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Abstract

With the of advent rich classification models and high

computational power visual recognition systems have found

many operational applications. Recognition in the real

world poses multiple challenges that are not apparent in

controlled lab environments. The datasets are dynamic and

novel categories must be continuously detected and then

added. At prediction time, a trained system has to deal with

myriad unseen categories. Operational systems require min-

imal downtime, even to learn. To handle these operational

issues, we present the problem of Open World Recognition

and formally define it. We prove that thresholding sums of

monotonically decreasing functions of distances in linearly

transformed feature space can balance “open space risk”

and empirical risk. Our theory extends existing algorithms

for open world recognition. We present a protocol for eval-

uation of open world recognition systems. We present the

Nearest Non-Outlier (NNO) algorithm that evolves model

efficiently, adding object categories incrementally while de-

tecting outliers and managing open space risk. We perform

experiments on the ImageNet dataset with 1.2M+ images to

validate the effectiveness of our method on large scale visual

recognition tasks. NNO consistently yields superior results

on open world recognition.

1 Introduction
Over the past decade, datasets for building and evaluating

visual recognition systems have increased both in size and

variation. The size of datasets has increased from a few

hundred images to millions of images, and the number of

categories within the datasets has increased from tens of

categories to more than a thousand categories. Co-evolution

of rich classification models along with advances in datasets

have resulted in many commercial applications [8, 40, 29]. A

multitude of operational challenges are posed while porting

recognition systems from controlled lab environments to the

real world. A recognition system in the “open world” has to

continuously update with additional object categories and be

robust to unseen categories and have minimum downtime.

Despite the obvious dynamic and open nature of the world,

a vast majority of recognition systems assume a static and

closed world model of the problem where all categories are

known a priori. To address these operational issues, this

paper formalizes and presents steps towards the problem of

open world recognition. The key steps of the problem are

summarized in Fig. 1.

As noted by [34], “when a recognition system is trained

and is operational, there are finite set of known objects in

scenes with myriad unknown objects, combinations and con-

figurations – labeling something new, novel or unknown

should always be a valid outcome.” One reason for the

domination of “closed world” assumption of today’s vision

systems is that matching, learning and classification tools

have been formalized as selecting the most likely class from

a closed set. Recent research [34, 33, 15], has re-formalized

learning for recognition as open set recognition. However,

this approach does not explicitly require that inputs be as

known or unknown. In contrast, for open world recogni-

tion, we propose the system explicitly label novel inputs as

unknown and then incrementally incorporate them into the

classifier. Furthermore, open set recognition as formulated

by [34] is designed for traditional one-vs-all batch learning

scenario. Thus, it is open set but not incremental and does

not scale gracefully with the number of categories.

While there is a significant body of work on incremen-

tal learning algorithms that handle new instances of known

classes [3, 4, 45], open world requires two more general

and difficult steps: continuously detecting novel classes and

when novel inputs are found updating the system to include

these new classes in its multi-class open set recognition algo-

rithm. Novelty detection and outlier detection are complex

issues in their own right with long histories [26, 14] and

they are still active vision research topics [2, 25]. After de-

tecting a novel class, the requirement to add new classes

leaves the system designer with the choice of re-training the

entire system. When the number of categories are small,

such a solution may be feasible, but unfortunately, it does

not scale. Recent studies on ImageNet dataset using SVMs

or CNN require days to train their system [30, 17], e.g. 5-6

CPU/GPU days in case of CNN for 1000 category image
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Figure 1: In open world recognition, the system must be able to recognize objects and associate them with known classes

while also being able to label classes as unknown. These “novel unknowns” must then be collected and labeled (e.g. by

humans). When there are sufficient labeled unknowns for new class learning, the system must incrementally learn and extend

the multi-class classifier, thereby making each new class “known” to the system. Open World recognition moves beyond just

being robust to unknown classes and toward a scalable system that is adapting itself and learning in an open world.

classification task. Distance based classifiers like Nearest

Class Mean (NCM) [16, 28, 32] offer a natural choice for

building scalable system that can learn new classes incre-

mentally. In NCM-like classifiers, incorporating new images

or classes in implies adjusting the existing means or updat-

ing the set of class means. However, NCM classifier in its

current formulation is not suited for open set recognition

because it uses close-set assumptions for probability nor-

malization. Handling unknowns in open world recognition

requires gradual decrease in the value of probability (of class

membership) as the test point moves away from known data

into open space. The softmax based probability assignment

used in NCM does not account for open space.

The first contribution of this paper is a formal definition

of the problem of open world recognition, which extends the

existing definition of open set recognition which was defined

for a static notion of set. In order to solve open world recog-

nition, the system needs to be robust to unknown classes,

but also be able to move through the stages and knowledge

progression summarized in Fig. 1. Second contribution of

the work is a recognition system that can continuously learn

new object categories in an open world model. In particular,

we show how to extend Nearest Class Mean type algorithms

(NCM) [28], [32], to a Nearest Non-Outlier (NNO) algo-

rithm that can balance open space risk and accuracy.

To support this extension, our third contribution is show-

ing that thresholding sums of monotonically decreasing func-

tions of distances of linearly transformed feature space can

have arbitrarily small “open space risk”. Finally, we present

a protocol for evaluation for open world recognition, and

use this protocol to show our NNO algorithm perform sig-

nificantly better on open world recognition evaluation using

Image-Net [1].

2 Related Work
Our work addresses an issue that is related to and has re-

ceived attention from various communities such as incremen-

tal learning, scalable learning and open set learning.

Incremental Learning: As SVMs rose to prominence

in for object recognition applications [46, 22], many incre-

mental extensions to SVMs were proposed. Cauwenberghs

et al. [3] proposed an incremental binary SVM by means

of saving and updating KKT conditions. Yeh et al. [45] ex-

tended the approach to object recognition and demonstrated

multi-class incremental learning. Pronobis [31] proposed

a memory-controlled online incremental SVM for visual

place recognition. Although incremental SVMs might seem

natural for large scale incremental learning for object recog-

nition, they suffer from multiple drawbacks. The update

process is extremely expensive (quadratic in the number of

training examples learned [19]) and depends heavily on the

number of support vectors stored for performing updates

[19]. To overcome the update expense, Crammer et al. [4]

and Shalev-Shwartz et al. [36] proposed classifiers with fast

and inexpensive update process along with their multi-class

extensions. However, the multi-class incremental learning

methods and other incremental classifiers [4, 36, 43, 21] are

incremental in terms of additional training samples but not

additional training categories..

Scalable Learning: Researchers like [27, 23, 9] have

proposed label tree based classification methods to address

scalability (# of object categories) in large scale visual recog-

nition challenges [10, 1]. Recent advances in deep learn-

ing community [17, 38], has resulted in state of the art

performance on these challenges. Such methods are ex-

tremely useful when the goal is to obtain maximum clas-

sification/recognition performance. These systems assume

a priori availability of entire training data (images and cat-

egories). However, adapting such methods to a dynamic

learning scenario becomes extremely challenging. Adding

object categories requires retraining the entire system, which

could be infeasible for many applications. Thus, these meth-

ods are scalable but not incremental (Fig 2)

Open Set Learning: Open set recognition assumes there
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Figure 2: Putting the current work in context by depicting

locations of prior work with respect to three axes of the

major issues for open world recognition: open set learning,

incremental learning and scalability. In this work, we present

a system that is scalable, can handle open set recognition

and can learn new categories incrementally without having

to retrain the system every time a new category arrives. The

works depicted include Ristin et al. [32], Mensink et al. [28],

Scheirer et al. [34], [33], Jain et al. [15], Yeh et al., [45],

Marszalek et al. [27], Liu et al. [23], Deng et al. [9], and

Li et al. [21]. This papers advances the state of the art in

open set learning and incremental learning while providing

reasonable scalability.

is incomplete knowledge of the world at training time, and

unknown classes can be submitted to an algorithm during

testing [20, 34]. Scheirer et al. [34] formulated the problem

of open set recognition for static one-vs-all learning scenario

by balancing open space risk while minimizing empirical er-

ror. Scheirer et al. [33, 15] extended the work to multi-class

settings by introducing compact abating probability model.

Their work offers insights into building robust methods to

handle unseen categories. However, class specific Weibull

based calibration of SVM decision scores does not scale.

Fragoso et al. [12] proposed a scalable Weibull based cal-

ibration for hypothesis generation for modeling matching

scores, but they do not address it in the context of general

recognition problem.

The final aspect of related work is nearest class mean

(NCM) classifiers. NCM classification, in which samples

undergo a Mahalanobis transform and then are are associated

with a class/cluster mean, is a classic pattern recognition

approach [13]. NCM classifiers have a long history of use in

vision systems [6] and have multiple extensions, adaptations

and applications [7, 39, 44, 18, 24]. Recently the technique

has been adapted for use in larger scale vision problems

[42, 41, 28, 32], with the most recent and most accurate

approaches combining NCM with metric learning [28] and

with random forests[32].

Since we extend NCM classification, we briefly review

the formulation including a probabilistic interpretation. Con-

sider an image represented by a d-dimensional feature vector

x ∈ R
d. Consider K object categories with their correspond-

ing centroids µk, where k ∈ K. Let Ik be images for each ob-

ject category. The centroid is given by µk = 1
|Ik|

∑

i∈Ik
xi.

NCM classification of a given image instance I with a fea-

ture vector x is formulated as searching for the closest cen-

troid in feature space as c∗ = argmin
k∈K

d(x, µk). Here

d(.) represents a distance operator usually in Euclidean

space. Mensink et al. [28] replace Euclidean distance with a

low-rank Mahalanobis distance optimized on training data.

The Mahalanobis distance is induced by a weight matrix

W ∈ R
d×D, where D is the dimensionality of the lower

dimensional space. Class conditional probabilities p(c|x)
using an NCM classifier are obtained using a probabilistic

model based on multi-class logistic regression as follows:

p(c|x) =
exp(− 1

2dW (x, µk))
∑K

k′=1 exp(−
1
2dW (x, µk′))

(1)

In the above formulation, class probabilities p(c) are set

to be uniform over all classes. During metric learning opti-

mization, Mensink et al. [28] considered non-uniform prob-

abilities given by:

p′(c|x) =
1

Z
exp(xTWTWµc + sc) (2)

where Z denotes the normalizer and sc is a per class bias.

3 Open World Recognition
We first establish preliminaries related to open world recog-

nition, following which we formally define the problem. Let

classes be labeled by positive integers N+ and let Kt ⊂ N
+

be the set of labels of known classes at time t. Let the

zero label (0) be reserved for (temporarily) labeling data as

unknown. Thus N includes unknown and known labels.

Let our features be x ∈ R
d. Let f ∈ H be a measurable

recognition function, i.e. fy(x) > 0 implies recognition

of the class y of interest and fy(x) ≤ 0 when y is not

recognized, where H : Rd 7→ R is a suitably smooth space

of recognition functions.

The objective function of open set recognition, includ-

ing multi-class formulations, must balance open space risk

against empirical error. As a preliminary we adapt the defini-

tion of open space and open space risk used in [34]. Let open

space, the space sufficiently far from any known positive

training sample xi ∈ K, i = 1 . . . N , be defined as:

O = So −
⋃

i∈N

Br(xi) (3)

where Br(xi) is a closed ball of radius r centered around

any training sample xi. Let So be a ball of radius ro that

includes all known positive training examples x ∈ K as well

as the open space O. Then probabilistic Open Space Risk

RO(f) for a class y can be defined as

RO(fy) =

∫

O
fy(x)dx

∫

So
fy(x)dx

(4)



That is, the open space risk is considered to be the relative

measure of positively labeled open space compared to the

overall measure of positively labeled space.

Given an empirical risk function RE , e.g. hinge loss, the

objective of open set recognition is to find a measurable

recognition function that manages (minimizes) the Open

Set Risk:

argmin
f∈H

{RO(f) + λrRE(f)} (5)

where λr is a regularization constant.

With the background in place, we formalize the problem

of open world recognition.

Definition 1 (Open World Recognition): A solution to

open world recognition is a tuple [F,ϕ, ν, L, I] with:

1. A multi-class open set recognition function F (x) :
R

d 7→ N using a vector function ϕ(x) of i per-class

measurable recognition functions fi(x), also using a

novelty detector ν(ϕ) : Ri 7→ [0, 1]. We require the

per class recognition functions fi(x) ∈ H : Rd 7→ R

for i ∈ Kt to be open set recognition functions that

manage open space risk as Eq.4. The novelty detector

ν(ϕ) : Ri 7→ [0, 1] determines if results from vector of

recognition functions is from an unknown (0) class.

2. A labeling process L(x) : Rd 7→ N
+ applied to novel

unknown data Ut from time t, yielding labeled data

Dt = {(yj , xj)} where yj = L(xj)∀xj ∈ Ut. Assume

the labeling finds m new classes, then the set of known

classes becomes Kt+1 = Kt ∪ {i+ 1, . . . i+m}.

3. An incremental learning function It(ϕ;Dt) : Hi 7→
Hi+m to scalably learn and add new measurable

functions fi+1(x) . . . fi+m(x), each of which manages

open space risk, to the vector ϕ of measurable recogni-

tion functions.

Ideally, all of these steps should be automated, but herein

we presume supervised learning with labels obtained by

human labelling.

If we presume that each fk(x) reports a likelihood of

being in class k and fk(x) is normalized across the respective

classes. Let ϕ = [f1(x), . . . , fk(x)]. For this paper we let

the multi-class open set recognition function be given as

y∗ = argmax
y∈K,fy(x)∈ϕ(x)

fy(x), (6)

F (x) =

{

0 if ν(ϕ(x)) = 0

y∗ otherwise
(7)

With these definitions, a simple approach for the novelty

detection is to set a minimum threshold τ for acceptance, e.g.

letting ν(ϕ(x)) = fy∗(x) > τ . In the following section we

will prove this simple approach can manage open space risk

and hence provide for item 1 in the open world recognition

definition.

4 Opening existing algorithms
The series of papers [34, 33, 15] formalized the open set

recognition problem and proposed 3 different algorithms for

managing open set risk. It is natural to consider these algo-

rithms for open world recognition. Unfortunately, these al-

gorithms use EVT-based calibration of 1-vs-rest RBF SVMs

and hence are not well suited for incremental updates or scal-

ability required for open world recognition. In this paper we

pursue an alternative approach better suited to open world

using non-negative combinations of abating distance. Using

this we develop the Nearest Non-Outlier (NNO) algorithm

to inexpensively extend NCM for open world recognition.

The authors of [33] show if a recognition function is de-

creasing away from the training data, a property they call

abating, then thresholding the abating function limits the

labeled region and hence can manage/limit open space risk.

The Compact Abating Probability (CAP) model presented

in that paper is a sufficient model, but it is not necessary.

In particular we build on the concept of a CAP model but

generalize the model showing that any non-negative com-

bination of abating functions, e.g., a convex combination

of decreasing functions of distance, can be thresholded to

have zero open space risk. We further show we can work

in linearly transformed spaces, including projection onto

subspaces, and still manage open space risk and NCM type

algorithms manage open space risk.

Theorem 1 (Open space risk for model combinations):

Let Mτ,y(x) be a recognition function that thresholds a

non-negative weighted sum of η CAP models (Mτ,y(x) =
∑η

j=1 cjMj,τj ,y(x) ) over a known training set for class y,

where 1 ≥ cj ≥ 0 and Mj,τ,y(x) is a CAP model. Then for

δ ≥ 0 ∃τ∗ s.t. RO(Mτ∗,y) ≤ δ, i.e. one can threshold the

probabilities Mτ,y(x) to limit open space risk to any level.

Proof: It is sufficient to show it holds for δ = 0, since

similar to Corr. 1 of [33], larger values of δ allow larger

labeled regions with larger open space risk. Considering

each model Mj,τj ,y(x)j = 1..η separately, we can apply

Theorem 1 of [33] to each Mj,τj ,y(x) yielding a τj such

that the function Mj,τj ,y(x) > 0 defines a labeled region

lj(τj) ⊂ X with zero open space risk. Letting τ∗ = minj τj
it follows that Mτ∗,y(x) > 0 is contained within ∪j lj(τ

∗),
which as a finite union of compact regions with zero risk,

is itself a compact labeled region with zero open space risk.

Q.E.D

The theorem/proof trivially holds for a max over classes

but can be generalized to combinations via product or to com-

binations of monotonic transformed recognition functions,

with appropriate choice of thresholds. For this paper we need

max over models using data from metric learned tranformed

features, i.e. lower-dimensional projected spaces.

Theorem 2 (Open Space Risk for Transformed Spaces):

Given a linear transform T : R
n → R

m let x′ =



T (x), ∀x ∈ X , yields X ′ a linearly transformed space

of features derived from feature space X ⊂ R
n. Let

O′ = ∪x∈OT (x) be the transformation of points in open

space O. Let M ′
τ,y(x

′) be a probabilistic CAP recognition

function over x′ ∈ X ′ and let Mτ,y(x) = M ′
τ,y(Tx) be a

recognition function over x ∈ X . Then ∃ǫ : RO′(M ′
τ ′,y) ≤

δ =⇒ RO(Mτ,y) < ǫδ, i.e. managing open set risk in X ′

will also manage it in the original feature space X .

Proof: If T is dimensionality preserving, then the the-

orem follows from the linearity of integrals in the defini-

tion of risk. Thus we presume T is projecting away n−m

dimensions. Since the open space risk in the projected

space is δ we have λm(M ′
τ ′,y ∩ O′) = cδ where λm is

the Lebesgue measure in R
m and c < ∞. Since O ⊂ So,

i.e. O is contained within a ball of radius ro, it follows from

the properties of Lebesgue measure that λn(Mτ,y ∩ O) ≤
λm

(

M ′
τ ′,y ∩ (O′ × [−ro, ro]

n−m)
)

= c∗δ∗(2ro)
n−m = 0

and hence the open space risk in R
m is bounded. Q.E.D.

It is desirable for open world problems that we consider

the error in the original space. We note that ǫ varies with di-

mension and the above bounds are generally not tight. While

the theorem gives a clean bound for zero open space risk,

for a solution with non-zero δ risk in the lower dimensional

space, when considered in the original space, the solution

may have open space risk that increases exponentially with

the number of missing dimensions.

We note that these theorems are not a license to claim that

any algorithms with rejection manage open space risk. While

many algorithms can be adapted to compute a probability

estimate of per class inclusion and can threshold those prob-

abilities to reject, not all such algorithms/rejections manage

open space risk. Thresholding Eq 2, which [28] minimizes

in place of 1, will not manage risk because the function

does not always decay away from known data. Similarly,

rejecting a decision close to the plane in a linear SVM does

not manage open space risk, nor does the thresholding layers

in a convolution neural network [35].

On the positive side, these theorems show that one can

adapt algorithms that linearly transforms feature space and

use a probability/score mapping that combines positive

scores that decrease with distance from a finite set of known

samples. In the following section, we demonstrate how to

generalize an existing algorithm while managing open space

risk. Open world performance, however, greatly depends on

the underlying algorithm and the rejection threshold. While

theorems 1 and 2 say there exists a threshold with zero open

space risk, at that threshold there may be minimal or no

generalization ability.

4.1 Nearest Non-Outlier (NNO)

As discussed previously (sec 1) one of the significant contri-

butions of this paper is combining theorems 1 and 2 to pro-

vide an example of open space risk management and move

toward a solution to open world recognition. Before moving

on to defining open world NCM, we want to add a word of

caution about “probability normalization” that presumes all

classes are known. e.g. softmax type normalization used in

eqn 1. Such normalization is problematic for open world

recognition where there are unknown classes. In particular,

in open world recognition the Law of Total Probability

and Bayes’ Law cannot be directly applied and hence can-

not be used to normalize scores. Furthermore, as one adds

new classes, the normalization factors and hence probabil-

ities, keep changing and thereby limiting interpretation of

the probability. For an NCM type algorithm, normalization

with the softmax makes thresholding very difficult since for

points far from the class means the nearest mean will have a

probability near 1. Since it does not decay, it does not follow

Theorem 1.

To adapt NCM for open world recognition, we intro-

duce Nearest Non-Outlier (NNO) which uses a measurable

recognition function consistent with Theorems 1 and 2.

Let NNO represent its internal model as a vector of means

M = [µ1, . . . µk]. Let W ∈ R
d×m be the linear transfor-

mation dimensional reduction weight matrix learned by the

process described in [28]. Then given τ , let

f̂i(x) =
Γ(m2 + 1)

π
m
2 τm

(1−
1

τ
‖W⊤x−W⊤µi‖) (8)

be our measurable recognition function with f̂i(x) > 0
giving the probability of being in class i, where Γ is the

standard gamma function which occurs in the volume of a

m-dimensional ball. Intuitively, the probability is a tent-like

function in the sphere and the first fraction in eqn 8 comes

from volume of m-sphere and ensures that the probability

integrates to 1.

Let ϕ̂ = [f̂1(x), . . . , f̂k(x)] with y∗ and F (x) given by

Eq. 7. Let with ν̂(ϕ̂(x)) = f̂y∗(x) > 0. That is, NNO

rejects x as an outlier for class i when f̂i(x) = 0, and NNO

labels input x as unknown/novel when all classes reject the

input.

Finally, after collecting novel inputs, let Dt be the human

labeled data for a new class k + 1 and let our incremental

class learning It(ϕ̂;Dt) compute µk+1 = mean(Dt) and

append µk+1 to M.

Corollary 1 (NNO solves open world recognition): The

NNO algorithm with human labeling L(x) of unknown in-

puts is a tuple [F (x), ϕ̂, ν̂(ϕ̂(x)), L, It(ϕ̂;Dt)], consistent

with Definition 1, hence NNO is a open world recognition

algorithm.

By construction theorems 1 and 2 apply to the measurable

recognition functions F (x) from Eq. 7 when using a vector

of per classes functions given eq. 8. By inspection the NNO

definitions of ν̂(ϕ̂(x)) and It(ϕ̂;Dt) are consistent with

Definition 1 and are scalable. Q.E.D.



5 Experiments
In this section we present our protocol for open world exper-

imental evaluation of NNO, and a comparisonwithmultiple

baseline classifiers including NCM, a liblinear SVM [11]

and our liblinear version of the 1vSet algorithm of [34]1.

Dataset and Features: Our evaluation is based on the

ImageNet Large Scale Visual Recognition Competition 2010

dataset. ImageNet 2010 dataset is a large scale dataset with

images from 1K visual categories. The dataset contains

1.2M images for training (with around 660 to 3047 images

per class), 50K images for validation and 150K images for

testing. The large number of visual categories allow us to

effectively gauge the performance of incremental and open

world learning scenarios. In order to effectively conduct ex-

periments using open set protocol, we need access to ground

truth. ILSVRC’10 is the only ImageNet dataset with full

ground truth, which is why we selected that dataset over later

releases of ILSVRC (e.g. 2011-2014).

We used densely sampled SIFT features clustered into

1K visual words as given by Berg et al. [1]. Though more

advanced features are available [30, 17, 37], extensive eval-

uation across features is beyond the scope of this work 2.

Each feature is whitened by its mean and standard deviation

to avoid numerical instabilities. We report performance in

terms of average classification accuracy obtained using top-1

accuracy as per the protocol provided for the ILSVRC’10

challenge. As our work involves initially training a system

with small set of visual categories and incrementally adding

additional categories, we shun top-5 accuracy.

Algorithms: The proposed Nearest Non-Outlier (NNO)

extension of NCM classifier is compared with the baseline

NCM algorithm in both incremental and open world settings.

We use the code provided by Mensink et al. [28] as the NCM

baseline. This algorithm has near state of the art results and

while recent extension with random forests[32] improved

accuracy slightly, [32] does not provide code. While not

incremental, we also include a comparison with the state of

the art open set algorithm by extending liblinear to provide a

1vSet SVM [34]. Details about our extension can be found

in the supplemental material.

5.1 Open World Evaluation Protocol

Closed set evaluation is when a system is tested with all-

classesknown during training and testingi.e. training, and

testing use the same classes but different instances. In open

set evaluation,training uses known classes and testing uses

both known and unknownclasses.The open set recognition

evaluation protocol proposed by Scheirer et al. [34] does not

1Code and data partitions for experiments can be found at http://

vast.uccs.edu/OpenWorld
2The supplemental material presents experiments with additional

ILSVRC’13 features, showing the gains of NNO are not feature depen-

dent

handle the open world scenario in which object categories

are beingincrementallyadded to the system. Ristin et al. [32]

presented an incremental closed set learning scenario where

novel object categories are added continuously. We com-

bined ideas from both of these approaches and propose a

protocol that is suited for open world recognition in which

categories are being added to the system continuously while

the system is also tested with unknown categories.

Training Phase: The training of the NCM classifier is

divided into two phases: an initial metric learning/training

phase and a growth/incremental learning phase. In the metric

learning phase, a set of object categories are provided to

the system uses iterative metric learning on these categories.

Once the metric learning phase is completed, the incremental

learning phase uses the fixed metrics and parameters. During

the incremental learning phase, object categories are added

to the system one-by-one. While for scalability one might

measure time, both NCM and NNO add new categories in

the same way, and it is extremely fast since it only consists

of computing the means. Thus, so we do not measure/report

timing here.

Nearest Non-Outlier (NNO) is based on the CAP model

and requires estimation of τ for eq. 8. To estimate τ , dur-

ing theparameter estimation phase using the metric learned

in that phase,we use a 3-fold cross-class validation [15]

wherein ech fold dividesthetrainingdatainto two sets: train-

ing categories and validation categories. The τ for NNO is

estimated with 3-fold cross-class validation optimizing for

F1-measure over values for which there is at least 90% recall

in a fold, yielding a value of 5000 – see the supplemental

material for more details. An important point to note about

estimating τ is that one has to balance the classification er-

rors between known set of categories along with the errors

between known and unknown set of categories. One could

obtain high accuracy when testing with large number of sam-

ples from unknown categories by rejecting everything, but

this compromises accuracy on the known set of categories.

Hence our requirement of high recall rate and optimization

over F1-measure rather than accuracy.

Testing Phase: To ensure proper open world evaluation,

we do cross-class folds that split the ImageNet test data into

two sets of 500 categories each: the known set and the un-

known set. At every stage, the system is evaluated with a

subset of the known set and the unknown set to obtain closed

set and open set performance. This process is repeated as we

continue to add categories to the system. The whole process

is repeated across multiple dataset splits to ensure fair com-

parisons and estimate error. While [34] suggest a particular

openness measure, it does not address the incremental learn-

ing paradigm. We fixed the number of unknown categories

and report performance as series of known categories are

incrementally added. Thus, open world evaluation involves

varying of two variables: number of known categories in

http://vast.uccs.edu/OpenWorld
http://vast.uccs.edu/OpenWorld
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Figure 3: Open World learning on data from ILSVRC’10 challenge. Top-1 accuracy is plotted as a function of known classes

in the system and unknown classes used during testing. NNO performs at par with NCM in closed set testing (marked with

arrows in above figure) as categories are added incrementally to the system. As number of unknown categories are increased

during testing phase, NNO continues to remain robust while performance of NCM suffers significantly. The proposed Nearest

Non-Outlier (NNO) approach of handling unknown categories based on extending NCM with Compact Abating Probabilities

remains robust in both circumstances: as more number of categories are added to the system and as the system is tested with

more unknown categories. The current state-of-the-art on open set recognition 1vSet algorithm [34] and standard SVM [11] is

shown above as a line, as neither of them possess incremental learning capabilities. Fig 3a and Fig 3b shows results when 50

and 200 categories were used for initial metric learning and parameter estimation.

training (incremental learning) and number of unknown cat-

egories during testing (open set learning) leading to surface

plots as shown in Fig 3.

Multi-class classification error [5] for a system FK(.)
with test samples {(xi, yi)}

N
i=1, yi ∈ K is given as ǫK =

1
N

∑N
i=1[[FK(xi) 6= yi]]. For open world testing the eval-

uation must keep track of the errors which occur due to

standard multi-class classification over known categories

as well as errors between known and unknown categories.

Consider evaluation of N samples from K known categories

and N ′ samples from U unknown categories leading to

(N +N ′) test samples and K ∪ U ∈ X . Thus, open world

error ǫOW for a system FK(.) trained over K categories is

given as:

ǫOW = ǫK +
1

N ′

N ′

∑

j=N+1

[[FK(xj) 6= unknown]] (9)

5.2 Experimental Results

In the first experiment, we do incremental learning from a

base of relatively few (50) categories and we add 50 cat-

egories incrementally. For NCM and NNO systems, we

update the means of the categories. We repeat that expansion

3 times growing from 50 to 100 to 150 and finally 200 known

classes. For close-set testing we therefore have training and

testing with 50, 100, 150 and 200 categories. To test open

world performance, we considering an additional set of 100,

200 and 500 unknown categories showing up during testing.

For example, open world testing with 100 unknown cate-

gories for a system that is trained with 50 categories would

have a total of 50 + 100 i.e. 150 categories in testing. The

experiment is thus a function of two variables : total number

of known set of categories learned during training (both met-

ric learning and incremental learning phase) and unknown

set of categories seen by the system during testing phase.

Varying both of these leads to performance being shown as

the surface plots shown in 3. The plot shows showing top-1

accuracy where we treat unknown as its own class.

We note that each testing phase is independent and for

these experiments we do not provide feedback for the results

of testing as labels for the incremental training – i.e. we

still presume perfect labels for each incremental training

round. In this model, misclassifications in testing only im-

pact the workload level of human labelers. If the open-world

results of testing were used in a semi-supervised manner,

the compounding of errors would significantly amplify the

difference in the algorithm accuracy.

The back edges of the plot provide 2 easy to separate

views. To see pure incremental learning, we incrementally

add categories to the system in closed set testing paradigm.

This is shown in the back right portion of Fig. 3a, where the

performance of NCM (red) and NNO (green) drop similarly



and rather gracefully, which is expected. However, as we

increase openness for a fixed number of training classes,

the back left of edge of Fig. 3a, the impact on NCM is a

dramatic loss of performance even for the non-incremental

growth case. This is caused by errors for the unknown cate-

gories, something NCM was not designed to handle and the

NCM error is dominated by the second term in Eqn 9. As

we can see the standard SVM also has a dramatic drop in

accuracy as openness increases. Both the NNO and 1vSet

algorithm, designed for open set recognition, degrade grace-

fully. The 1vSet and SVM don’t have a way to incrementally

add classes and are curves not surfaces in the plots. So the

1vSet, while slight better than NNO for pure open set on 50

categories, does not support open world recognition.

Open world recognition needs to support increasing

classes while handling unknowns, so is can be viewed as the

performance as known training classes increase for non-zero

number of unknowns. At all such points in the plot, NNO

significantly dominates the NCM algorithm.

In second experiment, we consider 200 categories for

metric learning and parameter estimation, and successively

add 100 categories in each of three incremental learning

phases. By the end of the learning process, the system needs

to learn a total of 500 categories. Open world evaluation

of the system is carried out as before by considering with

100, 200 and 500 additional unknown categories with results

show in Fig 3b. In final stage of the learning process i.e 500

categories for training and 500 (known) + 500 (unknown)

categories for open set testing, we use all 1000 categories

from ImageNet for our evaluation process. We observe

that NNO again dominates the baselines for open world

recognition; this time even outperforming 1vSet for open set

testing on 200 classes. On the largest scale task involving

500 categories in training and 1000 categories in testing,

we observe that NNO provides almost 74% improvement

over NCM. Also note performance starting with 200 classes

(3b) is better than starting with 50 classes (3a), i.e. increased

classes for the metric learning improves both NNO and NCM

performance. We repeated the above experiments over three

cross-class folds and found the standard deviation to be on

the order of ± 1% which is not visible in the figure.

The training time required for the initial metric learning

process depends on the SGD speed and convergence rate.

We used close to 1M iterations which resulted in metric-

learning time of 15 hours in case of 50 categories and 22

hours in case of metric learning for 200 categories. Given

the metric, the learning of new classes via the update process

is extremely fast as it is simply computation of means from

labeled data. For this work we fix the metric, though future

work might explore incrementally updating the metric as

well. The majority of time in update process is dominated

by feature extraction and file I/O. However, these operations

could be easily optimized for real-time operations. The NNO

Multi-class recognition and detecting novel classes is also

easily done in real time.

6 Discussion

In this work, we formalize the problem of open world recog-

nition and provide an open world evaluation protocol. We

extend existing work on NCM classifiers and show how to

adapt it for open world recognition. The proposed NNO

algorithm consistently outperforms NCM on open world

recognition tasks and is comparable to NCM on closed set –

we gain robustness to the open world without much sacrifice.

There are multiple implications of our experiments. First,

we demonstrate suitability of NNO for large scale recogni-

tion tasks in dynamic environments. NNO allows construc-

tion of scalable systems that can be updated incrementally

with additional classes and that are robust to unseen cate-

gories. Such systems are suitable where minimum downtime

is desired.

Second, as can be seen in Figs 3a and Fig 3b NNO offers

significant improvement for open world recognition while

for close set recognition NNO remains relatively close to

NCM in performance.

We also noted that as the number of classes incrementally

grew, the closed and open set performance NNO seems to

converge, i.e. the front right edge of the plots in Figs. 3a

an 3b are very flat. This observation suggests that adding

classes in a system may also be limited by open space risk.

We conjecture that as the number of classes grows, the close

world performance converges to an open world performance

and thus open world recognition is a more natural setting for

building scalable systems.

While we provide one viable open world extension, the

theory herein allows a broad range of approaches; more

expressive models, improved CAP models and better open

set probability calibration should be explored.

Open world evaluation across multiple features for a va-

riety of applications is an important future work. Recent

advances in deep learning and other areas of visual recogni-

tion have demonstrated significant improvements in absolute

performance. The best performing systems on such tasks

use a parallel system and train for days. Extending these

systems to support incremental open world performance may

allow one to provide a hybrid solution where one reuses the

deeply learned features with a top layer of an open world

multi-class algorithm. While scalable learning in the open

world is critical for deploying computer vision applications

in the real world, high performing systems enable adoption

by masses. Pushing absolute performance on large scale vi-

sual recognition challenges [1], and development of scalable

systems for the open world are essentially two sides of the

same coin.
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