax (horizontal

direction).

class, keeping the total activation level constant. Includ-

ing the unknown unknown class, the new revised activation

compute the OpenMax probabilities as in Eq. 2.

OpenMax provides probabilities that support explicit

rejection when the unknown unknown class (y = 0) has

the largest probability. This Meta-Recognition approach

is a first step toward determination of unknown unknown

classes and our experiments show that a single MAV works

reasonably well at detecting fooling images, and is bet-

ter than just thresholding on uncertainty. However, in any

system that produces certainty estimates, thresholding on

uncertainty is still a valid type of meta-recognition and

should not be ignored. The final OpenMax approach thus

also rejects unknown as well as uncertain inputs in line 9 of

Alg.2.

To select the hyper-parameters ǫ, η, and α, we can do

a grid search calibration procedure using a set of training

images plus a sampling of open set images, optimizing F-

measure over the set. The goal here is basic calibration

for overall scale/sensitivity selection, not to optimize the

threshold over the space of unknown unknowns, which can-

not be done experimentally.

Note that the computation of the unknown unknown

class probability inherently alters all probabilities esti-

mated. For a fixed threshold and inputs that have even

a small chance of being unknown, OpenMax will reject

more inputs than SoftMax. Fig. 2 shows the OpenMax and

SoftMax probabilities for 100 example images, 50 train-

ing images and 50 open set images as well as for fooling

images. The more off-diagonal the more OpenMax altered

the probabilities. Threshold selection for uncertainty based

rejection ǫ, would find a balance between keeping the train-

ing examples while rejecting open set examples. Fooling

images were not used for threshold selection.

While not part of our experimental evaluation, note that

OpenMax also provides meaningful rank ordering via its

estimated probability. Thus OpenMax directly supports a

top-5 class output with rejection. It is also important to note

that because of the re-calibration of the activation scores

v̂i(x), OpenMax often does not produce the same rank

ordering of the scores.

2.4 OpenMax Compact Abating Property

While thresholding uncertainty does provide the ability to

reject some inputs, it has not been shown to formally limit

open space risk for deep networks. It should be easy to

see that in terms of the activation vector, the positively

labeled space for SoftMax is not restricted to be near the

training space, since any increase in the maximum class

score increases its probability while decreasing the proba-

bility of other classes. With sufficient increase in the maxi-

mum directions, even large changes in other dimension will

still provide large activation for the leading class. While

in theory one might say the deep network activations are

bounded, the fooling images of [14], are convincing evi-

dence that SoftMax cannot manage open space risk.

Theorem 1 (Open Set Deep Networks): A deep network

extended using Meta-Recognition on activation vectors as

in Alg. 2, with the SoftMax later adapted to OpenMax, as in

Eq. 2, provides an open set recognition function.

Proof. The Meta-Recognition probability (CDF of a

Weibull) is a monotonically increasing function of ‖µi −
x‖, and hence 1 − ωi(x) is monotonically decreasing.

Thus, they form the basis for a compact abating proba-

bility as defined in [21]. Since the OpenMax transforma-

tion is a weighted monotonic transformation of the Meta-

Recognition probability, applying Theorems 1 and 2 of

[1] yield that thresholding the OpenMax probability of the

unknown manages open space risk as measured in the AV

feature space. Thus it is an open set recognition func-

tion.

3 Experimental Analysis
Our evaluation is based on ImageNet Large Scale Visual

Recognition Competition (ILSVRC) 2012 dataset with 1K

visual categories. The dataset contains around 1.3M images
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for training (with approximately 1K to 1.3K images per

category), 50K images for validation and 150K images

for testing. Since test labels for ILSVRC 2012 are not

publicly available, like others have done we report perfor-

mance on validation set [11, 14, 23]. We use a pre-trained

AlexNet (BVLC AlexNet) deep neural network provided

by the Caffe software package [10]. BVLC AlexNet is

reported to obtain approximately 57.1% top-1 accuracy on

ILSVRC 2012 validation set. The choice of pre-trained

BVLC AlexNet is deliberate, since it is open source and

one of the most widely used packages available for deep

learning.

To ensure proper open set evaluation, we apply a test

protocol similar to the ones presented in [21, 1]. During

the testing phase, we test the system with all the 1000 cate-

gories from ILSVRC 2012 validation set, fooling categories

and previously unseen categories. The previously unseen

categories are selected from ILSVRC 2010. It has been

noted by Russakovsky et al. [19] that approximately 360

categories from ILSVRC 2010 were discarded and not used

in ILSVRC 2012. Images from these 360 categories as the

open set images, i.e., unseen or unknown categories.

Fooling images are generally totally unrecognizable to

humans as belonging to the given category but deep net-

works report with near certainty they are from the specified

category. We use fooling images provided by Nguyen et

al. [14] that were generated by an evolutionary algorithm or

by gradient ascent in pixel space. The final test set consists

of 50K closed set images from ILSVRC 2012, 15K open

set images (from the 360 distinct categories from ILSVRC

2010) and 15K fooling images (with 15 images each per

ILSVRC 2012 categories).

Training Phase: As discussed previously (Alg. 1), we

consider the penultimate layer (fully connected layer 8 , i.e.,

FC8) for computation of mean activation vectors (MAV).

The MAV vector is computed for each class by consider-

ing the training examples that deep networks training clas-

sified correctly for the respective class. MAV is computed

for each crop/channel separately. Distance between each

correctly classified training example and MAV for particu-

lar class is computed to obtain class specific distance dis-

tribution. For these experiments we use a distance that is a

weighted combination of normalized Euclidean and cosine

distances. Supplemental material shows results with pure

Euclidean and other measures that overall perform simi-

larly. Parameters of Weibull distribution are estimated on

these distances. This process is repeated for each of the

1000 classes in ILSVRC 2012. The exact length of tail size

for estimating parameters of Weibull distribution is obtained

during parameter estimation phase over a small set of hold

out data. This process is repeated multiple times to obtain

an overall tail size of 20.

Testing Phase: During testing, each test image goes

0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45

Thresholds

0.56

0.57

0.58

0.59

0.60

F-
m

e
a
su

re

OpenMax Open set Softmax Open set

Figure 3. OpenMax and SoftMax-w/threshold performance shown

as F-measure as a function of threshold on output probabilities.

The test uses 80,000 images, with 50,000 validation images from

ILSVRC 2012, 15,000 fooling images and 15,000 “unknown”

images draw from ILSVRC 2010 categories not used in 2012. The

base deep network performance would be the same as threshold

0 of SoftMax-w/threshold. OpenMax performance gain is nearly

4.3% improvement accuracy over SoftMax with optimal threshold,

and 12.3% over the base deep network. Putting that in context,

over the test set OpenMax correctly classified 3450 more images

than SoftMax and 9847 more than the base deep network.

through the OpenMax score calibration process as dis-

cussed previously in Alg. 2. The activation vectors are

the values in the FC8 layer for a test image that consists

of 1000x10 dimensional values corresponding to each class

and each channel. For each channel in each class, the input

is compared using a per class MAV and per class Weibull

parameters. During testing, distance with respect to the

MAV is computed and revised OpenMax activations are

obtained, including the new unknown class (see lines 5&6

of Alg. 2). The OpenMax probability is computed per chan-

nel, using the revised activations (Eq. 2) yielding an out-

put of 1001x10 probabilities. For each class, the average

over the 10 channel gives the overall OpenMax probability.

Finally, the class with the maximum over the 1001 prob-

abilities is the predicted class. This maximum probability

is then subject to the uncertainty threshold (line 9). In this

work we focus on strict top-1 predictions.

Evaluation: Multi-class classification error for a closed

set system can be computed by keeping track of incorrect

classifications. For open set testing the evaluation must

keep track of the errors that occur due to standard multi-

class classification over known categories as well as errors

between known and unknown categories. As suggested

in [25, 20] we use F-measure to evaluate open set perfor-

mance. For open set recognition testing, F-measure is bet-

ter than accuracy because it is not inflated by true negatives.

For a given threshold on OpenMax/SoftMax probabil-

ity values, we compute true positives, false positives and
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Figure 4. The above figure shows performance of OpenMax and

SoftMax as a detector for fooling images and for open set test

images. F-measure is computed for varying thresholds on Open-

Max and SoftMax probability values. The proposed approach of

OpenMax performs very well for rejecting fooling images during

prediction phase.

false negatives over the entire dataset. For example, when

testing the system with images from validation set, fooling

set and open set (see Fig. 3), true positives are defined as

the correct classifications on the validation set, false posi-

tives are incorrect classifications on the validation set and

false negatives are images from the fooling set and open set

categories that the system incorrectly classified as known

examples. Fig. 3 shows performance of OpenMax and Soft-

Max for varying thresholds. Our experiments show that the

proposed approach of OpenMax consistently obtains higher

F-measure on open set testing.

Comparison with the 1-vs-set algorithm: Due to lack

of available baselines in this relatively new sub area in deep

learning, we consider a linear model for an open set base-

line. We apply 1-vs-set open set algorithm[20] to the FC8

data. We used liblinear to train a linear SVM on the training

samples from the 1000 classes. We also trained a 1-vs-set

machine using the liblinear extension cited in [1], refining it

on the training data for the 1000 classes. The 1-Vs-Set algo-

rithm achieves an overall F-measure of only .407, which is

much lower than the .595 of the OpenMax approach.

4 Discussion
We have seen that with our OpenMax architecture, we can

automatically reject many unknown open set and fooling

images as well as rejecting some adversarial images, while

having only modest impact to the true classification rate.

One of the obvious questions when using Meta-Recognition

is “what do we do with rejected inputs?” While that is best

left up to the operational system designer, there are multiple

possibilities. OpenMax can be treated as a novelty detector

in the scenario presented open world recognition [1] after

that human label the data and the system incrementally learn

Lizards  Jeep 

Original AV 

Agama MAV 

Jeep MAV 

Crop 1 AV 

Crop2 AV 

Figure 5. OpenMax also predict failure during training as in this

example. The official class is agama but the MAV for agama is

rejected for this input, and the highest scoring class is jeep with

probability 0.26. However, cropping out image regions can find

windows where the agama is well detected and another where the

Jeep is detected. Crop 1 is the jeep region, crop 2 is agama and the

crops AV clearly match the appropriate model and are accepted

with probability 0.32 and 0.21 respectively.

new categories. Or detection can used as a flag to bring in

other modalities [24, 7]. Further, one could apply simple

image processing methods (e.g. gaussian blur, smoothing

etc.) for noise removal, that might have lead to misclassi-

fication. For e.g. in 1. OpenMax Rejects the noisy input,

but with a small amount of gaussian blur, the image can be

reprocessed and is accepted as a hammerhead shark by with

probability 0.79.

We used non-test data for parameter tuning, and for

brevity only showed performance variation with respect

to the uncertainty threshold shared by both SoftMax with

threshold and OpenMax. The supplemental material shows

variation of a wider range of OpenMax parameters. In

future work, increase in true class rejection might be mit-

igated by increasing the expressiveness of the AV model,

e.g. moving to multiple MAVs per class. This might allow

it to better capture different contexts for the same object,

e.g. a baseball on a desk has a different context, hence, may

have different “related” classes in the AV than say a baseball

being thrown by a pitcher.

Interestingly, we have observe that the OpenMax rejec-

tion process often identifies/rejects the ImageNet images

that the deep network incorrectly classified, especially

images with multiple objects. Similarly, many samples that

are far away from training data have multiple objects in the

scene. Thus, other uses of the OpenMax rejection can be to

improve training process and aid in developing better local-

ization techniques [30, 15]. See Fig. 5 for an example.
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