
TOWARDS OPTIMAL

IT AVAILABILITY

PLANNING

METHODS AND TOOLS

Emmanuele Zambon

Risk

Assessment

Risk

Mitigation

Monitor and

review

Maintain and

improve

controls

BIA (MTPD,

RTO, RPO)

Threat

analysis /

impact

scenarios

Implementa-

tion

Maintain and

improve the

BCP

Ensure service

levels are met

Ensure service

levels comply with

the budget

Produce and

maintain the

service catalogue

Establish service

continuity plans

9.500	

10.000	

10.500	

11.000	

11.500	

12.000	

12.500	

13.000	

ID Incident Likelihood Impact Risk

1
Attack on WebApp1.

Known vulnerability.
MED HIGH HIGH

2
Attack on Oracle DB.

Configuration mistake.
HIGH LOW MED

3
DoS on Server1.

OS vulnerability.
LOW HIGH MED

Towards Optimal IT Availability Planning:

Methods and Tools

Emmanuele Zambon

Composition of the Graduation Committee:

Chairman and Secretary

Prof. dr. ir. A.J. Mouthaan Universiteit Twente

Promotors

Prof. dr. S. Etalle Universiteit Twente

Prof. dr. R.J. Wieringa Universiteit Twente

Members

Prof. dr. P.H. Hartel Universiteit Twente

Dr. A. Pras Universiteit Twente

Prof. dr. F. Massacci Università di Trento

Prof. dr. E.R. Verheul Radboud Universiteit Nijmegen

Dr. A. Herrmann Axivion GmbH

CTIT Ph.D. Thesis Series No. 10-188

Centre for Telematics and Information Technology

P.O. Box 217, 7500 AE

Enschede, The Netherlands

IPA: 2011-03

The work in this thesis has been carried out under the

auspices of the research school IPA (Institute for Programming

research and Algorithms).

ISBN: 978-90-365-3102-3

ISSN: 1381-3617

DOI: 10.3990./1.9789036531023

http://dx.doi.org/10.3990/1.9789036531023

Typeset with LATEX. Printed by Wöhrmann Print Service.

Cover design: Emmanuele Zambon and Nicole Mazzocato.

Copyright © 2010 Emmanuele Zambon, Enschede, The Netherlands.

All rights reserved. No part of this book may be reproduced or transmitted, in any form or by any

means, electronic or mechanical, including photocopying, microfilming, and recording, or by any

information storage or retrieval system, without the prior written permission of the author.

http://dx.doi.org/10.3990/1.9789036531023

Towards Optimal IT Availability Planning:

Methods and Tools

DISSERTATION

to obtain

the doctor’s degree at the University of Twente

on the authority of the rector magnificus,

prof. dr. H. Brinksma,

on account of the decision of the graduation committee,

to be publicly defended

on Thursday, 20th of January 2011 at 13.15

by

Emmanuele Zambon

born on 27th of November 1980,

in Vicenza, Italy

The dissertation is approved by:

Prof. dr. S. Etalle Universiteit Twente (promotor)

Prof. dr. R.J. Wieringa Universiteit Twente (promotor)

To Nicole

Abstract

The availability of an organisation’s IT infrastructure is of vital importance

for supporting business activities. IT outages are a cause of competitive liability,

chipping away at a company financial performance and reputation. To achieve

the maximum possible IT availability within the available budget, organisations

need to carry out a set of analysis activities to prioritise efforts and take decisions

based on the business needs. This set of analysis activities is called IT availability

planning.

Most (large) organisations address IT availability planning from one or more

of the three main angles: information risk management, business continuity and

service level management. Information risk management consists of identifying,

analysing, evaluating and mitigating the risks that can affect the information pro-

cessed by an organisation and the information-processing (IT) systems. Business

continuity consists of creating a logistic plan, called business continuity plan,

which contains the procedures and all the useful information needed to recover

an organisations’ critical processes after major disruption. Service level manage-

ment mainly consists of organising, documenting and ensuring a certain quality

level (e.g. the availability level) for the services offered by IT systems to the busi-

ness units of an organisation.

There exist several standard documents that provide the guidelines to set up the

processes of risk, business continuity and service level management. However, to

be as generally applicable as possible, these standards do not include implementa-

tion details. Consequently, to do IT availability planning each organisation needs

to develop the concrete techniques that suit its needs. To be of practical use, these

techniques must be accurate enough to deal with the increasing complexity of IT

infrastructures, but remain feasible within the budget available to organisations.

As we argue in this dissertation, basic approaches currently adopted by organisa-

tions are feasible but often lack of accuracy.

In this thesis we propose a graph-based framework for modelling the availabi-

i

lity dependencies of the components of an IT infrastructure and we develop tech-

niques based on this framework to support availability planning. In more detail

we present:

1. the Time Dependency model, which is meant to support IT managers in the

selection of a cost-optimal set of countermeasures to mitigate availability-

related IT risks;

2. the Qualitative Time Dependency model, which is meant to be used to sys-

tematically assess availability-related IT risks in combination with existing

risk assessment methods;

3. the Time Dependency and Recovery model, which provides a tool for IT

managers to set or validate the recovery time objectives on the components

of an IT architecture, which are then used to create the IT-related part of a

business continuity plan;

4. A2THOS, to verify if availability SLAs, regulating the provisioning of IT

services between business units of the same organisation, can be respected

when the implementation of these services is partially outsourced to external

companies, and to choose outsourcing offers accordingly.

We run case studies with the data of a primary insurance company and a large

multinational company to test the proposed techniques. The results indicate that

organisations such as insurance or manufacturing companies, which use IT to

support their business can benefit from the optimisation of the availability of their

IT infrastructure: it is possible to develop techniques that support IT availability

planning while guaranteeing feasibility within budget. The framework we propose

shows that the structure of the IT architecture can be practically employed with

such techniques to increase their accuracy over current practice.

ii

Acknowledgements

This last four years of my life have been a true adventure. This final achieve-

ment would have never been possible without the help of special people I would

like to thank.

I first met Sandro in a pub in the UK (we were there for a conference, do

not misunderstand!) He begun the conversation – we were in front of a couple

of beers – with his usual question: “what do you want to do in your life?”. And

within two hours I was convinced to apply for a PhD position. He has become

my daily supervisor: I couldn’t have been more lucky! He is a brilliant researcher

and an amazing coach, he taught me most of the things I know about scientific

research and about writing papers. And he has provided me the best motivations

to finish my PhD even when I couldn’t see the end of it. But most importantly, he

has become a good friend.

It was not before the second year of my PhD that I got to know Roel, my

promotor, he had been ill for a very long time. But even before I met him I had

the pleasure to read his monthly reports about the status of his medications and all

the interesting things he learnt about being hospitalised: real fun! Then we started

working on research. It was challenging, but it was worth it. During our monthly

meetings you gave direction to my research (“What is the problem we are solving

here?”), helping to put the pieces together. And we also wandered in historical

conversations and “meta-questions” which were always interesting. Thanks.

I want to thank Pieter for all the support he gave me during these four years:

he has welcome me at the DIES group and kept an eye upon me. Thanks again

for reading this thesis so thoroughly, for giving me valuable comments that really

helped me improve it and for patiently answering all my questions all the times I

was popping up at your door.

The person who hatched to have me sitting at the same table with Sandro in

that pub is my friend Damiano. I will never thank him enough for what he did.

I have met Damiano at high school, and from then on we have been studying,

iii

working and having fun together. During these four years we have also done

research together, probably not as much as I would have wanted, though. In fact,

when we do research together we are able to create this amazing process of one

coming out with a vague idea and the other one taking the idea to the next level

and so on until it becomes something very interesting: I still remember the two

of us inventing a new anomaly detection engine in only one night! Already from

the early days we have been trying to start up our own business (I remember the

first attempt was in the field of CDs and DVDs . . .). It has been quite a winding

road to come to SecurityMatters, and it would never have been possible to reach

this point without the key insertion of Sandro in what I now consider a damn good

team: I think we must be proud of it.

Nicole, you are the most important person in my life and I have many things

to thank you for. You gave me the freedom of doing the PhD, even if this implied

not being together for almost three years. You have turned this into a strength:

after all the time apart we are now more tied than ever. You chose to join me in

the Netherlands, winning all the hesitations, and now we have the opportunity of

living together. You always supported me, even in the darkest moments . . . and

you also proofread this thesis twice!

Thanks to the RMC team at “The Company” for the support they provided

during the case studies: Jeroen, Coen, Peter, Barry, Leo and Wim.

Thanks to colleagues and friends for the good time spent together. Ayse, my

research and journey mate, Stefano, Marco, Anna, Lorenzo, Zlatko, Lianne, An-

dreas, Daniel, Dulce, Chen, Dina, Julius, Michele, Nienke, Bertine. Thanks to my

former colleagues at Valueteam and KPMG (especially Marco for his contribu-

tions to this thesis). My great friend and companion in music Claudio, who made

me the honour of being my paranymph, and all the other band mates: Luca, An-

drea, Sandro. My friends in Italy: Giulio, Damiano, Roby, Paolo, Nicolò, Jacopo,

Davide, Stefano, Tommaso, Matteo, Giulio, Mirco, Valentina, Roberto and all the

others that I cannot mention since I already communicated the final number of

pages to the editor.

Il ringraziamento più grande va ai miei genitori. Questa tesi vi appartiene,

perchè io sono il prodotto del vostro amore e di tutti i sacrifici che avete fatto

per la mia educazione. È un debito che non potrò mai ripagare, consideratelo un

anticipo.

Enschede, December 2010.

iv

Contents

1 Introduction 1

1.1 Availability Planning . 2

1.2 The Problem . 8

1.3 Technical Research Questions . 9

1.4 Contributions . 10

1.4.1 Thesis Overview and Publications 12

2 Quantitative Decision Support for Model-Based Mitigation of Availa-

bility Risks 15

2.1 Introduction . 16

2.2 Relevant methodologies for IT availability management 17

2.3 The Time Dependency (TD) model 18

2.3.1 Risk mitigation . 24

2.4 Prototype implementation . 30

2.4.1 UPPAAL implementation 32

2.4.2 Prolog implementation . 36

2.5 Discussion . 37

2.6 Related work . 41

2.7 Concluding remarks . 43

3 Model-based Qualitative Risk Assessment for Availability of IT In-

frastructures 45

3.1 Introduction . 46

3.2 The Qualitative Time Dependency (QualTD) model 49

3.2.1 Definition of the ToA . 50

v

CONTENTS

3.2.2 Risk identification . 53

3.2.3 Risk evaluation . 55

3.2.4 Output of a RA using the QualTD model 57

3.3 Case-study . 61

3.3.1 The industrial context . 61

3.3.2 Availability RA using the QualTD model 66

3.4 Case-study evaluation . 74

3.4.1 Stakeholders, goals and criteria 75

3.4.2 Design of the evaluation process 76

3.4.3 Evaluation of the criteria . 78

3.4.4 Applicability to other scenarios 82

3.5 Related work . 83

3.5.1 Combining the QualTD model to standard RA Methods . . 83

3.5.2 Dependency-based techniques for RA 89

3.6 Concluding remarks . 93

4 A Model Supporting Business Continuity Auditing & Planning in In-

formation Systems 95

4.1 Introduction . 96

4.2 Time Dependency and Recovery model 97

4.2.1 Incidents and their propagation 100

4.2.2 Assessing the RTO . 102

4.3 The Practice . 108

4.4 Discussion . 111

4.5 Related Work . 113

4.6 Concluding remarks . 114

5 A2THOS: Availability Analysis and Optimisation in SLAs 115

5.1 Introduction . 116

5.2 Related Work . 119

5.3 Analysis of the minimal service availability 122

5.4 Optimisation of outsourced services 130

5.5 Implementation and benchmarks 134

5.6 Methodology - practical use of A2THOS 138

5.7 Concluding remarks . 144

5.8 Proof of Theorem 5.1 . 145

vi

CONTENTS

5.9 Representation capabilities . 148

6 Concluding Remarks 151

6.1 Summary and conclusions . 151

6.2 Future work . 157

A Dependency Graphs Analysis, FTA and FMEA 159

B Building Dependency Graphs 161

vii

CONTENTS

viii

Chapter 1
Introduction

Today, organisations use Information Technology (IT) to support most of their

business operations. The global connectivity brought by the Internet has created

new business opportunities, such as Business Process Outsourcing or e-commerce,

and boosted the business of telco companies. IT is widely used to develop, market

and distribute products or services, as well as to support the business management

activities (communications, accounting, customer relationship management, etc.).

Organisations that could continue to operate without computers before mainframe

or even the Internet era are now so heavily dependent on IT that they rely on a near

100% availability of their IT systems to carry out their business.

Therefore, guaranteeing the availability (defined as: ensuring that authorised

users have access to information and associated assets when required [46]) of

business-supporting IT systems has become important for these organisations [60,

89, 109, 105]. IT outages are a cause of competitive liability, chipping away at

a company financial performance and reputation. A report based on a 2007 sur-

vey from HP [16] estimates average hourly cost of downtime to the considerable

amount of $ 90,000 (per company), with a loss of nearly $ 1M per outage. Disas-

ters involving availability of IT systems are fairly common, since nearly 31% of

companies polled in the survey by HP had to carry out their plans in a real disaster.

However, most downtime is caused by non-disastrous events. 90% of downtime

reported by survey respondents was due to network/telecommunications issues,

hardware or software failures or operator errors.

To deal with IT outages, organisations can adopt a wide range of technical

solutions that have been refined over the years. For example, a classic solution for

availability is redundancy, which consists of duplicating the critical components

of a system in such a way that when one of them fails it is replaced by its duplicate

and the system continues to operate. However, such measures are expensive and

1

Chapter 1. Introduction

the budget organisations can spend on IT availability is limited. Budget is mainly

limited by two factors: first, the spendings for maintaining IT systems must not

exceed the benefit these systems provide to the organisation and secondly, there

are constraints imposed by the environment the organisation is operating in, such

as laws and regulations for government organisations, or market competition for

enterprises. The best an organisation can do is to find the optimal balance between

the achieved availability and its cost (the cost of the work needed for finding the

balance must be taken into account as well). However, achieving such an opti-

mal balance is difficult. It requires knowledge from different domains: business

management, IT management and security. For this reason, different people from

different fields are usually involved, with communication problems and conflict-

ing goals. Achieving an optimal balance also requires that business and IT are

properly aligned and that decisions are made in each case based on the global

business objectives, the technological constraints and the security threats.

In this thesis we focus on the analysis activities that organisations carry out to

control the availability of business supporting IT systems.

1.1 Availability Planning

We call IT availability planning the set of analysis activities by which organi-

sations set the requirements and take decisions regarding the availability of the IT

systems supporting their business. Availability planning allows organisations to

find the design for the availability of their IT infrastructure that supports their busi-

ness at best within the budget limitations. Guidelines for planning the availability

of IT are given in standard IT management methodologies such as COBIT [90]

and ITIL [62]. Most (large) organisations address IT availability planning from

one or more of the three main angles: risk management, business continuity and

service level management, which we will now introduce.

Information Security Risk Management

Information security risk management is the process of dealing with the risks

information and information processing assets (including IT assets) are exposed

to.

Risk management is widely considered a key factor for improving an organi-

sation’s IT performance. Risk management is also required by regulation, such as

the Sarbanes-Oxley Act of 2002 [112] or the international agreement Basel II [86]

(International Convergence of Capital Measurement and Capital Standards), to en-

sure that the organisation is operating properly.

2

1.1. Availability Planning

To introduce the risk management process we follow ISO 27005 (former BS

7799-3 [21]), one of the most popular standards: the same general principles are

shared by almost all risk management standards.

Figure 1.1: The Risk Management process model of ISO 27005

Risk management consists of four main tasks (see Figure 1.1): (1) assessing

and evaluating the risks (risk assessment), (2) selecting and implementing controls

to treat the risks (risk treatment or risk mitigation), (3) monitoring and reviewing

risks and (4) maintaining and improving the risk controls. The whole process

is cyclic and it is meant to be repeatedly applied during the life cycle of the IT

system(s) under consideration. The two tasks of risk management that are more

relevant for availability planning are Risk Assessment (RA) and Risk Mitigation

(RM).

Risk management is relevant for optimising IT availability in that it enables

the organisation to discover the risks to the business associated to disruptive events

on the IT infrastructure, to rank them according to the business objectives and to

plan the most effective strategies to deal with them.

A risk assessment identifies potential harmful threats and vulnerabilities of the

system target of assessment, determines their likelihood, the harm they can cause

and ranks them accordingly. Figure 1.2 shows the interpretation of risk given in

NIST SP 800-100 [18], as a function of threat, vulnerability, likelihood and im-

pact. Risk management best practices prescribe that risk assessments should be

run periodically, to cope with the evolution of the target system, of the organisa-

tion using the system and of the security related issues.

The second main task, risk mitigation, consists of developing and implement-

ing a strategy to manage risks by choosing a proper risk treatment strategy and

3

Chapter 1. Introduction

Figure 1.2: The risk function in NIST SP 800-100

by implementing controls. Risk management strategies are risk avoidance (elimi-

nate, withdraw from or not become involved), risk reduction (optimise - mitigate),

risk sharing (transfer - outsource or insure) and risk retention (accept and budget).

Controls can be technical and organisational (involving people and procedures).

Business continuity

Business continuity management is the process supporting the recovery of in-

terrupted business critical functions after a disruptive incident. Incidents include

local incidents (e.g. building fires), regional incidents (e.g. earthquakes), or na-

tional incidents (e.g. pandemic illnesses). The outcome of business continuity is

a logistic plan called the Business Continuity Plan (BCP).

When an organisation has IT systems supporting its business operations, part

of the business continuity plan must address the recovery of the IT infrastructure.

The process of planning, implementing and maintaining a business continuity

plan is described in the BS 25999-1 standard [41] released by the British Standard

Institute but widely used also outside the United Kingdom. According to this

standard, the main activities of business continuity management involving IT can

be summarised as (a) an analysis of the (business) continuity requirements for the

components of the IT infrastructure, (b) an analysis of threats and their impact

scenario, (c) the design and implementation of business continuity strategies (the

BCP) satisfying the business requirements with regards to the different impact

scenarios, and (d) the maintenance and improvement of the BCP. Figure 1.3 shows

the main activities of business continuity management and their relation.

We now describe in more detail the steps involved in activities (1) and (2),

which are the ones that have mostly to do with IT availability planning:

1. Business Impact Analysis (BIA): BIA is the study and assessment of effects

to the organisation in the event of the loss or degradation of business func-

tions resulting from a destructive event (incident).

2. Set the Maximum Tolerable Period of Disruption (MTPD): based on the re-

sults of the BIA, an MTPD has to be set for all the key business activities.

4

1.1. Availability Planning

1. BIA

2. MTPD

3. RTO

a. Business
continuity

requirements

4. Threat
analysis

5. Impact
scenarios

b. Threat and
impact analysis

c. BCP

Design Implementation

d. Maintenance
and improvement

of the BCP

Figure 1.3: The main tasks of business continuity management. Blocks are tasks,

and edges indicate that information from one block is used in the other

The MTPD expresses the “duration after which an organisation’s viability

will be irrevocably threatened if product and service delivery cannot be re-

sumed” [41].

3. Set the Recovery Time Objectives (RTO): based on the MTPD, an RTO is

determined for all the assets (i.e. people, premises, IT systems) that support

a certain activity. The RTO expresses the amount of time to restore an asset.

In case a certain business activity is supported by IT, the RTO need to be

determined for each component of the IT infrastructure.

4. Threat analysis: this step consists of selecting and analysing the threats that

could compromise the organisation business. Typical threats taken into ac-

count in this analysis include natural disasters (e.g. floods and earthquakes),

terrorist attacks or pandemic infections.

5. Impact scenarios: based on the results of the threat analysis, several sce-

narios in which a threat materialises are taken into consideration. For each

scenario a (worst-case) estimate is made of the impact on the organisation’s

5

Chapter 1. Introduction

assets (in this case IT components). These scenarios are then grouped to-

gether and used to build the BCP.

A BCP specifies the recovery procedures to ensure RTOs can be respected

in case of different impact scenarios (e.g. major power failure, loss of a building

etc.). For IT, these procedures include the minimal set of IT components that are

needed to run the organisation’s business functions, and the order on which IT

components should be recovered, based on their RTO. Other sections of a BCP

include the backup strategies for IT processed information that should make sure

that business relevant data is up-to-date with respect to a predefined Recovery

Point Objective (RPO). Finally, the BCP needs to be regularly updated as soon

as changes happen in the organisation. The plan is tested by simulating recov-

ery scenarios (or when it is actually used in case of an incident) and improved

accordingly.

Business continuity contributes to optimise IT availability in case of incidents

by limiting the losses they cause to the organisation.

Service level management

An IT service abstracts a functionality provided by the IT infrastructure to

its final users (e.g. sending and receiving e-mails). Organisations business units

are IT service users. IT services can either be acquired internally from the IT

department, or externally from IT outsourcing companies.

The quality of IT services is controlled through Service Level Agreements

(SLAs). An SLA is a contract specifying the (measurable) value agreed by the

service provider and the service user for a certain quality parameter. For instance,

the cost of a service usually depends on the SLA associated to it. Organisations

use SLAs to guarantee that the IT services comply with the business requirements.

The process of managing SLAs is called Service Level Management.

The ITIL framework provides guidelines on how to do Service Level Manage-

ment (SLM). The four main tasks involved are: (1) ensuring that agreed service

levels are met, (2) ensuring service levels comply with the available budget, (3)

producing and maintaining a catalogue of the services and (4) establishing service

continuity plans.

Availability is one of the most used quality parameters for SLAs. For example,

a typical SLA for availability is to guarantee that a service will have – say – 99%

of uptime in a month. Therefore, a successful SLA management is important to

optimise IT availability, as it allows the organisation to set a trade-off between the

availability level and its associated cost during normal business operations.

Summarising, to successfully plan the availability of an IT infrastructure, IT

6

1.1. Availability Planning

managers need first to agree with the business units on the required availability

levels for the IT systems supporting the organisation’s business. They then need

to control the IT infrastructure and make sure availability levels can be respected

within the available budget. The main control points are based on (1) the man-

agement of availability-related IT risks, which need to be identified, evaluated

and mitigated when needed, (2) the IT-related section of the BCP, which is meant

to ensure that IT systems are recovered after disasters within a predefined time

agreed with the business units and (3) the contractual agreements (SLAs) with IT

service providers to make sure that the required availability level for IT services

is guaranteed to business units during normal circumstances.

These three control points address IT availability from three different angles,

which require different techniques. However, these angles target the same IT

infrastructure. In any case the analyst has to determine how the infrastructure

behaves in case one or more of its components fail and how such failures relate

to the supported business activities. Based on this observation, the models and

techniques we will present in this thesis share the same underlying representation

(dependency graphs) of the main availability properties of the IT system under

exam.

Figure 1.4 provides an overview of the concepts we just described, and iden-

tifies the activities related to availability planning in the three angles of risk, busi-

ness continuity and service level management.

Risk
Assessment

Risk
Mitigation

Monitor and
review

Maintain and
improve
controls

Information Security
Risk Management

BIA (MTPD,
RTO, RPO)

Threat
analysis /

impact
scenarios

Implementation

Maintain and
improve the

BCP

Business Continuity

Ensure service
levels are met

S.L. Management

Ensure service
levels comply

with the budget

Produce and
maintain the

service catalogue

Establish service
continuity plans

Availability
Planning

Figure 1.4: Availability planning in relation to risk management, business conti-

nuity and service level management

7

Chapter 1. Introduction

1.2 The Problem

The standards we mentioned so far draw the guidelines for doing the activities

described in Section 1.1. However, to be as generally applicable as possible, these

standards do not include implementation details. For example, risk assessment

standards indicate that the risk assessor should identify threats, but do not specify

how this is done in practice. For this reason, each organisation that wants to

optimise its IT availability need to find the concrete techniques that suit its needs.

To be of practical use, such techniques must comply with at least two require-

ments:

1. accuracy: they must allow the calculation of the different availability figures

needed for risk management (e.g. the system outage caused by an incident),

business continuity planning (e.g. the system recovery time) and service

level management (e.g. the minimal monthly system uptime) as precisely as

needed;

2. feasibility within budget: their use must require an amount of information

and resources that the organisation is able to provide.

There is a group of more advanced approaches proposed by the academic com-

munity and another of more basic approaches adopted by the business community.

Many of the approaches in the first group consist of statistical models describing

in detail the functional aspects of the IT infrastructure to be analysed in relation

to the probabilities of the various infrastructure components failures. For each

infrastructure component the analyst has to define the relevant internal states of

the component, the probability of transition from one state to the others and the

connection of each component state to the state of the other components in the

infrastructure. With such a model one can in principle deduce any required availa-

bility figure of the IT infrastructure. There exist several modelling techniques that

can be used for this purpose. For example, Markov models, Bayesian networks

and Petri nets have been used in the reliability field for the design and analysis

of a number of availability critical systems. Although exact, these techniques are

not often applied to plan the availability of business supporting IT infrastructures

because of scalability issues. To apply them, an analyst has to model all the inter-

nal states of each component and deduce (or estimate) the transition probability

for each pair of states. Obtaining this information requires a considerable effort.

Therefore, this kind of analysis process is in most cases too slow to comply with

the requirement of being feasible within budget.

The second group uses limited or no modelling and mainly relies on the exper-

tise of the personnel devoted to the task for the availability analysis. However, due

8

1.3. Technical Research Questions

to the increasing complexity of the IT infrastructure to be managed, even experts

can make mistakes. Incidents affecting the availability of a marginal component

of an IT system can propagate in unexpected ways to other, more essential compo-

nents that functionally depend on the presumed marginal component. Mistakes in

availability planning can lead to costly IT service disruptions, or to overspending

to obtain an availability level which is too high with respect to the organisation’s

business needs. For example, underestimating the system availability can lead to

the adoption of costly countermeasures which are not actually required.

For these reasons, organisations aim at improving the quality of their risk,

business continuity and service management processes using methods with a higher

degree of accuracy than current practice affords, but that are still feasible within

budget. It is the goal of this thesis to propose and validate such a method.

1.3 Technical Research Questions

Based on the analysis of the above mentioned problem, this work focuses on

the following practical research aim:

“Design and validate techniques that improve the accuracy and effectiveness of

availability planning, while guaranteeing feasibility within budget.”

To achieve this aim we focus on the following research questions.

1. “How can we improve the accuracy of current techniques for assessment

and mitigation of availability-related IT risks, while guaranteeing feasibil-

ity within budget?”

The assessment of availability-related risks requires techniques that can ac-

curately determine the consequences (impact) the disruption of an IT com-

ponent can have on the IT infrastructure and on the business operations

supported by it. Optimisation techniques are also required during the risk

mitigation phase to support the decision process of adopting the most cost-

effective countermeasures to protect agains risks.

2. “How can we improve the accuracy of current techniques for creating and

maintaining business continuity plans, while guaranteeing feasibility within

budget?”

Creating and maintaining an effective business continuity plan requires tech-

niques and tools to make sure business continuity requirements set on IT

components are aligned with the business needs. In other words, with such

techniques analysts can check that RTOs are compliant with the existing

9

Chapter 1. Introduction

MTPDs. Due to budget limitations, it could be the case that MTPDs can-

not be respected in all cases. Therefore, analysts and decision makers need

techniques to estimate how often this is expected to happen, and therefore

the risk of not complying with MTPDs.

3. “How can we improve the accuracy of current techniques for managing

availability-related SLAs, while guaranteeing feasibility within budget?”

To ensure the availability level of a service is met, techniques are needed to

properly calculate the availability of an IT service at design or implemen-

tation phase. With this information, it is possible to set availability service

levels which can be met during the service life. When planning availabi-

lity service levels, it is also important to comply with budget limitations.

For this reason, techniques are needed to support the cost/benefit decisions

IT managers have to take regarding the design choices that influence the

availability of IT services.

1.4 Contributions

To address the research questions we have developed a set of architecture-

based techniques that support availability planning. Figure 1.5 gives an overview

of our suite of techniques.

Risk
Assessment

Risk
Mitigation

Monitor and
review

Maintain and
improve
controls

Information Security
Risk Management

BIA (MTPD,
RTO, RPO)

Threat
analysis /

impact
scenarios

Implementation

Maintain and
improve the

BCP

Business Continuity

Ensure service
levels are met

S.L. Management

Ensure service
levels comply

with the budget

Produce and
maintain the

service catalogue

Establish service
continuity plans

TD model
(Chap. 2)

QualTD
model

(Chap. 3)
TDR model
(Chap. 4)

A2THOS
(Chap. 5)

Figure 1.5: An overview of our suite of techniques in relation on the availability

planning activities they support the most

10

1.4. Contributions

The Time Dependency (TD) model and the associated framework support the

assessment and mitigation of availability-related IT risks. The model is based on

a graph of the components of the IT architecture and of their dependencies. The

framework allows one to determine the impact of the disruption of an IT com-

ponent to the organisations processes and to optimise the choice of availability-

related risk mitigation strategies according to the expected benefit they deter-

mine and on their cost. The framework follows the quantitative risk assessment

paradigm, in which risks are expressed in a range of magnitudes which can be

measured (e.g. expected monetary loss).

The Qualitative Time Dependency (QualTD) model and framework for the

assessment of availability-related IT risks is an extension of the TD model with

enhanced modelling capabilities (it supports a wider range of dependencies among

the IT components). It also allows the risk assessor to relate the identified threats

with the vulnerabilities of the IT components to determine the risk caused by

availability-related incidents. The QualTD model is meant to be used for risk

assessments that follow the qualitative paradigm, in which risks are described

by values in an ordinal scale which at most allow value comparison (e.g. high,

medium or low). This improves the feasibility of our technique, as it does not

require quantitative data about incident likelihood and financial losses, which can

be difficult to acquire. Under this aspect, the QualTD model can be also seen as

an abstraction of the TD model in which numerical values are replaced by ordered

labels.

The Time Dependency and Recovery (TDR) model and tool supports the as-

sessment of a business continuity plan. It is based on the same representation of

the IT infrastructure we use in the TD model but it includes the concept of inci-

dent repair time. The model allows one to assess a business continuity plan by

checking whether the MTPDs set on the critical business activities are met by the

RTOs set on the underlying IT infrastructure, and whether RTOs are truly pairwise

compatible. The model also allows to evaluate the risk that MTPDs are exceeded.

A2THOS is a framework to calculate the availability of partially outsourced IT

services in presence of SLAs. A2THOS consists of a model of an IT system

(which provides multiple services), an algorithm to calculate the minimal availa-

bility of each service given the minimal availability of the (outsourced) service

components, and an algorithm to compute the cost-optimal choice of the availa-

bility of the system components based on the target availability of the exported

services. There exist techniques, such as fault trees, which allow one to calculate

the availability of a system. However, such techniques are not always applicable

11

Chapter 1. Introduction

in case of the outsourcing of system components, as the required information is

not available: A2THOS overcomes this limitation.

1.4.1 Thesis Overview and Publications

We now explain the contributions of each chapter of this work.

Quantitative Decision Support for Model-Based Mitigation of Availability

Risks (Chapter 2) In this chapter we present the TD model and describe how

to use it to determine the risk caused by the disruption of a component of the

architecture. We then show how to model risk mitigation strategies and how to

determine the set of these strategies which has the best cost/benefit trade-off. Fi-

nally, we discuss the feasibility and implementation of our model based on the

information about a risk assessment carried out by KPMG-Italy at an insurance

company. This work appears in a refereed workshop paper [7], which is joint work

with D. Bolzoni, S. Etalle and M. Salvato.

Model-Based Qualitative Risk Assessment for Availability of IT Infrastruc-

tures (Chapter 3) In this chapter we introduce the QualTD model. We then

show how to apply the QualTD model in a practical case-study we carried out

on the authentication and authorisation system of a large multinational company.

Based on the case-study we also address the accuracy of our technique in relation

to the ones used by the company and then deepen the discussion on its feasibility

by presenting a review of risk assessment methodologies and their compatibility

with our technique. This work appears in a journal paper [2], which is joint work

with S. Etalle, R.J. Wieringa and P.H. Hartel.

A Model Supporting Business Continuity Auditing & Planning in Informa-

tion Systems (Chapter 4) In this chapter we present the TDR model. We de-

scribe how to use the model to assess a business continuity plan and to evaluate

the risk that MTPDs are exceeded. Finally, we discuss the feasibility and imple-

mentation of our model based on the IT infrastructure of an insurance company

provided by KPMG-Italy. This work appears in a refereed conference paper [5],

which is joint work with D. Bolzoni, S. Etalle and M. Salvato.

A2THOS: Availability Analysis and Optimisation in SLAs (Chapter 5) In

this chapter we present A2THOS. We first introduce the model and provide the

theoretical foundations for calculating and optimising the IT system availability

12

1.4. Contributions

based on the model. We then discuss the feasibility and usefulness of our frame-

work based on two case-studies we carried out at a large multinational company.

This work appears in a journal submission [1], which is joint work with S. Etalle

and R.J. Wieringa.

13

Chapter 1. Introduction

14

Chapter 2
Quantitative Decision Support for

Model-Based Mitigation of

Availability Risks*

We start here with the first research question:

“How can we improve the accuracy of current techniques for assessment and

mitigation of availability-related IT risks, while guaranteeing feasibility within

budget?”

Risk management is addressed in two separate chapters of this thesis: the

present one focuses on the mitigation of availability-related risks, while the second

one on their assessment.

Although these two steps of risks management should be logically presented in

the reverse order, we prefer this one as the model for risk mitigation was developed

before the one for risk assessment, and the latter extends some of the concepts

presented in the former.

*This chapter is a minor revision of the paper “Model-Based Mitigation of Availability

Risks” [7] published in the Proceedings of the Second IEEE/IFIP International Workshop on

Business-Driven IT Management (BDIM ’07), pages 144-156, IEEE Computer Society, 2007.

15

Chapter 2. Quantitative Decision Support for Model-Based Mitigation of

Availability Risks

2.1 Introduction

In this chapter we focus on mitigating the risks related to the availability of

the IT infrastructure. This is particularly challenging because of the (temporal)

dependencies linking the various constituents of an IT infrastructure (machines,

processes, assets, etc.) with each other. In complex information systems, a failure

in a remote component may propagate across the infrastructure and eventually

affect the availability of a good deal of the entire system. Failing to appropriately

assess the consequences of such propagations will result in inaccurate RA and

RMs.

We argue that current risk management methodologies (e.g. ISO 17799 [44],

ISO 13335 [42] and OCTAVE [82]) show accuracy limitations when evaluating

and mitigating availability risks. This is due to the fact that they do not fully con-

sider the consequences of the functional dependencies between the constituents of

an IT infrastructure: the consideration of these dependencies is mostly left to the

judgement of the assessor carrying out the RA phase (although this is not made

explicit). Thus, these methodologies are mainly useful to identify and fix individ-

ual risks an organisation is exposed to (see also Section 2.2). On the other hand,

these dependencies are mentioned in more specific assessment methods such as

the Business Continuity Plans, like in the new standard BS25999 [41] (see Sec-

tion 2.2 for a detailed overview). These methods, however, do not specify how to

use this information for RM, making their use unfeasible.

Our thesis is that it is possible to carry out an accurate tool-based RM by us-

ing the data collected during RA and BCP activities, under the hypothesis that

such data is available and sufficiently accurate. To substantiate this thesis, in this

chapter we present a framework and a tool for the assessment and mitigation of

availability-related IT risks. The framework is based on the Time-Dependency

(TD) model, an extended instance of the IT infrastructure model as it is described

in BS25999 (which largely coincides with the data collected by the KARISMA

tool developed at KPMG for RA, see Section 2.4). This model allows us to deter-

mine how incidents will propagate across the organisation, and therefore what is

the actual impact of incidents. With this information, we can carry out an optimi-

sation study by comparing the true expected benefit determined by the different

countermeasures that can be put in place to cope with the various risks.

As we will mention, the computational complexity of the problems posed by

our method, make it impossible to carry out the underlying analysis by hand, and

this is why the method we propose requires the presence of an appropriate tool.

We have implemented the tool using UPPAAL CORA [52] and Prolog.

We consider our solution a concrete enhancement to RM methodologies, pro-

viding automatic support to better evaluate the IT relationships and dynamics.

16

2.2. Relevant methodologies for IT availability management

The remainder of this chapter is organised as follows: in Section 2.2 we briefly

introduce some of the methodologies describing the current practice in IT and risk

management. In Section 2.3 we present the TD model and show with a running

example how it can be used to develop a cost-optimal risk mitigation strategy.

In Section 2.4 we describe the prototype implementation of these algorithms and

their use in combination with a risk management supporting tool developed at

KPMG. In Section 2.5 we discuss the feasibility of our model both on the infor-

mation needed to build it and on the computational complexity of the algorithms

to determine the cost-optimal risk mitigation strategy. Finally, in Section 2.6 we

present the related work.

2.2 Relevant methodologies for IT availability man-

agement

There exists a number of standards and methodologies for IT management as

we briefly introduced in Chapter 1. Among them, COBIT (Control Objectives

for Information and related Technology) [90] and BS25999 [41] are of particular

relevance for this work. COBIT is the de facto standard for IT control and man-

agement, addressing IT governance and control practices. It provides a reference

framework for managers, users and security auditors. COBIT is mostly based on

the concept of control (be it technical or organisational) which is used to assess,

monitor and verify the current state of a certain process (that may refer to proce-

dures, human resources, etc.) involved in the IT system. To implement COBIT,

the organisation must benchmark its own processes against the control objectives

suggested by the framework, using the so-called maturity models (derived from

the Software Engineering Institute’s Capability Maturity Model [65]). Maturity

models basically provide: (1) a measure for expressing the present state of an or-

ganisation, (2) an efficient way to decide which is the goal to achieve and, finally,

(3) a tool to evaluate progress toward the goal. Maturity modelling enables one

to identify gaps and demonstrate them to the management. Key Goal Indicators

(KGI) and Key Performance Indicators (KPI) are then used to measure, respec-

tively, when a process has achieved the goal set by management and when a goal

is likely to be reached or not. Since COBIT does not suggest any technical so-

lution but only organisational solutions, organisations often combine the control

practices of COBIT with the technical security measures described in the Code of

Practice for Information Security Management part of the ISO 17799 [44] stan-

dard.

Although COBIT does not provide any practical solution for mitigating the

risks, it requires the organisation to implement a Business Continuity Plan (BCP)

17

Chapter 2. Quantitative Decision Support for Model-Based Mitigation of

Availability Risks

to improve the availability of its IT infrastructure and its core processes. Until

2003, no methodology was available to conduct this activity in a precise way.

The new standard for managing business continuity BS25999 [41] is mainly fo-

cused on providing guidelines to understand, develop and implement a BCP, and

aims at providing a standard methodology. This standard requires the organisa-

tion to complete different steps when preparing the BCP: (1) identify the activi-

ties/processes which carry the core service used by the organisation, (2) identify

the relationships/dependencies among themselves, (3) evaluate the impact of the

disruption of the core services/processes previously identified (Business Impact

Analysis, BIA). The most critical activities/processes are intended to be the ones

whose direct/indirect monetary loss is significantly high.

When the risk has been assessed and evaluated, one has to identify the best

countermeasures to reduce the risk. Typically, there exists a number of different

solutions (technical or organisational) from which business and IT managers must

choose the best one(s) matching the required security level and the available bud-

get (or finding the best compromise between the cost of the countermeasures and

the benefit they provide). As we mentioned before, current methodologies are not

sufficiently taking into account how business processes are linked together and the

way a single incident could propagate and affect more of the organisation’s IT sys-

tems. The fact that COBIT and ISO 17799 do not consider dependencies between

processes has even greater impact in the mitigation phase of availability risks: it

is standard practice to protect the processes whose availability has a greater direct

impact on the organisation goals, while a more accurate analysis in many cases

reveals that it is more cost effective to protect some of the processes that have an

indirect impact as well.

2.3 The Time Dependency (TD) model

The framework we propose is based on a timed dependency graph, a directed

and acyclic graph modelling the architecture of the organisation’s IT-related in-

frastructure (including a part related to the organisation’s business goals). To sim-

plify the exposition, we indicate by R+ the set of nonnegative real numbers, and

we use the following sets to indicate domains: T is the set of all time intervals

(expressed in hours), Eur is the domain of monetary values (expressed in Euro).

Assumptions We start by providing a brief summary of the data we need to

build the model, later we describe this data in more detail and we discuss about

the feasibility of obtaining accurate information.

1. A timed dependency graph, consisting of: a set of nodes (processes, appli-

18

2.3. The Time Dependency (TD) model

cations, etc.) and a set of edges between these nodes. Edges model which

nodes depend on other nodes and must contain an estimate of how long a

node would be able to survive if another one it depends on becomes unavail-

able. We express this measure in hours.

2. The cost associated to the downtime of those processes directly affecting

the business objective of the organisation (indirect dependencies are taken

care of by the model). We express this measure in Euro per hour.

3. A list of possible incidents affecting the IT infrastructure, together with

a conservative estimate of the average downtime each of them cause (per

node), given the controls already in place. We also need an estimate of their

expected frequency. For the sake of uniformity, in the sequel we express the

downtime caused by each incident in hours and their estimated frequency

in times per year.

4. A list of countermeasures. For each countermeasure we need an estimate

of (a) their deployment and maintenance costs (expressed in Euro per year),

(b) the effect is has on the estimated frequency of the incidents and/or on

the downtime they cause.

In Section 2.5 we address the problem of how and when this data can be collected

during the RA and BCP processes.

Timed dependency graph The basic elements of the model are the constituents

of the IT infrastructure. We follow notable architecture frameworks such as TO-

GAF [113], Zachman [114] and ArchiMate [84] as well as IT Governance solu-

tions (IBM [26] and ISACA [90]), to determine those elements which may directly

or indirectly be involved in an incident:

• business processes: the activities related to the organisations’ business e.g.

producing a specific product, managing customer orders or invoicing;

• IT services: the functionalities provided by IT systems to support business

operations, e.g. e-mail service, digital identity management, instant mes-

saging;

• applications: the software that provides IT services e.g. production con-

trol applications, customer relationship management (CRM) applications

or databases;

• technology: hardware systems, computer networks and industry-specific

technology needed to enable applications;

19

Chapter 2. Quantitative Decision Support for Model-Based Mitigation of

Availability Risks

• infrastructure or facilities: physical locations necessary to house IT tech-

nology.

Running example - Part 2.1. We present here an example (intentionally oversim-

plified) of the business/IT infrastructure of a small bank segment with ten compo-

nents (see Table 2.1):

Table 2.1: List of the components of a portion of an enterprise organisation’s IT

infrastructure and its supported business processes.

Id Description

p1 Customer management process

p2 Financial services process

a1 Home banking application

a2 On-line trading application

a3 Financial founds management application

db1 Checking account database

db2 Trading database

m1 Application server machine

m2 Oracle machine

m3 Oracle machine

n1 Network segment

p1 and p2 are two business processes; a1, a2 and a3 are three applications sup-

porting business processes while db1 and db2 are two databases accessed by ap-

plications. Finally, m1, m2 and m3 are the three machines running applications

and n1 is the network segment connecting the three machines.

We represent the organisation’s IT infrastructure and the business processes it

supports by using a graph, where nodes represent the basic components of the in-

frastructure and labelled edges between nodes represent their dependencies. The

presence of an edge from node a to node b indicates that b depends on a, and that

if a becomes unavailable for long enough, b will become unavailable as well. In

modelling this, we also indicate how long b will be able to survive without the

presence of a. We do that by annotating each edge with the survival time: the

time span the dependent node can survive if the other one fails. While for some

dependencies, such as the dependency of an application on the machine it runs on,

this amount is obviously set to zero, in case of dependencies between applications

this can vary between zero and several hours (e.g. in case an application needs to

be fed by another one with data at regular time intervals). Sometimes it is pos-

sible to extract this information from the functional requirements documentation

20

2.3. The Time Dependency (TD) model

or from the SLA specification. Although one can argue that these values could

change over time, we have empirically verified (by inspecting documentation of

several enterprise organisations) that risk management practice does not require

such a level of detail yet. A tutorial on how to build dependency graphs can be

found in Appendix B of this thesis.

Definition 2.1. A timed dependency graph is a pair ⟨N,→⟩ where N is a set of

nodes and →⊆ N ×N ×T .

We write n1

t
Ð→ n2 as shorthand for (n1, n2, t) ∈→.

A timed dependency graph allows one to express e.g. the dependencies of

hardware components on the physical environment they are located in, the de-

pendency of an application on the machines it runs on, and the dependency of a

business process on the applications supporting it. We will show in Section 2.5

(as well as in Appendix B) that in certain cases the construction of this graph can

be automated.

p1

(60 €/h)

p2

(120€/
h)

a1 a2 a3

db1
db2

m1 m2 m3

n1

0m

10m

0m 0m

0m 0m0m

5m 15m

1d5h
1h 8h

Figure 2.1: A timed dependency graph example

Running example - Part 2.2. Figure 2.1 shows a timed dependency graph built

with the components from Table 2.1. The edges connecting n1 to m1, m2 and

m3 express the dependency of the machines on the network connection with other

machines. The connections from m1 to a1, a2 and a3, from m2 to db1 and from m3

21

Chapter 2. Quantitative Decision Support for Model-Based Mitigation of

Availability Risks

to db2 express the dependency of software processes (applications or databases)

on the machines they run on. For all of these connections the survival time is set

to zero, since none of the components can survive the disruption of the ones it

depends on, not even for a short time. In turn, p1 depends on both a1 and a2, since

the customer management is achieved by providing on-line banking and trading,

but with different time constraints (five hours for a1 and only one hour for a2).

Similar reasoning applies to a1 and p2.

Notice that these dependencies are AND relationships: a node depending on

two or more other nodes is disrupted even if just one of these are affected by an

incident. For the sake of simplicity, in this chapter we do not consider OR rela-

tionships, even though it would be possible to include them in our model (as we

will see in Chapter 3).

The number of IT components can be very large in a real business environ-

ment. However, some of the information needed to build the graph can be avail-

able as a result of a RA (the first RA step, according to NIST methodology [73], is

system characterisation). For instance, the KARISMA tool developed at KPMG

to support RA requires – among other things – the collection of enough data to

build an accurate timed dependency graph. Any other similar tool will basically

do the same.

Incidents and their propagation Once the model of the IT architecture is de-

fined, it is possible to simulate the availability of the system during and after the

occurrence of an incident. We define incidents as events causing the unavailability

of a given set of IT components for a given time.

Definition 2.2 (Incident repair time). Let g = ⟨N,→⟩ be a timed dependency graph

and i ∈ I be an incident which disrupts a set of nodes M ⊆ N . The time needed to

repair a node n ∈M because of i is a mapping rt ∶ I ×M → T .

For instance, if we expect that the average occurrence of incident i would bring

down machine m1 for 3 hours, we model this by setting rt(i,m1) = 3.

Running example - Part 2.3. Let us now introduce three different incidents af-

fecting the availability of m3: Table 2.2 presents them.

In i1 one of m3’s hard disks is broken and the repair time is the average time

required to replace the broken disk and restore data. i2 consists of a power dis-

ruption in the building hosting m3, in this case the repair time is the average

duration of a power disruption. i3 consists in an OS failure, due to software bugs,

causing the consequent freeze of applications running in m3 and the repair time

is the average time needed to detect the incident and reboot m3.

22

2.3. The Time Dependency (TD) model

Table 2.2: A list of incidents possibly affecting m3.

Id Description Target Repair time

i1 Disk failure m3 9h

i2 Power disruption m3 3h

i3 OS failure m3 2h

Every incident directly involves one or more nodes, causing them to be un-

available for a certain amount of time. During this time, the incident may propa-

gate to other nodes, following the timed dependency graph.

We say that an incident propagates from a node n1 to n2, if they have a func-

tional relationship and the unavailability time of n1, due to the incident, exceeds

the survival time of n2 with respect to n1, causing it to become unavailable until

the incident is resolved.

Incident downtime According to this observation, we can define the downtime

caused by an incident to any node of the timed dependency graph (including prop-

agation). This is the crucial information needed in the Risk Evaluation and Mit-

igation phases to determine the global consequences of an incident, as we will

address in Section 2.3.1.

Definition 2.3 (Incident downtime). Let g = ⟨N,→⟩ be a timed dependency graph,

i ∈ I be an incident happening on a set of nodes M ⊆ N . The incident downtime

is a mapping dt ∶ I ×N → T defined as:

dt(i, n) =
⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

rt(i, n) if n ∈M

0 if n /∈M and Dn = ∅

0 if max
m

s
Ð→n∈→

dt(i,m) − s < 0
max

m
s
Ð→n∈→

dt(i,m) − s else.

This definition is well formed because we assumed g to be acyclic.

Running example - Part 2.4. Figure 2.2 shows how i1 propagates across our

organisation.

Assume that i1 occurs at t = 0: i1 brings down m3; at the same time db2 becomes

unavailable, since its survival time with respect to m3 is zero. After five minutes

a2 goes down and a3 follows after fifteen minutes. Accordingly to the timed depen-

dency graph, after one hour from the disruption of a2, the process p1 goes down

23

Chapter 2. Quantitative Decision Support for Model-Based Mitigation of

Availability Risks

m3

db2

a2

a3

p1

p2

I1(t0) Repair(i1)

t (h)
0 2 ... 10

Components available Components unavailable

stop(p2)stop(p1)stop(a3)
stop(a2)

7 8

{...}

{...}

1 9

{...}

{...}

{...}

{...}

Figure 2.2: Propagation chart of incident i1.

and after eight hours p2 goes down as well. Nine hours after t0, all nodes become

available because i1 has been repaired.

2.3.1 Risk mitigation

The timed dependency graph allows us to model the propagation of incidents.

We now show how we can use this information for selecting the best set of coun-

termeasures; technically we aim at finding the set of countermeasures which min-

imises the cost due to the forecasted downtime of relevant business processes.

2.3.1.1 Evaluating risk

The first step toward risk mitigation is an accurate evaluation of the cost

(caused by losses) associated to the downtime of each process. In an organisa-

tion, there are usually only few processes which – if unavailable – directly cause a

real damage (in our running example, only p1 and p2). Clearly, this cost depends

on the business goals of the company (a one hour downtime of the web server

has a different monetary cost at Google than at an insurance company). To model

the cost of incidents we now define the damage evaluation function, relating the

disruption time to the (monetary) loss affecting the organisation.

Definition 2.4 (Damage evaluation). Let g = ⟨N,→⟩ be a timed dependency graph.

24

2.3. The Time Dependency (TD) model

The business-driven damage evaluation function (dam) is a mapping from down-

time to costs dam ∶ N ×T → Eur .

Running example - Part 2.5. In our simplified example, the downtime cost of p2
is 120 Euro per hour (see Figure 2.1), so dam(p2, t) = 120t. This means that the

occurrence of incident i1 (which – after propagation – causes a downtime of 55

minutes on p2) would create a damage of 110 Euro.

In practice, dam may not be linear (a downtime of 24 hours may well cause

more losses that 24 downtimes of one hour). In general, dam should be pro-

vided by the organisation’s business department for the most important business

processes and, in general, for all the business-relevant IT components in the or-

ganisation. In some cases, obtaining an accurate dam function can be a non-trivial

task: this is the case of business processes which do not cause any direct financial

loss if disrupted. In these cases, the organisation needs to quantify the loss of im-

material goods such as its reputation in the public opinion. Banks and insurance

companies are among the organisations that are more prepared to carry out this

task.

Frequencies and Global Cost Having determined the damage associated to an

incident, we need now just one last factor for an accurate risk evaluation, and that

is an assessment of the frequency (likelihood) of an incident.

Definition 2.5 (Incident frequency). Given a set of incidents I , the incident fre-

quency, is a mapping freq ∶ I → R+ .

For instance, freq(i) = 0.1 means that estimates indicate that incident i is likely

to happen once in ten years (on average). We should mention that NIST [73, 18]

suggests a qualitative approach to assess likelihood (High, Medium, Low), while

COBIT [90] promotes both qualitative and quantitative approaches. In this chapter

we require a numerical value, which in practice can be derived from the past

experiences of the assessment team or from public domain statistics.

Running example - Part 2.6. For the purpose of our running example we esti-

mate i1, i2 and i3 happen (on average) respectively 5, 12 and 50 times per year.

Consequently, freq(i1) = 5, freq(i2) = 12 and freq(i3) = 50.

Now, the downtime function computed using the timed dependency graph to-

gether with the damage and the frequency evaluation allows us to compute an

upper bound of the expected cost (per year) due to service downtime.

Definition 2.6 (Estimated downtime cost). Let g = ⟨N,→⟩ be a timed dependency

graph, I be a set of incidents, dt be the incident downtime mapping, freq be the

25

Chapter 2. Quantitative Decision Support for Model-Based Mitigation of

Availability Risks

frequency mapping and dam the damage evaluation for g. The estimated down-

time cost for the system is defined as

esdc(I) = ∑
i∈I,n∈N

dam(n,dt(i, n)) ⋅ freq(i) (2.1)

Notice that esdc delivers precise results only when the following two assump-

tions hold: (1) incidents will not happen simultaneously, and (2) repetitions of the

same incident cause an equal repetition of the same damage. Intuitively, the bigger

the number of incidents and their duration, the less likely is that assumption (1)

will hold, since the probability of incidents happening simultaneously increases.

Should this be the case, the formula given in Definition 2.6 must be adjusted to

take into account the consequence of overlapping incidents on the same node.

For example, if a node is unavailable because of an incident and in the mean-

time another incident occurs on the same node, the damage to the organisation

does not grow because of the second incident, since the node is already unavail-

able (because of the first incident). However, when the probability of incidents

overlapping is small, the estimated downtime cost calculated with the formula of

Definition 2.6 gives an upper bound of the real cost, which complies with the

general risk management principle of assuming a realistic worst-case scenario in

estimating impact.

Running example - Part 2.7. Going back to our example, incident i1 causes an

yearly downtime on m3 of 45 hours (i.e. five times a downtime of 9 hours). Sim-

ilarly, incidents i2 and i3 cause an yearly downtime on m3 of 36 and 100 hours

respectively. Given the total number of hours in an year (8760), the probability

that m3 is unavailable because of incident i1, i2 and i3 is respectively 0.005, 0.004

and 0.011. Assuming these three incidents are independent events, the probabil-

ity of incidents i1 i2 and i3 happening simultaneously is ∼ 0.0002 (less than two

hours in one year). We consider this probability to be sufficiently small to use the

formula of Definition 2.6 and obtain a reasonable upper bound of the estimated

downtime cost. Given the damage evaluation of p1 and p2 and the estimated fre-

quency of the set of incidents I = {i1, i2, i3}, the yearly estimated downtime cost

of the system is 7055 Euro.

2.3.1.2 Developing the risk mitigation strategy

The goal of risk mitigation is to bring down the estimated downtime cost by

applying a set of countermeasures, which can be technical and organisational.

To achieve full generality we define a countermeasure as a function which can

modify the timed dependency graph as well as the incident repair time and the

incident frequency. Each countermeasure has also a cost per year (summing the

amortisation and the maintenance costs).

26

2.3. The Time Dependency (TD) model

Definition 2.7 (Countermeasure). Let g = ⟨N,→⟩ be a timed dependency graph,

I be a set of incidents and rt and freq be the incident recovery time and frequency

functions for I . A countermeasure c, is a pair ⟨effect, cost⟩ where effect maps

g, rt, freq into g′, rt′, freq′, and cost ∈ Eur is the (amortised) cost per time unit

(year).

We note that in practice most countermeasures fall into one of two classes: fre-

quency countermeasures and time countermeasures, accordingly to the resulting

effect. The former reduce the frequency of a given incident, while the latter reduce

the downtime due to the incident (e.g. by reducing the incident recovery time or

by increasing the survival time). In frequency countermeasures, the projection of

effect on g′, rt′ is the identity function. It is worth noting that a countermeasure

completely preventing an incident can be modelled by setting to zero either the

frequency or the downtime relative to the incident.

Running example - Part 2.8. Table 2.3 reports a list of countermeasures to be

applied on m3 to mitigate the negative effects of incidents i1-i3 (disk failure, power

disruption and OS failure respectively). Notice that c1-c7 are technical counter-

Table 2.3: A list of countermeasures to be applied on m3 to mitigate the negative

effects of incidents i1-i3. Type F refers to frequency countermeasures, while type

T refers to time countermeasures.

Id Description Type Amortised Cost I Frequency Recovery time

C/y aft. bef. aft. bef.

c1 New disks F 1000 i1 3 5 9 9

c2 UPS T 3000 i2 12 12 1 3

c3 Backup machine T 4000 I - - 2 -

c4 Service pack F 900 i3 20 50 2 2

c5 New OS version F 6200 i3 5 50 2 2

c6 Patch #143 F 300 i3 40 50 2 2

c7 Patch #146 F 300 i3 42 50 2 2

c8 Disk backup strategy T 2000 i1 5 5 5 9

measures while c8 is organisational; moreover c1, c4-c7 are frequency counter-

measures since their effect is to reduce the frequency of certain incidents, while

c2, c3 and c8 are time countermeasures since their effect is to reduce the recovery

time on m3. Figure 2.3 shows the propagation of incident i1 after the application

of c8, which reduces the downtime of m3 to five hours. Since the survival time of

p2 (eight hours) is longer than the downtime of a2, p2 is never disrupted by this

incident, and the component relative to p2 of the cost of i1 is zeroed, reducing the

overall estimated downtime cost.

27

Chapter 2. Quantitative Decision Support for Model-Based Mitigation of

Availability Risks

m3

db2

a2

a3

p1

p2

i1(t0)
c8

t (h)
0 2

Components available Components unavailable

stop(p1)stop(a3)

stop(a2)

31 4 5

Figure 2.3: Propagation chart of incident i1 with countermeasure c8 in place.

It is usually possible to apply more than one countermeasure on the same node,

but for this we have to consider that one countermeasure may be incompatible with

another one. An OS patch, for example, can be incompatible with other patches;

moreover, deploying a backup machine can be useless if other backup techniques

are already in place.

For instance, in our Running Example, countermeasures c4-c7 are mutually

incompatible because the service pack can not be installed if single patches are

already installed, and because installing patches for the old OS version with the

new version already installed would be impossible.

By combining the timed dependency graph, countermeasures and incidents

with their cost and frequency, we now give a definition of best set of countermea-

sures as the set of countermeasures that reduces the estimated downtime cost the

most (taking into account the cost of the countermeasures). In the definition we

extend (2.1) to take into account the selected countermeasures. We also denote

by dtC(i, n) the downtime the incident i causes on node n in presence of a set of

countermeasures C = {c1, . . . , cn}. Likewise, rtC and freqC are respectively the

recovery time and frequency functions in presence of the set of countermeasures

C = {c1, . . . , cn}.
Definition 2.8. Let g = ⟨N,→⟩ be a timed dependency graph, I be a set of in-

cidents, C be a set of countermeasures, cost(C) be the sum of the costs of all

the countermeasures in C and dt(i, n,C) and freq(i,C) be the incident downtime

and frequency functions for incidents i ∈ I in the presence of countermeasures in

C.

28

2.3. The Time Dependency (TD) model

• We call estimated global cost of incidents I in presence of C the value:

esdc(I,C) = ∑i,n∈I×N dam(n,dt(i, n,C))freq(i,C) + cost(C)
• We say that BC ⊆ C is a best set of countermeasures (with respect to C) if

the countermeasures in BC are pairwise compatible, and for every SC ⊆ C

of pairwise compatible countermeasures, esdc(I,BC) ≤ esdc(I,SC).
Thus, the best set of countermeasures is the one minimising the expected

global cost (including the cost of the countermeasures). Similarly, the expected

benefit of a given set of countermeasures is the difference between the expected

downtime cost esdc(I) and the expected downtime cost after applying the coun-

termeasures: esdc(I,BC).
Two countermeasures are considered pairwise compatible if deploying one

countermeasure does not make impossible or useless to deploy a second one. For

example, in the set of countermeasures of Table 2.3, c6 (Patch #143) is not pair-

wise compatible with c5 (New OS version), since the patch is applicable only

to the “old” OS version. Similarly, c4 (Service pack) is not pairwise compatible

with c6, since by applying the OS service pack one fixes already the vulnerability

patched by (Patch #143), thus making its deployment useless.

Running example - Part 2.9. According to the information of Table 2.3 we can

now define the incident downtime and frequency functions in the presence of coun-

termeasures. To define the incident downtime in the presence of countermeasures,

we first need to define the incident recovery time in the presence of countermea-

sures, on which the dt function is based upon.

rt(i, n,C) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1 if i = i2 and n =m3 and c2 ∈ C

2 if i = i1 and n =m3 and c3 ∈ C

2 if i = i2 and n =m3 and c3 ∈ C

2 if i = i3 and n =m3 and c3 ∈ C

5 if i = i1 and n =m3 and c8 ∈ C

rt(i, n) else.

The dt function in the presence of countermeasures is therefore defined as:

dt(i, n,C) =
⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

rt(i, n,C) if n ∈M

0 if n /∈M and Dn = ∅

0 if max
m

s
Ð→n∈→

dt(i,m,C) − s < 0
max

m
s
Ð→n∈→

dt(i,m,C) − s else.

The freq function is defined as:

29

Chapter 2. Quantitative Decision Support for Model-Based Mitigation of

Availability Risks

freq(i,C) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

3 if i = i1 and c1 ∈ C

20 if i = i3 and c4 ∈ C

5 if i = i3 and c5 ∈ C

40 if i = i3 and c6 ∈ C

42 if i = i3 and c7 ∈ C

freq(i) else.

We can now compute esdc considering the three incidents (i1-i3) and each

possible combination of countermeasures (c1-c8). Recall that only the disruption

of p1 and p2 involve a loss to the organisation (see Figure 2.1). The result is

BC = {c1, c4}, i.e. the most cost-effective strategy to mitigate the risk is to install

the OS service pack and to update m3’s disks.

Summarising, our model provides IT managers with an effective way of de-

termining the most cost-effective risk mitigation strategy for availability-related

risks by choosing the best set of countermeasures for a given system. For space

reasons, we have not addressed other optimisation possibilities which are made

possible by this model, but one can use it to find for instance “the least expensive

set of countermeasures which bring the expected downtime of service A down to

10 hours per year” or “the best set of countermeasures within a given budget”.

2.4 Prototype implementation

A preliminary problem we had to solve when tackling the implementation is-

sue is that of building the timed dependency graph. The information about the

IT and business infrastructure is typically spread across a number of free text

documents. To build the model it is necessary to report information in a struc-

tured form, such as database tables. Fortunately there exist tools for support-

ing IT risk assessment and business continuity which can deliver this informa-

tion (previously collected through the tool) in a structured format. The Italian

branch of KPMG [102] (a worldwide company delivering also Information Risk

Advisory services) has developed a customisable tool, KARISMA (Kpmg Ad-

vanced RISk MAnagement), to support their RA (and business continuity) activi-

ties. KARISMA supports the risk advisory services of KPMG by providing a set

of information collection forms which are filled by the owners of IT assets and

business processes assisted by the KPMG personnel. The information collected

by KARISMA includes: (1) a map of the organisation’s IT infrastructure and

the business processes and subprocesses it supports, (2) the value of the business

processes to the organisation, (3) the estimate of likelihood and impact of a list of

30

2.4. Prototype implementation

threats and vulnerabilities (derived from the knowledge base of KPMG) that could

affect the IT infrastructure and (4) the current coverage and possible applicabil-

ity of security controls (mainly based on the ones proposed by ISO 27002 [46]).

KARISMA delivers a number of reports which summarise the current risk of the

IT infrastructure based on the collected information and point out the risk expo-

sure of each business process and subprocess.

We build the timed dependency graph by representing each entry in the database

table representing IT components with a node and each entry in the tables repre-

senting links between components (e.g. applications with machines or applica-

tions with applications through the exchanged data) with an edge between nodes,

annotated with the survival time.

After building the timed dependency graph we need to realise an algorithm

which (a) explores the timed dependency graph to simulate the consequences of

the incidents, (b) evaluates the global cost of a set of incidents, (c) simulates

the new behaviour of the TD model in presence of a set of countermeasures and

(d) evaluates the new global cost of the set of incidents with different subsets of

countermeasures. Figure 2.4 summarises the architecture of the prototype. The

task of building the TD model with the information in the KARISMA database is

accomplished by the data import component. Tasks (a)-(d) are carried out by the

simulation engine, the selection of the best set of countermeasures based on the

TD model is carried out by the optimisation algorithm by using the output of the

simulation engine.

To realise both the simulation engine and the optimisation algorithm we use in

first instance model checking [24], which is a technique to algorithmically analyse

concurrent systems, typically used for verifying if (a model of) the system satis-

fies some given properties, often specified as a model logic formula. The reason

of this choice is that model checkers are already devised to explore a graph of

several possible system behavioural traces, to find the one realising a given prop-

erty. Therefore, model checkers provide us with a way of doing fast prototyping

without sacrificing performance too much. Among the several model checkers

available (e.g. SPIN [38], SMV [57], etc.) we adopt UPPAAL [53], because (1) it

allows to specify a time dependent system (such as the one we need to model to

accomplish (a) and (c)) and (2) its extension – UPPAAL CORA – provides a cost

variable which can be used to implement (b) and (d) and provides an optimisation

algorithm that allows us to solve the optimisation problem of finding the best set

of countermeasures by minimising the cost.

31

Chapter 2. Quantitative Decision Support for Model-Based Mitigation of

Availability Risks

Inventory of IT
components,

business
processes,

incidents and
countermeasures

Simulation

engine
Optimisation

algorithm

KARISMA

Database
Data import

TD Model [Timed dep.
graph, damage

evaluation, incidents
(frequency & recovery

time), countermeasures
(cost, effect)]

Best set of

counter-

measures

TD Model

Set of
counter-

measures

Estimated
global cost

Prototype tool

Figure 2.4: Architecture of our prototype. The information on the KARISMA

database is imported and converted into a TD model. The optimisation algorithm

is then run to determine which (sub)set of countermeasures produces the minimum

estimated global cost. The estimated global cost is calculated by the simulation

engine.

2.4.1 UPPAAL implementation

UPPAAL requires the system to be specified as a timed automaton [24, 14],

which is a finite automaton extended with a finite set of real-valued clocks. Clock

constraints, i.e. guards on edges, are used to restrict the behaviour of the au-

tomaton. UPPAAL CORA, is an extension of UPPAAL for cost optimal reach-

ability analysis which applies the theory of Linearly Priced Timed Automata

(LPTA) [52]. LPTA extend the model of timed automata with prices on all edges

and locations. In these models, the cost of taking an edge is the price associ-

ated with it, and the price of a location gives the cost-rate applied when delaying

in that location. In UPPAAL CORA prices are defined by means of an implicit

monotonically growing variable called cost.

UPPAAL has the additional advantage of allowing us to map in a relatively

natural way the main elements of our model into a timed automaton with the

same behaviour. This one-to-one translation helps avoiding side effects due to the

implementation.

We now show how we translate the elements of the TD model into UPPAAL

automata. UPPAAL allows one to group the definition of automata with similar

behaviour by means of templates. We build a separate template for nodes, edges,

incidents and countermeasures.

32

2.4. Prototype implementation

Figure 2.5 shows the template of an UPPAAL automaton implementing a node

of the timed dependency graph. A node can be in two states: Up and Down.

The initial state is Up. Another automaton can cause the node to transit to state

Down by sending a message in the shared channel variable take down. At the

same way, a node transits from state Down to state Up when a message is passed

through the shared channel variable bring up. When a node transits from state

Up to Down, its internal clock t is set to zero and starts counting the downtime

of the node. For each time unit that a node is disrupted, the global cost variable is

updated with the value of the esdc function, which returns the damage caused on

the current node by the downtime (t) caused by the current incident multiplied by

the current incident frequency.

Figure 2.5: Node representation in UPPAAL CORA

Figure 2.6 shows the template of an UPPAAL automaton implementing an

edge of the timed dependency graph. An edge can be in three main states: Up,

Down and Wait. The initial state is Up. There are two additional states, GoingUp

and GoingDown, which are so-called committed states (i.e. the automaton cannot

delay in that state), and are used to overcome technical limitations of the model

checker. The transition between the main states is regulated by means of two

channel variables src up and src down, which correspond respectively to the

bring up and take down variables of the source node. When the source node

of an edge goes down, it causes the edge automaton to transit to the Wait state

and delay in that state for exactly the survival time. Then, the edge transits to

the Down state and sends a message to bring down the destination node through

the take down dst channel variable, which corresponds to the take down

variable of the destination node. When the source node transits back to the Up

state, the edge transits to the Up state in turn and sends a message to the desti-

nation node through the channel variable bring up dst, which corresponds to

the bring up channel variable of the destination node.

Figure 2.6 shows the template of an UPPAAL automaton implementing an in-

cident. An incident can be in three main states: NotHappened, Happened and

Over, plus an additional committed state Resolved introduced for technical

reasons. The initial state is NotHappened. The boolean variable

incident taken is used to implement the assumption that incidents do not

33

Chapter 2. Quantitative Decision Support for Model-Based Mitigation of

Availability Risks

Figure 2.6: Edge representation in UPPAAL CORA

occur simultaneously. When the incident transits to state Happened, a message

is sent through the shared channel variable take down, which corresponds to

the channel variable with the same name of the node automata that the incident

affects. The global variables incident freq and cur incident are also

set, with the values relative to the current incident, and will be used in the above-

mentioned esdc function. The automaton delays in state Happened for exactly

the amount of time provided by the rt variable, which corresponds to the result

of the rt function of the TD model. When the automaton transits to state Over,

a message is sent through the shared channel variable bring up, which corre-

sponds to the variable with the same name of the node automata affected by the

incident. The value of the incident taken and cur incident variables is

also reset.

Figure 2.7: Incident representation in UPPAAL CORA

Finally, Figure 2.8 shows the template of an UPPAAL automaton implement-

34

2.4. Prototype implementation

ing a countermeasure that reduces the frequency of incidents. Similar templates

exist for the other types of countermeasures with the same states but different

behaviour. A countermeasure can be in two main states: NotDeployed and

Deployed, plus an additional committed state IncidentFixed introduced

for technical reasons. The initial state is NotDeployed. A countermeasure can

transit to the Deployed state only if the boolean variable is applicable is

true. This variable is associated to the countermeasure by the countermeasure

id and is used to model the compatibility between countermeasures. When the

countermeasure transits to the Deployed state, the global cost is updated with

the yearly cost of the countermeasure, and the function env other counts is called

to set to false the is applicable variable of the other countermeasures in-

compatible with the current one. Once deployed, the countermeasure remains in

the deployed state until the incident it is meant to prevent happens. This is mod-

elled through a check on both the incident taken variable, which tells if an

incident is currently happening, and on the i c variable, which tells if the cur-

rent countermeasure mitigates the current incident. If this is the case, the global

variable incident freq is updated with the new value given by the counter-

measure, and the automaton returns to the Deployed state.

Figure 2.8: Frequency countermeasure representation in UPPAAL CORA

Once the automata templates are built (and initialised), we use the model

checker to compute the best set of countermeasures. This is achieved by asking

the model checker to verify the existence of a condition in which all the incidents

are in state Over and all the nodes are in state Up. This condition ensures that all

incidents have been completely repaired. For example, in the case of our running

example, the condition would be as follows:

E<> i1.Over and i2.Over and i3.Over and p1.Up and p2.Up and a1.Up

and a2.Up and a3.Up and db1.Up and db2.Up and m1.Up and m2.Up

and m3.Up and n1.Up

When asked to verify such a condition, the model checker automatically com-

putes a trace that minimises the global cost variable. The best set of countermea-

sures can thus be obtained by checking the state of the countermeasures in the

35

Chapter 2. Quantitative Decision Support for Model-Based Mitigation of

Availability Risks

final trace produced by the model checker. The best set of countermeasures is

given by all the countermeasures that are in state Deployed.

As all model checkers, UPPAAL CORA suffers from the state-space explosion

problem, which refers to the fact that the size of the state space grows exponen-

tially in the number of components of the model to be analysed. This results

in a performance degradation that makes impossible to analyse arbitrarily large

models. In our case, the state space is given by the number of automata (nodes,

edges, incidents and countermeasures) in the model. A further problem in our

case is given by the fact that the model checker has to compute an optimisation of

the global cost by selecting which countermeasures will transit to the Deployed

state.

To test our implementation we use a dataset related to a real insurance com-

pany collected by KPMG auditors using KARISMA during a RA. The dataset

contains all the information needed to build the timed dependency graph (19

macro business processes and 122 sub-processes); the remaining information (about

incidents, costs and countermeasures) is also provided by the KPMG auditing

team who conducted the assessment. In first instance, to avoid the state explosion

problem and maintain a reasonable computational time, we perform the analysis

on portions of the infrastructure, and then merge results. Each portion of the in-

frastructure took on average one hour to be processed. In second instance, we

realise a translation of the TD model into Prolog.

2.4.2 Prolog implementation

Our Prolog algorithm implements the definitions of Section 2.3 for the timed

dependency graph (sets are translated into lists), incidents, countermeasures and

for the functions to calculate the estimated global cost of a set of incidents I in

the presence of countermeasures C esdc(I,C) (see Definition 2.8).

To compute the best set of countermeasures, we first create a brute-force algo-

rithm which finds an optimal solution by trying all the possible combinations of

countermeasures. The pseudo-code of this algorithm is shown in Algorithm 2.1.

In the algorithm, I is the set of incidents and C is the set of available countermea-

sures.

Secondly, we develop a second algorithm which finds a partial optimal solu-

tion. The pseudo-code of this algorithm is shown in Algorithm 2.2. In this second

algorithm, the best set of countermeasures is computed iteratively by adding at

each iteration the countermeasure that reduces esdc the most. When all the coun-

termeasures have been evaluated, or no countermeasure is left that can reduce

esdc, the search for new countermeasures to add is considered finished and the

algorithm stops. This algorithm is based on the heuristics of selecting at each it-

36

2.5. Discussion

Algorithm 2.1 Brute-force algorithm for the selection of the best set of counter-

measures

best cost =∞

BSC = ∅

for all SC ∈ ℘(C) do

current cost← esdc(I,SC)
if current cost < best cost then

current cost← best cost

BSC← SC

end if

end for

eration the best (i.e. the most cost effective) countermeasure, given the cost and

effect of the countermeasures already selected. This heuristics is based on the

simple intuition that most of the times the major reduction of downtime cost is

achieved by applying a set of very effective countermeasures.

In general, there is no guarantee that the solution produced by this algorithm

coincides with the global optimum found using the brute-force algorithm. In more

detail, the proposed heuristics would fail to select countermeasures which – con-

sidered in isolation – do not substantially decrease the estimated downtime cost,

but work very well in combination. However, our experiments show that the par-

tial solution is often close to the optimal one. For instance, in the case of our

running example the solution found with Algorithm 2.1 coincides with the one

found with Algorithm 2.2.

The Prolog implementation allows us to deal with the entire dataset at once,

without splitting the IT infrastructure, and tens of incidents while maintaining the

computational time in the order of minutes. We carry out optimal analysis for

partitions of up to 18 countermeasures and a partial optimal analysis that can deal

with thousands of them, on a 3GHz Pentium IV machine with 1Gb RAM.

2.5 Discussion

The technique we propose in this chapter to support IT managers in select-

ing the best strategy to mitigate availability-related IT risks is based on the TD

model, which is an approximation of the real IT infrastructure, its connection to

the organisation business, the incidents that could affect it and the possible coun-

termeasures to deploy. The approximation of our TD model is based on some

main assumptions which we discussed in Section 2.3 and we now summarise:

37

Chapter 2. Quantitative Decision Support for Model-Based Mitigation of

Availability Risks

Algorithm 2.2 Algorithm for the partial optimal selection of the best set of coun-

termeasures

best cost =∞

BSC = ∅

while C ≠ ∅ do

best c = NIL

for all c ∈ C do

SC← BSC + c

current cost← esdc(I,SC)
if current cost < best cost then

current cost← best cost

best c← c

end if

end for

if best c ≠ NIL then

BSC← BSC + best c

C ← C − best c

else

break while

end if

end while

38

2.5. Discussion

1. a failure on an IT component propagates to other components following the

functional dependencies among components in the way described by the

timed dependency graph;

2. the survival time of one component with respect to the failure of another

one can be reasonably approximated to an average value;

3. once the effects of incident on a set of components have been repaired, the

components that are unavailable because of incident propagation become

available;

4. the damage of the disruption of a business activity (process) can be reason-

ably approximated as a function of the process disruption time;

5. incidents do not usually overlap (i.e. the chance that two different incidents

happen at the same time is negligible);

6. the effect of combined countermeasures can be estimated by IT managers.

Under these assumptions, the accuracy of the results delivered by our tech-

nique depends on the accuracy of the input data available. This means that in-

accurate information (e.g. regarding the damage of the disruption of a business

process, or the frequency of an incident) can mislead the selection of the best

set of countermeasures. However, the selection of risk mitigation strategies is

anyhow prone to this problem: IT managers are asked to take decision based on

incomplete or inaccurate information. The advantage of using our model is that it

provides IT managers with a framework that allow them to deal with the complex

problem of addressing the dependencies among IT components and of business

functions on IT in the selection of countermeasures. In this way IT managers can

avoid judgement errors and better document and justify their decisions.

The other interesting point of discussion is under which circumstances it is

feasible to adopt our model. We split this discussion in two parts: the first regards

the possibility of collecting accurate information, the second regards the complex-

ity of the optimisation algorithms with respect to the size of the IT infrastructure

under exam.

Input Data The main concern regarding the feasibility of our approach is whether

it is possible to collect accurate information required to build the TD model. The

main result of our case study with KPMG is the indication that this information

can be available.

39

Chapter 2. Quantitative Decision Support for Model-Based Mitigation of

Availability Risks

Based on the experience we gained during the case study, we note that the

required data is typically available after a serious quantitative risk assessment and

business continuity plan.

First of all, an accurate map of the IT infrastructure is required by a business

continuity plan carried out following the BS25999 [41] standard (and is also avail-

able after standard RAs). We have seen in our case-study that such information is

enough to build the timed dependency graph. Most of the information required to

build the timed dependency graph is also available when the IT infrastructure is

modelled by an architectural framework, such as TOGAF [113], Zachman [114]

and ArchiMate [84]. Indeed, the layers defined in those frameworks are similar to

the ones we adopt for our model, though used for different purposes (e.g. archi-

tectural support, new component impact evaluation, etc.). Since those frameworks

are widely employed (ArchiMate for instance is used within the Netherlands by

ABN Amro and the Dutch Tax Office), and are supported by several tools, they

provide us an indirect confirmation of the feasibility of actually obtaining the data

we need.

Secondly, an inventory of possible incidents, together with their frequency

has to be compiled during the quantitative RA (e.g. following the ISAMM stan-

dard [93]). To this end, we note that many organisations do not follow the quanti-

tative approach because of the limited amount of quantitative data about security

events. The choice of the qualitative approach is also influenced by the general

business view of risk in the organisation. For instance, financial institutions (e.g.

banks and insurance companies) are used to quantitatively assess financial risks as

part of their core business: therefore, IT managers of financial institutions are en-

couraged to adopt the quantitative approach since it is well understood and used

by the top management. It is common practice, and a well-known principle in

RM [73], to derive this information from previous observations. We believe that

one possible approach to obtain a quantitative estimate about incident frequency

is to mix historical data about incidents with the expertise of the risk assessor. It

is possible to gather historical data about the availability of IT systems or system

components in two main ways: (1) by using publicly available information for

recurrent incidents (e.g. disk breakdowns) and (2) by combining the use of so-

called configuration management tools to collect the past availability of every IT

component with a systematical root-cause analysis to determine the main factors

causing the unavailability of (part of) the IT infrastructure after every disruption.

After these observations are obtained, the final probability can be obtained by in-

tegrating them with the personal belief of the analyst by using the Bayesian update

procedure suggested by Reitan in [67].

Finally, a complete evaluation of the effectiveness of chosen incident response

strategies (i.e. countermeasures) is required by many standards e.g. NIST SP 800-

40

2.6. Related work

30 [73]: thus, the organisation is also required to quantify downtime costs of the

different IT components before and after the countermeasures have been applied.

To further substantiate our argument, we note that this data is also collected

by tools devised to assist the RA and RM processes. For instance, KARISMA

is based on COBIT and ISO 27002, and it is very likely that other tools for RA

supporting the quantitative paradigm and based on these standards would collect

the same kind of information. Our system can thus be regarded as an additional

component for KARISMA or for any other similar tool for RA.

Computational complexity The second concern regarding the feasibility of our

approach is whether the algorithms underlying our framework are not too complex

to be carried out in reasonable time. It is easy to see that evaluating the optimal

set of countermeasures with the brute-force algorithm has complexity in the order

of (x × c!), where x is the cost of calculating the global estimated cost of inci-

dents in the presence of countermeasures (esdc). The main problematic factor in

the equation is of c!, which indicates that the presence of a relatively large set of

countermeasures would make it infeasible to carry out a brute-force analysis to

find the best set of countermeasures. On the other hand, the algorithm for calcu-

lating the partial optimal set of countermeasures has (worst-case) complexity in

the order of (x × c2). Although it does not computes the optimal solution, this

algorithm can be applied to the large sets of countermeasures which can be found

in real-world cases.

Other ways to bring down the c! would include splitting the set of counter-

measures into various set of independent countermeasures, which would make it

possible to apply compositional methods. However, our current implementation

does not support this feature.

2.6 Related work

There exist various academic frameworks for carrying out RA, but they all

differ from our proposal in that they do not model the propagation of incidents

across an organisation as precisely as we do. For instance, Lenstra and Voss [55]

present a quantitative approach to IT risk management to determine the optimal

RM strategy given a limited budget. Their approach requires performing a risk

assessment on all the applications supporting business processes and identifying

the (monetary) loss due to each threat on the business process they support, thus

the risk is evaluated in terms of the likelihood and the loss. Authors define an

action plan (set of countermeasures) as something influencing the likelihood of a

threat thus reducing the risk; furthermore they associate a cost to it. The selection

41

Chapter 2. Quantitative Decision Support for Model-Based Mitigation of

Availability Risks

of the best set of action plans consists in finding the set that mostly reduces the

likelihood of all threats within a given budget. Since this approach is designed

to deal with threats to all the three aspects of information security (CIA), to keep

it feasible it lacks in a complete representation of the constituents of an IT in-

frastructure (machines, facilities, etc.) and in modelling the time dependencies

between them, which - as we have discussed in the introduction - is essential for

properly modelling the availability risks. Our model, on the other hand, being

specifically tailored for availability risks, takes into consideration the time depen-

dencies and therefore allows us to simulate how an incident propagates across the

organisation.

Furthermore, the authors’ choice of allowing a single, atomic, action plan per

threat implies that the risk management team should already have found man-

ually the best set of countermeasures to be applied in response to an incident.

The proposed framework then, simply decides whether to apply or not this set of

countermeasures. On the other hand, our model is able to compute the best set of

countermeasures without requiring this pre-processing phase and allowing one to

find a more fine-grained solution.

Asnar and Giorgini [10] introduce an extended Tropos [19] goal model to anal-

yse risk at organisation level and to identify and enumerate relevant countermea-

sures for RM. Their approach is mainly devoted to the enumeration of incidents

and countermeasures, while our approach focuses on selecting and prioritising

incidents to be mitigated and possible countermeasures to perform the mitiga-

tion. Another proposal is that of Aagedal et al. [8], who developed the CORAS

framework to produce an improved methodology for precise, unambiguous, and

efficient risk analysis of security critical systems. CORAS focuses on the tight

integration of viewpoint-oriented visual modelling in the RA process, using an

UML-based approach in the context of security and RA. Our approach is orthog-

onal to CORAS, in the sense that we could use the output of CORAS to feed out

tool.

In addition to academic work there exist a number of commercial tools sup-

porting the risk management and RM process. The most closely related to our

work are CounterMeasures and GSTool. Alion’s CounterMeasures [83] performs

risk management based on the NIST 800 series and OMB Circular A-130 USA

standards. It provides the ability to perform cost/benefit analysis and ROI on

countermeasures. GStool [97] is developed by Federal Office for Information Se-

curity (BSI) to assist users of the IT Baseline Protection Manual. GStool supports

a qualitative assessment of protection requirements. The main difference between

these approaches and ours is that they face the countermeasures selection by an

economic prospective (ROI) or a technical prospective only, rather we merge the

42

2.7. Concluding remarks

two aspects in an holistic behavioural model of the whole organisation. For a

wider list of risk management supporting tools refer to [96].

Finally, our work has some analogy with some proposal for using model

checking to assess the survivability of distributed systems [47, 25]. Jha and

Wing [47] use the NuSMV model checker to model the distributed environment

and generate a failure scenario graph (sum of counterexamples of survivability

properties) by injecting faults into the model. Secondly, they add some additional

information about the probability of harmful events to perform reliability analysis

and cost/benefit analysis of possible countermeasures. Our approach differs in that

we model also time dependencies between IT components: thus we are able to per-

form a more accurate evaluation of the global impact. Furthermore our approach

is strictly focused on information risk management. Cloth and Haverkort [25] de-

velop a model checking-based approach to evaluate the survivability of a system.

Survivability is defined as the ability of a system to recover in a timely manner

predefined service levels after the occurrence of a disaster. They describe the sys-

tem as a Stochastic Petri net and then automatically convert it into a Continuous

Time Markov Chain (CTMC). Finally they use a model checking engine to obtain

a time-probability chart that expresses the recovery probability in relation to the

recovery time.

2.7 Concluding remarks

In this chapter we focus on supporting the selection of mitigation strategies of

risks related to the availability of an organisation’s IT infrastructure. We argue

that the way present methodologies address the time and functional relationships

between the constituents of the IT infrastructure is inadequate to properly evaluate

the global consequences of an incident. Our contribution consists of a model,

a technique and a tool which takes into account the global impact of a set of

risks in supporting the choice of the best set of countermeasures to cope with

them. The selection process we propose complies with standard requirements for

risk mitigation, i.e. it supports the selection of countermeasures which are: (1)

appropriate to the business needs, (2) commensurate with the business value of

assets and with the risk faced and (3) consistent and cost effective. This is achieved

by employing the TD model that allows us to represent the actual propagation of

an incident across the organisation and to deal with the countermeasures selection

process. To this end, the presence of a tool is necessary due to the complexity of

the selection process.

After the case-study carried out with data provided by KPMG, we argue that

the input required by our approach can be available after a serious quantitative

43

Chapter 2. Quantitative Decision Support for Model-Based Mitigation of

Availability Risks

RA has been carried out; this makes our proposal attractive for organisations in

which the qualitative paradigm is mostly used (e.g. some financial organisations).

However, we believe a more wide study could help identifying more precisely

which kind of organisations could benefit from this approach.

We see two main limitations of our approach. First, since it requires the quan-

tification of damage, incident downtimes and frequencies, it is not readily usable

in organisations that carry out risk assessments following the qualitative paradigm.

Secondly, although the accuracy of results depends on the accuracy of the input

data, our model does not provide an indication on the uncertainty of the results

accuracy. Being able to specify the uncertainty about a certain input value and ob-

taining results that indicate the result uncertainty could be a desirable feature for

decision makers which in our opinion deserves future exploration and improve-

ment on the TD model.

Our approach is aimed at finding the set of countermeasures minimising the

expected yearly cost due to the unavailability of IT services. Here we note that

a related organisation goal is that of achieving a given Recovery Time Objective

(RTO), i.e. the latest point in time at which operation must resume after a failure.

While this does not reduce the value of our proposal, we believe our model for

incident propagation can be extended to analyse the required steps to achieve the

given RTO. This topic will be further discussed in Chapter 4.

Finally, our system is particularly suited to support continuous risk manage-

ment [61]: thanks to its fine granularity, it can be easily reviewed to match situ-

ational changes, allowing for early detection of service deterioration, and prompt

reaction to changing environments.

44

Chapter 3
Model-based Qualitative Risk

Assessment for Availability of IT

Infrastructures*

In the previous chapter we presented the Time Dependency (TD) model, which

is meant to be used for the mitigation of availability risks in a quantitative way.

Risk assessments can be carried out following two main paradigms: quan-

titative and qualitative. In quantitative risk assessments, risks are evaluated by

means of numeric values. The magnitude of the difference between risk values is

therefore known. In qualitative risk assessments risks are evaluated by means of

descriptive “labels” (e.g. high, medium, low) for which only the order is known

(i.e. high > medium > low). The qualitative paradigm is the one that is used the

most in IT risk assessments, since it does not require numerical data regarding the

likelihood of incidents and the associated monetary losses which can be difficult

to obtain.

The TD model is devised for risk mitigation and it assumes that most of the

assessment has already been carried out.

In this chapter, we introduce the QualTD model, which is meant to be used for

risk assessments. The QualTD model extends the representation power of timed

dependency graphs by including the ability to model redundancy of IT compo-

nents in the infrastructure.

*This chapter is a minor revision of the paper with the same name [2] published in the journal

Software and System Modelling (SOSYM), pages 1-28, Springer Berlin/Heidelberg, June 2010.

45

Chapter 3. Model-based Qualitative Risk Assessment for Availability of IT

Infrastructures

3.1 Introduction

In this chapter we focus on the following general problem: defining a tech-

nique for assessing availability-related IT risks which is simple enough to be in-

cluded in a real RA, while at the same time providing solid guarantees in terms of

accuracy and replicability (i.e. obtaining the same results based on the same input

information) of the results it delivers.

The concrete problem that leads to the definition of the above general problem

statement regards a large multinational company and the method the company

uses to assess availability risks. While it is satisfied with the fact that using the

present RA method they can perform RAs in time, the company aims at improving

their RAs by assessing risks more accurately, and reducing the dependency of the

results on the personnel carrying out the RA (i.e. when determining the impact

level of a threat). At the same time, the company wants to keep the method feasible

in terms of both the amount and the detail level of the information, and of the time

and resources needed to carry out an RA. In other words, any improvement of their

current RA method and techniques should not require information that the team

carrying out the RA cannot obtain, and should ensure that the results of the RA

can still be delivered timely to the requester. The natural choice to achieve these

goals is to decompose the risk into its constituting factors so that the following

two requirements are met:

(a) the decomposition is accurate, i.e. has a true relationship with the complex risk

to be assessed;

(b) data can be collected cost-effectively.

To solve this problem, in this chapter we introduce the Qualitative Time De-

pendency (QualTD) model and the technique associated with it. The QualTD

model and technique allow one to carry out a qualitative assessment of availabi-

lity risks based on the propagation of availability incidents in an IT architecture.

Incident propagation is used to increase the accuracy of incident impact estima-

tion. Likelihood estimation is not specifically addressed by our technique, but can

be based on existing likelihood estimation models (see Section 3.2 for details).

To model the assessed system we use a timed AND /OR dependency graph

in which system components are represented by nodes and the functional depen-

dencies (along with time constraints) are represented by edges between nodes.

Dependencies are derived from the IT system architecture.

In order to evaluate the technique based on the QualTD model we:

1. carry out an assessment of the availability risks on the global identity and

authentication management system of the company (an availability-critical

system) by following the company RA method together with the QualTD

46

3.1. Introduction

model to assess the impact of the threats and vulnerabilities present in the

system, from now on we call this assessment RA2;

2. compare the results on the impact estimation obtained from RA2 with the

results produced during a previous assessment carried out by the company

using their internal RA method only, from now on RA1 (to this end, we

used the likelihood estimates from RA1 to ensure that the results of the two

RAs could be comparable);

3. identify some general factors that justify the adoption of our technique also

in other cases based on the results of point (2);

4. indicate how to generalise the approach we followed in the present case

to other assessments, carried out following other popular (standard) risk

management methods;

5. provide a brief review of other RA techniques based on dependency graphs

which we found in the literature, and we discuss the results they deliver and

their applicability to the present RA case.

Our results indicate that:

1. there is evidence supporting that the technique using the QualTD model

satisfies requirement (b), i.e. it is feasible to embed the QualTD model with

the company’s RA method without requiring too much time or unavailable

information;

2. the QualTD model constitutes an improvement towards requirement (a), i.e.

according to the RA team of the company, the technique using the QualTD

model delivers better results in terms of accuracy (due to a more accurate

impact estimation) and helps delivering more inter-subjective results (i.e.

less dependent on the personnel carrying out the RA);

3. other RA techniques based on dependency graphs [12, 34, 40, 50] do not

satisfy requirement (b), i.e. they could not be applied to the present case, due

to the fact that they require information that is unavailable or that requires

too much time to be extracted.

4. the QualTD model can be used in combination with other existing standard

methods, if the target method is compatible with some key features of the

QualTD model (see Section 3.5.1.2).

The last point deserves an additional explanation. A concern one has when in-

troducing a new technique for assessing specific risks is whether this technique fits

47

Chapter 3. Model-based Qualitative Risk Assessment for Availability of IT

Infrastructures

within more high level RA methods. Intuitively speaking, a general (say company-

wide) RA is usually carried out following a (high-level) method and a number of

specific techniques. The high-level method specifies the global lines to set up

the RA process and to embed it into the organisation. Examples of RA meth-

ods include CRAMM [92], IT-Grundshutz [101], OCTAVE [82] or the NIST SP

800-30 [73]; a more complete list can be found in Section 3.5.1. The RA method

usually includes a number of tasks (like evaluating the availability risks), and does

not fully specify how to implement them within a specific organisation. This gives

organisations the flexibility of choosing an appropriate technique. Techniques in-

clude Fault and Event Tree Analysis [76], Attack Graphs [71] or HazOP [22]. Our

contribution can be seen as a technique to assess availability risks. To establish to

which extent the QualTD model can be embedded in present popular RA meth-

ods, we have made a taxonomy of them and pointed out the conditions that need

to be satisfied for this embedding to be successful.

The QualTD model is geared to industrial practice-compliant RAs, since: (1)

it allows to link threats and vulnerabilities with the components of the IT system

under assessment and derive a list of incidents and (2) it is fully qualitative and

does not require numerical information which can be hard to gather. To make

the QualTD model qualitative we determine the impact and risk of availability

incidents when the estimates about the likelihood of threats and vulnerabilities,

the incident duration and the importance of the business functions supported by

the analysed IT system are expressed by values in an ordinal scale. The QualTD

model also supports AND /OR dependencies to specify with more flexibility the

behaviour of a component on the components it depends on when they fail.

This chapter is structured as follows: in Section 3.2 we formally present the

QualTD model and we explain how it works by means of a running example.

In Section 3.3 we first introduce the industrial context in which we tested the

QualTD model and then we present the technique we used to apply the QualTD

model to this industrial case. In Section 3.4 we describe the design, the criteria

and the assumptions we made to evaluate the QualTD model and technique, and

we present the evaluation results. In Section 3.5 we first discuss the applicability

of our technique in combination with standard risk management methods, and

then we compare our technique with other dependency-based RA techniques in

the literature. Finally, in Section 3.6 we draw the conclusions of the chapter.

48

3.2. The Qualitative Time Dependency (QualTD) model

3.2 The Qualitative Time Dependency (QualTD) model

We now introduce the model supporting our RA technique. To illustrate the

ideas we provide a running example showing how the QualTD model can be em-

ployed in practice.

The QualTD model represents the system Target of the Assessment (ToA) by

means of a timed AND /OR dependency graph in which nodes can be system com-

ponents, services or processes supported by the system, and dependencies among

nodes are the edges of the graph. Incidents that can affect the ToA are the results

of a combination of threats and vulnerabilities, and affect one or more nodes in

the graph. So for example, a threat can be a Denial of Service, a vulnerability can

be a buffer overflow, and an incident a Denial of Service on a specific application

carried out by exploiting the buffer overflow vulnerability. The effects of an in-

cident can propagate to another system component, service or process following

the dependencies in the ToA. The model allows us to compute the global impact

and the risk levels of the availability incidents hitting the ToA in the way we are

about to explain. Figure 3.1 summarises the main concepts of the QualTD model:

for each one of them we will provide a more detailed description in the sequel.

Nodes and edges are the constituents of a timed AND /OR dependency graph. In

turn, a node represents an asset constituting the IT architecture, and it is modelled

as a generalisation of IT components (e.g. network components, servers, appli-

cations) and IT services or processes, which can have a certain criticality for the

organisation’s business. Threats can materialise on IT components (with a certain

likelihood). IT components can (with a certain likelihood) have vulnerabilities.

Our definitions of threats and vulnerabilities are similar to the ones given in BS

7799-3 [21]. A combination of a threat, a vulnerability on a specific set of IT com-

ponents constitutes a security event (see BS 7799-3), which we call incident, and

can have a certain duration. Note that BS 7799-3 defines an incident as a security

event with good probability of damaging the organisation’s business. According

to this definition, an incident would be a combination of a threat and a vulnerabil-

ity on a specific set of IT components which have a good likelihood and impact.

For the sake of the presentation, we do not report in the diagram the concepts of

incident harm and risk, as well as incident risk aggregated by threat/vulnerability,

as they are complex concepts which are produced as the output of the model.

We split the presentation of the model according to the three phases of an

RA the model supports: (1) definition of the ToA, (2) risk identification and (3)

risk evaluation. To simplify the exposition we use the following sets to indi-

cate domains: M is the set of all the time interval lengths (expressed in min-

utes), B is the set of all the possible dependency (edge) types and it is defined as

B = {AND ,OR }, D is the set of all the qualitative values expressing duration

49

Chapter 3. Model-based Qualitative Risk Assessment for Availability of IT

Infrastructures

Figure 3.1: UML Class Diagram of the QualTD model. In the diagram, the

type name of the attributes (criticality, likelihood, downtime, survival time, de-

pendency type) is referred to by their initial letter only.

(e.g. Short, Long), L is the set of all the qualitative values expressing likeli-

hood (e.g. Likely, Unlikely), C is the set of all the qualitative values ex-

pressing business value/criticality of an asset (e.g. Critical, Unimportant),

H is the set of all the qualitative values expressing business harm (e.g. Severe,

Negligible) and R is the set of all the qualitative values expressing the risk

(e.g. High, Low).

3.2.1 Definition of the ToA

We model the ToA by means of an AND /OR graph which represents the com-

ponents of the ToA and their functional/technical and organisational dependen-

cies.

Definition 3.1 (Timed AND /OR dependency graph). A timed AND /OR depen-

dency graph is a pair ⟨N,E⟩ where N is a set of nodes representing the con-

stituents of the ToA, and E is a set of edges between nodes E ⊆ {⟨u, v,dept, st⟩ ∣
u, v ∈ N,dept ∈ B and st ∈M }.
Running example - Part 3.1. The ToA in this example is the portion of the IT

infrastructure of an organisation providing two IT services: eHoliday, the holi-

day reservation service for the employees of the organisation and CRM-Repository,

50

3.2. The Qualitative Time Dependency (QualTD) model

the organisations Customer Relationship Management (CRM) repository service.

These services are implemented by means of three applications: WS1, a web

server, DB1 and DB2, two databases. DB1 and DB2 contain replicas of the CRM

data, but only DB1 is used by WS1 as a repository for eHoliday. Applications

are running on two different servers: Server1 and Server2. eHoliday is

implemented by WS1 and DB1 and, if only one of them is off-line, the service will

be off-line as well. CRM-Repository is implemented by DB1 and DB2, but

both applications must be off-line for the service to be unavailable. WS1 and DB1

run on Server1, while DB2 runs on Server2. According to this description,

we build the timed AND /OR dependency graph g = ⟨N,E⟩ as follows:

N = {eHoliday,CRM-Repository,WS1,DB1,DB2,Server1,Server2}
, and

E = { ⟨Server1,WS1,AND ,0⟩, ⟨Server1,DB1,AND ,0⟩,⟨Server2,DB2,AND ,0⟩, ⟨WS1,eHoliday,AND ,0⟩,⟨DB1,eHoliday,AND ,0⟩, ⟨DB1,CRM-Repository,OR ,0⟩,⟨DB2,CRM-Repository,OR ,0⟩ }.
Figure 3.2 shows the timed AND /OR dependency graph of this running example.

!"#$"%&'()*'+,%-'.)/0,

123 453 456

2%+7%+3 2%+7%+6

894 :"

894 894 894

7;.<%+0=).)*,>

!"##$%&'($%#)*+

?+%0>

,*-
7;.<%+0=).)*,>

.*&/0-

?+%0>

0*+$%&*"123$

@+)*)@0.)*,>$4*+ @+)*)@0.)*,>$5637

Figure 3.2: The timed AND /OR dependency graph representing the ToA in our

running example. Nodes are the constituents of the (partial) IT infrastructure un-

der exam. Services are annotated with their criticality level for the organisation.

The figure also includes the vulnerabilities and threats which we will formally

introduce later in this section and specifically describe in the running example.

51

Chapter 3. Model-based Qualitative Risk Assessment for Availability of IT

Infrastructures

The nodes N of the graph are the constituents of an IT architecture together

with the business processes the IT supports, i.e. processes/services, applications,

technology, infrastructure or facilities (see Section 2.3 for a more complete de-

scription). Different IT components can be represented by means of a single node

in the graph, according to the abstraction level required by the RA. For exam-

ple, in a company-wide assessment we could represent an IT service (i.e. a set

of servers and all the applications running on them) by means of a single node,

while for the assessment of a specific IT system we model each component as an

individual node.

An edge from node b to node a indicates that a depends on b. The graph

supports both AND and OR dependencies. In the former case this means that a

becomes unavailable when any node it depends on is disrupted. In the latter case

a becomes unavailable when all nodes it depends on are disrupted. Each edge is

also annotated with the survival time (st), which indicates the amount of time v

can continue to operate after u is disrupted.

If a node a has an AND dependency on nodes b and c and an OR dependency

on nodes d and e at the same time, we read this as a having an AND dependency

on nodes b, c and x, with x having an OR dependency on nodes d and e. Similarly,

the survival time of node a with respect to nodes d and e becomes the survival time

of node x with respect to d and e, and the survival time of node a with respect to

x is set to zero. This concept is shown in Figure 3.3.

Figure 3.3: Equivalence of a graph with mixed AND and OR dependencies.

To complete the description of the ToA we include in the model an estimate

of the criticality of the business processes and of the IT services in the perspective

of the RA requester.

Definition 3.2 (Process/Service criticality). Given a timed AND /OR dependency

52

3.2. The Qualitative Time Dependency (QualTD) model

graph g = ⟨N,E⟩, the criticality of a process/service is a mapping criticality ∶

N → C .

Running example - Part 3.2. According to the business units of the organisation

using the IT system, the criticality level of eHoliday and CRM-Repository

is respectively Low and High.

criticality is defined only for those nodes which represent IT services or busi-

ness processes. It expresses the damage the company suffers if the node becomes

unavailable. For example, in a production company, an IT service supporting a

production line, which is a core business function, has a higher criticality than,

e.g. personal e-mail for employees.

3.2.2 Risk identification

After modelling the ToA, we identify the vulnerabilities which are present on

it, as well as the threats which could materialise on it, in particular the ones that

compromise its availability.

Definition 3.3 (Threat). Given a timed AND /OR dependency graph g = ⟨N,E⟩,
a threat is a potential cause of an incident, that may harm one or more nodes of

g. We call T the set of all the threats to the ToA.

Running example - Part 3.3. For the sake of simplicity, here we identify two

threats to the ToA: a Power outage can bring the servers off-line and a Denial

of Service (DoS) attack can cause the unavailability of the applications. Our set

of threats is therefore T = {Power outage,DoS}.
This is a common definition of threat, similar to that given in BS7799-3 [21];

moreover, it is fully compatible with the concept of threat the Company has

adopted in its internal RA method. The set of threats T our model addresses

are only the ones which have an impact on the availability of the ToA.

Definition 3.4 (Vulnerability). Given a timed AND /OR dependency graph g =⟨N,E⟩, and the set of threats T , a vulnerability is a weakness of a node (or group

of nodes) in N that can be exploited by one or more threats in T . We call V the

set of vulnerabilities on the ToA.

Running example - Part 3.4. We identify two vulnerabilities which can be present

on the nodes of the ToA: Server1 does not have an Uninterruptible Power Sup-

ply (UPS) unit for power continuity in case of outage; moreover, DB1 and DB2

may crash after a buffer overflow attack. Our set of vulnerabilities is therefore

V = {No UPS,Buffer overflow}.
53

Chapter 3. Model-based Qualitative Risk Assessment for Availability of IT

Infrastructures

Also in this case, our definition of vulnerability is consistent with both the def-

inition given in RA standards, and with the concept of vulnerability the Company

has adopted in its internal RA method.

We model an incident as a security event (as defined in BS7799-3 [21]) caused

by a specific threat on a particular component of the IT architecture by exploit-

ing a specific vulnerability. Differently from the definition of incident given in

BS7799-3, we consider as incidents all security events, not only events “that have

a significant probability of compromising business operations”.

Definition 3.5 (Incident). Given a timed AND /OR dependency graph g = ⟨N,E⟩,
a set of threats T and a set of vulnerabilities V , an incident i is a 3-uple ⟨M, t, v⟩
with M ⊆ N , t ∈ T and v ∈ V , describing the combination of three events:

1. v is a vulnerability of each node n ∈M

2. t is the cause of i on each node n ∈M

3. t exploits v

We call I the set of all incidents generated from g, T and V . Moreover, we say a

node n is directly affected by an incident i = ⟨M, t, v⟩ if n ∈M .

Running example - Part 3.5. By combining g, T and V we identify four incidents

that can hit the ToA: (i1) A power outage causes Server1 to stop because there

is no UPS, (i2) a DoS attack is performed on DB1 by exploiting the buffer over-

flow vulnerability, (i3) a DoS attack is performed on DB2 by exploiting the buffer

overflow vulnerability, and (i4) a DoS attack is performed both on DB1 and DB2

by exploiting the buffer overflow vulnerability. Our set of incidents is therefore

I = {i1, i2, i3, i4} where:

i1 = ⟨{Server1},Power outage,No UPS⟩, i2 = ⟨{DB1},DoS,Buffer overflow⟩,
i3 = ⟨{DB2},DoS,Buffer overflow⟩, i4 = ⟨{DB1,DB2},DoS,Buffer overflow⟩.

The last concept we introduce for risk identification is incident propagation.

Definition 3.6 (Incident propagation). Given a timed AND /OR dependency graph

g = ⟨N,E⟩ and an incident i = ⟨M, t, v⟩, we say that i can propagate to a node

n ∈ N if:

1. n ∈M , or

2. ∃e ∈ E ∣ e = ⟨m,n,AND , st⟩ and i propagates to m, or

3. ∀e ∈ E ∣ e = ⟨m,n,OR , st⟩, i propagates to m.

54

3.2. The Qualitative Time Dependency (QualTD) model

Running example - Part 3.6. We want to know if the incident

i1 = ⟨{Server1},Power outage,No UPS⟩ propagates to eHoliday. Al-

though eHoliday is not directly affected by the incident, it depends on WS1 and

DB1, which in turn depend on Server1. Server1 is directly affected by the

incident, therefore we know that i1 will propagate to eHoliday.

Definition 3.7 (Nodes affected by the propagation of an incident). Given a timed

AND /OR dependency graph g = ⟨N,E⟩ and an incident i = ⟨M, t, v⟩, Propi ={n ∈ N ∣ i propagates to n}.
Running example - Part 3.7. According to Definition 3.7, the set of nodes af-

fected by the incident i1 = ⟨{Server1},Power outage,No UPS⟩ is Propi ={ Server1,WS1,DB1,eHoliday }.
3.2.3 Risk evaluation

The last piece of information we include in the model regards likelihood and

duration of incidents. In more detail, a threat is characterised by two indicators:

(1) the threat likelihood and (2) the time needed to solve the disruption caused by

the threat, e.g. a Short or Long disruption, or even more than two disruption

lengths.

Definition 3.8 (Threat likelihood). Given the set of threats T , the threat likelihood

is a mapping t-likelihood ∶ T → L .

Running example - Part 3.8. Security analysts have assigned a likelihood to the

threats in T using the following scale: Very Likely, Likely and Unlikely.

The likelihood of Power outage is Unlikely and the likelihood of DoS is

Likely.

The likelihood of a threat is an estimate of the probability of the threat ma-

terialising on the ToA. Here we have made the (simplifying) assumption that the

likelihood of a threat is a property of the threat itself and it is independent from the

IT component the threat occurs on. The assumption holds for most of the threats,

but not for targeted attacks (i.e. attacks crafted for and directed to a specific IT

component), since the likelihood of the attack is influenced by the value of the

targeted component. In this case we split the threat into a number of new threats,

each of them representing a specific IT component being targeted.

It is common practice in qualitative RAs to assess the likelihood of threats by

means of so-called likelihood models. Each model combines different parame-

ters, e.g. difficulty of the attack, resources needed, etc. to determine the final

likelihood of a threat. However, it is out of the scope of this work to specify such

55

Chapter 3. Model-based Qualitative Risk Assessment for Availability of IT

Infrastructures

a model. In the literature there exist works proposing models for specific contexts

(e.g. eTVRA [69] for telco networks).

Definition 3.9 (Incident duration). Given a timed AND /OR dependency graph

g = ⟨N,E⟩ and a set of incidents I , the incident duration is a mapping dt ∶ I×N →

D .

Running example - Part 3.9. According to the stakeholders of the IT system,

an incident is classified as a Long disruption if it takes more than 3 hours to

be repaired, as a Short one otherwise. The contract signed with the power

company guarantees that a power disruption is repaired on average in 6 hours.

Therefore, i1 is classified as a Long disruption. Since restoring DB1 or DB2 after

they crashed only requires a restart, incidents i2, i3 and i4 are classified as Short

disruptions.

dt(i,n) is an estimate of the (average) time a node n is out of service when inci-

dent i occurs. If we consider, for example, a buffer overflow attack which causes

the stop of an application, the disruption time is the time needed to detect that the

application is no longer running and to restart it. We do not take into account the

time needed to fix the vulnerability exploited by the threat (e.g. the time to patch

the system), unless this activity is needed to restore the functionalities of the sys-

tem. To keep the model qualitative, and to match the Company method, we apply

a discretisation of the disruption time in terms of short disruption (i.e. shorter

than a given threshold) and long disruption (i.e. longer than a given threshold),

which constitute our D set.

We now associate vulnerabilities with their likelihood.

Definition 3.10 (Vulnerability likelihood). Given a timed AND /OR dependency

graph g = ⟨N,E⟩, and the set of vulnerabilities V , the vulnerability likelihood is

a mapping v-likelihood ∶ V × ℘(N)→ L , where ℘(N) is the power set of N .

Running example - Part 3.10. Security analysts have assigned a likelihood to

the vulnerabilities in V using the following scale: Very Likely, Likely

and Unlikely. The likelihood of No UPS and Buffer overflow is Very

Likely.

The v-likelihood(v, Nv) is an estimate of the probability that the vulnerability

v is present in the set of homogeneous nodes Nv, i.e. nodes which can suffer from

the same vulnerability with the same likelihood. The simplest and most frequent

case is when we determine the likelihood of a vulnerability being present on a

single node of g. However, we might also need to consider the likelihood of a

vulnerability being present on a set of homogeneous nodes which are involved in

a specific incident. For example, consider the case in which some malware causes

56

3.2. The Qualitative Time Dependency (QualTD) model

a number of servers to stop working by exploiting a vulnerability which is present

in an application deployed on all of these servers: in this case we need to estimate

the likelihood of the vulnerability being present on all of the servers running the

application with the vulnerability, since the resulting incident would affect all of

them at once.

In case of an accurate RA (e.g. when it is possible to do technical vulnerability

verification such as penetration testing), the fact that an application is present on

an IT component can be determined without uncertainty; for example by making

sure a buffer overflow affects a web server by trying to exploit it. However, in

most cases, due to lack of time, the RA team has to rely on indirect (and therefore

uncertain) information, for example, by consulting the NIST National Vulnerabil-

ity Database [108] to check if the web server may suffer from a specific buffer

overflow vulnerability. v-likelihood is the expression of this uncertainty.

3.2.4 Output of a RA using the QualTD model

We use the information contained in the model to calculate the risk associated

with an incident, which is influenced by the likelihood that the threat occurs in the

ToA (which is a property of the ToA), the likelihood that a vulnerability is present

in a node or a set of nodes (which expresses the uncertainty about whether or

not the vulnerability is present in the nodes) and the estimated disruption severity.

In more detail, an incident causes (by propagation) a disruption with a certain

duration on some nodes of the timed AND /OR dependency graph which have a

certain criticality. We call this combination the global impact of the incident.

We assume that the more critical the processes/services affected and the longer

the disruption, the greater the impact of the incident will be, i.e. the global impact

of an incident is monotone.

Definition 3.11 (Global impact). Given a timed AND /OR dependency graph

g = ⟨N,E⟩, an incident i = ⟨M,v, t⟩, a monotone composition function harm ∶

C ×D → H mapping criticality and duration to business harm, and a monotone

aggregation function impact-agg ∶ H × ... × H → H ; the global impact of i is

defined by global-impact ∶ I → H , such that:

global-impact(i) = impact-aggn∈Propi
(harm(criticality(n),dt(i, n))) (3.1)

Running example - Part 3.11. The RA team has decided that the global impact

of an incident is calculated using the following rules:

a) the global impact is Critical if the incident causes the disruption of at least

one service with High criticality;

b) the global impact is Moderate if the incident causes a Long disruption on

57

Chapter 3. Model-based Qualitative Risk Assessment for Availability of IT

Infrastructures

any service, or a Short disruption of at least a service with Medium criticality;

c) the impact is Insignificant otherwise.

For example, if we take the above definition a), the impact-agg function is given by

the “at least one service” statement, and the harm function is given by associating

any disruption of a service with High criticality to the Critical impact. Ac-

cording to these rules the criticality of i1, i2, i3 and i4 is respectively: Moderate,

Insignificant, Insignificant, Critical.

Now that we have defined the incident global impact we can evaluate the in-

cident risk, which is a composition of the likelihood of the threat, the likelihood

of the vulnerability and the global impact of the disruption caused by the threat

materialising.

Intuitively, this means that the more likely it is that a threat materialises on

an IT component (or a set of them), or the more likely it is that the component

is vulnerable to that threat, and the more harmful the threat is, the more reasons

there will be to protect it against this incident. As for the global impact, also the

incident risk is therefore monotone.

Definition 3.12 (Incident risk). Given an incident i = ⟨M, t, v⟩, the incident risk is

a monotone composition function i-risk ∶ L ×L ×H →R mapping t-likelihood(t),
v-likelihood(v) and global-impact(i) to the risk level of i.

Running example - Part 3.12. As for the global impact, the RA team has decided

that the risk level of an incident is calculated using the following rules:

a) the risk level is High if either the incident has a Critical global impact

and at least Likely threat and vulnerability likelihood, or if the global impact

is Moderate and threat and vulnerability likelihood are both Very Likely;

b) the risk level is Medium if either the incident has a Critical global impact

and the threat and vulnerability likelihood are both at most Likely, or if the

global impact is Moderate and either threat or vulnerability likelihood is Very

Likely;

c) the risk level is Low otherwise.

In this case, i-risk is implemented by means of these three rules, which associate

the combination of global impact, threat likelihood and vulnerability likelihood to

the correspondent risk level. According to these rules, the risk level of i1, i2, i3
and i4 is respectively: Medium, Low, Low and High.

An additional operation one would like to do is to aggregate the incident risk in

terms of threats and vulnerabilities. Evaluating risk in terms of threats and vulner-

abilities is important to determine both the risk profile of the ToA, i.e. which threat

sources are the most harmful, and to prioritise vulnerabilities to be addressed (i.e.

patched) first.

58

3.2. The Qualitative Time Dependency (QualTD) model

Definition 3.13 (Incident risk aggregated by Threat/Vulnerability). Given a timed

AND /OR dependency graph g = ⟨N,E⟩, a threat t and the set of incidents

It = {i ∣ i = ⟨Mt, t, vt⟩}, a vulnerability v and the set of incidents Iv = {i ∣ i =⟨Mv, tv, v⟩} and a monotone aggregation function risk-agg ∶R × ... ×R →R ;

the risk of a threat t is an aggregation of the risk level of all the possible incidents

which can originate from that threat (It), i.e. the mapping t-risk ∶R × ...×R →R

such that:

t-risk(t) = risk-aggi∈It
(i-risk(i)) (3.2)

Similarly, the risk of a vulnerability v is the aggregation of the risk level of all

the possible incidents in which that vulnerability has been exploited (Iv), i.e. the

mapping v-risk ∶R × ... ×R →R such that:

v-risk(v) = risk-aggi∈Iv
(i-risk(i)) (3.3)

Running example - Part 3.13. If we use Max as the aggregation function risk-agg

to calculate the risk level aggregated by threat/vulnerability, we assign each threat-

/vulnerability the maximum risk level of the incidents they are involved in. In this

way, the risk level of Power outage and DoS is respectively Medium and

High. Accordingly, the risk level of No UPS and Buffer overflow is re-

spectively Medium and High.

The QualTD model supports the traceability of the RA results. For instance,

suppose the RA has been carried out, and after some time we want to recall why

a DoS is a High risk for our system; we can go through the records of the model

and discover that:

1. it is Likely that a DoS is carried out by exploiting a Buffer overflow

on both DB1 and DB2;

2. both DB1 and DB2 are Very Likely to be prone to a Buffer overflow;

3. the resulting incident causes a Short disruption of the High critical ser-

vice CRM-Repository;

4. according to points 1–3 and to the impact and risk level definitions, the risk

of a DoS in the system is High.

When doing impact and risk evaluation we use the composition and aggrega-

tion functions harm, impact-agg, i-risk and risk-agg, which operate with qualita-

tive values (e.g. High likelihood and Low impact): the definition of the compo-

sition and aggregation functions is outside the scope of our model and it is left to

the choice of the RA team. However, these functions must be monotone and se-

mantically sound with relation to the meaning that the qualitative values involved

59

Chapter 3. Model-based Qualitative Risk Assessment for Availability of IT

Infrastructures

have for the stakeholders of the RA (i.e. it should make sense given the informal

meaning of the words). For example, the definition of Critical impact we give

in the running example part 11 is semantically sound; whereas it would not have

been sound if we defined as Critical an incident causing a Short disruption

on a service with Low criticality. In the running example and in Section 3.3.2 we

describe two possible implementations of harm, impact-agg, i-risk and risk-agg,

based on descriptive tables which define all the possible combinations of input

and output values.

Rationale for a QualTD model

It is legitimate to argue whether the model is sound or not. It is sound iff

disruptions in the model propagate in the same way as in the real system. In

principle, this could be tested by creating faults in components of the system (or

of a twin test system). Regarding soundness, the system we propose has three

intrinsic “limitations”: (a) it has only AND and OR nodes, (b) it does not consider

the “recovery time” of the single components, and (c) it works only if the graph is

acyclic. In our opinion, the first limitation is not a problem, as it is simple to model

even very complicated dependencies with the use of only AND and OR nodes.

The second limitation is a design choice which keeps the model simple, and in

our experience does not affect the fidelity of the model. In any case, it is possible

to extend our system to also take the individual recovery time into consideration,

for example by assigning the recovery time to the nodes and then adding it to

the incident downtime during incident propagation. The third limitation is in our

opinion the only true limit of the model. Our experience says that acyclic graphs

are perfectly suitable to model practical IT architecture. However, it is possible to

contrive examples in which this is not the case. For such examples, either one is

able to “abstract away” the cycles (for instance by analysing them separately and

modelling them with a single node), or our model is simply not applicable. Once

one accepts the above three intrinsic limitations, then soundness follows from the

soundness of the AND and OR basic nodes: assuming that (1) the nodes of the

timed AND /OR dependency graph include all the components of the ToA, and

that (2) for every component the availability dependency of this component on

other components is correctly and completely included in the graph by means of

AND /OR edges, then the fact that an incident on a certain (set of) components

will propagate in the ToA as predicted by the QualTD model can be proved by

using standard graph theory. We skip the demonstration for space reasons.

It is the task of the risk assessor using the technique based on the QualTD

model to make sure that hypotheses (1) and (2) are reasonably verified in a spe-

60

3.3. Case-study

cific case. In Section 3.3 we will show the technique we used to build the timed

AND /OR dependency graph as completely and correctly as possible.

3.3 Case-study

In this section we show how the QualTD model can be used in a practical RA

by describing the case-study we carried out with it. We will also use this case-

study to evaluate our technique. Let us start by describing the context in which it

was carried out.

3.3.1 The industrial context

The organisation We carried out the case-study at a large multinational com-

pany with a global presence in over 50 countries (from now on we call it the

Company) counting between 100.000 and 200.000 employees. The Company IT

unit supports the business of hundreds of internal departments by offering thou-

sands of applications accessed by approximately 100.000 employee workstations

and by many hundreds of business partners. The IT facilities for the European

branch are located at one site: our RA was conducted at that site. IT services are

planned, designed, developed and managed at the Company’s headquarters; those

services, such as e-mail or ERP systems, are part of the IT infrastructure which is

used by all the different Company’s branches all over Europe.

The stakeholders of the IT service are: (1) the Company’s Global IT Infras-

tructure (GIT) management department, (2) the Risk Management and Compli-

ance (RMC) department, (3) users: the Company’s units using IT services (in-

cluding GIT and RMC) and (4) an outsourcing company managing parts of the IT

infrastructure on behalf of GIT.

GIT provides basic IT infrastructure services such as desktop management,

e-mail and identity management. IT services are designed internally by GIT and

then partly outsourced for implementation and management to another company.

The outsourced tasks include specialised coding, server management, help-desk

and problem solving services.

RMC supports the compliance to internal policies and best practices of the

Company IT services; part of the tasks of RMC is to perform on-demand security

RAs for the IT services of GIT. An RA is usually requested by the owner of the IT

service each time a new service is developed or a new release of an existing one

is about to be deployed.

The other business units of the Company rely on these IT services for the con-

tinuity of their business. Some of these IT services are developed and managed by

61

Chapter 3. Model-based Qualitative Risk Assessment for Availability of IT

Infrastructures

the business unit itself (e.g. if they are specific to the competence area of the unit),

while global company services (e.g. authentication, e-mail system) are provided

by GIT. For efficiency reasons, like in most other large organisations, business

units exchange services by means of a “enterprise internal market”: one business

unit pays another one for the use of a given service and the service provider unit

finances its activities by means of these funds. This mechanism increases the

efficiency of internal service management.

The implementation and the management of some IT services are outsourced

to another company, which we call the Service Provider. Although the servers

running the IT services are owned by the Company and physically kept within its

data centres, the Service Provider manages the OS and the software running on

them. Moreover, for some services, the Company outsources also the development

(e.g. coding, deployment) of the custom applications to the Service Provider. The

Service Provider has signed contracts with the Company which include Service

Level Agreements (SLAs) regarding both the security of the information managed

by the outsourcing company and the availability of the outsourced services.

The target of assessment The system on which we focus our case-study is

called Oxygen. Oxygen is the global Identity Management for employees and

sub-contractors of the Company. The goals of the system are:

1. Identity Management: to provide enterprise-wide standard identities for all

employees and contractors of the Company, integrate identities with the dif-

ferent identity authoritative sources (e.g. the Human Resources information

system) and manage them through a governed process and ensure regulatory

and privacy compliance.

2. Identity/Account Linking and data synchronisation: to provide a holistic

view of the many accounts possessed by a person, enforce account termina-

tion when a person leaves the Company, enable data synchronisation among

identity provider and identity consuming systems for data accuracy and pro-

vide credential mapping, a foundation for Single Sign-On.

3. Identity Service for authentication and authorisation: to provide operational

directory services for general applications to be used for authentication and

authorisation, to provide unique, standard, organisation-wide identifiers for

employees and contractors, and to provide a foundation for advanced au-

thentication and authorisation in the future.

Oxygen is designed and implemented by the GIT department, while the man-

agement of the servers running it is outsourced to the Service Provider.

62

3.3. Case-study

!"#$%&%'(

)%*+#

,+&-#+.

)
#
+-
&/
#
(0
*
+%
1
2

30#+1%&*$12(

)%*+#

,
+&
-
#
+.

30#+1%&*$12(

)%*+#
30#+1%&*$12(

)%*+#

4002&/1%&*$5

.0#/&6&/

)%*+#7.8

,1%1(#$%+'

9:,(

;1$1<#;#$%

!"#$%&%'(

2&$=&$<

>#$#+12(100?(

1@%A?

)0#/&6&/(100?(

1@%A?

3B'<#$

,+&-#+.

Figure 3.4: An overview of the Oxygen architecture

Figure 3.4 depicts the design of Oxygen: the system is composed of a number

of identity stores, which are identity databases implemented by means of directory

services. The main Identity Store keeps information about all of the identities and

their attributes. The Operational and the Application-specific stores contain a

(partial) replica of this information and are accessed by the different applications

which require identities for authentication and identification. Replication of the

identity stores is required for performance reasons.

Oxygen collects identity data from different authoritative sources, such as the

information system of the Human Resources department. Data acquisition is per-

formed by means of drivers, which also take care of synchronising data between

the different identity stores.

In addition to the identity stores, Oxygen exports also a service portal, which

allows employees of the Company to manage part of their identity record (e.g.

updating their home address, changing password).

The existing RA method In 2008, the RMC department carried out an RA on

the Oxygen system following its internal RA process, which is mainly based on

the guidelines provided by BS7799-3 [21], while the official security control pol-

icy is compliant with the ISO 27002 [46] standard.

The upper part of Figure 3.5 depicts the process usually followed by RMC.

In the following list we describe the 6 tasks composing the RMC process and we

link them with the steps of the QualTD technique.

1. RA intake: the RA team (composed of people from the RMC department)

63

Chapter 3. Model-based Qualitative Risk Assessment for Availability of IT

Infrastructures

!"#

$%&'()

*+,-%),,

$./'0&

"%'12,-,

34"

!-,(

56-76-&-8

,'&-7%

567/7,'1#

79#

:7%&671,

;70+.)

%&'&-7%#

'%<

6)/76&-%=

;)9-%-8

&-7% 79#

&>)#37"

?)6@-0)A

5670),,#

06-&-0'1-&2

!-,(#

$<)%&-9-8

0'&-7%

!-,(#

B@'1+'8

&-7%

!-,(

56-76-&-8

,'&-7%

!"#$%&'()*+,(-++.++#.&/($0"1.++

23%456 +/.$+

Figure 3.5: The internal RA process (above) linked to the steps of the QualTD

technique which complement the process (below)

and the requester project responsible agree on the scope of the RA and the

Target of Assessment (ToA). The requester also submits proper documen-

tation about the IT service to the RA team. This task corresponds to the

definition of the ToA (see Section 3.2.1) in the QualTD technique.

2. Business Impact Analysis (BIA): the RA team, together with the owner of

the ToA, determines the desired levels of Confidentiality, Integrity and Av-

ailability for the ToA (e.g. HIGH integrity and availability and LOW con-

fidentiality). They do this by analysing the impact that a breach of one of

the three security properties on the information managed by the ToA would

have on the business unit in a realistic worst-case scenario. They also de-

termine which legislation or regulation requirements the ToA has to comply

with (e.g. SOX [112] compliance). During this task the definition of the ser-

vice/process criticality in the QualTD technique (see Section 3.2.1) should

be made.

3. Threat/Vulnerability Assessment (TVA): the RA team analyses the ToA and

determines which threats/vulnerabilities the ToA is exposed to. Risk identi-

fication is based on a fixed list of threats/vulnerabilities which has been de-

rived from a number of existing RA standards (e.g. BS7799-3, ISO 17799,

BSI IT-Grundshutz [21, 44, 101]) and customised to fit the needs of the

Company. The BIA influences the TVA in the sense that the threat list

is customised according to the required levels of confidentiality, integrity

64

3.3. Case-study

and availability of the ToA: the higher the security level, the more de-

tailed the list. The list is then used to check if the main components of

the ToA (e.g. network communication, user interface, etc.) are exposed to

the threats/vulnerabilities. At this stage, threats/vulnerabilities are flagged

as applicable/not applicable to the considered component of the ToA, and as

covered/not covered according to the fact that controls that could mitigate

them are already deployed. This task corresponds to the risk identification

step (see Section 3.2.2) in the QualTD technique.

4. Risk prioritisation: it consists in the evaluation of likelihood and impact

of the threats/vulnerabilities which have been marked as applicable and not

covered during the TVA. The risk assessors estimates the likelihood of a

threat/vulnerability based on the company likelihood model, which takes

into account several factors, e.g. resources, technical skills and time needed,

or attacker motivation. They estimate the impact of a threat/vulnerability,

based on the possible incident scenarios that the threat/vulnerability could

determine in the ToA. These scenarios are figured out by the RA team based

on their personal skills and their knowledge of the ToA. Likelihood and

impact are then combined to determine the resulting risk, based on a risk

aggregation matrix very similar to the one of Table 3.2. Threats and vul-

nerabilities are then prioritised based on their risk level: the higher the risk,

the higher the priority for controls. This task corresponds to the risk evalua-

tion and to the output of the QualTD technique steps (see Section 3.2.3 and

Section 3.2.4).

5. Proposal of Controls: the RA team proposes a plan to cope with the identi-

fied risks, and identifies controls to mitigate the likelihood of the threats or

to protect the ToA from the identified vulnerabilities. Examples of proposed

controls include password policies, authentication mechanisms or Intrusion

Detection/Prevention Systems.

6. Documentation and reporting: the RA team presents the results of the RA

to the requester. It is not mandatory for the requester to communicate with

the RA team about follow-up actions taken as a consequence of the RA.

The average time needed for an RA is approximately 240 man-hours (2 people

for 3 weeks), depending on the size of the ToA (usually, RMC carries out RAs

on ToAs which are comparable in size with Oxygen). Roughly, the first 80 man-

hours are spent on steps 1 and 2 and for reading all the relevant documentation,

another 80 man-hours are spent in steps 3 and 4, and the remaining 80 man-hours

are spent in step 5 and to prepare the final report to be exposed during step 6. The

65

Chapter 3. Model-based Qualitative Risk Assessment for Availability of IT

Infrastructures

RA team consists of two people performing the same task independently and then

peer-reviewing each other’s findings to come to a more objective final result.

The RA team uses three main sources of information: (a) documentation pro-

vided by the requester, (b) interviews with the requester and (c) vulnerability scans

and other forms of direct investigation of security weaknesses.

Documentation includes results from previous assessments (i.e. RAs and secu-

rity auditing activities), all the design and development documents (i.e. functional

specifications, security design, technical architecture design and software design)

and SLAs and outsourcing contracts.

Interviews with the requester are carried out after reading the documentation

to clarify doubts and to set the boundaries of the RA. Another interview is carried

out to address the BIA and, after step 4, to discuss about the main risks identified.

Optionally, the RA includes active forms of investigation of security weak-

ness. The general principle RMC follows is trust but verify, which means that

documentation about security measures implemented is trusted, but verified in its

main aspects by means of, for example, vulnerability scanners.

3.3.2 Availability RA using the QualTD model

In this section we describe how we employed the QualTD model together with

the RA method of the Company for the new RA of Oxygen. The main difference

of a RA carried out following the Company internal RA process only with one

carried out following our technique is that we build a timed AND /OR dependency

graph of the ToA and link threats and vulnerabilities with each other and with

the nodes of the graph to better estimate impacts. As we discuss in more detail

in Section 3.4, we used likelihood estimates carried out by the Company RMC

personnel, since the QualTD model does not specifically address this topic.

We combined the QualTD model with four tasks of the Company internal RA

process, as we show in the lower part of Figure 3.5. First, we included in the RA

Intake the activity of building the timed AND /OR dependency graph. We spent

80 man-hours to perform this task. We also re-performed part of the BIA: instead

of only defining the security requirements for Confidentiality, Integrity and Av-

ailability, we also assessed the criticality level of the main IT services of the ToA.

We spent one man-hour on this. Finally, we carried out the Threat Vulnerability

Analysis and Risk prioritisation by using the QualTD model as we explained in

Section 3.2. We spent 72 man-hours to perform this task.

To build and run the QualTD model for Oxygen we relied on two sources of

information: technical documentation and interview sessions. In practice we used

66

3.3. Case-study

the same documentation the RA requester provided for RA1, as we describe in

Section 3.3.1. In more detail, four documents were made available for the RA:

1. The functional specification document: this document describes the func-

tionalities provided by Oxygen and how the functional architecture is de-

signed, i.e. software components, what is their task and how they relate to

each other.

2. The security architecture and design document: this document describes

which security measures are implemented, e.g. server redundancy, and how

they are implemented, e.g. which services are redundant and where they are

located.

3. The internal SLA document: this document describes the quality of service

parameters which are guaranteed to the users of Oxygen. In the context of

availability, this document describes the availability figures for the different

services provided by Oxygen, e.g. the authentication service is guaranteed

to be available 99% of the times.

4. The network diagram: this document describes which are the actual servers

running the different components of the Oxygen system, which software

they are running and in which datacenter they are being managed.

We now describe in detail the activities we performed. For the sake of expo-

sition we split the description according to the tasks that compose the Company

RA process. Each task is further split according to the related step of the QualTD

model of Section 3.2, as shown in Figure 3.5.

3.3.2.1 RA Intake

Defining the ToA The first step is building the timed AND /OR dependency

graph for Oxygen. According to the level of abstraction required for this RA, we

modelled the following node types:

1. Datacenters: from the security architecture document and the network di-

agram we extracted the two buildings hosting the datacenters in which the

servers are split for redundancy purposes.

2. Network components: from the security architecture document and the net-

work diagram we extracted the firewalls protecting the different servers and

enabling access to the Oxygen services from the internal network.

67

Chapter 3. Model-based Qualitative Risk Assessment for Availability of IT

Infrastructures

3. Servers: from the security architecture and the network diagram we ex-

tracted which servers are used.

4. Applications: from the security architecture, the network diagram and the

functional specification documents we extracted the applications running on

each server.

5. IT Services: from the functional specification and the internal SLA docu-

ment we extracted the services exported by Oxygen, linking them to the

applications implementing them.

The most challenging task in building the timed AND /OR dependency graph

was determining the dependencies among the nodes. The dependencies among

buildings, network components, servers and applications could be inferred from

the network diagram and the security architecture. Unfortunately, the functional

specification document, which should link software to IT services, only referred

to “logical” software components, which are not directly linked to the servers and

the applications running on them. For instance, the functional component which

acquires identity information from the different authoritative identity sources is

actually implemented by three different applications: a Java-based web service,

a Directory service and a DBMS; in turn, the DBMS also supports other func-

tional components. To determine these dependencies we proceeded by refine-

ment: whenever in the documentation we found that a certain application runs

on a certain server, or that the application implements a certain service, we drew

a new dependency among these nodes. Then, we cross checked the information

from the functional specification and the network diagram documents to make

sure the dependencies we found were consistent throughout all the documents.

When we found an inconsistency, we updated the model and iterated the process.

We reached a “stable” version of the model after the third iteration of this process.

To support this step we developed a graphical tool. The tool allowed us to

draw the timed AND /OR dependency graph, show it and modify it quickly dur-

ing the interview sessions. The resulting graph is made of 65 nodes and 112

edges. Among the nodes we count 13 IT services, 32 applications, 14 servers

equally distributed between 2 datacenters and connected simultaneously to 2 dif-

ferent network segments by means of 2 different firewalls. Building the first pro-

totype version of the graph took us approximately 40 man-hours, using only the

four documents we described as a source.

After building this prototype version of the timed AND /OR dependency graph

we checked it with the RMC personnel during an interview session: we showed

the graph and explained the reasons motivating each dependency drawn; we then

asked for possible missing ones. For example, we showed that a failure in the

68

3.3. Case-study

Figure 3.6: This timed AND /OR dependency graph resembles the one actually

built for Oxygen. We observe from the bottom: datacenters, network components,

servers, applications and IT services. Solid edges are AND dependencies, while

dashed edges are OR dependencies.

DBMS would lead to the unavailability of the identity data acquisition service

and we asked if this conclusion was consistent with their knowledge of the sys-

tem. The answer was positive; no inconsistencies were found during this session.

Finally, we performed another interview session with the developers of the system

to further check for consistency and completeness of the timed AND /OR depen-

dency graph. During this session we focused our explanation of the graph on the

reasons motivating the choice of modelling a dependency between two nodes. For

example, we motivated the choice of drawing a dependency from the DBMS to

the application server since the Web Service uses the DBMS to store configura-

tion parameters, and the unavailability of the DBMS would cause the Web Service

to be unable to operate in turn. We found some discrepancies between our model

and the behaviour of the system which is currently implemented. These discrepan-

cies were due to inaccurate or outdated information in the functional specification

document: we decided to keep the graph coherent with the actual implementa-

tion of Oxygen, instead of the one present in the documentation. RA1 did not

spot these discrepancies, as the analysis of the ToA required to build the timed

AND /OR dependency graph is much more detailed than the analysis required for

an assessment which does not require to build any formal model.

Figure 3.6 shows an anonymised version of the timed AND /OR dependency

graph we obtained at the end of this task. During the task, although we did not

know anything about Oxygen before our RA, we were able to build the timed

69

Chapter 3. Model-based Qualitative Risk Assessment for Availability of IT

Infrastructures

AND /OR dependency graph based on the available documentation. We only relied

on interviews to confirm the correctness of the graph, not to build the graph itself.

This ensures the method can be used by any risk assessor, who must not be an

expert of the ToA.

3.3.2.2 Business Impact Analysis

After we built the timed AND /OR dependency graph, we considered the Busi-

ness Impact Analysis (BIA), which results in determining the required level of

availability for the whole Oxygen system and the criticality level of all the IT ser-

vices exported by Oxygen. We did this by interviewing the GIT department board,

together with a member of the RMC department.

Since the required level of availability for Oxygen had already been assessed

during RA1, we only made sure that that part of the BIA was still valid. The GIT

personnel confirmed that Oxygen requires a High level of availability. We then

used this parameter during the risk identification phase for the selection of the

threats and vulnerabilities to be used, as we describe in Section 3.3.2.3.

The new step of the BIA required by the QualTD model, which is not part

of the RA method of the Company, consists of assessing the criticality of the IT

services. For each IT service in the timed AND /OR dependency graph we asked

the GIT personnel if it had a High, Medium or Low criticality. In this way we

defined the criticality function (see Definition 3.2).

After this last interview we had a final (approved) version of the timed AND /OR de-

pendency graph representing the ToA.

3.3.2.3 Threat/Vulnerability Analysis

Risk identification Recall that the RMC department adopted a threat/vulnerability

list for their RAs, which was extracted from a number of standard RA methods

and customised to fit the needs of the Company. To be able to compare the results

of RA2 with RA1 we used the same threats and vulnerabilities. We will describe

in more detail the reasons why we chose to do this in Section 3.4.

The list comprises a total of 121 threats and vulnerabilities. Since we only

assess availability risks, we selected the subset of this list with an impact on av-

ailability, relying on the classification done by the RMC which determines for

each entry if it has an impact on confidentiality, integrity or availability. Conse-

quently, the set T was composed of 22 threats and the set V of 39 vulnerabilities.

Moreover, according to the Company RA method, threats and vulnerabilities are

selected based on the required level of Confidentiality, Integrity or Availability for

70

3.3. Case-study

the ToA. Since the level of availability of Oxygen has not changed in the two RAs

we are allowed to use the same availability threats and vulnerabilities.

The next step we carried out was to link threats with vulnerabilities. During

RA1 threats and vulnerabilities were assessed separately, while the QualTD model

requires us to link threats with vulnerabilities (thereby making explicit the reason-

ing that was implicitly done during RA1). We did this by selecting, for each of

the 22 threats, which one of the 39 vulnerabilities the threat can exploit to materi-

alise. To validate our threat-vulnerability mapping we explained our choices to the

RMC personnel during an interview session and we integrated our mapping based

on their opinion. Although no major inconsistency was found, we had to change

a small number of mappings, because of a misinterpretation of the description of

some threats.

Subsequently, we determined which nodes of the timed AND /OR dependency

graph were targeted by threats and in which nodes a certain vulnerability was

present. To do this we evaluated which kind of node the threat/vulnerability ap-

plies to; for example, a power disruption can only affect a datacenter, a DoS attack

can only affect software nodes.

Finally, we enumerated the availability incidents following Definition 3.5.

This task was performed automatically by intersecting threats with the nodes they

target, vulnerabilities with the nodes they are present in and threats with the vul-

nerabilities they can exploit. We inserted all this information in a database. There-

fore, listing incidents was nothing more than building a view on the existing table

schema. We checked our results with the RMC personnel, to detect inconsis-

tencies in our mapping, but we found no discrepancy, as mapping threats and

vulnerabilities to asset types was quite an unambiguous task.

3.3.2.4 Risk prioritisation

Risk evaluation We used the estimates of the likelihood of threats and vulnera-

bilities from RA1, (for the definition of the t-likelihood and v-likelihood functions

see Definition 3.8 and Definition 3.10). The estimate was done in terms of High,

Medium and Low likelihood level, according to the likelihood model adopted by

the RMC team, which is based on eight different parameters (e.g. time needed for

the attacker, technical skills needed, etc.). The reason why we did not do our own

estimate of the likelihood is twofold: first, we needed to ensure that the results

of the two RAs could be comparable and, since our model only implies a differ-

ent way in estimating the impact, likelihood had to be kept fixed. Second, since

the results of this second RA are meant to be used by GIT, we wanted the likeli-

hood estimates to be based on the professional judgement of the RMC personnel,

instead of ours.

71

Chapter 3. Model-based Qualitative Risk Assessment for Availability of IT

Infrastructures

To assess incident duration (i.e. the dt function of Definition 3.9) we first used

the Company-internal SLAs to set the threshold between a Short and Long in-

cident duration. The Company-internal SLAs give an availability figure for the IT

services provided by Oxygen. For example, they guarantee that the identity data

acquisition service will be available for a certain fraction of time in a month. We

set the threshold as the longest amount of time (in hours) the service can be out of

service while remaining compliant with its SLA. For example, if the availability

figure is 99.5% in a month (i.e. 30 days), we set ∼ 4 hours as our threshold. We

choose this measure since, in this case, the SLAs were set to give an indication

about how long a certain service can be disrupted without causing excessive prob-

lems to the Company’s business. In this way we distinguished between Short in-

cidents (i.e. those shorter than the maximum tolerated disruption time in a month)

and Long ones (i.e. those which last longer than the maximum tolerated disrup-

tion time in a month). Subsequently, we analysed the time needed to solve each

of the incidents. We considered both the time needed to detect the disruption and

the time needed to fix the problem. The resulting total disruption time, which we

compared with the threshold, is the sum of these two parameters. We performed

this analysis based on both the information we gained from the SLA document

the Company has signed with the outsourcer, and the opinion of the developers of

the Oxygen system. The SLA document contains the maximum response time for

incidents happening in the portions of the system for which management has been

outsourced. For all the remaining parts of the system we relied on the judgement

of the GIT developers.

With this we had acquired all the information needed to run the model and

obtained the global impact of the incidents and their risk. For each incident i we

used the timed AND /OR dependency graph to determine the set Propi of the pro-

cesses and services which were affected by the incident given the IT components

the incident directly targets as we described in Definition 3.7. Subsequently, we

used Table 3.1 to determine the global impact level. The definitions we used are

based on the requirements for availability the GIT has set on Oxygen during the

meeting in which we assessed the criticality of services/processes. These defini-

tions are an implementation of the combination of the composition function harm

and the aggregation function impact-agg of Definition 3.11.

We then used the definitions of Table 3.2 to determine the risk level associated

with every incident. The definition of the risk level we give was built on the

indications of the RMC personnel and it is an implementation of the function

i-risk of Definition 3.12.

The choice of using these two tables to evaluate the global impact and the

risk level was driven by two main motivations: first, the functions defined by the

tables are monotone, therefore they are compliant with the requirements of Def-

72

3.3. Case-study

Table 3.1: Global impact level determination.

Impact level Definition

Critical
At least one service/process with High criticality is disrupted

for a Long period of time.

Serious
At least one service/process with High criticality is disrupted

for a Short period of time.

Significant
At least one service/process with Medium criticality is dis-

rupted for a Long period of time.

Moderate
At least one service/process with Medium criticality is dis-

rupted for a Short period of time.

Marginal
At least one service/process with Low criticality is disrupted

for a Long period of time.

Insignificant
No service/process is disrupted or only service/process with

Low criticality are disrupted for a Short period of time.

Table 3.2: Incident risk level determination.

Risk level Definition

High

Impact is Critical, both threat and vulnerability likelihood are

Medium. Impact is Serious, both threat and vulnerability likelihood

are High.

Med-High

Impact is Critical, either threat or vulnerability likelihood is Low.

Impact is Serious, both threat and vulnerability likelihood are

Medium. Impact is Significant, both threat and vulnerability like-

lihood are High.

Med

Impact is Serious, either threat or vulnerability likelihood is Low.

Impact is Significant, both threat and vulnerability likelihoods are

Medium. Impact is Moderate, either threat or vulnerability likelihood

is High.

Med-Low

Impact is Significant, either threat or vulnerability likelihood is

Low. Impact is Moderate, both threat and vulnerability likelihood are

Medium. Impact is Marginal, both threat and vulnerability likeli-

hoods are High.

Low In other cases.

inition 3.11 and Definition 3.12, and they allow one to trace back the reasons

causing the assignment of a certain risk level to a certain incident (see Running

example 3.13). Secondly, the alternative choice of assigning a numerical value to

each qualitative one (e.g. High = 3, Med = 2 and Low = 1) and then perform math-

ematical operations on them (e.g. sum, multiplication or average) would not work

in our case. In fact, although this is a very popular and widely adopted technique

73

Chapter 3. Model-based Qualitative Risk Assessment for Availability of IT

Infrastructures

in RAs (e.g. see Cunningham et al. [27]), it only provides meaningful results if we

know the exact ratio among the qualitative values (e.g. if we knew that High is

exactly three times Medium we could assign 9 to High and 3 to Medium). Since

our RA was carried out in a completely qualitative manner, we only know that

High is bigger than Medium, but we do not have any indication on how big the

ratio is between them, therefore, we cannot perform any mathematical operation

on these values. In other words, we work with values in an Ordinal scale, while

the other approach would at least require values in an Interval scale, as shown by

Herrmann [37].

Having determined the risk level, we ranked availability incidents according

to their risk. However, to complete the outcome of the threat/vulnerability assess-

ment step, we also needed to rank the most dangerous threats and vulnerabilities

for Oxygen. We did this by assigning each threat/vulnerability the risk of the in-

cident they cause, which has the highest level associated. In other words, we used

max as the aggregation function risk-agg of Definition 3.13.

3.4 Case-study evaluation

In this section we make an evaluation of our case-study. To this end, the

methodology we follow is the one introduced by Wieringa et al. [77, 78] for tech-

nical research, which is based on the following two statements:

1. solution & context produces effects

2. effects satisfy (to an acceptable extent) stakeholder-motivated

criteria

Wieringa et al. observe that each technological solution which is applied in

a context produces some effects on it. The effects may (or may not) contribute

to satisfy some goals defined by the stakeholders of the research context. The

evaluation criteria set by the stakeholders must be in a measurable or comparable

form, so that if two different solutions are applied to the same context, they can

be evaluated and compared with relation to these criteria. The reasoning scheme

can be applied when a solution is specified but not yet implemented [36] or after

a solution is implemented [66].

In our case, the technical solutions to be evaluated are the RAs performed on

the Oxygen system: the first is done following the RA method of the Company

and the second made by integrating the same method with the QualTD model.

The context in which we apply these solutions is described in Section 3.3.1.

74

3.4. Case-study evaluation

3.4.1 Stakeholders, goals and criteria

First, we present the stakeholder’s goals and the derived evaluation criteria,

which we have already briefly introduced in Section 3.3.1. These goals regard

both specifically (the security of) Oxygen and the quality of the general RA pro-

cess. Methodologically, we derive the goals by analysing the description of the

activities GIT provided us during the interviews; subsequently we defined the cri-

teria to measure those goals. Finally, we validated the goals and criteria by means

of interviews with the stakeholders. For the sake of the presentation we only re-

port the results of this activity in the list below. Although our case-study will

not allow us to evaluate all the criteria, we report them all to give an overview of

stakeholder’s objectives.

Goals and criteria regarding Oxygen:

• GIT

1.1 The goal Ensure cost/effective mitigation controls and timely miti-

gation plans is measured by the quality criterion Cost for managing

High/Medium/Low risks.

1.2 The goal Implement controls with the least possible contractual and fi-

nancial impact is measured by the quality criterion number of controls

with contractual and financial impact.

• Services depending on Oxygen

1.3 The goal Have the authentication/identity service for their application

available when needed is measured by the quality criteria number of

times authentication was not available in one month and number of

times identity management was not available in one month.

• The Service Provider

1.4 The goal Manage systems with the least possible effort and by remain-

ing compliant with SLAs is measured by the quality criteria Euro/resources

employed for managing hardware/software and to guarantee SLAs (in-

cluding consequences for not fulfilling contractual obligations).

Goals and criteria regarding the RA process:

• RMC

2.1 The goal Ensure good quality of the RA Service is measured by the

quality criterion number of important risks for the RA requester iden-

tified during an RA vs. number of unimportant risks.

75

Chapter 3. Model-based Qualitative Risk Assessment for Availability of IT

Infrastructures

2.2 The goal Make the RA process more efficient is measured by the qual-

ity criterion number of man-hours employed for an RA by the members

of the team.

2.3 The goal Make the RA process less subjective is measured by the qual-

ity criterion number of choices let to the risk assessor.

• GIT

2.4 The goal Use global (shared) solutions to solve the same problem in

different systems is measured by the quality criteria number of months

to implement controls and number of different solutions employed to

solve the same problem in different systems.

3.4.2 Design of the evaluation process

Given the stakeholders goals and criteria, we use them to analyse and compare

the results of RA2 with those of RA1.

First, we briefly discuss the procedure we followed. In this analysis we assume

that, given a method to calculate the risk in an RA, the quality of an RA is only

determined by the knowledge of the risk assessor about: (a) the ToA, (b) threats

and their likelihood, (c) vulnerabilities and their likelihood and (d) how threats,

vulnerabilities relate to each other and impact the ToA. We choose not to include

all the social/organisational factors, e.g. the relationships among the stakeholders

and their commitment to IT security, the alignment of all the stakeholders with

respect to the organisation business goals, etc. These factors are indeed very im-

portant for the success of an RA but, for the sake of this evaluation, we assume

them to have remained steady in the Company throughout the two RAs, and there-

fore to have no impact. For more examples of other IT RA social/organisational

success factors, please refer to [90, 32]. The experiment we carried out compares

the results of two RAs, performed sequentially by different people on the same

IT system. For these reasons, to keep the experiment under control, we needed to

make sure that: (1) the order in which the RAs were carried out does not influence

their results, and (2) the quality of the results does not depend on the security skills

of the people carrying out the RAs. To accomplish these conditions we conducted

RA2 before having access to the results of RA1, but using the same sources of in-

formation. We used the same list of threats and vulnerabilities, as well as the same

likelihood estimation, in both the RAs and we made sure the technique we em-

ployed to relate threats, vulnerabilities and nodes did not depend on the particular

security skills of the risk assessor.

Table 3.3 summarises the conditions that we enforced to ensure the two RAs

are comparable.

76

3.4. Case-study evaluation

Table 3.3: RA comparison control variables

(1) RA Order (2) Security skills

(a) ToA

Used the same documentation

in the two RAs. RA2 is blind

to the results of RA1 (see Sec-

tion 3.3.2.1).

Build the timed AND /OR de-

pendency graph does not require

to be an expert of the ToA (see

Section 3.3.2.1).

(b) Threats & like-

lihood

The same threat list and like-

lihood estimation was used for

RA1 and RA2 without any

change (see Section 3.3.2.3).

Only the security skills of the

RMC team have been employed

in the two RAs for threat iden-

tification and likelihood estima-

tion (see Section 3.3.2.3).

(c) Vulnerabilities

& likelihood

The same vulnerability list and

likelihood estimation was used

for RA1 and RA2 without any

change (see Section 3.3.2.3).

Only the security skills of the

RMC team have been employed

in the two RAs for vulnerability

identification and likelihood es-

timation (see Section 3.3.2.3).

(d) Combining

threats, vulnerabil-

ities and nodes

RA2 does not use any informa-

tion of RA1 about this (see Sec-

tion 3.3.2.3).

We combined threats with

vulnerabilities in accordance

with the personnel who car-

ried out RA1. Linking

threats/vulnerabilities with

nodes does not depend on

particular security skills (see

Section 3.3.2.3).

In the next sections we compare the results of RA2 with relation to RA1. To do

that we use four evaluation criteria from the list of Section 3.4.1. These parameters

are: (2.1) the number of important risks for the RA requester vs. the number of

unimportant ones (recall that in RA1 a risk is the combination of the likelihood

and impact of a threat/vulnerability), (2.2) the number of man-hours employed to

carry out the RA, (2.3) the number of choices that the RMC personnel have to

take and (1.1) the cost of managing availability risks. The other criteria of the list

are not decidable by a risk assessor but would be observable after the system has

been in use for a while. An RA will have an impact on how the system scores on

these criteria but based on our evaluation alone we cannot tell what the impact of

our technique will be.

For the sake of presentation, we summarise the results: (1) the QualTD model

has improved the (perceived) accuracy of RA2 by increasing the number of iden-

tified important risks for the RA requester, (2) it introduced an overhead in the

number of hours employed, (3) it helped reducing the subjectivity of impact es-

77

Chapter 3. Model-based Qualitative Risk Assessment for Availability of IT

Infrastructures

timates in RA2 and (4) thanks to the effects of points (1) and (3), the QualTD

model supports a better risk prioritisation, which is one of the requirements for

optimising the cost of risk mitigation.

To further substantiate our findings, our technique should be tested by people

who did not participate in its development. We plan to have this test done by the

RMC personnel of the Company.

3.4.3 Evaluation of the criteria

Evaluation of Criterion 2.1: number of important risks for the RA requester

vs. number of unimportant risks

The first evaluation criterion is given by the number of important risks for

the RA requester with respect to the less important ones and it expresses the

result quality of an RA method. With important risks, here we mean the

threats/vulnerabilities which have a high or medium risk level (i.e. the ones that

will be taken into account when deciding the risk profile of the system and the

risk mitigation strategy) which are judged to have been assessed accurately. In

this case the number of relevant risks identified in the two RAs is not influenced

by the number of threats/vulnerabilities identified or by their likelihood, as the list

of threats/vulnerabilities remained the same in both assessments as well as their

likelihood estimation. On the other hand, the risk of a threat/vulnerability can be

overestimated or underestimated in case certain incidents and their impact are not

taken into account in the RA. In this case, we would have important risks which

are not considered when the risk level of the corresponding threat/vulnerability

has been underestimated, or less important risks considered as important, when

the risk level of the corresponding threat/vulnerability has been overestimated.

We focus our evaluation on this aspect.

To determine the performance in identifying important risks of RA2 with re-

spect to RA1, we compared and analysed the results of the two RAs together with

the RMC personnel.

First, we made sure that risks were evaluated following the same criteria in

both RAs, i.e. given the same threat and vulnerability likelihood and impact levels,

the resulting risk level is the same.

Secondly, we analysed the cases in which the two RAs gave different results

and we analysed the reasons for the difference. Table 3.4 summarises our findings.

The RMC personnel acknowledges that in all cases, the risk estimation made in

RA2 is more accurate than the one previously made in RA1. For this reason, in

Table 3.4 we set the estimation given by RA2 as a reference for RA1 and we say

RA1 overestimates the risk level of a threat/vulnerability when the risk level given

78

3.4. Case-study evaluation

by RA1 is higher than the one given by RA2 for that threat/vulnerability. The same

applies when the risk level given by RA1 is lower than the one given by RA2, in

this case we say RA2 underestimates the risk level of a threat/vulnerability.

Table 3.4: Summary of the number of differences between the two RAs.

Threats Vulnerabilities Total

Related to Availability 22 39 61

RA1 overestimates risk level 1 2 3

RA1 underestimates risk level 5 13 18

Differences caused by factors not re-

lated to the QualTD model
1 6 7

Differences caused by using the

QualTD model
5 9 14

In seven cases, the reason of the difference was due to external causes that do

not involve the use of the QualTD model. For example, in RA1 the vulnerabilities

regarding the configuration of the Company network were usually underestimated

on purpose. This because the final report of the RA carried out without the model

was directed to the GIT board, who is not directly managing the Company net-

work. Consequently, the judgement of the RMC team was that it was not useful

to point out the obvious in the report, since the RA requester had no way of man-

aging that kind of risk. The remaining 14 differences are due to a better quality of

RA2.

According to our analysis, the success of RA2 is due to the fact that the

QualTD model enables the risk assessor to estimate with more precision the im-

pact of a threat materialising, and also to determine the impact of the vulnerabili-

ties, by explicitly linking them to the incidents they can cause: all these operations

are hard to perform without an architecture model that allows one to reason about

the availability impact. For example, the impact of malware (e.g. worms) spread-

ing across the Company network and infecting the (few) Windows servers of Oxy-

gen were underestimated due to the lack of awareness of the risk assessors during

RA1 about the connections between these servers and other core components of

Oxygen.

Evaluation of Criterion 2.2: number of man-hours employed for an RA

We split the analysis on time consumption of the two RAs according to the

four steps of the Company RA process supported by the QualTD model.

1. RA intake: the time needed to accomplish this step with the Company

method is 80 man-hours (by two people) on average. Building the timed

79

Chapter 3. Model-based Qualitative Risk Assessment for Availability of IT

Infrastructures

AND /OR dependency graph certainly constitutes an overhead, since it re-

quires to formalise the knowledge acquired from the documentation and it

also required at least one additional meeting with the developers of the sys-

tem. In our case, we spent approximately 80 man hours (by one person)

to finish the RA intake step using the QualTD model. About 40 man-hours

were needed to gain knowledge of the Company, which would not have been

necessary by an experienced RA team in the Company itself. So we think

that one person of the RA team of the RMC department, experienced as we

are, would have needed about 50 man-hours to build the timed AND /OR de-

pendency graph. Currently, the RA intake takes 80 man-hours (by two peo-

ple), so the overhead introduced by our model would be of approximately

10 man-hours. Whether this is worth the investment depends on the benefits

to be gained from this in terms of a more accurate RA and in terms of the

reusability of this graph for future RAs of this or other (related) systems.

2. BIA: including the estimation of the service/process criticality into the Busi-

ness Impact Analysis is an inexpensive task, since it is already included in

the procedure followed by the RMC personnel, only in an informal way.

Moreover, we experienced that it was easy for the GIT to rank the services

by criticality, since this knowledge is part of their everyday business. For-

malising service/process criticality took less than one man-hour.

3. TVA: differently to the Company method, the QualTD model explicitly re-

quires to link threats and vulnerabilities to the nodes of the timed AND /OR de-

pendency graph to evaluate the risk. This task took us approximately 30

man-hours more than the time normally employed by the RMC personnel.

However, this is partly due to the fact that we had to “learn” and get used to

the definitions of the threats and vulnerabilities of the list provided by the

Company. We estimate that, should we have known them better we would

have done the same job in half the time. Moreover, another good part of the

work was that of manually linking threats and vulnerabilities to nodes; we

did this step by hand and it was very time consuming: a proper GUI would

have saved us other time.

4. Risk prioritisation: using the QualTD model does facilitate this step. In fact,

following the Company RA process, the RA team has to perform a (time-

expensive) peer review of the risk evaluation performed by each member

of the team, i.e. the team members have to go through their personal esti-

mation of likelihood and impact for each threat/vulnerability and, in case

they find any discrepancy, determine the reasons motivating each decision

and reach a final agreement on the proper likelihood/impact levels. The

80

3.4. Case-study evaluation

QualTD model allows one to automatically prioritise threats and vulnerabil-

ities. Moreover, as risks are evaluated in a more detailed level (i.e. incidents

instead of threats/vulnerabilities), the QualTD model facilitates the discus-

sion on the final impact level of threats/vulnerabilities. For example, during

the discussion with the RMC personnel on the final results of RA2, we used

the model to explain why a certain threat or vulnerability had a certain risk

level by going into detail on the incidents that these threats and vulnerabil-

ity are involved in. This technique was judged very useful and practical by

the RMC personnel. It is also possible to reuse most of the work of link-

ing threats, nodes and vulnerabilities for future RAs on the same ToA, this

would reduce to zero the difference with the original method in the time

consumption on the TVA step.

Evaluation of Criterion 2.3: number of choices let to the risk assessor

Making the RA results more inter-subjective (i.e. shared among the RA stake-

holders) is one of the original goals of the RMC department, which aims at (a)

delivering better quality results by identifying as many potential and relevant risks

as possible, and (b) being able to justify the reasons why a certain threat or vul-

nerability was given a certain risk level.

The QualTD model supports the first objective by “forcing” the risk assessor

to systematically explore all the possible combinations of threats and vulnerabili-

ties, thus reducing the risk of mis-estimating the importance of a certain threat or

vulnerability.

Regarding the second objective, since the QualTD model requires to enumer-

ate explicitly availability incidents, it is easier for the risk assessor to trace the

reasons why a threat/vulnerability was given a certain risk level (recall that we

can calculate an aggregated risk level for both threats and vulnerabilities from the

incident risks). Moreover, a member of the RMC department has to give (ex-

plicitly or implicitly) four subjective estimates to evaluate a single incident: the

likelihood of the threat, the likelihood that the vulnerability is present in some

nodes, the duration of the incident and the criticality of the services/processes it

hits. By applying the QualTD model, the global impact of an incident is based on

the criticality of the nodes involved, which is given by the RA requester. In this

way we reduce by one fourth the number of choices to be taken by the RMC per-

sonnel (alone) for each incident, and increases the inter-subjectivity of the results,

as the criticality of the services has to be agreed upon before the RA starts. In other

words, even if the subjectivity of the estimates is still present, it depends less on

the expertise of the single risk assessor and it is shared with the risk assessment

requester, who is the final user of the assessment results.

81

Chapter 3. Model-based Qualitative Risk Assessment for Availability of IT

Infrastructures

Evaluation of Criterion 1.1: Cost of risk management

The budget for managing risks is always limited. In this perspective, optimis-

ing the costs of risk management means achieving at least the same security level

for at most the same price. To achieve this goal it is important to adequately pri-

oritise the risks one wants to manage in terms of: (a) the risk level and, (b) the

cost to mitigate that risk. By providing a more precise risk prioritisation based on

(a), the QualTD model supports part of the decision process of prioritising risks

for mitigation purposes. At present time however, the model does not include any

means of prioritising risks with respect to (b). Actually, our model bears similar-

ities with the quantitative TD model [7] which, on the other hand, does include

countermeasures and enables one to run an optimisation algorithm which select

the best risk mitigation strategy taking into account (a) and (b). We believe that

the same approach is applicable also to the QualTD model with few modifications.

This is, however, beyond the scope of this chapter, and left as future work.

3.4.4 Applicability to other scenarios

Based on the experience of the case-study, we observe that there are two main

factors which determined the success of the QualTD model.

First, the model forces the RA team to follow a more systematic approach,

this means that there is less space for human errors and that the model provides

an affordable way to deal with the complexity of the ToA. The QualTD model

shares this characteristic with many other model-based approaches, as for ex-

ample model checking techniques. This also means that, as other model-based

approaches, it requires a preliminary investment in terms of time and resource to

build the model. With this case-study we showed that the time investment does

not exceed 50% of the time spent in an RA carried out without the model, and

the resources commonly available for an RA are sufficient to build the model. In

general, this investment can be very worthwhile (because e.g. it allows one to

reuse the information gathered or it allows one to identify problems that would

remain undetected with other techniques), or just a waste of resources. In our

case, as confirmed by the RMC team, a QualTD model built for an RA can be

widely reused in the following RAs of the same ToA; the resource investment

can thus be compensated by reusing the model in successive RAs. This makes it

particularly suitable when the ToA is periodically subject to RAs. Moreover, we

believe our model-based RA approach should only be used when it either allows

one to save resources in the long run (as explained above) or when the need for

accurate results is worth the effort of using it. In the case analysed here, Oxygen

is an availability-critical system for the Company, and therefore the need for ac-

82

3.5. Related work

curacy in the assessment justified the time overhead it introduced. Also, the need

to optimise the budget for risk mitigation could be a leading factor for choosing

the QualTD model and afford its initial time overhead. Another scenario in which

using the QualTD model could be convenient is when the timed AND /OR depen-

dency graph can be built automatically (e.g. when a configuration management

database is already present and can be used to build the graph), since in this case

there is almost no time overhead.

A second success factor of the QualTD model is that it links the knowledge

about security with the components of an IT architecture, their technical and func-

tional dependencies and their importance. With this case-study we showed that the

QualTD model structures information in a way that is simple enough to be used

and complete enough to cover all the aspects that are important for a security RA.

In fact, we did not find any uncovered risk area in RA1 which was not covered in

RA2. For this reason, we think that the QualTD model is particularly suitable to

be used to assess the availability risks of an IT infrastructure or of parts of it.

3.5 Related work

This section is divided in two parts. In the first part we make a taxonomy

of standard RA methods, and we single out the methods, or the characteristics

of these methods, that are compatible with the technique we presented in this

chapter. In the second part we do a literature review of the techniques that use

dependency-based models to improve the quality of an RA; we compare them

with the technique we presented in this chapter and we discuss their applicability

to the chapter’s industrial case.

3.5.1 Combining the QualTD model to standard RA Methods

In this part we look at general RA methods, and we discuss under which cir-

cumstances the QualTD model can be used in combination with them. To do this,

we first make a taxonomy of RA methods.

3.5.1.1 A taxonomy of RA methods

To provide a snapshot of the state-of-the-art within RA methods we follow the

survey by the European Network and Information Security Agency (ENISA) [96].

The survey consists of a list of sixteen RA methods currently in use. Among

these methods we only consider international standards, i.e. those which are avail-

able in English and which are actually in use in more than one country. Ac-

83

Chapter 3. Model-based Qualitative Risk Assessment for Availability of IT

Infrastructures

cording to these criteria, we reduce the initial list of sixteen methods to ten:

CRAMM [92], EBIOS [94], ISAMM [93], ISO 13335-2 [42], ISO 17799 (now

ISO 27002) [46], ISO 27001 [45], IT-Grundshutz [101], MEHARI [106], OC-

TAVE [82], NIST SP 800-30 [73]. The remaining six methods are dropped be-

cause of two reasons: Austrian IT Security Handbook, Dutch A&K Analysis and

MARION because only available in a single language (German or Dutch), while

ISF, MAGERIT and MIGRA because of lack of relevant documentation. Finally,

since the list on the ENISA survey is admittedly not complete, we augment it with

another popular method, the Australian/New Zeland standard for risk manage-

ment AS/NZS4360 [85], and with CORAS [28], the method resulting from the

EU-funded project IST-2000-25031. We explicitly choose to exclude Common

Criteria [43] from this list as it is not properly an RA method, even if it requires

some risk analysis to be performed.

For the sake of the presentation, we classify the twelve methods by means of

three parameters: (1) the scale used to evaluate risk and risk factors (quantitative

or qualitative), (2) which factors are proposed in the method to evaluate the impact

level and (3) the underlying view on how risk is evaluated.

Parameter (1) determines if the risk level measures something that can be

(meaningfully) expressed in numbers (e.g. money), or something which can only

be expressed with ordered labels (e.g. high, medium, low). In other words, a qual-

itative method measures the level of a risk factor in an ordinal scale (i.e. only

ordering among values are known), while a quantitative method uses measures in

interval or ratio scales (i.e. the magnitude of the difference between two values

in the scale is known; ratio scales also define an absolute and non arbitrary zero

point).

Parameter (2) indicates which factors influence the impact of a security event

(i.e. a threat, a vulnerability or an incident), and to which extent the method is

constrained by these factors. Some methods only give general guidelines (e.g.

the damage to the organisation), while others strictly define a particular set of

parameters (e.g. the monetary loss, or the affected business processes).

Parameter (3) investigates what determines the risk level of a security event

and how different properties are combined. To this end we elaborated five different

profiles (Type 1 to Type 5):

1. Type 1:

Risk(Threat, Asset) = Likelihood(Threat) ⊗ Vulnerability(Threat, Asset) ⊗

Impact(Threat, Asset)

In Type 1 methods, risk is analysed with relation to a threat and an asset,

or a group of assets and it is evaluated as the combination of the likelihood

of the threat, the vulnerability level of the asset(s) to the threat and the

84

3.5. Related work

impact of the threat on the asset(s). For example, a Type 1 interpretation

of risk is: the risk of a burgle entering my house is obtained by combining

(1) the chance that a burgle wants to enter my house (likelihood), (2) the

fact that windows in my house are sometimes left open (vulnerability) and

(3) what the burgle can steal once in my house (impact). We argue that

this approach can be applied both to fine-grained assessments (i.e. taking

into account single assets and asset-specific threats) and to more high-level

assessments (i.e. taking into account only classes of assets and high level

threats).

2. Type 2:

Risk(Threat, Asset, Needs) = Impact(Threat, Needs)⊗ Vulnerability(Threat,

Asset)

In Type 2 methods, risk is analysed with relation to a threat, an asset and

some security needs on the system and it is evaluated as the combination

of the vulnerability of the asset and the impact of the threat on the secu-

rity needs. For example, a Type 2 interpretation of risk is: the risk of a

burgle entering my house given the fact that no unauthorised people shall

enter my house since I keep confidential work information there is obtained

by combining (1) how bad it is that a burgle steals my confidential work

information (impact) and (2) the fact that my house windows are sometimes

left open (vulnerability). We argue that this approach is suitable where se-

curity requirements are clearly specified, for example for software products

developed by following a rigorous software engineering process.

3. Type 3:

Risk(Threat, Asset) = AnnualLossExpectancy(Threat, Asset) = Probabil-

ity(Threat, Asset) ⊗ AverageLoss(Threat, Asset)

In Type 3 methods, risk is analysed w.r.t a threat and an asset, is intended

as the annual loss expectancy (in monetary terms) and it is evaluated as the

combination of the probability of the threat affecting the asset and the av-

erage loss of the resulting incident. For example, a Type 3 interpretation

of risk is: the risk of a burgle entering my house is obtained by combin-

ing (1) the probability of a burgle entering my house (probability) and (2)

the average value of the goods the burgle can steal in my house (average

loss). We argue that this approach is suitable in all the situations in which

decisions are taken based on a financial cost/benefit analysis (e.g. insurance

companies), and in which quantitative data is available (e.g. for critical in-

frastructures).

4. Type 4:

Risk(Threat, CriticalAsset) = Impact(Threat, CriticalAsset) ⊗ Vulnerabil-

85

Chapter 3. Model-based Qualitative Risk Assessment for Availability of IT

Infrastructures

ity(CriticalAsset)

In Type 4 methods, risk is analysed with relation to a threat and an asset

that has previously been identified as critical, and it is assessed as the com-

bination of the impact of the threat on the critical asset and the vulnerability

of the asset. For example, a Type 4 interpretation of risk is: given that

I consider critical the goods in my house, the risk that a burgle enters my

house is obtained by combining (1) the damage due to the effects of my

critical goods being stolen (impact) and (2) the fact that my house windows

are sometimes left open (vulnerability). We argue that this approach is suit-

able where there are critical assets to be protected (e.g. for utility network

infrastructures).

5. Type 5:

Risk(Incident, Asset) = Likelihood(Incident) ⊗ Consequences(Incident, As-

set)

In Type 5 methods, risk is analysed with relation to an incident (i.e. a

combination of a threat and some vulnerabilities) and an asset, and it is

evaluated as the combination of the likelihood of the incident and the con-

sequences of the incident itself. Unlike for the Type 1 approach, this ap-

proach attributes risk levels only to security incidents (i.e. a threat exploiting

a vulnerability) to assess their risk. For example, a Type 5 interpretation

of risk is: the risk that a burgle enters my house through an open window is

obtained by combining (1) the chance that a burgle wants to enter my house

and that the window is left open (likelihood) and (2) the consequences due

to my goods being stolen (consequences). We argue that this means that it

is more suitable to be applied to fine-grained RAs and it is harder to apply

to the high-level ones.

Table 3.5 reports the results of the classification. Most of the methods are

meant to be used with qualitative measurements, and this confirms the fact that

most RAs today are carried out in a qualitative way, mainly due to lack of reliable

quantitative data or to time constraints [15].

Regarding impact level evaluation, we observe that ISO 13335-2 and ISO

17799 only specify that the impact of a security event is tied to the business

harm suffered from the organisation. Furthermore, AS/NZS 4360 also specify

the possibility of a business advantage of undertaking a certain risk, e.g. leav-

ing servers unpatched may lead to a quicker time to market for the organisation.

CRAMM, IT-Grundshutz, NIST SP 800-30 and CORAS specify more precisely

how the impact level should be assessed, since they introduce the concept of dam-

age scenarios: the RA team should identify different impact scenarios (e.g. from

Catastrophic to Marginal) which describe the negative consequences of a

86

3.5. Related work

Table 3.5: Classification of the RA methods.

Method Evaluation scale Impact evaluation Risk evaluation

CRAMM Qualitative Based on open damage scenarios Type 1

EBIOS Qualitative Based on security needs Type 2

ISAMM Quantitative Based on monetary loss Type 3

ISO 13335-2 Both Based on the business harm N/A

ISO 17799 Qualitative Based on the business harm N/A

ISO 27001 Qualitative N/A N/A

IT-Grundschutz Qualitative Based on open damage scenarios Type 5

MEHARI Qualitative
Based on fixed damage scenar-

ios
Type 1

OCTAVE Qualitative Based on critical assets Type 4

NIST SP 800-30 Qualitative Based on open damage scenarios Type 1

AS/NZS 4360 Both

Based on a balance between

business harm and business ad-

vantages

Type 5

CORAS Both Based on open damage scenarios Type 5

risk event on the organisation. We say that these scenarios are “open” as these

methods do not specify a particular set of scenarios or they do not require to use

the ones they propose. On the other hand, MEHARI is based on a “fixed” impact

scenario, i.e. the description of the consequences is fixed, and the risk assessor

can only rank them. EBIOS imposes that the impact level of a security event is

assessed in terms of the security needs (i.e. a security requirement on the IT as-

sets) that the event violates. Similarly, in OCTAVE the impact level is measured

in terms of how “hard” the security event is hitting a mission-critical asset (e.g. a

server which has been pre-determined to be critical for the organisation). Finally,

ISAMM measures impact by means of the money the organisation can loose be-

cause of a security event.

Regarding risk level evaluation, we observe that CRAMM (which mostly im-

plements the principles given in BS7799-3 [21]), MEHARI and NIST SP 800-30

share the same common view on risk, i.e. they all consider risk as a combination

of the likelihood and the impact of a threat to hit a group of assets and the vul-

nerability level of this group of assets. Similarly, IT-Grundshutz, AS/NZS 4360

and CORAS consider risk as the combination of the likelihood of an incident

(i.e. a threat exploiting some vulnerabilities) and the consequences (positive or

negative) of this incident happening. On the other hand, Type 2, Type 3 and

Type 4 profiles are intrinsically tied to a particular approach to RA, since Type

2 and Type 4 rely on qualitative concepts for defining risk (e.g. critical assets,

security needs) and Type 3 relies on the quantitative concepts of probability and

87

Chapter 3. Model-based Qualitative Risk Assessment for Availability of IT

Infrastructures

average monetary loss. Finally, we observe that the methods of the ISO family

do not adopt any risk analysis profile. This is due to the fact that, according to

ENISA [96], ISO 13335-2 is a very general guideline to set up a risk management

framework, while ISO 17799 and ISO 27001 are actually not real methods for

risk management, but rather compliance standards, reporting a list of controls for

good security practices and the requisites that an existing method should have to

be standard-compliant respectively.

3.5.1.2 Applying the technique based on the QualTD model together with

other RA methods

With applying the QualTD model-based technique to an RA method we mean

carrying out some specific parts of the RA process (i.e. definition of the ToA, BIA,

risk identification, risk evaluation and risk prioritisation) for availability risks by

using the QualTD model.

According to our classification scheme, the original RA method followed by

the Company is qualitative, based on the business harm and Type 1with relation

to the risk level evaluation. The new RA method which integrates our technique

based on the QualTD model remains qualitative, but it is based on open damage

scenarios and has a basic risk level evaluation of Type 5. We also define a

procedure to aggregate the evaluation of incident risks per threat and vulnerability,

making the evaluation scheme compliant to the original Type 1.

From the perspective of the risk level scale, the QualTD model can only be

used together with a qualitative RA method; (on the other hand the TD model we

proposed in Chapter 2 can only be used with quantitative ones).

From the perspective of impact level determination, we showed in the present

case how the QualTD model is compatible with methods evaluating the impact in

terms of business harm.

On the other hand, for methods adopting damage scenarios, the integration with

our technique is only possible if the scenario descriptions used by the organisa-

tion undertaking the RA can be associated with the unavailability of a node in the

timed AND /OR dependency graph.

For methods in which the impact level is based on critical assets, e.g. OCTAVE,

the QualTD model cannot be applied as it is, since in the current specification we

do not give a definition of critical assets. However, one possible way of adapt-

ing the model to this purpose consists in first determining the most critical pro-

cesses/services and then using the timed AND /OR dependency graph to find the

nodes supporting those processes/services.

We also observe that it is hard to integrate our technique with methods based on

security needs, such as EBIOS. Innerhofer-Oberperfler and Breu [40] introduced

88

3.5. Related work

an approach, which shares some similarities with ours, and is suitable to be used

in combination with these methods: we will present this approach in more detail

in Section 3.5.2.

Finally, in the present specification of the model, we do not consider the business

advantage of a certain risky factor, as required by AS/NZS 4360: this is the only

obstacle we see for the integration of the QualTD model with this standard.

Regarding risk level evaluation, the QualTD model can be integrated with any

method adopting the Type 5 approach. For example, our model could be used

in combination with CORAS as an additional, availability-specific, technique to

determine the consequences of threats, in substitution of the traditional HazOp,

FTA and FMECA techniques.

We showed in the present case how we integrated the QualTD model with a Type

1 method by means of a threat and vulnerability (aggregated) risk level defini-

tion table. We believe that this approach is applicable in general if it is time and

information-wise feasible for the risk assessor to explicitly enumerate the vulner-

abilities present in the ToA.

Integration with a Type 4 is instead more challenging, as it would require an

approach similar to the one we described previously for OCTAVE.

Finally, RAs following Type 2 and Type 3 methods cannot be integrated with

our model, due to the fact that Type 2 methods already (implicitly) take into

consideration the consequences of incident propagation in the definition of the

security needs for each asset in the ToA, while Type 3 methods are quantitative.

3.5.2 Dependency-based techniques for RA

Some academic researchers propose to use dependencies to improve the qual-

ity of security RAs. They have addressed this topic from multiple perspectives,

such as information security, business administration and software engineering.

In the literature of security RA we find three kinds of dependencies: security

dependencies, software dependencies and organisational and technical/functional

dependencies. In this section we will examine previous literature on these three

fields which matches our work. Moreover, since our method considers the third

kind of dependencies, in the final part of this section we also enumerate some

techniques to build technical/functional timed AND /OR dependency graphs.

Security dependencies Baiardi et al. [12] propose a framework for RA of in-

formation infrastructures by building a hyper-graph of security dependencies, i.e.

dependencies on the security properties of the system: confidentiality, integrity

and availability. The timed AND /OR dependency graph is a form of attack graph

in which nodes are the components of the infrastructure, and edges between nodes

89

Chapter 3. Model-based Qualitative Risk Assessment for Availability of IT

Infrastructures

represent the dependency of a component on some security properties of the com-

ponent it is linked to. Threats are represented as users of the infrastructures pos-

sessing some security properties on some contents, while vulnerabilities are con-

ditions allowing the extension of security rights from one component to another.

The framework allows one to rank countermeasures and create risk mitigation

plans. A countermeasure can reduce the vulnerability level of a component, up-

date dependencies, update the initial properties of a threat or increase the resources

needed for an attack. Attack graph-based approaches are known to have scalabil-

ity problems (e.g. see Lippmann et al. [56]) in terms of the number of hosts under

assessment. This is due to the fact that building such graphs requires a large

amount of work which can be only partially automated. Moreover, they require

extensive and difficult to obtain attack details: this information was not available

in the Oxygen RA and we believe it would not be readily available in most RAs.

On the other hand, our approach is in principle less precise, but it also works when

attack details are limited, as the propagation of an availability incident is mostly

dependent on the architecture of the ToA, and this information is in many cases

readily available.

Software dependencies Goseva-Popstojanova et al. [34] present a semi-quanti-

tative approach for assessing reliability and availability related risks at early phases

of a software life cycle by using the UML representation of the ToA. In this work,

the authors use dependencies between software components to assess the likeli-

hood of a fault propagating from a component to the other. In more detail, they

use the following UML constructs: software architecture diagrams, use case dia-

grams, sequence diagrams and state charts of software components. By means of

this information, they estimate the probability of failure of a software component,

and the probability of failure of two software components interacting with each

other. They consider the complexity of a software component in order to calculate

the probability of its failure, and the number of messages exchanged by compo-

nents to determine the probability of an interaction failure. They give the impact

of a failure in a qualitative scale ranging from Minor to Catastrophic. Then, they

calculate the risk level distribution of each UML use case scenario by building

a Markov model from the scenario sequence diagram. Finally, they average all

the single use case risk distributions to determine the overall system risk. This

approach, however, is not readily applicable to all IT RAs. First, it specifically

targets the assessment of risks to software components, but it is less suitable to be

used for a whole IT system which includes not only software but also hardware,

network components and their interaction. Secondly, as threats only software and

communication failures are taken into account. In the RA of a whole IT system

one is interested in assessing incidents caused by other threats (e.g. DoS attacks)

90

3.5. Related work

and this approach does not provide a way to do this. Finally, in the Oxygen case

we did not have any UML representation of the ToA and no quantitative figures

about the likelihood of threats.

Organisational and technical/functional dependencies Innerhofer-Oberperfler

and Breu [40] propose a model-driven approach for assessing IT-related risks us-

ing an enterprise architecture as the basis of the model. They group entities of the

enterprise architecture in four hierarchical layers: business, application, technical

and physical layer. They derive – by refinement – business security objectives and

requirements from this enterprise architecture and from the dependencies among

its constituents. The refinement process follows a top-down approach starting

from high-level business units to technical and physical devices. Then, they iden-

tify and analyse risks to the security requirements by selecting threats and vul-

nerabilities from standard security methods, e.g. BSI IT-Grundshutz [101]. Once

risks are identified, they do a bottom-up aggregation of risk scenarios to make

sure risks become clearly understandable at each level of the organisation (i.e.

from technical to business levels). The approach is qualitative and not linked to a

specific threat-list, with a risk analysis technique very similar to the one presented

in the EBIOS [94] method. In our view, the strong point of this approach is that

RA is fully embedded on the organisation at all levels, from the technical level to

the business management level. On the other hand, it imposes that the whole or-

ganisation is aligned and has agreed on security requirements at all levels, before

the assessment can be done. This is a strong assumption for normal enterprise or-

ganisations in which such a cooperation among the many business units and the IT

department is hardly achieved. For example, in our case we had little information

regarding the high-level goals of the organisation and the main difficulty in ap-

plying this method would have been deriving the full list of security requirements

from (unknown) high level goals. Our approach on the other hand, only requires

the business owner(s) to give a relative value to the different IT services involved

in the RA, which is much easier to gather from business-oriented people.

Kim et al. [50] propose a model to assess and prioritise security risks and their

treatment in the context of a communication infrastructure. They do this by deter-

mining the magnitude of damages produced by a threat to the assets of the ToA,

also taking into account incident propagation. To model incident propagation they

use technical and functional dependencies among the assets of the communication

infrastructure: for each threat they create a workflow (graph) of the incident prop-

agation, with the assets as nodes and the relevant dependencies as edges. They

annotate each edge with the probability that the destination node is affected by the

damage on the source node. Finally, they model the vulnerability level of an asset

by considering the “age” of the asset. Starting from the assumption that systems

91

Chapter 3. Model-based Qualitative Risk Assessment for Availability of IT

Infrastructures

age over time, and because of the increased level of knowledge attackers gain on

the weaknesses of the asset, attacks are supposed to have a greater probability of

success over time if the system is not timely patched. Using incident propaga-

tion graphs and likelihood distribution functions, the authors are able to calculate

the risk of an infrastructure over time, and to prioritise the actions to be taken to

control those risks. This approach is substantially quantitative, and this makes

it harder to apply due to lack of information: the data available for Oxygen was

insufficient to estimate the level of weakness of the system over time. Moreover,

it only considers the component’s age to determine its vulnerability level, which

is limiting in many situations. For example, according to the SLAs with the out-

sourcing company, patching is performed quite regularly on Oxygen: therefore

the weakness (vulnerability) level of the assets is almost constant.

Building a dependency graph Every technique using dependencies for RA is

based on the possibility of constructing a dependency graph describing the ToA.

Building the dependency graph is an “extra” step which is not required by tradi-

tional RA methods, as they mainly rely on the same information but in an implicit

form. For this reason, building the dependency graph in a time-effective way is

essential for the applicability of dependency-based RAs.

A technical/functional dependency graph can be built either manually or au-

tomatically. Manual methods involve acquiring information by functional and

technical documentation and from interviews, like we did in the Oxygen RA. On

the other hand, Static Dependency Analysis [49] and Active Dependency Discov-

ery [20] are two automatic techniques to automatically create the graph.

The former method is based on using application configuration files to derive

dependencies, e.g. the web.xml file for Java web applications. The main draw-

back of this method is that it does not generate a full, cross-domain dependency

graph. This is due to the fact that some dependencies are never derivable from a

configuration file, and to the high number of different formats configuration files

can take.

The latter method consists of measuring the variation of certain QoS parame-

ters (e.g. availability or response time) of the ToA after some of its components are

deliberately perturbed. For example, by simulating a network traffic overload it is

possible to measure the dependency of the response time of a software component

with relation to the network service it relies on.

An example of an Active Dependency Discovery technique was proposed by

Bagchi et al. [11] for the availability of e-commerce environments. The authors

propose to inject faults on the test/benchmark environment of the ToA and detect

availability dependencies; the same dependencies are then also assumed to hold on

the production system. This technique allows one to quickly build a dependency

92

3.6. Concluding remarks

graph without the need to know perfectly the implementation details of the ToA.

However, to build a reliable dependency graph, the test/benchmark system must

be identical to the production system, which is not the case for Oxygen.

3.6 Concluding remarks

In this chapter we introduce the QualTD model and technique for the qual-

itative assessment of availability risks based on the propagation of availability

incidents in an IT architecture. We apply the model and technique to a real-world

case by carrying out an RA on the authentication and authorisation system of a

large multinational company. We compare the results of this RA with the ones

obtained from a previous RA carried out internally by the Company on the same

system. We then evaluate the results with respect to the goals of the stakeholders

of the system.

Our results show the feasibility of the QualTD model and technique, and in-

dicate that the model provides better results in terms of accuracy, in terms of

impact estimates and reduces the number of subjective decisions taken by the risk

assessor. The reasons of success are mainly due to the systematic nature of the

approach and to the completeness of the information the model includes. These

factors help the risk assessor to deal with the complexity of the ToA in such a way

that no relevant risk factor is neglected. Our analysis also shows that the QualTD

model is particularly suitable to assess the availability risks of IT infrastructures

or parts of them, when RAs are carried out regularly on the same target and when

the final results of the RA are used to prioritise the risk mitigation strategies. In

more detail, we speculate that using the IT architecture helps the risk assessor

to better understand the availability-related IT risks. In turn, this can be used to

improve the IT architecture with respect to availability issues.

In addition, we analyse 12 RA standard methods, and we discuss which char-

acteristics of the standard methods are compatible with the QualTD model-based

technique. Our analysis shows that the QualTD model can be used in combina-

tion with many of the most popular RA standard methods. This indicates a wide

range of applicability of the technique, also in organisations not using the same

RA method we used in this case.

Finally, we make a review of academic works we found in the literature which

apply dependency analysis to RA. We show the type of risk analysis these tech-

niques allow and we discuss their applicability to our real-world case. Our analy-

sis shows that none of the techniques examined are directly applicable to our case

either because they require information that was not readily available, or because

they cannot satisfy the requirements of the stakeholders.

93

Chapter 3. Model-based Qualitative Risk Assessment for Availability of IT

Infrastructures

94

Chapter 4
A Model Supporting Business

Continuity Auditing & Planning in

Information Systems*

In Chapter 2 and Chapter 3 we presented two models and techniques which

can be used to support the assessment and mitigation of availability risks. In this

chapter we address the second research question:

“How can we improve the accuracy of current techniques for creating and

maintaining business continuity plans, while guaranteeing feasibility within bud-

get?” .

We do this by introducing a new model, which is based on timed dependency

graphs as the TD model, but includes a new calculation framework that supports

business continuity.

*This chapter is a minor revision of the paper with the same name [5] published in the Proceed-

ings of the First International Conference on Global Defense and Business Continuity (ICGD&BC

’07), pages 33-42, IEEE Computer Society, 2007.

95

Chapter 4. A Model Supporting Business Continuity Auditing & Planning in

Information Systems

4.1 Introduction

Business Continuity (BC) is the process supporting an organisation in coping

with the disruptive events that may affect its infrastructure. The goal of BC is to

guarantee that – after incidents – the organisation will recover operations within

a predefined time. This is achieved by developing a Business Continuity Plan

(BCP) and then putting it into practice in case of disruptive incidents. In general,

a BCP consists in developing and implementing a strategy to manage incidents

to the organisation’s assets and recover operations. As for risk mitigation, since

not all possible incident scenarios can be covered and not all possible incident

recovery strategies put in place (because of financial and practical limitations)

BCP includes the evaluation and the conscious acceptance of a residual risk.

Today, business activities of most organisations depend on IT systems. There-

fore, a portion of every BCP is dedicated to the recovery procedures for IT sys-

tems. In this chapter we focus on the IT-related portion of BC.

One of the main goals of any BCP is achieving that crucial business processes

should recover from disruption within a predefined Maximum Tolerable Period of

Disruption (MTPD). The MTPD expresses the maximum acceptable downtime to

guarantee the business continuity. As expected, the MTPD depends heavily on the

business goals and we assume it is defined in terms of the business processes, and

determined by the business unit.

Since business processes typically depend on a variety of underlying IT as-

sets, the MTPD has a direct and indirect impact on the maximum downtime that

these assets may exhibit in practice. Indeed, the standard technical means to re-

alise a given MTPD is to define Recovery Time Objectives (RTOs) on all assets

supporting business activities for which the Business Impact Analysis (BIA) has

determined that it is necessary to ensure continuity; RTOs strongly depend on the

technical and organisational measures the IT department implements to deal with

incidents.

Problem Nowadays, determining RTOs that apply to the IT assets is done man-

ually, and it is a subjective work which heavily depends on the experience of the

IT personnel. This is not only error-prone, but it does not scale well (to the point

that often, determining RTOs is not even done for all the components of the IT

infrastructure, despite being required by the standard methodology for business

continuity BS25999-1 [41]). Moreover, it is inconvenient in case of changes in

the IT infrastructure or in the business goals. In particular, new contracts and

agreements can have an impact on the quality of service a business process should

deliver and ultimately on the MTPD associated to it. Likewise, changes in the IT

infrastructure may affect dependencies and therefore the impact of the (RTOs of

96

4.2. Time Dependency and Recovery model

the) IT assets on the business MTPDs. In both cases, adapting the BCP to these

changes, usually requires a costly new analysis involving both the IT and business

units of the organisation.

Contribution We present a new model-based tool to support the analysis of

temporal dependencies among IT assets and between IT assets and business pro-

cess. The primary goals of our model and tool are (1) to support the IT depart-

ment in setting and validating the RTOs of the IT assets of the organisation (2)

to evaluate assigned RTOs w.r.t. the given MTPD to find critical points in the IT

infrastructure. Ultimately, our model allows one to put down the fine-grained set

of premises and assumptions to infer that a given MTPD will be achieved.

While achieving these goals, we argue that our model is particularly useful for

dynamically auditing the BCP in various ways: first, the tool allows one to visu-

alise immediately how changes in business goals or in the IT infrastructure affect

the compliance with given (or modified) MTPDs; in particular, it is possible to

compute whether the measures already in place continue giving enough guaran-

tees also after the changes. Secondly, it allows one to validate the actual response

of the IT infrastructure w.r.t. the expected behaviour, promoting a continuous re-

finement of the model which can adapt to new external circumstances, allowing

for early detection of new threats to the business continuity targets.

Technically, this model is based on dependency graphs as the ones we pre-

sented in Chapter 2 and Chapter 3. However, here the graph is used for different

purposes, and there are modelling differences (e.g. the recovery time of incidents)

due to the different requirements of BC with respect to RM. However, it is possi-

ble to reuse the definition of timed dependency graph and some of the associated

algorithms to explore it.

This chapter is organised as follows: in Section 4.2 we introduce the Time De-

pendency and Recovery model and we show how the model can be used to asses

RTOs set on the IT assets and MTPDs set on the business functions (processes)

these assets support. In Section 4.3 we present the application of the model in a

real-world case and in Section 4.4 we discuss the feasibility of our approach in

other cases. Finally, in Section 4.5 we present the related work.

4.2 Time Dependency and Recovery model

We now present the Time Dependency and Recovery (TDR) model, which al-

lows us to (1) model the MTPD set on the business processes, (2) model the RTO

set on the components of the IT infrastructure and (3) validate MTPDs and RTOs

with respect to the effect of incidents on the IT infrastructure.

97

Chapter 4. A Model Supporting Business Continuity Auditing & Planning in

Information Systems

We start by providing a brief summary of the data we need to build the model.

1. The information needed to build a timed dependency graph of the IT infras-

tructure (see Section 2.3 for a complete list).

2. A list of possible disruptive incidents affecting the IT infrastructure, to-

gether with the time needed to repair them (per node) given the controls

already in place. We also need an estimate of their expected frequency,

measured in times per year.

3. The MTPD value for each business process on the timed dependency graph.

4. Optionally, a first estimate of the RTO value for each node (not business

process) on the timed dependency graph.

In Section 4.4 we address the problem of how and when this data can be col-

lected during the business continuity management process.

Let us formalise the main notions. For this, we indicate by R+ the set of

positive real numbers, and by T the set of all time intervals (expressed in hours).

We represent the organisation’s business processes and the IT infrastructure

supporting them by a timed dependency graph. In this chapter we will use the

definition of timed dependency graph we first presented in Chapter 2. For the

sake of presentation, we will repeat here only the definition of timed dependency

graph and we will then introduce the running example that we will use to describe

the TDR model. For a more complete description, please refer to Chapter 2.

Definition 2.1. A timed dependency graph is a pair ⟨N,→⟩ where N is a set of

nodes and →⊆ N ×N ×T .

Running example - Part 4.1. We present here an example (intentionally oversim-

plified) of part of the business/IT infrastructure of a small bank (see Table 4.1).

The timed dependency graph in this example coincides with the one of the running

example in Chapter 2. p1 and p2 represent two business processes; a1, a2 and a3
are three applications supporting business processes while db1 and db2 are two

databases accessed by applications. Finally, m1, m2 and m3 are the three ma-

chines running applications and n1 is the network segment connecting the three

machines. Figure 4.1 shows a TDR model built with the nodes from Table 4.1.

The edges connecting n1 to m1, m2 and m3 express the dependency of the ma-

chines on the network connection with other machines. The connections from m1

to a1, a2 and a3, from m2 to db1 and from m3 to db2 express the dependency of

software processes (applications or databases) on the machines they run on. For

all of these connections the survival time is set to zero, since no component can

98

4.2. Time Dependency and Recovery model

Table 4.1: List of nodes composing part of the business and IT infrastructure of a

small bank

Id Description

p1 Customer management process

p2 Financial services process

a1 Home banking application

a2 On-line trading application

a3 Financial founds management application

db1 Checking account database

db2 Trading database

m1 Application server machine

m2 DBMS machine

m3 DBMS machine

n1 Network segment

p1 p2

a1 a2 a3

db1 db2

m1 m2 m3

n1

0m
10m

0m 0m

0m 0m0m

5m 15m

1d5h
1h 8h

Figure 4.1: A timed dependency graph example

survive the disruption of the ones it depends on, not even for a short time. In turn,

p1 depends on both a1 and a2, since the customer management is achieved by

providing Internet banking and on-line trading, but with different time constraints

(five hours for a1 and only one hour for a2). A similar reasoning apply to a1 and

p2.

99

Chapter 4. A Model Supporting Business Continuity Auditing & Planning in

Information Systems

4.2.1 Incidents and their propagation

We adopt the same definition of incident of Chapter 2: an incident is a disrup-

tive event causing the unavailability of an IT component (or a set of them).

Since different incidents can happen with different frequencies, business con-

tinuity should deal with the frequency of incidents to determine how often will

the business operations be at risk of disruption and evaluate the associated risk.

We adopt the definition of incident frequency given in Chapter 2. For the sake of

presentation, we repeat here the definition.

Definition 2.5. Given a set of incidents I , the frequency estimate is a mapping

freq ∶ I → R+ .

For example, freq(i) = 3 indicates that incident i is estimated to happen 3

times per year.

Finally, every disruptive event takes some time to be repaired. Our model

encompasses an estimate of the repair time rt that is required by the affected nodes

to become operational again. Here it is important to notice that, in many cases,

it is difficult to guarantee an uniform repair time: repairing a disk could take up

to two hours in most cases (say, 90% of the cases), but up to four hours in the

remaining (exceptional) 10% of the cases. For instance, a software bug affecting

a new application can be repaired in eight hours if it is discovered during the

week, or within 24 hours during the week-end, due to lack of personnel. To be

sufficiently accurate, our model requires an estimate of the recovery time for both

the general and the exceptional cases. For this reason rt is expressed as a frequency

distribution.

Definition 4.1 (Time partition). Let τ ∈ T be a time interval, a time partition for

τ is a set TP of pairs ⟨part-desc,part-freq⟩ where:

• part-desc is a partition of time in τ ;

• part-freq is the frequency of part-desc in τ ;

• ∑{part-freq ∣ ⟨part-desc,part-freq⟩ ∈ TP} = 1.

In the above example, if we choose τ to be one week, a partition for τ would

be TP = {⟨Weekdays,0.71⟩, ⟨Weekend,0.29⟩}.
The definition of rt is a refinement of Definition 2.2.

Definition 4.2 (Incident repair time). Let g = ⟨N,→⟩ be a timed dependency

graph, i ∈ I be an incident happening on a set of nodes M ⊆ N , τ be a time

interval and TP be a partition for τ . The amount of time needed to repair a node

100

4.2. Time Dependency and Recovery model

n ∈M from the incident i happening at a time described by an element tp of TP is

the mapping incident repair time rt ∶ I ×N × TP→ T .

In our previous example about the software bug, the rt function is:

rt(SoftwareBug,Application, ⟨part-desc,part-freq⟩) =
⎧⎪⎪⎨⎪⎪⎩
8 if part-desc = Weekdays

24 if part-desc = Weekend

Every incident directly involves one or more nodes, causing them to be un-

available for a certain amount of time. During this time the incident may propa-

gate to other nodes following the timed dependency graph.

We say that an incident propagates from a node n1 to n2, if they have a func-

tional relationship (i.e. n1

s
Ð→ n2) and the unavailability time of n1, due to the

incident, exceeds the survival time (s) of n2 with respect to n1. Node n2 will then

become unavailable until the incident is resolved.

According to this observation, we define the downtime caused by an incident

to any node of the timed dependency graph (including propagation). The defini-

tion of incident downtime is a refinement of Definition 2.3.

Definition 4.3 (Incident downtime). Let g = ⟨N,→⟩ be a timed dependency graph,

I be a set of incidents happening on a set of nodes M ⊆ N , let n ∈ N be a node

and Dn be the set of nodes n depends on (i.e. Dn = {m∣m s
Ð→ n}), τ be a time

interval and TP be a time partition for τ . The incident downtime is a mapping

dt ∶ I ×N × TP→ T defined as:

dt(i, n, tp) =
⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

rt(i, n, tp) if n ∈M

0 if n /∈M and Dn = ∅

0 if max
m∈Dn,m

s
Ð→n∈→

dt(i,m, tp) − s < 0
max

m∈Dn,m
s
Ð→n∈→

dt(i,m, tp) − s otherwise.

Running example - Part 4.2. Figure 4.2 shows how an incident happening at a

certain time on m3 propagates across our organisation’s IT infrastructure. Assume

that incident i occurs at t = 0 and, according to the incident repair time, it is re-

paired within nine hours after t. It brings down m3; at the same time db2 becomes

unavailable, since its survival time w.r.t. m3 is zero. After five minutes a2 goes

down and a3 follows after fifteen minutes. Accordingly to the information in the

timed dependency graph, after one hour from the disruption of a2, process p1 goes

down and after eight hours p2 goes down as well. After i1 has been repaired, nine

hours after t, all nodes are repaired in turn.

101

Chapter 4. A Model Supporting Business Continuity Auditing & Planning in

Information Systems

m3

db2

a2

a3

p1

p2

i(t0) Repair(i)

t (h)
0 2 ... 10

Components available Components unavailable

stop(p2)stop(p1)stop(a3)
stop(a2)

7 8

{...}

{...}

1 9

{...}

{...}

{...}

{...}

Figure 4.2: Propagation chart of an incident

4.2.2 Assessing the RTO

Recall that our goal is assessing whether, during the normal operation, busi-

ness process will comply with the Maximum Tolerable Period of Disruption that

has been determined (by the business unit) for the business relevant processes.

The formal definition is the following.

Definition 4.4 (MTPD). Let g = ⟨N,→⟩ be a timed dependency graph and P ⊂ N

be the set of business processes. The Maximum Tolerable Period of Disruption is

a mapping mtpd ∶ P → T .

According to BS 25999-1, the MTPD is determined based on the impact that

the disruption of the business process would have on the organisation. The impact

is expected to increase over the disruption time, and to vary depending on the

day, month or point in the business lifecycle. The MTPD subsumes the impact

evaluation and expresses a single time value after which the impact of the process

disruption would become unacceptable for the organisation.

Running example - Part 4.3. The two business processes in our example are

noticeably time-dependent, because they both require customer interaction and,

in the case of p2, the operational disruption causes a direct financial loss to the

bank. Because of this, it is reasonable to assume that the MTPD is very short, as

reported on Table 4.2.

102

4.2. Time Dependency and Recovery model

Table 4.2: MTPD values for the processes

Id Description MTPD

p1 Customer management process 3h

p2 Financial services process 0.5h

4.2.2.1 Complying with the MTPD

One of our goals is to check under which circumstances we can expect to be

able to comply with the MTPD (i.e. we can expect all the business processes to

recover from disruptions within the maximum time given by the MTPD). To this

end, our model allows us to determine, given the MTPD for the business critical

processes, what is the maximum recovery time that each node in the TDR model

has to respect. Assuming that the timed dependency graph is acyclic this can be

defined as follows.

Definition 4.5 (mrt). Let g = ⟨N,→⟩ be a timed dependency graph, P ⊆ N be the

set of nodes in g representing business processes, then for each n ∈ N we define

the maximum recovery time of n mrt ∶ N → T as:

mrt(n) = ⎧⎪⎪⎨⎪⎪⎩
mtpd(n) if n ∈ P

min{mrt(m) + s ∣ (n s
Ð→m) ∈→} else.

The definition of mrt is well formed under the assumption that every node

in the graph is (directly or indirectly) connected to a business process node, i.e.

∀n ∈ N , ∃p ∈ N,{n1, . . . , nx ∣ ni ∈ N} such that p is a business process and

(n s0
Ð→ n1) ∈→, (n1

s1
Ð→ n2) ∈→, . . . , (nx

sx
Ð→ p) ∈→.

Assuming that the TDR model is faithful, i.e. that it reflects well how incidents

propagate across the infrastructure, the relevance of the maximum recovery time

is given by the following result.

Proposition 4.1. Let g = ⟨N,→⟩ be a timed dependency graph, let i be an incident

affecting a (set of) nodes and happening in a certain time partition tp and P ⊂ N

be the set of nodes representing business processes. If ∃n ∈ N ∖ P ∣ dt(i, n, tp) >
mrt(n) then ∃ p ∈ P for which dt(i, p, tp) > mtpd(p). On the other hand, if

∀n ∈ N ∖ P dt(i, n, tp) ≤ mrt(n), then ∄ p ∈ P ∣ dt(i, p, tp) > mtpd(p).
This proposition states that if an incident on a node is not repaired within

its MRT, then at least one business process will be disrupted for longer than its

MTPD. On the other hand, if an incident is always repaired within the nodes MRT,

103

Chapter 4. A Model Supporting Business Continuity Auditing & Planning in

Information Systems

then no business process will be disrupted for longer than its MTPD. It is possi-

ble to verify the intuition behind this proposition by comparing the definitions of

incident downtime (Definition 4.3) and the definition of maximum recovery time

(Definition 4.5). The maximum recovery time is calculated by taking into account

the MTPD set on business processes and to make sure that a the downtime of a

node does not cause (by propagation) a downtime on the business processes longer

than their MTPD.

Therefore, the mrt(n) we have defined is actually the maximum downtime we

can tolerate on n to ensure that the MTPD is respected for each business process

depending (directly or indirectly) on it. Of course, the validity of this result de-

pends on the accuracy of the TDR model, but it is worth mentioning here that (a)

as we discuss later, the data needed to build the TDR model is in most cases avail-

able and (b) the model can be refined over time by using statistics on incidents

and their recovery.

Recovery Time Objectives To comply with the MTPD, which is a high-level

measure imposed on the critical business processes, one sets a Recovery Time

Objective (RTO) on all the assets of the organisation that can be directly involved

in incidents (for IT this implies machines, applications, infrastructure, etc.). Our

tool can be used to do this in an automatic, fairly user-friendly way. This already

represent an improvement on everyday practices, which lack standard procedures

to set RTOs with the consequence that sometimes RTOs are not set at all.

Definition 4.6 (RTO). Let g = ⟨N,→⟩ be a timed dependency graph and P ⊂ N be

the set of nodes in g representing business processes, the Recovery Time Objective

is a mapping rto ∶ N ∖ P → T .

Proposition 4.1 implies that, if for each node n in which mrt(n) is defined

rto(n) ≤ mrtmt(n), then the compliance with respect to the RTO implies compli-

ance w.r.t. MTPD. Our model allows us to validate the RTO as follows.

Proposition 4.2. Let g = ⟨N,→⟩ be a timed dependency graph, and rto be an RTO

for it. Assume that for each n,m ∈ N such that n
s
Ð→m the following holds:

rto(n) ≤ rto(m) − s (4.1)

Then, for any two nodes n and m, we have that an incident on the node n ∈ N

that causes on n a disruption shorter than rto(n) will never cause by propagation

on m a disruption longer than rto(m).
If (4.1) is not satisfied for some n, m, then an incident on n which causes on

n a downtime shorter than rto(n) would cause on m by propagation a downtime

104

4.2. Time Dependency and Recovery model

longer than rto(m). In other words, if (4.1) is not satisfied then one could witness

the paradoxical situation that the RTO on m is not satisfied because of an incident

on another node n, while this incident remained within the RTO of n in the first

place. RTOs are meant to define a local standard that guarantees a global continu-

ity level; because of this we believe that an RTO not respecting (4.1) would be of

no practical use.

Running example - Part 4.4. By applying Proposition 4.1 to the TDR model in

Figure 4.1, we evaluate the mrt for each node w.r.t. the MTPD expressed in the

previous example. Table 4.3 reports the original RTO value assigned in the tradi-

tional way (i.e. manually) by the IT-BCP group on the IT assets of the TDR model

as well as the automatically evaluated mrt. The RTO assigned on the IT assets is

Table 4.3: Manually assigned RTO vs. mrt values evaluated by means of the

model

Id RTO mrt

a1 6h 8h

a2 6h 4h

a3 6h 24h 30’

db1 5h 8h 10’

db2 5h 4h 5’

m1 5h 4h

m2 7h 8h 10’

m3 3h 4h 5’

n1 8h 4h

in some cases too short and in other cases too long, i.e. insufficient to ensure the

business continuity. By applying Proposition 4.2, we compare the original RTO

w.r.t. the mrt and find four critical points (outlined by a bold circle in Figure 4.3),

where the original RTO value exceeds the mrt.

4.2.2.2 Exceeding the MTPD

As it is impossible to achieve total security, it is often difficult to comply at all

times with the given MTPD. Disasters happen and it is normal to accept a residual

risk, implying that the given MTPD may be exceeded in truly exceptional situa-

tions. For instance, there could be some particularly serious incidents that cannot

be recovered in time. On the other hand, the IT department may be unprepared

to handle some disruptive events due to lack of personnel or resources. To deal

with that, two solutions are possible: (1) the organisation’s management decides

105

Chapter 4. A Model Supporting Business Continuity Auditing & Planning in

Information Systems

p1

MTPD 1h

p2

MTPD
0.5h

a1

RTO 6h
mrt 8h

a2

RTO 6h
mrt 4h

a3

RTO 6h
mrt

24h30'

db1

RTO 5h
mrt

8h10'

db2

RTO 5h
mrt 4h5'

m1

RTO 5h
mrt 4h

m2

RTO 7h
mrt

8h10'

m3

RTO 3h
mrt 4h5'

n1

RTO 8h
mrt 4h

0m
10m

0m 0m

0m 0m0m

5m 15m

1d5h
1h 8h

Figure 4.3: Critical points in which the manually assigned RTOs exceed the max-

imum recovery time.

to employ more resources and deploy new control measures allowing to shorten

the disruption time, or (2) the risk of exceeding the MTPD is accepted within a

given probability.

However, to be able to accept the risk of exceeding the MTPD, an organisation

needs to have a reasonable estimate of how often this is going to happen in a given

time period (which could be one year or ten years, for instance).

To make this estimate we can use our TDR model. We know from Proposi-

tion 4.1 that every time an incident occurring on an node is not repaired within its

mrt one or more business processes depending on the node will become unavail-

able for longer than their MTPD.

Therefore, to evaluate the frequency a business process p exceeds its MTPD

we need to make an estimate of how many incidents affecting a node on which

p (directly or indirectly) depends on, cause the mrt of the node to be exceeded.

To this end we use the recovery time distribution that is evaluated during the RA

phase of the business continuity management process.

Definition 4.7 (Frequency mrt is exceeded). Let g = ⟨N,→⟩ be a timed depen-

106

4.2. Time Dependency and Recovery model

dency graph, n ∈ N be a node, p ∈ P ⊆ N be a business process and mtpd(p)
be its MTPD. If I is a set of incidents affecting n, τ a time interval and TPi the

time partition for τ on which the incident recovery time for i ∈ I is assessed, then

the frequency n exceeds its mrt because of incidents in I is given by the mapping

Φ ∶ N × I → R+ :

Φ(n, I) =∑
i∈I

⎡⎢⎢⎢⎢⎣
freq(i) ∑

tp=⟨part-desc,part-freq⟩∈TPi and dt(i,n,tp)>mrt(n)

part-freq

⎤⎥⎥⎥⎥⎦
Intuitively, Φ(n, I) expresses an upper bound on the number of times a node n

exceeds its mrt because of a set of incidents I (i.e. when the incident occurrences

are not overlapping). The following proposition expresses how we use Φ to evalu-

ate freq-ex(p), which expresses (the upper bound of) how many times the MTPD

is exceeded, given a business process p.

Proposition 4.3. Let g = ⟨N,→⟩ be a timed dependency graph, p ∈ N be a busi-

ness process and I be a set of incidents, then:

freq-ex(p) = Φ(p, I) (4.2)

In other words, how often a process exceeds its MTPD is determined by the

sum of the frequencies the nodes it depends on exceed their mrt. With such an

information, the business unit is able to verify if the residual risk it is willing

to accept is not further exceeded by the IT department. Such a condition would

require the development of more effective strategies to reduce the recovery time

to incidents.

Running example - Part 4.5. Let us introduce two incidents i1 and i2, the first

affecting a2, the second affecting db2. i1 is estimated to happen five times a year

and it is repaired within three hours in the 80% of the cases and within eight

hours in the remaining 20%. i2 is estimated to happen seven times a year and it

is repaired within four hours in the 90% of the cases and within six hours in the

remaining 10%. If we consider the MTPD of p1 (three hours), then the mrt is 4h

for a2 and 4h5’ for db2. The (upper bound of the) frequency db2 exceeds its mrt

is 0.7 times a year, while the (upper bound of the) frequency a2 exceeds its mrt is

1 time a year. Consequently, assuming that the only incidents affecting the nodes

in the timed dependency graph are i1 and i2, our tool allows us to compute that

p1 is expected to exceed its MTPD at most 1.7 times a year (once a year by 3h,

equivalent to the 200% of the MTPD, and 0.7 times a year by 1h55’, equivalent

to the 164% of the MTPD).

107

Chapter 4. A Model Supporting Business Continuity Auditing & Planning in

Information Systems

4.3 The Practice

Our experience on BCP auditing is based on the general approach used by

KPMG Italy. We implemented a prototype tool from our model as an additional

component of KARISMA (which is the tool developed at KPMG to support RA,

see Section 4.4): this enables us to repeat and validate the assessment previously

done by the KPMG auditing team.

The tool is composed of two main modules: the data import module and the

algorithm module. The goal of the data import module is to obtain the data needed

to build the TDR model from the KARISMA database. It reuses some of the code

written for the prototype we built to test the TD model (see Section 2.4). The data

import module allows us to obtain sufficient information to build the timed depen-

dency graph, plus a list of (business continuity-related) incidents, their frequency

and recovery time. In addition, we obtain the MTPD value for all business pro-

cesses and subprocesses and the value of the previously assessed RTO for some

nodes of the timed dependency graph (only the applications).

The algorithm module implements the algorithms to compute the incident

downtime (see Definition 4.3), the maximum recovery time (see Definition 4.5),

the frequency MTPDs are violated (see Definition 4.7) and to find critical points

in the previously assessed RTOs (according to Propositions 4.1 and 4.2).

The pseudo code for the algorithm to compute the maximum recovery time

is shown in Algorithm 4.1, while the algorithm to find critical points is shown in

Algorithm 4.2.

Algorithm 4.1 Algorithm to compute the maximum recovery time of a node

function mrt(n)

if n is process then

return mtpd(n)

else

return min {mrt(m) + s ∣ (n s
Ð→m) ∈→}

end if

end function

We tested our model with the information of an Italian primary insurance com-

pany obtained from the KARISMA database. This data was collected during an

auditing activity carried out by KPMG to set-up a BCP, and contains information

regarding the business and IT infrastructure of the primary insurance company

(19 macro business processes and 122 sub-processes) and the results of the BIA

analysis carried out by the KPMG personnel, which provides the MTPD value

for each business process and subprocess. The remaining information required by

108

4.3. The Practice

Algorithm 4.2 Algorithm to find critical points

function critical(n, ǫ)

if n is process then

return false

end if

if rto(n) - mrt(n) > ǫ then

return true

end if

for all (n s
Ð→m) ∈→ do

if rto(n) ≤ rto(m) - s then

return true

end if

end for

return false

end function

our model (about incidents, repair time and frequencies) was also provided by the

KPMG auditing team who conducted the assessment.

Regarding the BIA, the procedure used by KPMG analysts to establish the

MTPD for the business processes is based on the qualitative analysis of the im-

pact, as perceived by the process owner (business unit), of the consequences of a

disruption on the process itself. On the other hand, regarding RTOs, only certain

nodes (most of the applications) are taken into consideration and are labelled with

an RTO, since it is difficult to properly evaluate the relationships between the dif-

ferent nodes manually. The approach followed by the KPMG analysts to assign

an RTO to application nodes is to set a value smaller or equal to the minimum

MTPD value of the processes (or subprocesses) that the application supports. Fig-

ure 4.4 shows an example of such an assignment with the (anonymised) data of

the primary insurance company. Application A2 supports two business processes:

P2 and P3. P2 has an MTPD of 7 hours, while P3 has an MTPD of 20 hours. The

RTO on A2 is set to 7 hours, which is equal to the minimum MTPD value of the

two processes A2 supports.

The first important contribution of our model is that all the relationships are

evaluated, thus enabling the IT department to extract the RTO values for each in-

volved node (even machines, network and infrastructure components). We used

the mrt value automatically calculated by the tool as RTO for all the nodes of the

TDR model. In this way, we are sure that RTOs are compatible with the MTPD

of the business processes (see Proposition 4.1), and that RTOs are pairwise com-

patible (see Proposition 4.2). Having an RTO set for all the components of the IT

infrastructure allows the IT department to systematically assess its ability to com-

109

Chapter 4. A Model Supporting Business Continuity Auditing & Planning in

Information Systems

P1
MTPD 5h

A1 A2
1h

0h
0h0h

RTO = 7h =
min {7h, 20h}
mrt = 6h

P3
MTPD 20h

P2
MTPD 7h

RTO = 5h =
min {5h}
mrt = 5h

critical point

Figure 4.4: An example of critical point found with our tool. The misleading

evaluation of A2’s RTO to 7h is caused by the lack in considering the relationship

of A2 with A1. If A2 is repaired in more than 6h, process P1 will be disrupted for

more than its MTPD.

ply with these RTOs, to develop strategies to achieve them in case of disruption

and, if necessary, agree with the business unit on an exceeding rate.

Secondly, we found some critical points in the previous setting of RTO val-

ues for the application nodes composing the IT infrastructure of the insurance

company. In case of applications supporting both business processes and other

applications, we found that the RTO was in some cases underestimated (longer

than required) because the dependencies between applications had not been taken

into consideration when initially assigning RTOs. In the case of Figure 4.4 we see

a simple example of such critical point. According to KPMG’s method of assign-

ing RTOs, the RTO of A2 is set to 7 hours. However, in case A2 is disrupted and

becomes operational after 7 hours, A1 would be unavailable for 6 hours, which

conflicts with its RTO (5 hours) since it would cause P1 to be unavailable for 6

hours (i.e. longer than its MTPD).

Summarising, our tool allows one to perform two different assessments: firstly

to set properly RTO values for a given IT infrastructure component; secondly, to

support auditors during the BCP validation. Once a BCP has been established

and put in place, the validation phase occurs to ensure that the plan is adequate,

complete and appropriate w.r.t. the organisation’s IT infrastructure [70]. A crucial

point is based on the auditing of recovery controls: the auditor must verify that

RTO values meet the business requirements. Our tool supports this kind of veri-

fication, since every check can be made in an automatic way (after the model is

created or updated), possibly discovering weaknesses in the BCP.

110

4.4. Discussion

4.4 Discussion

In this section we argue the feasibility of our approach and its usefulness to

support dynamic auditing of the BCP.

Feasibility The main concern regarding the feasibility of our approach is whether

organisations are able to collect the required information to build the model. For-

tunately, the experience with KPMG shows the data it requires can be available (at

least at some financial organisations). More in general, the TDR model requires

information to (1) build a timed dependency graph, (2) enumerate incidents to-

gether with their estimated frequency and repair time, (3) collect the MTPD for

business processes and (possibly) the existing RTO set on the components of the

IT infrastructure.

Regarding (1), in Chapter 2 and in Chapter 3 we discussed the feasibility of

acquiring information to build a timed dependency graph (the information needed

to build a timed AND /OR dependency graph is almost the same of the one required

for a timed dependency graph). The same considerations also hold for this case.

Regarding (2), an inventory of possible incidents has to be compiled during

the RA phase of the business continuity management process. Incidents can be

derived from existing threat lists which can be found on several standard methods

(e.g. in BS 7799-3 [21]). Most of the incidents that are of interest in business

continuity management are natural disasters (e.g. flooding, storms, etc.) or in-

frastructure faults (e.g. power outages). For this kind of incidents there is more

information publicly available with respect to other kinds of IT security events

(e.g. hacker attacks). In fact, the second ones are more difficult to analyse due to

lack of detailed historical records, since organisations normally tend not to dis-

close information about them. On the other hand, a numerical value about the

expected frequency of – say – a lightning hitting a datacentre can be reasonably

obtained based on historical records (e.g. from the frequency of storms in the area

a datacenter is located).

Finally, regarding (3) we note that according to the BS 25999-1 standard, es-

tablishing an MTPD for the critical business functions is a key activity to set up

a BCP. Therefore, we can assume an organisation willing to set up or assess an

existing BCP to have carried out the BIA. To further substantiate this argument,

we note that this data is also collected by tools devised to assist the creation of a

BCP. For instance, this was the case in the case-study we carried out. Among the

information KARISMA collects via a question-driven procedure, there is a map

of the business processes. The Business Impact Analysis focuses on the mapped

processes and produces, among others, the MTPD value for them.

111

Chapter 4. A Model Supporting Business Continuity Auditing & Planning in

Information Systems

Continuous Auditing Finally, we argue that our framework is particularly use-

ful to support a dynamic auditing process. The concept of dynamic auditing is

well-known among the risk management strategies, particularly in the field of

software engineering [61]. The goal of this process is to continuously assess

what could go wrong in projects (i.e. what the risks are), determining which of

these risks are most relevant, and implementing strategies to deal with them.

Even though many of the methodologies for risk management [18, 45], as well

as those for BC [41], include a monitoring and reviewing step, this process can

be performed with different degrees of granularity, according on how flexible the

adopted techniques are. For example, a change on the IT infrastructure, involv-

ing the dismantling of a set of applications and machines and the introduction of

new software and hardware components, may involve either the assessment of the

new components only, or of the whole organisation, depending on how much it is

possible to reuse the previous assessment results.

Thanks to the fine granularity and the high degree of independence of the used

information (time dependencies, assessment of incidents, importance of processes

to the business), our model and tool are particularly suitable to support a dynamic

assessment process.

For instance, when dealing with a change in the organisation, be it the rear-

rangement of the IT infrastructure or a new business strategy, after a simple up-

date of the model, the framework can be used to evaluate the new time constraints

within which incidents must be repaired to preserve the business continuity. In the

case a new component is added to the information system, it is only necessary to

add the new component in the TDR model and specify its functional and temporal

relationships with the other components to evaluate its new RTO. On the other

hand, if a process becomes more important for the organisations business (due to

changes in business strategy), it is possible to change its MTPD and automati-

cally assess the IT infrastructure to verify if it is still able to ensure the new time

constraints.

In addition, after the occurrence of an incident, our model allows us to ver-

ify if the incident response propagation is compliant with the expected behaviour.

It might happen that a time dependency between two applications, that was es-

timated to be of one hour, is in fact of one hour and a half. Furthermore, one

might observe that the response time to an incident exceeds the forecasted RTO.

In those cases, the model can be easily updated with the new collected informa-

tion, thereby allowing to rapidly assess the new situation and develop new and

more efficient BC strategies, if needed. This feature adds quality to our solution

since it enables the BC team to organically capitalise on practical experience to

improve accuracy of the model and of the outcome in time.

In this perspective, the ability to easily refine the model helps at improving the

112

4.5. Related Work

way organisations traditionally deal with incidents. Instead of simply solving the

problem when it happens and then forgetting about it, our solution promotes the

continuous monitoring of the performances of the repair operations by collecting

new information as incidents occur and then use them to improve the efficiency of

the response on new occurrences.

Summarising, our system allows one to (a) easily adjust the model to changes

in the organisation and/or its business target, without the need of a complete new

assessment, and (b) refine the model (i.e. make it more precise) in the moment in

which new and more accurate information is available about the actual behaviour

of the organisation.

4.5 Related Work

Although the business continuity management process is well described in a

number of works [51, 62] and recently has been standardised by the British Stan-

dard Institute [41], formal models to support it are still understudied. Despite this

situation, there are some specific fields for which specific tools have been devel-

oped to accurately evaluate the survivability of IT systems. This is the case of

telecommunication networks, where the high availability of the network must be

ensured through a proper BCP. Jrad et al. [48] propose a BCP model devised to

determine the expected downtime due to disaster events as well as normal and

software failures in a networked environment and especially tailored for telecom-

munication networks. The model can be also used to predict the probability that a

disaster will cause a service disruption. The model could be integrated with ours

to provide an estimate of incident likelihood and repair time. Our model could

then be used to set or assess RTOs on the infrastructure.

Another approach to evaluate the survivability of a system is the one proposed

by Cloth and Haverkort in [25]. They describe the system under assessment as

a Stochastic Petri net and then automatically convert it into a Continuous Time

Markov Chain (CTMC) . Finally they use a model checking engine to obtain a

time-probability chart that expresses the recovery probability in relation to the

recovery time. The model outcome is typically used to deal with dependability

issues in system design, but is not readily usable for the business continuity of

large infrastructures. To apply this approach a fine grained description of the

system is required. However, obtaining information at this detail level might be

hard in terms of time and resources.

In addition to academic work, there exist a number of commercial tools sup-

porting BCP. The most closely related to our work is Shadow Planner [111]. It

is an (industrial) application developed to support organisations in assessing risks

113

Chapter 4. A Model Supporting Business Continuity Auditing & Planning in

Information Systems

and establish a BCP. The software has several modules to map the organisations’

IT infrastructure, collect BIA information, asset values, etc. Thus, it is able to

evaluate the monetary impact of a certain incident. Differently from our approach,

it is not based on a model and the relationships between different IT infrastructure

components are not properly evaluated. This could hardly affect the way a disrup-

tion event is evaluated, resulting in an erroneous planning of countermeasures to

ensure business process MTPDs (and the related RTOs).

4.6 Concluding remarks

In this chapter we address IT availability planning by considering the IT-

related part of business continuity management.

We present the TDR model and framework to support the set up and validation

of a BCP. The model allows one to: (1) determine the maximum recovery time an

IT component needs to be restored after a disruptive event to comply with the

business requirements (i.e. the MTPD of the business processes the IT component

supports), (2) validate the compliance of RTOs set on IT components w.r.t. the

maximum recovery time, (3) validate the mutual compatibility of RTOs set on

IT component that depend on each other and (4) evaluate the residual risk of a

given BCP by considering the frequency MTPDs set on business processes may

be violated.

Finally, we provide evidence about the feasibility of our approach by reporting

on their successful application in the validation of the BCP of an italian primary

insurance company, carried out with data collected by the Italian branch of KPMG

S.p.a. and discuss the applicability of our model-based technique to similar cases

in which the information required by our model is available.

114

Chapter 5
A2THOS: Availability Analysis and

Optimisation in SLAs*

Having addressed the first research question regarding the management of av-

ailability risks in Chapter 2 and Chapter 3, and the second research question about

business continuity management in Chapter 4, we now address the third and final

research question:

“How can we improve the accuracy of current techniques for managing availability-

related SLAs, while guaranteeing feasibility within budget?”

In this chapter we focus on the problem of analysing and optimising the av-

ailability of so-called mixed sourced IT services, i.e. services which are (partly)

managed by an outsourcer and regulated by means of SLAs. To address this topic

we introduce a model-based framework called A2THOS.

*This chapter is a minor revision of the paper with the same name [1] submitted for publication

at the International Journal of Network Management (NEM) in April 2010.

115

Chapter 5. A2THOS: Availability Analysis and Optimisation in SLAs

5.1 Introduction

Nowadays, the IT infrastructure of most large organisations is so complex that

it is often organised in terms of services that are offered as part of an internal

market in which different business units offer and buy IT services to and from

each other. In some cases, services are acquired from an external organisation

rather than from an internal business unit (outsourcing). Typically, services of-

fered by an internal provider are customised and tailored to support the business

goals of the organisation, while those offered by external providers are standard-

ised and large-scale, and therefore are less specific but potentially cheaper than

those implemented internally. In some cases, internal providers outsource some

sub-services to external ones, for instance when it lacks specific competencies

(e.g. SAP configuration). This is a so-called mixed sourcing strategy.

Regardless of whether the service is bought internally or externally, the terms

and conditions of the contract are determined in the SLA. (Figure 5.1 summarises

the concept of mixed-sourced IT services regulated by SLAs.) For instance,

ITIL [62] is one of the most popular frameworks providing guidelines and best

practice for a correct IT service management and it describes this process in detail

in [64].

In this chapter we focus on IT service availability, which is at the core of

customer satisfaction and business success for organisations [63], and indeed it is

one of the main topics in a SLA. In fact, a typical SLA includes hard clauses on

the minimal availability of the service offered (for example, it may include that

the service should not be “down” for more than two hours per week, and a penalty

fee for each week in which this is not satisfied).

Now, the two concerns we focus on (and at the same time the two questions to

which we provide an answer within the limits of the settings of this chapter) are:

1. how can a business unit check and/or guarantee that a given (offered) service

will respect some given minimal availability levels;

2. as (1.) while minimising costs.

Let us elaborate on these two points and explain why they are not only rele-

vant, but also non-trivial problems.

An IT service is usually offered by a system consisting of several compo-

nents. These components can interact in non-trivial ways: for instance a compo-

nent could be crucial to the service in a way that if the component is unavailable

then the service becomes unavailable as well; other components may be organised

in such a way (e.g. exploiting redundancy) that only if a number of them fails the

service will be affected. In addition, a component may depend in a non-trivial

way on sub-services which are in turn regulated by other SLAs.

116

5.1. Introduction

IT (3)

Business Unit 1 Business Unit 2 Business Unit 3

Process 1 Process 2 Process 3 Process 4 Process 5 Process 6

IT
Services

SLAs

Business (1)

External IT Service Providers (6)

Supporting
Services

SLAs

Applications Technology Infrastructure

(2) (4)

(5) (7)

Figure 5.1: Mixed-sourced IT service provision regulated by SLAs. The organisa-

tions business units (1) use IT services (2) provided by the internal IT department

(3). These services are regulated by means of SLAs (4). In turn, the IT department

is using supporting services (5) offered by an external provider (6) to run (part of)

the IT infrastructure. Also these services are regulated by means of SLAs (7).

To ensure that the minimal service availability remains within the agreed mar-

gins, IT managers can take reactive (e.g. monitoring, measuring) and/or proactive

measures. A key proactive measure is planning and designing service availability

when services are created or changed. At the business level, planning service av-

ailability allows the service provider to set availability figures on the SLAs that

both satisfy the customer needs and can be guaranteed by the technical infras-

tructure providing the service. To achieve this at the technical level the service

provider needs to (a) calculate the availability of the IT system providing the ser-

vice(s) based on the information available on system components, and (b) make

appropriate system design choices to support a specific availability level by se-

lecting the system components based on their contribution to the availability of

the system.

Reliability studies have introduced a number of by now standard techniques

(e.g. Continuous Time Markov Chains (CTMC) [68] and Petri Nets [33]) which

allow one to compute system availability when the mean time between compo-

nent failures and the mean time to repair a component is known. However, in the

context of mixed-sourced IT services, this information is usually not available. In-

117

Chapter 5. A2THOS: Availability Analysis and Optimisation in SLAs

stead, SLAs between the external and the internal provider typically only include

the minimal guaranteed availability of the component. Therefore, it is not pos-

sible to apply these standard techniques to calculate the system availability (see

Section 5.2 for details).

Regarding the second point, the service catalogue of most IT outsourcing com-

panies include different availability levels (e.g. gold, silver and bronze) with dif-

ferent associated prices (same service, only different availability levels, at differ-

ent costs). Service providers need to minimise the cost of outsourced (sub)services

while guaranteeing that their own service achieves the desired minimal availability

level. Given the interactions mentioned above, this is a non-trivial optimisation

problem: one needs to determine the combination of minimal availability levels

for the sub-services in such a way that the total cost is minimal while ensuring

that the resulting service achieves the availability specified in the SLAs. This can-

not be solved without the use of specific optimisation algorithms and typically IT

managers choose non-optimal, conservative solutions.

Contribution We present A2THOS, a framework for the analysis and optimisa-

tion of the availability of mixed-sourced IT services. The framework consists of

(1) a modelling technique to represent partially-outsourced IT systems, their com-

ponents and the services they provide, based on AND /OR dependency graphs,

(2) a procedure to calculate (a lower bound of) the system availability given the

(lower bounds of) components availability, and (3) a procedure to select the opti-

mum availability level for outsourced components in order to guarantee a desired

target availability level for the service(s) and to minimise costs.

An AND /OR dependency graph is an AND /OR graph in which nodes rep-

resent system components and services, and edges between nodes represent the

functional dependency of one node with the other. We use the graph in order to

calculate a state function describing the availability of each service based on the

state of the components (operational or not operational). We then use the state

function and the information about components availability to determine a lower

bound for the availability of the service, by setting up a linear programming prob-

lem. Based on this procedure, we finally present the procedure to set up an integer

programming problem which allows one to determine the cost-optimal combina-

tion of availability levels for outsourced components in order to guarantee a target

service availability. We show the practical use of A2THOS by implementing it in

a tool which we apply to the service availability planning of an industrial case.

In Chapter 3 we argue that reliable quantitative information for risk assessments

can be hard to acquire, especially regarding likelihood of threats (e.g. hacker at-

tacks) and precise financial loss estimates. However, in the case of service level

management this is not the case. Both internal SLAs between an organisation IT

118

5.2. Related Work

department and business units and external SLAs between the IT department and

external service providers include a quantitative value expressing the lower bound

of the IT service availability. This allows us to apply in this chapter a quantitative

technique.

Limitation of the approach A2THOS uses an AND /OR dependency graph to

represent IT systems, thus it is unable to explicitly represent failure recovery

mechanisms such as availability of spare parts. Spare parts are used to imple-

ment warm and cold standby mechanisms. For example, to shorten the downtime

caused by a server breakdown, the system administrators can keep another server

ready to replace the broken one. This second server is the spare part. When it

is always running (but not operating) and the workload of the broken server is

automatically routed to the spare server, this mechanism is called hot standby.

When the workload of the broken server needs to be manually routed to the spare

server, this mechanism is called warm standby. When the spare server is not read-

ily available, but it needs a setup phase before the workload of the broken server

can be redirected to it, the mechanism is called cold standby. Our representation

allows us to explicitly model hot standby mechanisms by using OR nodes, but it

is not applicable in case of warm and cold standby mechanisms. We share this

limitation with other well-known modelling techniques, such as traditional Fault

Trees (FTs) and Reliability Block Diagrams (RBDs).

Organisation The rest of the chapter is organised as follows. In Section 5.2 we

present the related work in the fields of reliability and IT service composition. In

Section 5.3 we provide the mathematical foundation for using them to calculate

service availability. In Section 5.4 we present the procedure to find the optimal

choice of availability level for outsourced components. In Section 5.5 we describe

the tool we created to implement the A2THOS framework and the benchmarks we

conducted to test its scalability performances. Finally, in Section 5.6 we show how

we applied A2THOS to a practical case of service availability planning in an in-

dustrial context. Section 5.8 and Section 5.9 are two appendix sections presenting

the proof of one of the theorems we introduce and the representation capabilities

of our model with respect to RBDs respectively.

5.2 Related Work

In this section we discuss related works in four relevant areas for our problem:

(1) the general approach to calculate system availability, (2) modelling techniques

119

Chapter 5. A2THOS: Availability Analysis and Optimisation in SLAs

to represent the system under analysis, (3) existing tools and (4) other approaches

taking into account availability to optimise IT service composition.

The general approach Referring to a classic formulation [13] taken from the

reliability theory, a repairable system is a system which can be repaired after a

failure.

In the simplest case, the system m for which availability must be determined

is represented by the state function χ(m, t) which assumes value 1 if m is oper-

ating within tolerances at time t, 0 otherwise. The general way of calculating the

availability of a repairable system is to assume it has an independent, exponential

distribution of failure and repair time (a so-called stationary alternating renewal

process [58]). However, to do so one must know at least two properties of the

system: its failure rate λ, and its repair rate µ. The first property specifies how

often the system will fail on average, i.e. its Mean Time Between Failure (MTBF):

λ = 1

MTBF
. The second one specifies its Mean Time To Repair (MTTR): µ = 1

MTTR
.

Under this assumption the limiting availability is then obtained by the formula

Ā = µ

µ+λ
.

In the general case, the system can assume more than two states. Such a

system is called complex. A complex system is a system which is made of inter-

connected components that as a whole exhibit one or more properties depending

on the properties of the individual component. For example, a complex system

can be made of two “simple” components (i.e. two components that can indepen-

dently be either in operative or in repairing state). The state of the system depends

on the state of the two components: the system may work properly even if one

component only is operative, or it may need both components to be operative. To

model the state of the system, a state formula is used. Components can have more

than two states (e.g. operative, planned maintenance, emergency repair, etc.). To

compute the availability of complex systems, CTMC [68], or Petri Nets [33] are

used. To employ such techniques, one has to (1) define a state formula of the

system based on the component’s state, and (2) know the transaction probability

of each component from one state to the other.

In our case, the information available in the SLAs for outsourced components

concerns only a minimal availability in a given time frame (e.g. one month).

Therefore, classic techniques are not applicable to this problem, as the internal

states of each component and the probability of state transition (i.e. failure and

repair rate) are only known by the outsourcing company.

System modelling Several approaches have been proposed in the literature for

system reliability modelling. FTs and RBDs are the most used ones. However,

we should mention that also other approaches have been proposed, e.g. Torres-

120

5.2. Related Work

Toledano and Sucar [75] use Bayesian networks, and Leangsuksun et al. [54] use

an UML representation (although in this second case the authors do not provide

the mathematical support for reliability analysis). In FTs, a number of compo-

nents (called basic events) are linked together to make up a system according to

AND/OR relationships. The same behaviour is achieved in RBDs through SE-

RIES/PARALLEL compositions. According to [33], FTs are easy to use, as they

do not require very skilled modellers, and relatively fast to evaluate, as it is pos-

sible to use very efficient combinatorial solving techniques to obtain most of the

reliability indexes.

In FTs, the system state is represented by the top event, i.e. the root of the

tree. It is possible to build a boolean equation from the FT, and to reduce it to

the minimal cut set, i.e. the smallest set of combinations of basic events (com-

ponent failures) which all need to occur for the top event to take place (system

failure) [76]. Based on the minimal cut set, a combination of combinatorial tech-

niques and CTMC or Petri nets is then used to calculate the system (limiting)

availability.

According to Flamini et al. [33], the main limitation of FTs and RBDs consists

in the lack of modelling power, as they do not allow to model maintenance-related

issues explicitly. To solve this problem, FTs and RBDs have been extended into

Dynamic FTs [30] and Dynamic RBDs [29], allowing one to model maintenance-

related issues.

The modelling notation we use in this chapter (AND /OR dependency graphs)

can be seen as a condensed form of FTs. With a single AND /OR dependency

graph we are able to model a forest of FTs sharing (some of) the basic events (i.e.

the failure of a component), but with different top events. A single AND /OR de-

pendency graph can thus model separately the failure of all the business services

which the IT system provides, and for which a specific availability level must be

calculated. In fact, it is possible to (automatically) transform any AND /OR de-

pendency graph into a forest of FTs, as well as in a set of RBD, as we show in

Section 5.9. We share with FTs the use of minimal cut sets, which in our notation

are called Dependency Sets (see Section 5.3), but the availability calculation we

apply to AND /OR dependency graphs is different from the one used in FTs (for

the reason we mentioned above). In Appendix A we will give a more detailed

explanation of the differences between FTs and the AND /OR dependency graphs

we use in A2THOS.

Tools IBM Tivoli [100] and HP Business Availability Centre [98] are two of

the most popular configuration management tools. These tools are meant to sup-

port IT managers in the configuration and maintenance of complex IT systems.

Among the many features they possess, they can be used to manage SLAs, in-

121

Chapter 5. A2THOS: Availability Analysis and Optimisation in SLAs

cluding availability levels. One can assign to each IT component the availability

level imposed by SLAs, and keep track of the actual availability levels to check

for SLA compliancy. However, to the best of our knowledge there is no support

for the analytical calculation of the service availability.

Galileo [74], Coral [17], Relex [110] and BlockSim [88] are tools operating

with Dynamic FTs. Although integrating the A2THOS engines in one of these

tools would be useful, this was not possible: Relex and BlockSim are commercial

tools, Coral is mostly a MatLab library without a GUI, and Galileo is free soft-

ware, but not open source. For these reasons we developed our prototype as an

independent Java/Prolog tool.

Availability in service composition In the field of IT service composition, sev-

eral approaches have been proposed that consider availability as one of the QoS

parameters to optimise the performances of the resulting composite IT service.

Gu et al. [35] propose QUEST, a framework to schedule dynamically a composite

IT service while satisfying QoS requirements (e.g. response time and availability)

imposed by SLAs. Zeng et al. [81], Yu et al. [80] and Ardagna et al. [9] propose

scheduling techniques to create a cost-optimal execution plan for composite web

services which respect QoS parameters (including availability) defined in SLA

contracts.

In all these works, an estimation of the availability of the composite service

is made by multiplying the availability level of the components (expressed as a

real number in the interval [0,1]). This is possible thanks to two simplifying as-

sumptions. First, all the components must be available at the same time for the

system to operate (i.e. the system is an AND-combination of its components and

it becomes unavailable in the moment that any of its component is unavailable).

Secondly, the resulting availability is not a lower bound, i.e. there can be a run of

the composite service in which the resulting availability is lower than the calcu-

lated one. Differently from these approaches, A2THOS is able to deal with a wider

range of dependencies, namely combinations of AND and OR dependencies. In

the sequel we also argue in more detail why OR dependencies are necessary to

model complex IT services correctly. A2THOS also allows one to calculate an

absolute lower bound for the availability, which can be safely included in an SLA

contract.

5.3 Analysis of the minimal service availability

We now present the theoretical foundations of A2THOS. Let us first start with

an intuitive explanation. We model the system using a AND /OR dependency

122

5.3. Analysis of the minimal service availability

graph, in which a node represents a component of the system that at any given

time may (or may not) be available. A directed edge from node m to node n

indicates that m depends on n, i.e. that the availability of m depends also from the

availability of n in a way that we are about to explain.

In an AND /OR dependency graph, a node m can be unavailable because of an

internal failure, or because (some) nodes it depends on are unavailable. To model

internal failure, to each node m we associate a (virtual) internal node m′. We say

that the internal node m′ is unavailable if the node is unavailable because of an

internal failure. Therefore, internal nodes are just a notation artefact with no other

fundamental purpose than indicating the internal failure of a node.

To model the fact that m becomes unavailable because one or more nodes it

depends on are unavailable, we then consider nodes of two types: AND and OR .

!

"
$

"
#

(a) AND

!

"
$

"
#

(b) OR

Figure 5.2: Two simple AND /OR dependency graphs, respectively with AND and

OR nodes. Each of these nodes can also be indicated as internal nodes (i.e. m′ is

the internal node of m).

If m is a node in an AND /OR dependency graph and n1, . . . , nk are the nodes m

depends on, we say that

• m is unavailable at time t iff its internal node m′ is unavailable at time t or

– at least one node in n1, . . . , nk is unavailable at time t, in case m is an

AND node.

– n1, . . . , nk are all unavailable at time t, in case m is an OR node,

Formally,

Definition 5.1 (AND /OR dependency graph). An AND /OR dependency graph⟨N, E⟩ is a directed and acyclic graph (DAG) where N is the set of nodes, and

is partitioned in AND-N and OR-N, and E is the set of edges E ⊆ {⟨u, v⟩ ∣ u, v ∈
N}.

123

Chapter 5. A2THOS: Availability Analysis and Optimisation in SLAs

Given a graph ⟨N, E⟩, we call N ′ the set of the internal nodes of g; N ′ = {n′
internal of n ∣ n ∈ N}.
Running example - Part 5.1. In this example we analyse the availability of an IT

system providing two IT services (Service1 and Service2), and implemented

by means of three applications (App1, App2 and App3) running on five differ-

ent servers (Srv1, Srv2, Srv3, Srv4, Srv5). Service1 is implemented by

App1 and App2 in such a way that the service goes off-line only when both ap-

plications are off-line (OR dependency). Service2 is implemented by App3,

and App3 depends on App2 to work properly. App1 is a distributed application

running on Srv1, Srv2 and Srv3 in such a way that it can operate only if both

Srv1 and either Srv2 or Srv3 are on-line. App2 runs on Srv3, and App3

runs in both Srv4 and Srv5 with a load-balancing mechanism, such that it can

continue to operate even if one of them is off-line. Finally, the system is protected

by the firewall FW1. According to this description, we build the AND /OR depen-

dency graph g = ⟨N,E⟩ as follows:

AND-N = {Service1, Service2, FW1 App1, App2, App3, Srv1, Srv2,

Srv3, Srv4, Srv5}, OR-N = { OR1, OR2, OR3 }, and E = { ⟨Srv1, App1⟩,⟨Srv2, OR2⟩, ⟨Srv3, OR2⟩, ⟨Srv3, App2⟩, ⟨Srv4, OR3⟩, ⟨Srv5, OR3⟩, ⟨OR2,

App1⟩, ⟨OR3, App3⟩, ⟨App1, OR1⟩, ⟨App2, OR1⟩, ⟨App2, App3⟩, ⟨App3,

Service2⟩, ⟨FW1, Service1⟩, ⟨FW1, Service2⟩, ⟨OR1, Service1⟩ }.

To model the OR dependencies correctly we added three virtual nodes to act as

logical gates: OR1, OR2 and OR3. These nodes do not correspond to any existing

component of the system, and therefore they cannot fail by themselves. Similarly,

also the two nodes representing services (Service1 and Service2) corre-

spond to system functionalities which cannot fail by themselves. Figure 5.3 shows

the AND /OR dependency graph of our running example.

In classic reliability theory, the internal state of a node is described by a ran-

dom variable which assumes value 1, corresponding to the functioning state, and

0, corresponding to the failed state. Accordingly, the state of a system made of

multiple components is described by a vector of random variables, each describing

the state of one component. It is also possible to describe the state of a (sub)system

with values 0 or 1 as a function of the states of the (sub)system components.

We represent these concepts by means of the state function χ. Given a node

m, χ(m′, t) is 0 iff m at time t suffers an internal failure, and is 1 otherwise.

Similarly, χ(m, t) = 0 indicates that the node m is unavailable at time t. As

explained above, the state function of a node m is a function of the state of its

internal node and the state functions of the nodes it depends on. This is formalised

in the next definition.

Definition 5.2 (State Function). Let g = ⟨N,E⟩ be an AND /OR dependency

124

5.3. Analysis of the minimal service availability

!"#$%&"'

()' *+'

!"#$%&",

-..,-..' -../

(),

!#$' !#$, !#$/ !#$0 !#$1

()/

!"#$%!&"'"()"*()(!+,-./00 !"#$%!&"'"()"*()(!+,-./012

34-567%

89:-567%

;(5&"'"()"*()(!+,-./000

;(5&"'"()"*()(!+,-./00 ;(5&"'"()"*()(!+,-./00 ;(5&"'"()"*()(!+,-./002

Figure 5.3: The AND /OR dependency graph representing the system we analyse

in our running example. AND nodes are represented by the ∧ symbol, OR nodes

by the ∨ symbol.

graph. We say that χ is a state function for g iff χ ∶ (N ∪N ′) ×R+ → {0,1}, and

for each m ∈ N and t ∈ R+ the following holds: let n1, . . . , nk be the nodes in N

m depends on. Then

χ(m, t) =
⎧⎪⎪⎪⎨⎪⎪⎪⎩
χ(m′, t) ⋅ χ(n1, t) ⋅ . . . ⋅ χ(nk, t), if m is an AND node

χ(m′, t) ⋅max(χ(n1, t), . . . , χ(nk, t)), if m is an OR node
(5.1)

Using this function, we can represent the part of a time interval [t0, t1] in

which a given node is available as the infinite set {t ∈ [t0, t1] ∣ χ(m′, t) = 1}.
So, given the state function of all the internal nodes in an AND /OR depen-

dency graph, one can iteratively compute the state function of all the nodes in the

graph (here the fact that the graph is acyclic guarantees that the above function

is well defined). It should also be noted that χ(m, t) is a random variable, as a

function of random variables.

According to the dependability theory [13], the interval availability of a node

m is the fraction of a given interval of time that m operates within tolerances.

Supposing the given interval of time is [t0, t1], the formula of interval availability

is given by:

Ā(m, t0, t1) = 1

t1 − t0
∫

t1

t0

χ(m, t)dt (5.2)

125

Chapter 5. A2THOS: Availability Analysis and Optimisation in SLAs

The limiting interval availability, or steady-state availability, is the expected

fraction of time in the long run that the system operates within tolerances

(limt→∞ Ā(m, t0, t)).
The formulas for availability we just described, however, are too general to

perform numerical calculations. χ(m, t), being a random variable, will be gov-

erned by a distribution function. Therefore, in reliability theory, it is common

practice to assume a stationary alternating renewal process, i.e. a system with

independent, exponential distributions of failure and repair times. Under this as-

sumption, the formula for the limiting interval availability is given by µ

λ+µ
, where

λ is the failure rate and µ is the repair rate. λ and µ can be estimated for a real sys-

tem based on the MTBF and MTTR, and this allows one to compute the limiting

interval availability for a real system (under the given assumptions).

In SLAs, the agreed minimal availability is always indicated as fraction of up-

time in a given time frame (e.g. 0.98 uptime per month). Notice that the presence

of the time frame is crucial: for instance, guaranteeing 0.99 uptime per month is

more difficult than guaranteeing 0.99 uptime per year. In the first case the system

may not be off-line for more than 7.2 hours in a row, while in the second case the

system may be off-line for up to 87.6 hours in a row. Equation, (5.2) can be seen

as a formalisation of the availability parameter used in SLAs.

The availability of a component is also given under the assumption that any

other component it depends on is always available. For example, for server man-

agement, the SLA ensures a given availability level, provided that the data centre

the server is deployed in and the network the server is connected to are operating

within tolerances.

Now, the technical question we are going to address in the rest of this section,

the answer of which will form the basis of our approach, is the following.

Let us fix a reference time interval [t0, t1] and suppose that we know a lower

bound for the availability of the internal nodes of the nodes in a graph, i.e. for

each n′ ∈ N ′, we know an αn′ such that the state function χ satisfies the following

equation:

(av(n′) =) 1

t1 − t0
∫

t1

t0

χ(n′, t)dt ≥ αn′ (5.3)

where av(n’) is the fraction of the time interval [t0, t1] in which n′ was operating

within tolerance. Given an arbitrary node m ∈ N , what can we say about av(m)
in the same time period? In particular, can we compute a lower bound for it?

Since in SLAs the components availability is given, in the context of this chap-

ter we do not need to make assumptions on the distribution of component faults

and repairs. This allows us not to define the distribution function that governs the

internal state of components.

126

5.3. Analysis of the minimal service availability

Dependency Sets

To answer the question above, we have to introduce the concept of dependency

set. The dependency set of a node m is the set of the smallest sets of internal nodes

in the AND /OR dependency graph which, if all unavailable at the same time, will

cause the failure of m. The elements of a dependency set have the same property

as the minimal cut sets of a FT, and can be obtained similarly by representing

the graph as a boolean equation and the using substitution methods to reduce the

equation. We will now present a more formal definition of dependency sets.

Definition 5.3. Consider an AND /OR dependency graph g = ⟨N,E⟩ and a node

m ∈ N . The dependency set of m, DEPSm ⊆ ℘(N’), is defined inductively as

follows.

• If m is a leaf node, then DEPSm = {{m′}}.
• If m has children n1 .. nk; let DEPSn1

, . . . ,DEPSnk
be the dependency set of

n1, . . . , nk and assume (without losing generality) that for every i, DEPSni
={Di,1, . . . ,Di,li}, then:

– if m ∈ AND-N then

DEPSm = {{m′}} ∪⋃i∈[1 .. k]DEPSni
;

– if m ∈ OR-N then

DEPSm = {{m′}} ∪ {D1,j1 ∪ ⋅ ⋅ ⋅ ∪Dk,jk ∣Di,ji ∈ DEPSni
}.

Running example - Part 5.2. By applying the recursive Definition 5.3 to our

example AND /OR dependency graph, we obtain the following dependency sets

for Service1 and Service2: DEPSService1 = {{FW1’}, {App1’, App2’},

{App1, Srv3’}, {Srv1’, App2’}, {Srv1’, Srv3’}, {App2’, Srv2’, Srv3’},

{Srv2’,Srv3’}. DEPSService2 = {{FW1’}, {App2’}, {App3’}, {Srv3’}, {Srv4’,

Srv5’}}. For the sake of presentation we did not include in the dependency sets

the internal nodes that cannot fail by themselves (i.e. Service1′, Service2′,

OR1′, OR2′ and OR3′). It is easy to see that when the nodes of any of the elements

of DEPSService1 are unavailable at the same time, Service1 is unavailable,

and the same for DEPSService2.

The dependency set of a node is always a set of sets of internal nodes, so

without loss of generality, we can always write DEPSm = {D1, . . . ,Dk}.
As for minimal cut sets in FTs, a relevant property of DEPSm is that, if the

internal m′ of m is available at a given time t, then m is not available only if there

exists DEPSm such that at least all the internals of the nodes contained in one

element D of DEPSm are all unavailable. More formally, if we fix a time t then

χ(m, t) = 0⇔ ∃D ∈ DEPSm,∀d ∈D,χ(d, t) = 0 (5.4)

127

Chapter 5. A2THOS: Availability Analysis and Optimisation in SLAs

For the sake of presentation we skip the (straightforward) demonstration of this

property.

As an example let us consider the two toy cases described in Figure 5.2. In

case (a), DEPSm = {{m′},{n′1},{n′2}}; so if χ(m, t) = 0 and χ(m′, t) = 1, then

either χ(n′
1
, t) = 0 or χ(n′

2
, t) = 0. In case (b), DEPSm = {{m′},{n′1, n′2}}; so if

χ(m, t) = 0 and χ(m′, t) = 1, then both χ(n′
1
, t) = 0 and χ(n′

2
, t) = 0.

The following theorem states that if we know a lower bound for the availability

of the internal nodes of an AND /OR dependency graph then we can effectively

compute an optimal lower bound of the availability of each node m ∈ N in the

graph. In the theorem we will also explain the meaning of an optimal availability

lower bound.

Theorem 5.1. Let g = ⟨N,E⟩ be an AND /OR dependency graph, [t0, t1] be a

time interval, and for each n′ ∈ N ′ let αn′ be a real value αn′ ∈ [0,1]. Then, for

each m ∈ N we can compute αm, such that for each state function χ for g the

following holds:

IF ∀n′ ∈ N ′
1

t1 − t0
∫

t1

t0

χ(n′, t)dt ≥ αn′ (5.5)

THEN
1

t1 − t0
∫

t1

t0

χ(m, t)dt ≥ αm (5.6)

αm is optimal if we can find a χ for g such that (5.5) holds and in (5.6) equality

holds.

We provide the proof for this theorem in Section 5.8. As a result of the proof,

we obtain a method to calculate the lower bound αm of the availability of any node

m in the graph. The method consists in solving the following linear programming

problem.

αm =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

minimize 1 − u1 − ⋅ ⋅ ⋅ − uk

subject to

u1 = (1 − a1,1) = ⋅ ⋅ ⋅ = (1 − a1,l1)
⋮

uk = (1 − ak,1) = ⋅ ⋅ ⋅ = (1 − ak,lk)
∀n ∈ N,∑di,j∈Dn

1 − ai,j ≥ 1 − αn′

a1,1, . . . a1,l1 , . . . , ak,1, . . . , ak,lk ≥ 0

(5.7)

Intuitively, the availability of m is minimal when m is sequentially disrupted

by the simultaneous failure of all the internal nodes of each element of DEPSm.

Without loss in generality, we can write DEPSm = {D1, . . . ,Dk}, and for each Di

128

5.3. Analysis of the minimal service availability

we can write Di = {di,i, . . . , di,li}. According to this notation, ui in (5.7) represent

the unavailability caused to m by Di and ai,j represent the availability of the ele-

ment di,j ∈ Di. Given two elements D1,D2 ∈ DEPSm, these two elements might

not be pairwise disjoint (i.e. D1 ∩D2 ≠ ∅) because some elements in D1 and D2

refer to the same node. In (5.7) we call Dn the set of elements di,j which all refer

to the same node n. The objective function of (5.7) represents the availability of

node m, which is expressed as 1 less the unavailability caused by each element

in DEPSn. The first k conditions impose that the internal nodes of each element

Di ∈ DEPSn are unavailable at the same time: this ensures m is disrupted because

of the simultaneous failure of all the internal nodes in Di. The subsequent condi-

tion imposes for each node n ∈ N that the availability of its internal node n′ is not

less than αn′: in this way we ensure that, even if an internal node n′ is contained

in more than one element of DEPSn, the unavailability caused by its failure will

not exceed its upper bound (1−αn′). The last condition ensures no negative value

can be used to represent availability. A solution to (5.7) can be found by using the

simplex algorithm.

From now on, we call αm determined from (5.7) the minimal aggregated avail-

ably level of m.

Running example - Part 5.3. According to the dependency sets we previously de-
termined and to (5.7), the linear programming problem which determines αService1
is:

⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

minimize 1 − u1 − u2 − u3 − u4 − u5 − u6 − u7 subject to

u1 = (1 − aFW1,1)

u2 = (1 − aApp1,2) = (1 − aApp2,2)

u3 = (1 − aApp1,3) = (1 − aSrv3,3)

u4 = (1 − aSrv1,4) = (1 − aApp2,4)

u5 = (1 − aSrv1,5) = (1 − aSrv3,5)

u6 = (1 − aApp2,6) = (1 − aSrv2,6) = (1 − aSrv3,6)

u7 = (1 − aSrv2,7) = (1 − aSrv3,7)

1 − aFW1,1 ≥ 1 − αFW1′ = 0.001

(1 − aApp1,2) + (1 − aApp1,3) ≥ 1 − αApp1′ = 0.01

(1 − aApp2,2) + (1 − aApp2,4) + (1 − aApp2,6) ≥ 1 − αApp2′ = 0.005

(1 − aSrv1,4) + (1 − aSrv1,5) ≥ 1 − αSrv1
′
= 0.001

(1 − aSrv2,6) + (1 − aSrv2,7) ≥ 1 − αSrv2′ = 0.001

(1 − aSrv3,3) + (1 − aSrv3,5) + (1 − aSrv3,6) + (1 − aSrv3,7) ≥ 1 − αSrv3
′
= 0.01

aFW1,1, aApp1,2, aApp1,3, aApp2,2, aApp2,4, aApp2,6, aSrv1,4,

aSrv1,5, aSrv2,6, aSrv2,7, aSrv3,3, aSrv3,5, aSrv3,6, aSrv3,7 ≥ 0

Which gives a lower bound for the availability of Service1 of 0.984. Similarly,

we can determine αService2 = 0.972. Figure 5.4 shows one possible scheduling

129

Chapter 5. A2THOS: Availability Analysis and Optimisation in SLAs

for the failure of the components on which Service1 depends on, resulting in

Service1 having an availability of αService1 (0.984).

!"#$

!"#%

!"#&

'(($

'((%

)*$

+ +,++- +,+$ +,+$-
!"#$#%&#'%&%() *+,-./$%0.1

Figure 5.4: One possible scheduling for the failure of FW1, App1, App2, Srv1,

Srv2 and Srv3 resulting in Service1 having an availability of 0.984. System

components are on the vertical axis and the components unavailability fraction of

time (∈ [0,1]) is on the horizontal axis.

5.4 Optimisation of outsourced services

In the last section we have seen that determining the minimal availability level

of a complex system is a non-trivial problem, that can be solved by reducing it to

an optimisation problem. A relevant application of this result is the minimisation

of the costs of outsourced subcomponents. Given that outsourcing has a cost that

may depend (also) on the minimal availability guaranteed for the outsourced com-

ponent, a manager typically needs to minimise the costs of the outsourcing while

guaranteeing that the services provided by the system meet the target availability.

The situation is the reverse from the one in the previous section: instead of

calculating the service minimal availability given the minimal availability of the

various system components, one wishes to calculate what is the least expensive

combination of components given the target minimal availability of the services.

Thus, availability level optimisation consists in determining the assignment of an

availability level to the components of the system for which it is possible to choose

among different availability levels, so that:

130

5.4. Optimisation of outsourced services

1. a minimal aggregated availability level is ensured for the services provided

by the system;

2. the cost of the assignment is minimal.

To this end we distinguish among three types of nodes in an AND /OR de-

pendency graph: target availability nodes, variable availability nodes and given

availability nodes. More formally, given an AND /OR dependency graph ⟨N,E⟩,
N = NT ∪NV ∪NG, where NT , NV and NG are the pairwise disjoint sets of target,

variable and given availability nodes.

Target availability nodes are the nodes modelling the services provided by the

system. The target expresses the minimal availability level which the system is or

should be able to guarantee regarding a given functionality (service). Typically,

we define a target availability level on the service nodes of the AND /OR depen-

dency graph, whenever there is an SLA (be it company internal or not) which

imposes a certain level of availability for them.

Definition 5.4 (Target availability level). Given an AND /OR dependency graph⟨N,E⟩, and NT ⊂ N the set of target availability nodes, the target availability

level of a node is a mapping target-availability ∶ NT → [0,1].
Running example - Part 5.4. Our example system provides two main function-

alities, described in the AND /OR dependency graph by the Service1 and

Service2 nodes. The functionality described by Service1 is more mission-

critical than the one described by Service2, and an SLA set on the system

ensures a minimal availability level of 0.99 for Service1 and of 0.983 for

Service2. Accordingly, target-availability(Service1) = 0.99 and

target-availability(Service2) = 0.983.

Variable availability nodes model the situation in which it is possible to choose

the availability level of a component among different options. A typical case of

variable availability level is when the management of system components is out-

sourced to another department or to another company: in these cases, the system

manager may have the possibility to choose for each component a different av-

ailability level (e.g. gold, silver and bronze), with different quality level and a

different associated price.

We model the domain of a variable availability level by means of a set of

availability options.

Definition 5.5 (Availability option). Let ⟨N,E⟩ be an AND /OR dependency

graph, NV be a set of variable availability nodes and N ′V be the set of the in-

ternals of the elements in NV .

131

Chapter 5. A2THOS: Availability Analysis and Optimisation in SLAs

• An availability assignment for NV is a function aa ∶ N ′V → [0,1].
• An availability option for NV is a pair ⟨aa, c⟩, where aa is an availability

assignment and c ∶∈ R is the cost associated to it. We call O the set of all

the availability options.

Usually, a company might choose between different outsourcing options. No-

tice that the outsourcing option is given on a set of nodes, and not on a single

node. This allows us to model bulk discounts, i.e. the fact that outsourcing – say

– ten components is usually less expensive than ten times the outsourcing of a

single components. (For those who are familiar with optimisation problems: this

introduces a form of non-monotonicity in the outsourcing offers, where outsourc-

ing more services could be potentially less expensive than outsourcing a smaller

number of services. This non-monotonic aspect of the problem makes it more

difficult to find the optimal solution.)

Table 5.1: An example of availability level options price catalogue

Availability level Minimal quantity Windows price UNIX price

0.99 1 server 1000 Euro 900 Euro

0.99 6 servers 900 Euro 800 Euro

0.995 1 server 1300 Euro 1200 Euro

0.995 11 servers 1200 Euro 1100 Euro

0.998 1 server 1500 Euro 1400 Euro

0.998 6 servers 1400 Euro 1300 Euro

Running example - Part 5.5. An outsourcing company has provided an offer for

managing the servers in our example system. The offer includes different availa-

bility level options for the management of Windows servers and UNIX servers.

Table 5.1 summarises the price catalogue for this offer. In our example Srv1,

Srv2 and Srv3 are Windows servers with variable availability and both Srv4

and Srv5 are UNIX servers with variable availability. The set of variable availa-

bility nodes is NV = {Srv1,Srv2,Srv3,Srv4,Srv5}. According to the price

catalogue, there are number of availability levels at the power of

number of variable availability nodes (35 = 243) possible com-

binations for the minimal availability level of the elements in N ′V , i.e. ∣O∣ = 243.

One of these combinations is ⟨aa1,4800⟩ where aa1(Srv1′) = aa1(Srv2′) =
aa1(Srv3′) = aa1(Srv4′) = aa1(Srv5′) = 0.99, and c = 3 ⋅ 1000+ 2 ⋅ 900 = 4800.

To guarantee that the condition 1) of our problem is met, we extend the defini-

tion of minimal aggregated availability to be applied also to nodes with a variable

132

5.4. Optimisation of outsourced services

availability. According to this, given a node t ∈ NT with target availability, we

call minimal-availability(t, o) the minimal aggregated availability of t when for

all nodes n with variable availability αn′ is determined by o.

Finally, a node with given availability model components for which the mini-

mal availability is known and not variable.

Definition 5.6 (Given availability level). Given an AND /OR dependency graph⟨N,E⟩, and NG ⊂ N the set of target availability nodes, the given availability

level of a node is a mapping given-availability ∶ NT → [0,1].

Running example - Part 5.6. In our example the components whose minimal av-

ailability is given are FW1, App1, App2 and App3. Therefore, according to Fig-

ure 5.3 we have that given-availability(FW1) = 0.999, given-availability(App1) =
0.99, given-availability(App2) = 0.99 and given-availability(App3) = 0.993.

We now can give a more formal definition of the problem at hand. Let ⟨N,E⟩
be an AND /OR dependency graph, N = NT ∪̇NV ∪̇NG, a function target-availabiliy

on N ′T , a function given-availability on N ′G, a set O of availability options for NV

and a function minimal-availability for NT ×O. Find the option o ∈ O with mini-

mal cost such that ∀t ∈ NT , minimal-availability(t, o) ≥ target-availability(t).
As a result, we obtain the optimal assignment of variable availability levels as

the solution to the linear programming problem with variables in a finite domain

given by (5.8).

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

choose o = ⟨aa, c⟩ ∈ O to

minimize c

subject to:

mimimum-availability(t1, o) ≥ target-availability(t1)
⋮

minimal-availability(tP , o) ≥ target-availability(tP)

(5.8)

Running example - Part 5.7. Recall that the nodes with variable availability

are Srv1, Srv2, Srv3, Srv4 and Srv5. The set of availability options O is

made of 243 elements. We want to ensure that the lower bound of the monthly

availability is 0.99 for Service1 and 0.983 for Service2. Consequently, the

optimisation problem is as follows:

133

Chapter 5. A2THOS: Availability Analysis and Optimisation in SLAs

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

choose o = ⟨aa, c⟩ ∈ O to

minimize c

subject to:

minimal-availability(Service1, o) ≥ 0.99
miniaml-availability(Service2, o) ≥ 0.983

Which gives us a (optimal) solution with cost 6300 Euro when αSrv1’ = 0.998,

αSrv2 = 0.99, αSrv3 = 0.998, αSrv4 = 0.99 and αSrv5 = 0.998.

5.5 Implementation and benchmarks

Implementation We have implemented a prototype of A2THOS to run our lab

experiments and to support case-studies. The prototype is written in Java and

prolog in about 10,000 lines of code. We chose to use the ECLiPSe [95] prolog

platform since it provides a flexible yet powerful set of constraint solvers which

we need to deal with the linear programming problems of A2THOS. The available

solvers include fd, a solver for finite domain integer problems, ic a solver for hy-

brid integer/real-interval problems and eplex, an interface to an (external) simplex

solver library.

Figure 5.5: A2THOS architecture

Figure 5.5 shows the software architecture of our prototype. It consists of four

interacting components: the GUI front-end, the driver, the analysis and the optimi-

sation engines. The GUI front-end manages the interaction with the final user. It is

implemented as a standalone Java application and it allows the user to quickly cre-

ate the AND /OR dependency graph by dragging and dropping nodes and edges,

134

5.5. Implementation and benchmarks

to annotate each node with its availability figure(s) or availability level options

and to view the analysis and optimisation results. The analysis engine solves the

availability analysis problem, described in Section 5.3. It is implemented in pro-

log by using the eplex (simplex algorithm) solver of the ECLiPSe platform. The

optimisation engine solves the availability optimisation problem, which we de-

scribe in Section 5.4. It is also implemented in prolog by using the fd solver of

the ECLiPSe platform. Finally, the driver is written in Java and manages the in-

teraction of the Java components with the prolog ones. It uses the JavaECLiPSe

interface to build a prolog optimisation problem from the AND /OR dependency

graph and the other availability-related information inserted by the user. It then

translates the results given by the engines in a format that can be presented to the

user by the Java GUI front-end.

Benchmarks To be of practical use, our prototype needs to deliver a solution

to the linear programming problems in a reasonable time. Unfortunately, the

simplex algorithm has a worst-case exponential complexity [72], and solving by

brute-force linear programming problems with variables in a finite domain has an

exponential complexity in the number of variables and their domain size. This

means that the implementation does not scale, and therefore we have to bench-

mark whether it can tackle the size of a real-world IT system. In the sequel we

show that it does so, nevertheless we want to stress that our implementation is just

a proof of concept and its speed can with no doubt be improved: our goal is to

demonstrate how this can be done, and not that of providing a fast implementation.

We benchmarked the performance of our prototype by running it on inputs

with growing size. We run our test on a machine with an Intel Pentium 4 CPU

running at 3.6 GHz and with 2 GB RAM.

First, we benchmarked the availability analysis. Here, the complexity of the

simplex algorithm is determined by the number of variables and constraints of

the linear programming problem it solves. Therefore, we generate inputs for the

analysis engine by increasing the number of nodes and by adjusting the node types

and edges to obtain a growing number of constraints (and associated variables)

for the linear programming problem of (5.7). We set the maximum number of

nodes for our tests to 250 and the maximum number of constraints to 600. In

our experience these numbers correspond to a fairly large IT system. To increase

randomness we also repeat several times (five) the test for a certain number of

nodes and constraints, and we then calculate the average computation time. The

results are shown in Table 5.2. Our tests indicate that given a fixed number of

constraints, the computational time is basically linear in the number of nodes, and

that our prototype is able to handle an AND /OR dependency graph of 250 nodes

and 600 constraints on average in less than a minute.

135

Chapter 5. A2THOS: Availability Analysis and Optimisation in SLAs

Table 5.2: Performance of the simplex algorithm for availability analysis

Nodes Constraints Time (s)

15 10 0.00001

15 20 0.002

60 10 0.001

60 20 0.005

60 60 0.02

120 10 0.004

120 20 0.01

120 100 0.09

120 150 0.22

120 250 0.8

120 300 1.3

120 600 20.2

250 10 0.009

250 20 0.011

250 100 0.22

250 150 0.5

250 250 1.6

250 300 2.6

250 600 41.1

Secondly, we benchmarked the optimisation algorithm. Our prototype imple-

mentation works by exhaustive searching the space of all available options and

choosing the best one. The algorithm is thus optimal (it finds the best solution,

every time), but its complexity is exponential in the number of variables (which

in this case corresponds to the number of nodes with variable availability). Again,

the fact that the algorithm is exponential means that we cannot expect it to scale

up indefinitely, and it is therefore important to assess via benchmarks how big of

a problem it is able to tackle.

We carried out these benchmarks as follows: we create a simple program

which takes as input the desired number of nodes with availability level options,

the average number and the average size of the dependency sets and generates a

random AND /OR dependency graph with random availability level options which

match the given parameters. We set three possible availability levels for nodes

with variable availability, since that is the most common configuration in out-

sourcing scenarios (gold, silver and bronze). We then solve the problem with our

optimisation engine and note the execution time. We use an increasing number of

nodes with variable availability (up to 50) and we specify different average num-

136

5.5. Implementation and benchmarks

ber and average sizes of the dependency sets. We repeat several times (five) the

test for each configuration in order to increase randomness.

Table 5.3: Performance of the availability optimisation algorithm with 50 variable

availability nodes

Independent nodes Time (s)

10 ≤ 0.01

15 0.01

20 197.20

25 5418.50

30 ≥ 21600.00

Our results indicates that the computational time is mostly influenced by the

number of independent nodes. By independent node here we mean a node that

appears in only one element of a dependency set. We report in Table 5.3 the

results of our tests with 50 nodes. As the number of independent nodes increases,

the computational time increases as well. We are able to solve a problem with 50

nodes among which 25 independent in one hour and a half. However trend is –

as expected – exponential, and with 30 independent nodes we exceed six hours of

computation. This is due to the fact that the solver has to explore all the possible

combinations of values for the variables associated to independent nodes, while

the domain of the other variables is limited by the problem constraints.

Our benchmark indicates that the crucial factor influencing the computation

time is the number of independent nodes (outsourced components) which con-

tribute independently to the system availability (AND dependency), and that the

algorithm as it is now is always able to handle situations with up to 25 such nodes.

In practice, this number is sufficient to model a single medium/large IT system, as

we will show in the next section. It is worth noting that one can break a huge IT

system into independent subsystems and apply the algorithm to them one by one.

In this light, 25 outsourced components represent a limit which is basically never

exceeded (in our industrial test case, which was carried out at a multinational

company, we had a maximum of 6 independent nodes).

In the unlikely case that one would need to apply the algorithm to a too large

system (e.g. exceeding the 40 AND-independent), one could still refer to the opti-

misation problem we have reported in Section 5.4, but then use a non-exhaustive

algorithm to find a solution to it. Non-exhaustive algorithms (e.g. those based

on local search [31]) have the disadvantage that they do not guarantee finding

the optimal solution (they usually find a local optimum, which is not guaranteed

137

Chapter 5. A2THOS: Availability Analysis and Optimisation in SLAs

to be a global optimum as well), but could probably easily scale to hundreds of

independent nodes.

5.6 Methodology - practical use of A2THOS

In this section we present a case-study we carried out on the IT infrastructure

of a large multinational company. With this case-study we want to address three

important questions regarding A2THOS:

1. can A2THOS be applied to a practical case, i.e. does it not require informa-

tion not available in practice?

2. does the prototype we implemented scale up to conditions of practice?

3. does A2THOS yield information useful for its intended users?

Let us now present the context in which we carried out the case-study. The

multinational company (from now on we call it the Company) has a global pres-

ence in over 50 countries and counts between 100.000 and 200.000 employees.

Our case-study was conducted at the site of IT facilities for the Company’s Euro-

pean branch.

The Company IT department supports the business of hundreds of other de-

partments by offering thousands of applications accessed by approximately one

hundred thousands employee workstations and by many hundreds of business

partners. IT services are planned, designed, developed and managed by the IT

infrastructure department located at the Company’s headquarters. These services

(e.g. e-mail or ERP systems) are part of the IT infrastructure which is used by all

the different Company’s branches all over Europe.

For efficiency reasons, like in most other large organisations, business units

exchange services by means of an “enterprise internal market”. One business

unit pays another one for the use of a given service and the service provider unit

finances its activities by means of these funds. Within this “internal market”,

the quality of the provided services is regulated by means of SLAs. Among the

other Quality of Service (QoS) parameters, SLAs include the minimal ensured

availability of the offered services.

IT services are designed internally by the IT department and then partly out-

sourced for implementation and management to another company. We call this

company the Outsourcer. The Outsourcer is a market-leading international IT ser-

vices provider. The outsourced tasks include application and server management,

help-desk and problem solving. Although the servers running the IT services are

138

5.6. Methodology - practical use of A2THOS

owned by the Company and physically kept within its data centres, the Outsourcer

manages the OS and the software running on them. The Outsourcer has signed

contracts with the Company which include SLAs regarding both the security of

the information managed by the outsourcing company and the availability of the

outsourced services.

The Company and the Outsourcer have established a standard contract regu-

lating the application and server management service provisioning. The standard

contract is made of several building blocks, e.g. UNIX server management, Win-

dows server management or Oracle database management. Every time the IT

department of the Company needs to deploy a new IT service, a new request is

issued to the Outsourcer to provide the building blocks needed by the service. The

QoS parameters of each building block are also standardised. Regarding availabi-

lity, for each building block the Company can choose among different guaranteed

minimal availability levels. The price for the provisioning of each building block

with specific QoS parameters is part of the price catalogue of the Outsourcer.

One of the problems the IT infrastructure managers of the Company have to

deal with is how to determine the minimal availability level of new IT services.

In fact, this availability level is meant to be used to set up the Company internal

SLAs between the service provider (the IT department) and the service users (the

other departments of the Company). It is important that the IT infrastructure man-

ager is as precise as possible in determining the minimal availability level to be

agreed with the internal users. In fact, a too low value could prevent the agree-

ment to be reached, as the service users may not be willing to pay for a service

which does not fit their needs in terms of availability. On the other hand, a too

high value may impact the budget of the IT department, as for each time that the

SLA is not respected the department has to pay a penalty. Ultimately, if the SLAs

are violated too many times the service users may decide to terminate the service

delivery contract before the IT department has compensated the initial service es-

tablishment costs. The reverse problem faced by the IT infrastructure manager

is: if the service user has a specific requirement for the availability of the service,

which QoS levels should be agreed with the Outsourcer for the outsourced build-

ing blocks such that the resulting internal service availability level meets the user

requirements?

As we said, traditional approaches to the availability analysis are not quite

applicable to this context. In fact, traditional availability analysis of complex sys-

tems require the analyst to know for each system component the Mean Time To

Failure (MTTF) and Mean Time To Recovery (MTBR) parameters. The personnel

of the IT department can measure (or estimate) these parameters for the portion of

the IT system which is under its direct control. However, it cannot do this for the

parts (a large majority) that are managed by the Outsourcer. The only information

139

Chapter 5. A2THOS: Availability Analysis and Optimisation in SLAs

the IT manager can rely on for outsourced components is the guaranteed mini-

mal availability level agreed with the Outsourcer. Therefore, the IT infrastructure

manager currently estimates the service availability levels based on simple heuris-

tics (e.g. if he need 0.99 availability for the service, he will choose at least 0.99

availability for each building block).

In our case-study we addressed this problem using the A2THOS framework.

We structured the case-study in two sub-cases. In the first sub-case we carried

out the availability analysis of an IT system which is already in place for some

years. In the second sub-case we carried out both the availability analysis and the

optimisation for a new IT system which is about to be deployed. Our results have

been used by the IT manager both to set the internal SLAs for the new service and

to choose the proper availability level of the building blocks of the system.

In the first sub-case, the IT system we analysed is the authorisation and authen-

tication system of the Company, called Oxygen. To carry out the availability anal-

ysis we first needed to represent Oxygen as an AND /OR dependency graph. We

extracted the information from the network diagram, the functional specification

document, and the security architecture and design document. The procedure we

followed is described in Chapter 3. We used our tool to represent the AND /OR de-

pendency graph of the system and to annotate nodes with their minimal availabi-

lity level. The resulting graph consists of 65 nodes and 112 edges. Among the

nodes are 13 IT services, 32 applications, 14 servers equally distributed between

2 datacenters and connected simultaneously to 2 different network segments by

means of 2 different firewalls.

The second step of this sub-case is to determine the minimal monthly availa-

bility for the nodes in the graph. We extracted this information from the SLA

documentation attached to the standard contract signed between the Company

and the Outsourcer. Finally, we extracted the current minimal monthly availa-

bility of the IT services supported by Oxygen from the Company internal SLAs

documentation.

We used the analysis engine of our tool to carry out the availability analysis:

the whole algorithm completed in less than one minute for Oxygen.

Table 5.4 reports the results of our analysis. We report in the first column

the (anonymised) service, in the second column the minimal monthly availability

level of each service calculated with our tool and the existing minimal monthly

availability level reported in the internal SLAs in the third column. Compared

to the estimates made by the Company IT manager, we observe that the internal

SLA specifies for Service1, Service4, Service5 and Service10 a minimal availa-

bility level which could not be guaranteed even in the case when the Outsourcer

respects all its SLAs with the Company. This is a possible risk for the IT manager

for the reasons we discussed above. On the other hand, we also see that the min-

140

5.6. Methodology - practical use of A2THOS

Table 5.4: Results of the availability analysis on Oxygen

Service Calculated α Existing α

Service1 0.96 0.99

Service2 0.98 0.98

Service3 0.98 0.98

Service4 0.96 0.98

Service5 0.97 0.99

Service6 0.99 0.98

Service7 0.99 0.98

Service8 0.99 0.98

Service9 0.99 0.98

Service10 0.96 0.98

Service11 0.99 0.98

Service12 0.99 0.98

Service13 0.99 0.98

imal monthly availability level we calculated for Service6, Service7, Service8,

Service10, Service11, Service12 and Service13 is higher than the one specified in

SLAs. This is also a criticality for the IT manager, as he is spending more money

than needed to guarantee the availability level of the outsourced Oxygen building

blocks.

The system we analysed in the second sub-case is called Hydrogen and pro-

vides similar functionalities as Oxygen, but for the Company external contractors.

Hydrogen has been designed after Oxygen and is now in the final development

phase. In this phase, the internal SLAs with the Hydrogen service users are al-

ready set, and the Company IT manager has to issue a request to the Outsourcer

for the building blocks to deploy Hydrogen. He also has to specify in the request

the desired availability level for each building block. Therefore, in this second

phase of our case-study we use the availability level optimisation of the A2THOS

framework.

The first step of this sub-case is the same as in the previous case: building

the AND /OR dependency graph. To carry out this step we follow the same pro-

cedure we adopted for Oxygen (and described in more detail in Appendix B).

The resulting graph is made of 26 nodes and 33 edges. Secondly, we annotated

the nodes with given availability. These nodes represent the datacenters and the

network segments. We acquired this information from the IT department person-

nel, which keeps track of the monthly availability performances of their main IT

infrastructure components. We set the given availability as the lowest monthly

141

Chapter 5. A2THOS: Availability Analysis and Optimisation in SLAs

availability value observed in the monitoring data. Finally, we extracted the av-

ailability options for the eight variable availability nodes (servers). We obtained

the required information from the building block description documents and the

price catalogue provided by the Outsourcer to the Company. According to these

documents, the Outsourcer offers three availability levels for the six Unix servers

(0.995, 0.998 and 0.999) and two levels for the two Windows ones (0.995, 0.998).

The resulting number of availability options is 733.

We used our tool to obtain the optimal configuration of availability levels for

the servers of Hydrogen: the whole algorithm completed in less than one minute

for Hydrogen. If the Company IT managers adopted the same strategy chosen for

Oxygen (i.e. to choose the lowest availability level for all the outsourced compo-

nents), they would have spent as little as possible, but two services of Hydrogen

would have had a minimal availability lower than the one set in the internal SLAs.

The optimal combination computed with our tool ensures that the minimal availa-

bility is compliant with the SLAs for all the services, with a cost which is only 2%

greater. We also considered the effect of adding a further availability level (0.990)

to the price catalogue of the outsourced components, extrapolating the cost from

the existing ones. The resulting optimal allocation in this case would be ∼30%

lower. The IT managers will take their decisions based on these results. In more

detail, they will choose the optimal allocation we computed for Hydrogen, and

will negotiate with the Outsourcer the introduction of a new availability level of

0.990 for servers.

Let us now address the questions we listed at the beginning of this section.

Can the method be applied to a practical case? The fact that we were able to

successfully carry out the case-study presented above supports a positive answer

to this question. However, it only shows that we can use the method. Our appli-

cation has not revealed obstacles to usage by other people, but further evidence

would be needed to substantiate this claim positively. It is also interesting to dis-

cuss which other contexts A2THOS can be applied to. The information required

to use A2THOS can be summarised in (1) the components of the IT system un-

der analysis and their functional dependencies, (2) the minimal availability level

of each system component and (3) the different availability levels which can be

chosen for outsourced components and the associated cost. To use A2THOS in

other contexts, these three pieces of information must be available. We learnt

from this case-study that most of the information regarding (1) can be extracted

from the system functional and design documentation. The lacking parts can be

easily integrated by interviewing the technical personnel which designed or im-

plemented the system. Information regarding (2) is normally present in the SLA

documentation for outsourced components. For components which are managed

142

5.6. Methodology - practical use of A2THOS

internally, this information can be extracted by measuring the component’s perfor-

mance over time (as it was done by the Company in this case.) It is also possible to

calculate availability levels analytically, by using standard reliability techniques,

as we mentioned in Section 5.2. Information regarding (3) is only available if the

IT service provider allows its customers to choose among different availability op-

tions. Although some IT service providers do not provide this feature, we learnt

during our case-study that the Outsourcer is applying this strategy to all of its cus-

tomers. Therefore there are indications that say that A2THOS is also applicable

(at least) to these customers.

Does the prototype we implemented scale up to conditions of practice? In

this case-study we applied A2THOS to two distributed systems which are used by

a large multinational company. The size of these systems is comparable to the

size of the other systems the Company is using. The first scalability issue regards

the time needed to build an AND /OR dependency graph for these systems. As

we already argued above, the information required is available, but building an

accurate AND /OR dependency graph for an IT manager can be time consuming.

As the size of the system grows, the difficulty of choosing an (close to) optimal

combination of availability levels for outsourced components grows more rapidly

than the difficulty of building the graph. This suggests that it may be worth using

A2THOS for large systems, whose optimum component availability level combi-

nation is hard to find. Secondly, the case-study confirms that our prototype can

tackle large IT systems. We motivate this statement by the following two ob-

servations. First, the IT manager(s) of the Company make decisions about the

availability of outsourced system components for each new system introduced in

the IT infrastructure. In other words, the unit for the decision of the IT manager

is limited to one system at a time. This is not surprising, if we consider that an

organisation’s IT infrastructure is incrementally built following the needs of the

organisations: every time a new system is added to the infrastructure, only the

availability issues of that system are taken into account. Secondly, the size (in

terms of number of components) of the IT systems we analysed in our case-study

is comparable to the size of the other systems in the Company’s IT infrastruc-

ture. We expect to find the same system size in other (large) organisations as well.

According to this two observations, we can argue that the performances of our

prototype are sufficient in many practical situations, even with an IT system up to

three times larger than the ones we considered.

Does A2THOS yield information useful for its intended users? The feedback

we had from the IT management of the Company suggests a positive answer to this

question. In particular, they found the information useful for: (1) taking informed

143

Chapter 5. A2THOS: Availability Analysis and Optimisation in SLAs

decision about the planning of the availability of their IT services, (2) improve the

quality of the IT services provided to the business units of the Company and (3)

justify to the upper management the outsourcing costs in a more precise way. This

provides support for our claim of potential usefulness of A2THOS for its intended

contexts of application.

5.7 Concluding remarks

In this chapter we address availability planning from the angle of SLM. To

this end, we present A2THOS, a framework for the analysis and optimisation of

the availability of mixed-sourced IT services. The framework consists of (1) a

modelling technique to represent partially-outsourced IT systems, their compo-

nents and the services they provide, based on AND /OR dependency graphs, (2) a

procedure to calculate (a lower bound of) the system availability given the (lower

bounds of) components availability, and (3) a procedure to select the optimum

availability level for outsourced components in order to guarantee a desired target

availability level for the service(s) and to minimise costs. The engine we have

used is a proof-of-concept, and its speed can certainly be improved. This is how-

ever outside the scope of this work.

We have analysed the SLAs of a few organisations and we concluded that

in case of outsourcing, these SLAs were sub-optimal: the final availability levels

were achievable with less expensive means (in some cases, even better availability

levels were achievable at a lower cost). This is not surprising as the optimisation

of the SLAs is a non-trivial problem which in practice is “solved” by educated

guess by the chief IT officer. We have shown in this chapter that this problem can

also be tackled effectively using our modelling framework. Our benchmarks show

that – even though the underlying problem is exponential – A2THOS can tackle

IT systems which are three times larger than the ones we could find at a multina-

tional company. Given that the optimisation of the SLAs can save (immediately)

company money while leaving the global service level unchanged, we believe that

out framework could be profitably applied in practice.

144

5.8. Proof of Theorem 5.1

5.8 Proof of Theorem 5.1

Proof. Assuming without loss in generality that DEPSm = {D1, . . . ,Dk} and Di ={di,1, . . . , di,li} we see that:

χ(m, t) = ∏
i∈[1 .. k]

(maxj∈[1 .. li]χ(di,j, t)) (5.9)

and calling χ(Di, t) = maxj∈[1 .. li]χ(di,j, t) we obtain

av(m) = 1

t1 − t0
∫

t1

t0

χ(m, t)dt (5.10)

=
1

t1 − t0
∏

i∈[1 .. k]

χ(Di, t)dt (5.11)

Let τ(a) = {t ∈ [t0, t1] ∣ χ(a, t) = 1} be the subset of the interval [t0, t1] in

which a functions correctly, since χ ∶ N × [t0, t1]×{0,1} and χ is measurable (for

instance, in our context we can assume that, once we fix a node a, the graph of

χ(a, t) switches from 0 to 1 a finite number of times) we have that

∫
t1

t0

χ(a, t) ⋅ χ(b, t)dt = ∫
τ(a)

χ(b, t)dt = ∫
τ(a) ∩ τ(b)

1dt

Based on this, (5.10) becomes

av(m) = 1

t1 − t0
∫
τ(D1) ∩ ... ∩ τ(Dk)

1dt (5.12)

By set theory, if τ is a set and A,B ⊆ τ , we have that A ∩B = A
τ
∪B

τ τ

, where

A
τ

is the complement of A w.r.t. τ . Then, let τ = [t0, t1], we have that

av(m) = 1

t1 − t0
∫
τ(D1)

τ
∪ ... ∪ τ(Dk)

τ τ 1dt (5.13)

Recall that, if X ⊆ τ and both are measurable,

∫
X

τ fdt = ∫
τ
fdt −∫

X
fdt

thus:

av(m) = 1

t1 − t0
[∫

τ
1dt −∫

τ(D1)
τ
∪ ... ∪ τ(Dk)

τ
1dt] (5.14)

145

Chapter 5. A2THOS: Availability Analysis and Optimisation in SLAs

Recall that if A and B are measurable and f with positive values, we have that

∫A∪B fdt ≤ ∫A fdt + ∫B fdt, where the equality holds if A and B have empty

intersection. Therefore we have that

av(m) ≥ 1 − 1

t1 − t0
[∫

τ(D1)
τ
1dt + ⋅ ⋅ ⋅ +∫

τ(Dk)
τ
1dt] (5.15)

Where the inequality becomes an equality if the Dis are pairwise disjoint.

Intuitively,

∫
τ(Di)

τ
1dt

is the unavailability caused by the nodes in Di in the time interval τ = [t0, t1]. In

fact, let Di = {di,1, . . . , di,li}, we have that

∫
τ(Di)

τ
1dt = ∫

τ(di,1) ∪ ... ∪ τ(di,li)
τ
1dt (5.16)

By set theory, if A,B ⊆ τ we have that A ∪B
τ
= A

τ
∩B

τ
; then

∫
τ(Di)

τ
1dt = ∫

τ(di,1)
τ
∩ ... ∩ τ(di,li)

τ
1dt (5.17)

Recall that, if A and B are measurable,

∫
A ∩ B

1dt ≤ min(∫
A
1dt,∫

B
1dt)

thus:

∫
τ(Di)

τ
1dt ≤ minj∈[1 .. li] ((t1 − t0) −∫

τ(di,j)
1dt) (5.18)

We can substitute in (5.18) the inequality with an equality as we are interested in

the upper bound of the unavailability caused by the elements in Di. Substituting

(5.18) into (5.15) we obtain:

av(m) ≥ 1

− mini∈[1 .. l1] (1 − 1

t1−t0 ∫τ(d1,i) 1dt)
− . . .

− mini∈[1 .. lk] (1 − 1

t1−t0 ∫τ(dk,i) 1dt)
(5.19)

Let us now distinguish two cases: (a) Dis are pairwise disjoint, i.e. ∀i, j Di ∩

Dj = ∅, and (b) they are not pairwise disjoint. In (a) the inequality sign in (5.15)

becomes an equality sign. Therefore (5.15) becomes

146

5.8. Proof of Theorem 5.1

av(m) = 1 − 1

t1 − t0
[∫

τ(D1)
τ
1dt + ⋅ ⋅ ⋅ +∫

τ(Dk)
τ
1dt] (5.20)

and we can use (5.19) to determine av(m). Since all Dis are pairwise disjoint, if

di,j = n′, then 1

t1−t0 ∫τ(di,j) dt = 1

t1−t0 ∫
t1
t0

χ(n′, t)dt. Therefore, if we set ∀n′ ∈ N ′

av(n′) = αn′ , we determine αm from (5.19) by substituting 1

t1−t0 ∫τ(di,j) dt with

αn′ when appropriate.

In fact, in this case the various Dis are independent from each other and to

calculate the minimal availability (given the constraints on the availability of the

internal nodes) we can restrict the search to those schedulings in which the various

Dis are unavailable in non-overlapping time frames and all the elements of any

Di are unavailable at exactly the same time. For example, consider the case of

Figure 5.2-b. DEPSm = {{m′},{n′1, n′2}} and, according to (5.19), αm = 1 − (1 −
αm) −min((1 − αn1

), (1 − αn2
)). The availability of m reaches αm when (1) m′

is unavailable for 1−αm′ but not at the same time of n1 and n2, and (2) n1 and n2

are unavailable at the same time for min((1 − αn1
), (1 − αn2

)). This also shows

that it exists a state function for which, when avn′ == αn′ , then av(m) = αm.

In the general case (b), the elements Di of DEPSm are not pairwise disjoint,

i.e. ∃i, j ∣ Di ∩Dj ≠ ∅. By using (5.19) in this case we would obtain a value of

αm which is not minimal. To determine the availability lower bound αm we then

set-up a linear programming problem. For the sake of presentation, we call ai,j
the (unknown) quantity

1

t1 − t0
∫
τdi,j

1dt

and ui the (unknown) quantity

1 −
1

t1 − t0
∫
τ(di,1)

τ
∩ ... ∩ τ(di,li)

τ
1dt

By substituting ai,j and ui in (5.15) where possible, we obtain the objective

function we need to minimise to find the lower bound we aim at. The first k

constraints are derived from (5.17) and ensure that the nodes belonging to a certain

Di can be unavailable all at the same time for ui.

Given the definition of dependency set, if we call D(n′) = {di,j ∣ di,j = n′}), then

we know that

av(n′) = 1

t1−t0 ∫
t1
t0

χ(n′, t)dt
= 1 −∑di,j∈D(n′) 1 −

1

t1−t0 ∫τ(di,j) 1dt
(5.21)

147

Chapter 5. A2THOS: Availability Analysis and Optimisation in SLAs

From (5.21) we derive a set of constraints which ensure that the lower bound

of the availability caused by each internal node n′ in all the elements of DEPSm

is the known value αn′ .

As a result we get the following linear programming problem:

αm =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

minimize 1 − u1 − ⋅ ⋅ ⋅ − uk

subject to

u1 = (1 − a1,1) = ⋅ ⋅ ⋅ = (1 − a1,l1)

⋮

uk = (1 − ak,1) = ⋅ ⋅ ⋅ = (1 − ak,lk)

∀n ∈ N,∑di,j∈Dn
1 − ai,j ≥ 1 − αn′

a1,1, . . . a1,l1 , . . . , ak,1, . . . , ak,lk ≥ 0

(5.22)

A solution to this problem can be found by using the simplex algorithm. Such

a solution indicates both the lower bound for the availability of m, i.e. the minimal

value of (5.15) With this we then proved our theorem.

5.9 Representation capabilities

In order to apply our approach to the real-world one could wonder if the tech-

nique we adopt to represent the complex system (AND /OR dependency graphs)

is expressive enough. A very popular and widely used approach to represent com-

plex systems for reliability and availability analysis is using RBDs. In this section

we show that our representation is at least as expressive as an RBD.

An RBD is a graphic representation of the complex system where every com-

ponent is represented by a block (rectangle) and it is connected to other compo-

nents, in series or parallel form. A serial connection between two blocks (see Fig-

ure 5.6a) means that the system (composed by the two blocks) is operational when

both blocks are operational. A parallel connection (see Figure 5.6b) between two

blocks means that the system is operational when at least one of the two blocks

is operational. The whole system is then modelled as a combination of series and

parallel blocks. A group of interconnected components can be represented as a

single macro-component. In turn, macro-components can be connected to other

components (e.g. see Figure 5.8) and grouped again. Hence, to prove that our rep-

resentation is as expressive as an RBD, we need to show how each one of the three

main operations on RBDs can be equally expressed as an AND /OR dependency

graph.

If we consider the serial system of Figure 5.6a, made of only two components,

the corresponding AND /OR dependency graph is given in Figure 5.7a. To rep-

resent the system we use an AND node X , which depends on nodes A and B.

148

5.9. Representation capabilities

(a) Series (b) Par-

allel

Figure 5.6: RBD

(a) Series (b) Parallel

Figure 5.7: AND /OR dependency graph

Similarly, the parallel system of Figure 5.6b is equivalent to the AND /OR depen-

dency graph in Figure 5.7b there the OR node X depends on nodes A and B.

Figure 5.8: RBD parallel composition

Regarding the composition operation, in Figure 5.8 we show the parallel com-

position of two components, where each of them is a serial composition two sub-

components, in parallel with two other sub-components. Figure 5.9 shows the

same system represented as an AND /OR dependency graph. We model as an

AND node X1 the serial composition of sub-components A and B, and as an

OR node X2 the parallel composition of sub-components C and D. Finally, we

add an OR node X which represents the parallel composition of the two above

mentioned components. It is easy to see that we can model any combination

of grouping and series/parallel compositions in the RBD, with a combination of

AND and OR nodes.

149

Chapter 5. A2THOS: Availability Analysis and Optimisation in SLAs

Figure 5.9: AND /OR dependency graph parallel composition

150

Chapter 6
Concluding Remarks

We now summarise the contribution of this thesis, in relation to the research

aim and the related research questions discussed in Chapter 1. We also highlight

future research directions in the area of availability planning.

6.1 Summary and conclusions

In the introductory chapter we formulate the following research aim:

“Design and validate techniques that improve the accuracy and effectiveness of

availability planning, while guaranteeing feasibility within budget.”

We assume in Chapter 1 (confirmed by our findings in Sections 3.4, 4.3 and

5.6) that organisations are willing to improve their control over the availability

of their IT infrastructure to support business needs and reduce costs. To opti-

mise the IT availability level with regard to costs (large size) organisations adopt

a combination of risk, business continuity and service level management. We call

availability planning the set of analysis activities in risk, business continuity and

service level management by which organisations set the requirements and take

decisions regarding the availability of the IT systems supporting their business.

There are several standard methods that draw the guidelines for carrying out risk,

business continuity and service level management. To be as generally applica-

ble as possible, these standards do not include implementation details. Therefore,

each organisation needs to find the specific set of techniques that put into practice

standard guidelines and suit their needs. However, techniques supporting availabi-

lity planning are often too resource-consuming or they are error prone, relying on

people’s ability to cope with the increasing complexity of IT systems. Based on

151

Chapter 6. Concluding Remarks

these observations we then formulate in Chapter 1 three research questions which

address the research aim from the angle of risk management, business continuity

and service level management.

Below we list the research questions and the results of our explorations. The

first research question is:

“How can we improve the accuracy of current techniques for assessment and

mitigation of availability-related IT risks, while guaranteeing feasibility within

budget?”

In Chapter 2 we focus on the selection of a cost optimal mitigation strategy

for availability-related IT risks. We start with the observation that risk manage-

ment methodologies do not take into consideration the propagation of availability

incidents in the IT infrastructure when evaluating the strategies to cope with them.

This can result in the selection of unbalanced mitigation strategies that overprotect

some IT components considered important and leave under-protected other (only

apparently more marginal) components whose unavailability may still cause by

propagation a major damage to the organisation. To cope with this problem we

introduce the TD model and framework to carry out an accurate risk mitigation by

using the data collected during a quantitative risk assessment. We use this frame-

work in a case study making use of data of a primary insurance company provided

by KPMG. We run an optimisation study of the cost/benefit ratio of countermea-

sures, taking into account incident propagation and thus increasing the accuracy

of the selection process. Our case study provides evidence that the framework

based on the TD model can support decision makers in a more accurate selec-

tion of countermeasures with respect to current practice, without requiring them

knowledge about the underlying timed model checker involved. However, the

case study with KPMG also brings to light some limitations: (1) the model needs

reliable quantitative information: it can only be used in organisations that carry

out quantitative risk assessments, (2) how to obtain such information is not cov-

ered in depth, although in Section 2.5 we give some first indications, (3) we are

able to support only some of the possible risk mitigation strategies (i.e. the risk

reduction ones): risk avoidance, sharing and retention practices are not covered,

(4) our approach does not automatically deal with risk mitigation strategies that

are required by regulations: for them a manual pre-processing is still needed.

In Chapter 3 we introduce the QualTD model and framework which is meant

to be used to systematically assess availability-related IT risks in combination with

existing risk assessment methods. We use the framework based on the QualTD

model in a case study to test both its accuracy and feasibility. The results of

the case study and the review of existing risk management methodologies provide

evidence that the QualTD model constitutes an improvement towards the accuracy

152

6.1. Summary and conclusions

of risk assessment techniques adopted at the company we ran the case study at.

We registered more accurate results (∼20%) and a reduction by one fourth of the

number of choices left to the risk assessor (see Section 3.4.3). Our observations

indicate that similar advantages can be obtained for organisations adopting a risk

assessment approach similar to the one used by the company in the case study.

In more detail, based on the literature study on existing risk assessment methods,

we see that our framework adapts naturally to the methods that address risks as a

combination of threat, vulnerability and impact (see Section 3.5.1). On the other

hand, we also observe that our approach is not compatible with methods based

on security goals and requirements (e.g. EBIOS). Regarding feasibility, the case

study showed a small time overhead connected to the creation of the QualTD

model with respect to the company approach (see Section 3.4.3). However, we

expect that an organisation may be willing to accept that overhead in case the

increased accuracy is its desired goal. Finally, we note that our approach does

not address the following aspects of risk assessments. (1) Risk ownership (i.e. the

process of determining who is responsible for managing the identified risks) is not

addressed in depth, although it is a major success factor for the effectiveness of

risk assessments. (2) We do not discuss specific techniques to identify threats and

vulnerabilities. However, this topic is addressed in detail by other techniques (e.g.

HazOP [22] and its extension for security, Security HazOP [79]).

The second research question is:

“How can we improve the accuracy of current techniques for creating and main-

taining business continuity plans, while guaranteeing feasibility within budget?”

In Chapter 4 we focus on the analysis phase that precedes and follows the

creation of the IT-related part of a BCP. We observe that RTOs are an important

tool to ensure that a BCP meets the business continuity requirements of the or-

ganisation. We also observe that RTOs are manually set on the components of

the IT infrastructure. This is error prone and time consuming, to the point that

some IT components can receive RTOs that do not satisfy business requirements,

or not receive an RTO at all. A BCP which is based on such wrong premises can

be ineffective. To cope with this problem we introduce the TDR model and tool

and we test it in a case study run with the data of an insurance company provided

by KPMG. We use the TDR model to determine the maximum recovery time for

each component of the IT infrastructure and to assess that RTOs satisfy business

requirements and are consistent with each other. The results of the case study

provide evidence that the TDR model is able to identify critical points in which

manually set RTOs were not compliant with business requirements or within each

other, thus allowing a more accurate analysis of the business requirements. The

153

Chapter 6. Concluding Remarks

model can also be used to set RTOs in first instance, by using the calculated max-

imum recovery time as a starting value. However, due to the limited scope of the

case study we could not determine to what extent the resulting BCP was influ-

enced by these critical points. We believe this could be important to set with more

precision to what extent the TD model is useful for supporting business continuity

planning. We note that using the TDR model was feasible in our case study, and

that the information needed to build it can be assumed to be available for organi-

sations that follow the BS25999 business continuity standard and use supporting

tools similar to the one used by KPMG. However, the analysis phase of business

continuity management is not limited to RTOs. The main activities also involve

Recovery Point Objectives (RPOs), threat analysis and impact scenarios. RPOs

are used to set the acceptable latency of data that will be recovered for the infor-

mation assets needed to run critical business functions. Differently from RTOs

that are applied to IT components, RPOs are applied to information assets. The

TDR model does not support the assessment of RPOs, which requires additional

information about the lifecycle of data and on the business processes that use it.

However, it could be useful in the analysis of electronic backup strategies, for ex-

ample to check the consequences of IT faults on the availability of the backups.

The threat analysis has the purpose of identifying the threats that may compromise

business continuity. As for the threat identification in risk assessments, the TDR

model does not cover this topic. The model could in principle be used to support

the analysis of impact scenarios, to determine which IT systems are affected (also

by propagation) when a given threat materialises, similarly to what we do with the

TD and QualTD model. However, this feature was not tested and to support this

claim we would need at least one new specific case study.

The third research question is:

“How can we improve the accuracy of current techniques for managing availability-

related SLAs, while guaranteeing feasibility within budget?”

In Chapter 5 we focus on the analysis and optimisation of IT service availabi-

lity. We note that more and more frequently large organisations tend to delegate

(part of) the management of their IT service components to external outsourcing

companies. IT managers need to choose among different outsourcing companies

and different offers the one that suits their needs and their budget, and sign SLAs

with the outsourcing company to regulate (among others) the availability of the

outsourced service components. At the same time, IT managers need to sign simi-

lar SLAs with the other business units of the organisation, to guarantee the quality

of the IT services provided by the organisation’s IT department. To achieve the

best trade-off between outsourcing costs and the desired final service availabi-

lity, IT manager then need to optimise the choice of outsourcing companies and

154

6.1. Summary and conclusions

offers. Traditional reliability techniques cannot be used for this purpose as they

require information that is usually not reported in SLAs (i.e. MTBF and MTTR).

Therefore, IT managers are forced to take decisions based on their own experience

and on concepts like trusted partners and business relationships: this can lead to

a non-optimal allocation of resources and could cause frequent violations of the

internal SLAs. To cope with this problem we introduce A2THOS, a framework

for the analysis and optimisation of the availability of mixed-sourced IT services.

We provide a mathematical foundation of the algorithms A2THOS is based on.

We then test A2THOS in a case study carried out on two IT mixed-sourced IT

services of a large multinational company. A first result of the case study suggests

that A2THOS provides a more accurate evaluation of the minimal service availabi-

lity compared with the manual estimate made by IT managers, particularly when

the availability estimated by IT managers was lower than what guaranteed by

A2THOS. This seems to be confirmed, in the context of the case study, by the em-

pirical data on the past availability of some of the Oxygen services, which is much

better than the one guaranteed in the SLAs. A second indication of the case study

is that A2THOS was used to find the optimal combination of outsourcing offers

based on the resulting service availability. In this case we were able to achieve the

same service availability at a ∼30% lower price. However, the selection of out-

sourcing offers is often based on different other parameters: availability and price

are only two of them. Other parameters could be measurable, such as incident

response time, average service response latency or more difficult to quantify, such

as the reputation of the outsourcing company or the location where services are

being held. Therefore, we realise that the selection process cannot be delegated

solely to the result of an optimisation problem. The coverage of all possible se-

lection parameters is out of the scope of this chapter. For this reason, we see a

potential for the applicability of A2THOS only in the context of a wider frame-

work for supporting the selection of outsourcing offers, in which A2THOS is used

as a specific component for availability of mixed-sourced services.

The main conclusions we can draw from our findings are:

1. many organisations that use IT to support their business can optimise the

availability of their IT infrastructure with positive effects on their business

capabilities (see Sections 3.4, 4.3 and 5.6);

2. it is possible to develop techniques that support IT availability planning

while guaranteeing feasibility within budget from the angle of risk, business

continuity and service level management (see Sections 2.5, 3.4, 4.5, 5.5 and

5.6);

3. the structure of an IT architecture can be used for practical availability plan-

ning (see Sections 2.3, 3.3 and 5.2).

155

Chapter 6. Concluding Remarks

Regarding the feasibility within budget mentioned in the second point, based

on the results of our case studies we cannot guarantee that the techniques we

propose in this thesis are within the budget (i.e. feasible in terms of time and

resources) of any organisation. To guarantee this, we would need to estimate

the “budget” of all organisations. However, the case studies we conducted give

evidence that the cost of adopting our techniques is in the same order of magnitude

as the cost of the ones currently adopted by medium-large organisations. The same

thing could not be said for other solutions, e.g. very detailed model checking.

The third point is derived by observing that the techniques that we present in

this work are all based on a common representation of the architecture of (part

of) the IT infrastructure. This representation is captured by the timed depen-

dency graphs, and their extended versions timed AND /OR dependency graphs

and AND /OR dependency graphs, that we use to (a) list the relevant components

of the IT infrastructure and the business processes it supports and (b) capture the

functional dependencies among components to model the propagation of incidents

caused by component’s failure. We believe that using the same underlying view

of the IT infrastructure for risk, business continuity and service level management

contributes to create a common view about the availability issues of the IT in-

frastructure among the different IT managers involved. In turn, this can lead to a

better alignment of the efforts towards availability planning.

An interesting point that we encountered during our research regards the dif-

ferent views on the two main paradigms for risk management: the qualitative and

quantitative one. Based on our experience we can conclude that the most suit-

able approach to adopt depends on the context. A fine-grained quantitative risk

assessment can provide loss estimates that can be used to carry out optimisation

studies. However, it will never be more accurate than the input numbers it is based

on: when collecting accurate numbers is hard this may not be the right approach

to take. On the other hand, a well-motivated qualitative risk assessment can pro-

vide useful information without requiring numbers, but its results are not readily

spendable in optimisation processes. Based on our experience we observe that

organisations in which other risks (e.g. financial risks) are successfully assessed

following the quantitative paradigm choose to address IT risks following the same

paradigm. This is often the case for banks and insurance companies. The reason

for this is twofold: first, the managers of these organisations are used to address

risks in that way, and therefore they tend to push the IT department to stick to the

standards they like. Secondly, in these kinds of organisations there are in places

processes and metrics specifically tailored for quantitative risk assessments (think

for example of an insurance company, for which quantifying risks is part of the

primary business), which can be adapted or partly re-used for IT. The same can-

not be said for other kinds of organisations, in which reliable numerical values are

156

6.2. Future work

difficult to obtain as there are not enough clear data or metrics for this [39]. In this

case the qualitative paradigm is the preferred one.

Finally, we want to stress once again that the techniques we introduced in this

work are not an alternative to standard methodologies. Although they do not pro-

vide implementation details, standard methodologies do provide the guidelines to

successfully build into the organisation the processes of risk, business continu-

ity and service level management. Failure in properly setting up the processes

(including human factors and information communication) can compromise their

effectiveness as much as the lack of implementation details. Instead, we believe

our techniques can be successfully integrated with risk, business continuity and

service level management processes based on standard methodologies.

6.2 Future work

The results of this thesis open several possible future research directions.

Service degradation The TD and QualTD models can be extended to include

service degradation as part of the impact estimation process. For example, a DoS

attack could not succeed in shutting down completely an IT system, but it could

slow down its response time. Currently, this kind of impact can only be addressed

by considering the system operational if it can respond within a time and not oper-

ational otherwise. Including different operational levels can increase the accuracy

of risk evaluation when such an accuracy is required.

Dependency types The dependency graphs used by our techniques can be ex-

tended to support a wider range of dependency types. Currently, the TD and TDR

models only support AND dependencies, while the QualTD and A2THOS both

support AND/OR dependencies. There are however other dependency types; for

example the dependency “n out of m components are available” can be used to

model the case where if a node x depends on m nodes, it is considered available

if at least n of the m nodes are available. In this thesis we followed the engineer-

ing principle of starting with the simpler and most common cases. Therefore, we

did not include these dependency types as in our case studies we never found a

configuration requiring them. However, there could be cases in which the sup-

porting more dependency types could be a success factor for the adoption of our

techniques.

Inclusion of more sophisticated optimisations The optimisation problems and

algorithms of Chapter 2 and Chapter 5 can be extended to support more sophisti-

157

Chapter 6. Concluding Remarks

cated micro-economic models. Burgess gives in [23] an overview of the economic

game theory techniques (e.g. promise theory and principal agent theory) that can

be used to support decisions about the economic aspects of IT management. We

believe that integrating our optimisation algorithms with these techniques is an

interesting research problem which could increase the value of our techniques by

giving IT managers extra support in taking decisions.

Integration with configuration management tools Configuration management

is a field of management that focuses on maintaining a system’s requirements, de-

sign and operational information consistent with its performance and functional

attributes throughout its life. IT managers maintain such information by using

configuration management tools (e.g. IBM Tivoli [100]). Configuration manage-

ment tools could be used to feed our models with up-to-date information about

the architecture of IT systems, their functional design details and their past av-

ailability performances. In this scenario, IT managers could carry out availability

planning semi-automatically by using our techniques integrated with configura-

tion management tools.

158

Appendix A
Dependency Graphs Analysis, FTA

and FMEA

Dependency graphs are used by all models presented in this thesis to repre-

sent the (portion of) IT infrastructure to be analysed and its behaviour in case

of unavailability of one of the components. Dependency modelling shares some

similarities with other popular techniques such as Fault Tree Analysis (FTA) and

Failure Mode and Effects Analysis (FMEA) both in the way the model is built and

in the kind of analysis one can carry out with them. Therefore, we find useful to

give a top level description of what dependency modelling is compared to these

other two techniques. Table A.1 summarises the main features of each technique.

In FTA [76], a fault tree is a Rooted Directed Acyclic Graph (RDAG). The

graph is built starting from the root, which represents a so-called top-event i.e. an

undesired event involving the system (system or sub-system failure). Each node

in the graph is a mixture of logical gates (AND/OR) and events. The graph is built

top-down using information about events causing system disruption by trying to

enumerate all the combinations of other events that could cause the top level event.

The FMEA [59] technique is a list based on the enumeration of all the possible

system (and system component’s) failure modes and on the analysis of the effects

of failures. Failure modes are ranked according to a qualitative estimate of their

effect severity. According to Allen Long [103], FMEA is a bottom-up technique

and it is particularly suitable for the analysis and ranking of single failures of

components (as opposed to fault trees and dependency graphs which can also be

used to study the effects of combined simultaneous failures). A key preparatory

step for carrying out FMEA is to draw an architecture diagram of the system under

analysis which describes how the system is made and how it works. The schema is

meant to be used both for the enumeration of failure modes and for the evaluation

159

Chapter A. Dependency Graphs Analysis, FTA and FMEA

Table A.1: Global picture of the differences between FTA, FMEA and Depen-

dency modelling.

Input Output Structure Nodes Edges

FTA Information

about the

disruption

events in the

system.

All the com-

binations

of events

that can lead

to the top

event.

Rooted

Directed

Acyclic

Graph

Events and

logical

gates.

Cause and

effect re-

lationship

between

events

FMEA System

architecture

diagram

(including

components

and con-

nections

between

compo-

nents).

Component

failures plus

the effect of

component

failures on

the system.

List System

components

failing in a

certain mode

(entries in

the list).

N/A

Depdendncy

modelling

Information

about the ar-

chitecture of

the system.

A model of

the system

that can

be used to

simulate the

effect of a

component

failure on

the system.

Directed

Acyclic

Graph.

System com-

ponents.

Cause and

effect re-

lationship

about com-

ponent’s

failure.

of the failures effects. Indeed, most of the information needed to prepare such a

schema can also be used to build a dependency graph.

A dependency graph is a Directed Acyclic Graph (DAG) based on information

about the system architecture. Differently from a fault tree, a dependency graph

has nodes representing system components (as opposed to events) and edges ex-

pressing a cause and effect relationship among components meaning that the fail-

ure of one component causes the failure of the other. As we mentioned in Chap-

ter 5, a single dependency graph can model a “forest” of fault trees, each having

the failure of one of the functionalities of the system under analysis as top event.

Dependency graphs refer to the architecture of IT systems to enumerate the com-

binations of components failures that may cause the unavailability of one of the

system’s functionalities.

160

Appendix B
Building Dependency Graphs

In Chapter 3 we describe how we build a dependency graph for the case-study

in which we tested the QualTD model. In this appendix we generalise the de-

scription by providing general guidelines that can be used for the models and

tools described in this thesis.

The guidelines are derived from the experience we earned over time during

the case-studies we did. We organise these guidelines in the form of a tutorial

consisting of five steps. The steps describe how to gather information and how

to use such information to model the graph. The tutorial is meant to answer the

following questions:

• Who are the stakeholders of this model and what do they want to know? In

other words, what information does my model needs to include?

• What is the system that I need to model, what does it do and what are its

boundaries?

• How do I get information about the system?

• How do I model the various system components?

• How can I discover and model dependencies among system components?

We will also provide a small example of the outcome of each step in an “Ex-

ample” paragraph, referring to the running example of Chapter 3.

Although the exposition may suggest the process of building dependency graphs

is linear, in practice one could easily reach a certain step only to discover that the

information gathered in a previous step is incomplete or even incorrect. Should

this happen, it is necessary to rewind the process to one of the previous steps, add

the missing or incomplete information, and carry on.

161

Chapter B. Building Dependency Graphs

Step 0: Terms and concepts

To avoid confusion using this tutorial one needs to understand the following

terms and concepts and name them explicitly for the case-study at hand (i.e. name

the analyst, the system or the stakeholders).

• Analysis The activity for which the dependency graph is required. This can

either be in the context of risk management, business continuity or service

level management.

• Analyst The person or persons in charge of carrying out the analysis. Should

be independent from the stakeholders.

• Analysis result The information gained after carrying out the analysis, i.e.

the output in the form of the TD model, the QualTD model, the TDR model

or A2THOS.

• Stakeholder The person or persons who will use the analysis results as part

of an availability planning activity.

• System The target of the analysis, a composition of hardware, software and

procedures that make a unit in an IT infrastructure.

• Sub-system In a logical decomposition of a system, a portion of the system:

it can be a mixture of hardware and software that serve for one specific

purpose on the system.

• System component A portion of the system or system block that is mod-

elled by the analyst as an atom (i.e. it is assumed not to be made of other

components).

• Dependency A functional relation between two components such that the

availability of one component influences the availability of the other.

• Business Process A (business-related) procedure supported by IT.

• Service A functionality provided by the system to its intended users.

• IT service A functionality provided by a system or a (set of) components to

other components.

• Application Software running on a server as an OS process.

• Server The combination of hardware and operating system making a com-

puter.

162

• Location A physical place where servers and network components are stored

(e.g. a data centre).

• Network component The logical segment of a computer network or a de-

vice in the computer network devised to control the network traffic (e.g.

switches, routers firewalls, etc.).

Step 1: Stakeholders and goals

Before the analyst starts building the dependency graph, the first step consists

of determining (1) what kind of analysis the dependency graph is needed for and

(2) what kind of results are expected by the stakeholders.

This is important to keep the analyst focused on the important modelling de-

cisions, i.e. on the information that (directly or indirectly) involve the analysis

results.

For example, suppose the system under analysis is managed by more than one

unit/department: only one of them is a stakeholder (i.e. only one unit department

is interested in the analysis results) and only the portion of the system managed by

the stakeholder is of interest in the analysis. In this case, the different sub-systems

can be modelled with a different granularity: the sub-systems managed by the

stakeholder in more detail, the others in less detail, thus focusing the analysis

efforts on the aspects relevant for the stakeholders.

In many cases there is more than one stakeholder: the analyst has to determine

which stakeholder is responsible for the different sub-systems to be able to both

acquire information from the right source and to report the relevant analysis results

to each stakeholder.

Example (part 1) At the end of Step 1 the analyst may have acquired the fol-

lowing information:

1. the dependency graph is needed for a risk assessment on the availability of

two IT systems;

2. the systems are developed, managed and maintained by one department of

the organisation which is also the requester of the risk assessment;

3. the systems are used to manage holiday reservations for employees and cus-

tomer relationship management;

4. the department only manages servers and applications running on servers

related to the two systems: other IT services such as network connectivity,

163

Chapter B. Building Dependency Graphs

server name resolution (DNS) and even standalone applications are man-

aged by another department and are not of interest for the current risk as-

sessment.

Step 2: Global picture

The second step consists in creating a global picture of how the system works.

This is very important to set up a “skeleton” of the dependency graph and to

determine what other information the analyst needs to acquire.

The global system picture consists of a map of the main sub-systems, together

with their function and the interactions among them. To this end, when consid-

ering one sub-system, the analyst should determine if the sub-system needs other

sub-systems or system components to function properly, and make sure they are

represented in the map.

The global picture can be obtained in two main ways: either by reading exist-

ing documentation (e.g. requirements and specification documents) or by means

of interviews with people who know how the system is (will be) made and how

it works. This can refer to more than one person. For example, one could learn

how the system is made by asking the developer who made it, or from a system

administrator who performs the maintenance, while the information about what

the system does can be better obtained by the people who designed the system or

by an experienced system user.

When time is not a problem, the best thing to do is combining the two ap-

proaches. By first reading the documentation the analyst will make a first concept

of the system, which can then be refined during the subsequent interview sessions.

In both cases (documentation or interview) it is helpful to draw a first, rough,

picture of the system architecture. For example, when extracting information from

the documentation, a picture will help explaining the function and the connection

among the different sub-systems. In case of interviews, the picture will help com-

municating information and make sure information is communicated with the least

ambiguity as possible.

Example (part 2) After Step 2 the analyst will have determined the main sub-

systems subject to analysis and drawn a rough picture of them (see Figure B.1).

The information acquired explains that the holiday reservation system is com-

posed of two sub-systems: a web application handling application logic and user

interaction and an Oracle database to store data. In turn, the CRM system consists

of two main sub-systems: a standalone GUI running on the employees worksta-

164

tions and an Oracle database with stored procedures to store and handle CRM

data.

Holiday reservation
application

(Web)

Holiday reservation

Database
(Oracle)

CRM
Database

(Oracle with replica)

CRM client application
(Standalone client on

employees
workstations)

Holiday reservation system

CRM

Figure B.1: Global picture of the system of the running example of Chapter 3.

Step 3: System boundaries

Setting system boundaries is important to limit the scope of the analysis to a

size that is both feasible for the analyst and meaningful for the stakeholders. This

activity mainly consists of deciding:

1. which functionalities provided by the system will be analysed;

2. which sub-systems will be included in the dependency graph;

3. the level of detail adopted in modelling each sub-system.

To do so, one has first to decide which system functionalities are of interest in

the current analysis. The analyst can derive this information from the results of

Step 1. For example, if a certain system functionality is not used by the any of

the stakeholders, it can be left out from the dependency graph both to reduce the

model complexity and to improve the readability of the graph for the stakeholders.

After enumerating the functionalities, the analyst has to determine which sub-

systems should be included in the model. This list will be used in next steps to

start building the dependency graph. The information needed to compile the list

of components can be extracted from the global system picture of Step 2. When

compiling the list, a useful trick is to mark each sub-system in the global picture

165

Chapter B. Building Dependency Graphs

as soon as it is added to the list. In this way, after the list is complete, there should

be no unchecked components, except for those that contribute to implement a

functionality that has been deliberately left-out from the analysis.

Finally, for each sub-system on the list, the analyst has to determine wether

it is in scope of the analysis (according to the results of Step 1). Some sub-

systems may be general IT services required for the system to function properly

(e.g. Internet connectivity, DNS servers, etc.). Sub-systems of this kind can be

modelled less precisely than the others, for example by representing them as a

single IT service node, regardless on how the service is implemented.

Example (part 3) After Step 3 is complete, the analyst can enumerate the fol-

lowing two services as in scope with the purposes of the analysis and the respon-

sibilities of the stakeholder:

1. Holiday reservation management service: this functionality includes the

complete management of holiday reservations.

2. CRM repository service: this functionality includes the storage and batch

processing of customer information, purchase orders and invoices.

According to the global picture derived from Step 2 and the analysis of stake-

holders and goals of Step 1, the following sub-systems are identified:

1. Holiday reservation application

2. Holiday reservation database

3. CRM database

Notice that the CRM client application has been left out from the list, as it

is not managed by the department requesting the analysis and it is therefore not

relevant for this risk assessment. The network connectivity sub-systems enabling

the systems to be accessed through the organisation’s LAN have been left out from

the picture for the same reason.

Step 4: Detailed system information

In this step, each sub-system is split into its basic components (e.g. applica-

tions, servers, network components, premises, IT services etc.).

After creating a list of the sub-systems the analyst has to acquire detailed in-

formation about every component of the sub-system. To do so, the analyst has

166

to find information describing how each sub-system is implemented and how it is

used.

In more detail, the analyst should determine the following information:

1. what applications are used to implement the sub-system, normally one sub-

system is made of a single application, but there might be cases in which

two or more interacting applications are used to build a single high-level

component;

2. by which server(s) run the identified applications, in case the component is

implemented by more than one server what is the purpose of the split (load

balancing, warm/cold/hot standby, etc.);

3. for each identified server, to which network is the server connected and

where is it physically located;

4. whether there is any other application running on the same server(s) for

different purposes;

5. how each component interacts with the others (e.g. which network proto-

col is used, which server/service pairs communicate, etc.): this is used to

determine the dependencies among components.

Sources of information for this can be:

• System documentation. Documentation includes functional specifications,

system design documents and network diagrams.

• Interviews. In case system documentation is not available, the same infor-

mation can be obtained by interviewing the personnel in charge of the sys-

tem design, development and maintenance.

• Architecture design tools. In case the system architecture is documented us-

ing an architecture design tool, it is possible to extract from it most of the in-

formation needed to build the dependency graph. Architecture design tools

are meant to support the design, analysis, visualisation and maintenance of

enterprise IT architectures. There exist a number of frameworks describing

formalisms for architecture design (e.g. TOGAF [113], Zachman [114] or

Archimate [84]). Each framework is supported by one or more tools that

implement the framework and help users in drawing IT architectures and

doing automatic analysis over them. In one of our case-studies we success-

fully built a dependency graph from an IT architecture described using the

ArchiMate framework. The architecture was designed with the Architect

167

Chapter B. Building Dependency Graphs

tool from BiZZdesign [87]. Architect supports a simple scripting language

to interact with an existing architecture project. We used the scripting lan-

guage to automatically export a dependency graph which could then be used

to run our models and tools.

• Infrastructure monitoring tools. In case the system is already deployed in

a production or even in a test environment, the analyst can use IT infras-

tructure monitoring tools such as Nagios [107] or Hyperic [99] (when avail-

able). These tools are typically made of several agents deployed on the hosts

of the IT infrastructure and a centralised repository collecting information

from agents. The analyst can consult the repository to learn (among others)

about the hosts deployed on the network, the services that are running on

them, their availability and the resource consumption (e.g. CPU, memory,

network bandwidth, etc.). This information can also help to ensure the com-

pleteness of information about the components that make up the system (as

it is probable that some components escape the attention during interview

sessions or not be mentioned in the documentation).

• Network traffic. A way of collecting information about the service depen-

dencies is to observe the network traffic exchanged by the identified hosts

for a sufficiently long time (e.g. one week). This helps determining with

more precision which services communicate with each other and how they

do that. As a consequence, dependencies among applications are more

clearly defined. Collecting network data and deriving dependency infor-

mation could also be automated, to speed up the process in case of large

systems, for example with tcpdump2csv, a tool that parses network traffic

captured through tcpdump and creates a CSV file which can then be used

to derive dependencies between servers/applications. A list of other tools

that can be used to discover dependencies from network traffic is available

in [91, 104].

Finally, it is also necessary to make sure no other sub-system (or component)

has been left out from the global picture. This can be done by cross-checking the

global picture with the information on design documentation and (when available)

with information coming from the deployed system (e.g. list of processes, traffic

exchanged from hosts etc.).

Example (part 4) After Step 4 the analyst discovers the following detailed in-

formation:

1. What applications are used to implement the sub-systems?

168

• The holiday reservation application sub-system is implemented by means

of a web application written in Java and running on a Tomcat servlet

engine.

• The holiday reservation database sub-system is implemented as a schema

in an Oracle DBMS.

• The CRM database is implemented as a schema and several stored

procedures in two replicated Oracle DBMS instances. The client GUI

application accesses the first instance by default, but if the instance

is unavailable it automatically tries to connect to the second one (hot

standby).

• The same Oracle instance is used for both the holiday reservation

database and the primary CRM database.

2. In which server(s) are the identified applications running?

• The web application for holiday reservation runs on Server 1.

• The first Oracle instance runs on Server 1.

• The second Oracle instance runs on Server 2.

3. To which networks is each server connected? This information is not rele-

vant as no network component is included in the dependency graph.

4. Are there other applications running on the servers? Reports from the sys-

tem administrators confirm no other application is running on Server 1 and

Server 2.

5. How does each component interact with the others?

• The web application for holiday reservation is accessed by users through

the HTTPS protocol.

• The web application for holiday reservation accesses the database through

the Oracle JDBC driver.

• The CRM GUI interacts with the Oracle database through the native

Oracle driver installed on the client workstations.

Step 5: Drawing nodes and edges

At this stage, the analyst has all the information to build the dependency graph.

Here we will use the notation of an AND /OR dependency graph, (see Chapter 5).

169

Chapter B. Building Dependency Graphs

In this notation, each node of the dependency graph can be either an AND node

(i.e. the node becomes unavailable when any of the nodes it depends on is un-

available) or an OR node (i.e. the node becomes unavailable when all the nodes

it depends on are unavailable). It is however straightforward to translate this no-

tation into the slightly different ones we adopted for timed dependency graphs in

Chapter 2 and Chapter 4 (with the difference that OR dependencies are not in-

cluded) and for timed AND /OR dependency graphs in Chapter 3, in which the

AND/OR behaviour of a dependency is annotated in the edge modelling the de-

pendency itself.

First, the analyst has to represent as graph nodes both the services identified

during Steps 1-3 and the components identified during Step 4. All nodes can be

initially modelled as AND nodes. As we described in Step 4, depending on the

results of Step 2, the sub-systems that are in the analysis scope may be modelled

more precisely than the ones that are outside its scope. For example, a typical

modelling approach for in-scope sub-systems is to represent each server (hardware

and operating system) and each application running on servers as separate node

in the graph, while for out-of-scope sub-systems one single node can be used,

disregarding its implementation details. It is useful to mark differently nodes

that represent different types of components (e.g. locations, network components,

servers, applications, services, processes, etc.), this can be done either by using a

naming convention (e.g. the name of an application always starts with “APP”), or

by using different colours.

Then, nodes have to be linked together according to their dependency rela-

tions discovered during Step 4. The analyst has to link node a with node b if b

depends on a in such a way that, if a is unavailable, b becomes unavailable in

turn. It is useful to start with the “trivial” dependencies, for example by link-

ing server nodes with the application nodes running on them, or linking location

nodes with the server nodes deployed in those locations. Next, the analyst can link

the application nodes with the service nodes describing the system functionalities.

Notice that one functionality could be granted by more than one application, and

there could be alternative applications providing the same functionality. In this

cases there is an OR dependency among the application nodes and the service

node. Since we created all AND nodes when modelling system components and

functionalities, we now need to add a logic OR node to which the service node

depends on. This OR node in turn depends on the applications implementing the

service, but it does not model any existing physical or logical system component.

Creating such OR nodes is useful since in this way one can create multiple groups

of different OR relations among components. This allows the analyst to model

dependencies such as a depends on (b ∨ c) ∧ (d ∨ e), or any other combination.

Finally, functional dependencies among application nodes can be modelled by

170

following the same procedure. To this end, it is important to make sure that any

dependency relation in the model represents the behaviour of the real system. A

mistake one can easily make is to link together two nodes because one has a sort

of functional dependency on the other, even if the failure of the former does not

cause the complete failure of the latter. This kind of situation has to be handled

in a different way, for example by linking the two nodes to the node that models

the functionality (service) expressed by the two. In this way, if any of the two

nodes fails, the functionality is unavailable and the semantic of the dependency is

preserved. For non-trivial dependencies, it might be useful to annotate the edge

modelling the dependency with a short description of the dependency type and a

reference to the source where the dependency information was taken. This im-

proves the readability of the the dependency graph for future analyses and helps

the analyst when presenting the analysis results.

After the dependency graph has been built, it is useful to validate it against the

documentation or the knowledge of the system designers/developers. To validate

against documentation the analyst has to check that the components described in

the documentation are all present as nodes in the dependency graph, and that all

the functional relationships described in the documentation and their semantics

are correctly captured in the graph. To validate against the knowledge of the

system designers/developers it is useful to organise a (preferably joint) interview

session in which the analyst describes the behaviour of the system starting from

the dependency graph: during the interview, the analyst should make sure that

nodes and dependencies are understood by the designer/developers and that they

confirm the behaviour of the system in case of component failure is correctly

modelled by the graph.

In theory, the analyst could describe a dependency graph by any representa-

tion technique that allows a computer program to use the representation and run

the analysis algorithms (e.g. a list representing nodes and an adjacency matrix to

represent edges). In practice, using tools that provide a graphic representation is

of great help both to ease the creation process for the analyst and to make the

representation understandable to stakeholders and interviewees.

We have developed for our case-studies a prototype GUI tool called Visual-

Sibyl [115] which allows the analyst to do all the basic operations to draw de-

pendency graphs (i.e. drag and drop nodes and edges, specify node types) and is

available for download. VisualSibyl is based on the Netbeans Visual Libraries for

graphically rendering the graph structure. It also implements the A2THOS algo-

rithms we described in Chapter 5. Figure B.2 shows the drawing of a dependency

graph using VisualSibyl.

An alternative choice to VisualSibyl consists of using Microsoft Visio: the

171

Chapter B. Building Dependency Graphs

Figure B.2: Using VisualSibyl to draw dependency graphs.

analysis algorithms can then be implemented through Visio macros written in the

Visual Basic Script language.

Example (part 5) The results of Step 5 are shown in figure B.3. According to

the results of Step 4 there are 7 identified nodes: two services (eHoliday and

CRM repository), three applications (Holiday reservation WebApp,

Oracle DB instance 1 and Oracle DB instance 2) and two servers

(Server 1 and Server 2). All nodes have been represented as AND nodes

and coloured according to their type.

The identified dependencies are 7 and are also derived from the detailed in-

formation of Step 4. Both Holiday reservation WebApp and Oracle

DB instance 1 depend on Server 1, while Oracle DB instance 2

depends on Server 2. The eHoliday service depends on both the Holiday

reservation WebApp and the Oracle DB instance 1 to work prop-

erly, as the failure of one of the two nodes would cause the stop of the holiday

management functionality. The CRM repository service depends on the two

Oracle database instances to run: in this case we have an OR dependency, as

both instances need to be unavailable for the service to be unavailable as well.

172

Therefore, to represent the OR dependency, we add an OR node on which the

CRM Repository service depends on. In turn, the OR node depends on both

Oracle DB instance 1 and Oracle DB instance 2.

Figure B.3: The dependency graph resulting from the running example of Chap-

ter 3.

173

BIBLIOGRAPHY

Author References

Journal Publications

[1] E. Zambon, S. Etalle, and R.J. Wieringa. A2THOS: Availability Analysis

and Optimisation in SLAs. International Journal of Network Management,

2010. Submitted for publication in April 2010.

[2] E. Zambon, S. Etalle, R.J. Wieringa, and P.H. Hartel. Model-based Quali-

tative Risk Assessment for Availability of IT Infrastructures. SOSYM: Soft-

ware and System Modelling, pages 1–28, 2010.

Refereed Conferences

[3] D. Bolzoni, E. Zambon, S. Etalle, and P.H. Hartel. Poseidon: a 2-tier

Anomaly-based Network Intrusion Detection System. In Proc: 4th IEEE

Int. Information Assurance Workshop (IWIA2006), pages 144–156, Lon-

don, UK, April 2006. IEEE Computer Society Press.

[4] A. Morali, E. Zambon, S. H. Houmb, K. Sallhammar, and S. Etalle. Ex-

tended eTVRA vs. Security Checklist: Experiences in a Value-Web. In

ICSE ’09: Proc. of the 31th IEEE International Conference on Software

Engineering, IEEE, pages 130–140. IEEE Computer Society Press, May

2009.

[5] E. Zambon, D. Bolzoni, S. Etalle, and M. Salvato. A model support-

ing Business Continuity auditing & planning in Information Systems. In

Proc. of the First International Conference on Global Defense and Busi-

ness Continuity (ICIMP&BC ’07), IEEE, pages 33–42. IEEE Computer

Society Press, 2007. (Subsumed by Chapter 4 of this thesis).

International Workshops

[6] A. Morali, E. Zambon, S. Etalle, and P. Overbeek. IT Confidentiality Risk

Assessment for an Architecture-Based Approach. In BDIM ’08: Third

IEEE International Workshop on Business-Driven IT Management, IEEE,

pages 31–40. IEEE Computer Society Press, 2008.

[7] E. Zambon, D. Bolzoni, S. Etalle, and M. Salvato. Model-Based Mitiga-

tion of Availability Risks. In BDIM ’07: Second IEEE/IFIP International

174

BIBLIOGRAPHY

Workshop on Business-Driven IT Management, pages 75–83, Munich, May

2007. IEEE Computer Society Press. (Subsumed by Chapter 2 of this the-

sis).

175

BIBLIOGRAPHY

General References

[8] J. Ø. Aagedal, F. den Braber, T. Dimitrakos, B. A. Gran, D. Raptis, and

K. Stëlen. Model-Based Risk Assessment to Improve Enterprise Security.

In EDOC ’02: Proc. 6th International Enterprise Distrubuted Object Com-

puting Conference, pages 51–63. IEEE Computer Society, 2002.

[9] D. Ardagna and B. Pernici. Global and Local QoS Guarantee in Web Ser-

vice Selection. In Business Process Management Workshops, pages 32–46,

2005.

[10] Y. Asnar and P. Giorgini. Modelling Risk and Identifying Countermea-

sure in Organizations. Technical report, University of Trento, 2006.

oai:UNITN.Eprints:1035.

[11] S. Bagchi, G. Kar, and J. Hellerstein. Dependency Analysis in Dis-

tributed Systems using Fault Injection: Application to Problem Determi-

nation in an e-commerce Environment. In DSOM ’01: Proc. 2001 In-

ternational Workshop on Distributed Systems: Operations & Manage-

ment , 2001. http://www.research.ibm.com/PM/DSOM2001_

dependency_final.pdf.

[12] F. Baiardi, S. Suin, C. Telmon, and M. Pioli. Assessing the Risk of an

Information Infrastructure Through Security Dependencies. Critical Infor-

mation Infrastructures Security, 4347/2006:42–54, 2006.

[13] R.E. Barlow and F. Proschan. Mathematical Theory of Reliability. SIAM:

Society for Industrial and Applied Mathematics Philadelphia, 1996.

[14] J. Bengtsson and W. Yi. Timed Automata: Semantics, Algorithms and

Tools. In J. Desel, W. Reisig, and G. Rozenberg, editors, Lectures on Con-

currency and Petri Nets, volume 3098 of LNCS, pages 87–124. Springer-

Verlag, 2003.

[15] S.P. Bennet and M.P. Kailay. An Application of Qualitative

Risk Analysis to Computer Security for the Commercial Sec-

tor. In Eighth Annual Computer Security Applications Confer-

ence, pages 64–73. IEEE Computer Society Press, April 1992.

http://ieeexplore.ieee.org/xpls/abs_all.jsp?

isnumber=5913&arnumber=228232&count=25&index=15.

[16] J. Bennett. Business continuity and availability planning. Infosecurity,

4(1754-4548):38, 2007.

176

http://www.research.ibm.com/PM/DSOM2001_dependency_final.pdf
http://www.research.ibm.com/PM/DSOM2001_dependency_final.pdf
http://ieeexplore.ieee.org/xpls/abs_all.jsp?isnumber=5913&arnumber=228232&count=25&index=15
http://ieeexplore.ieee.org/xpls/abs_all.jsp?isnumber=5913&arnumber=228232&count=25&index=15

BIBLIOGRAPHY

[17] H. Boudali, P. Crouzen, and M.I.A. Stoelinga. A compositional semantics

for Dynamic Fault Trees in terms of Interactive Markov Chains. In Proc. of

the 5th International Symposium on Automated Technology for Verification

and Analysis, pages 441–456. LNCS, 2007.

[18] P. Bowen, J. Hash, and M. Wilson. NIST SP 800-100 - Information Secu-

rity Handbook: A Guide for Managers. Technical report, NIST National

Institute of Standards and Technology, 2006.

[19] P. Bresciani, P. Giorgini, F. Giunchiglia, J. Mylopoulos, and A. Perini.

TROPOS: An Agent-Oriented Software Development Methodology. Tech-

nical report, University of Trento, 2002. oai:UNITN.Eprints:84.

[20] A. Brown, G. Kar, and A. Keller. An Active Approach to Characterizing

Dynamic Dependencies for Problem Determination in a Distributed Appli-

cation Environment. In IM ’01: IEEE/IFIP International Symposium on

Integrated Network Management, pages 377–390, 2001.

[21] BS 7799-3 - Information security management systems - Part 3: Guidelines

for information security risk management, 2006.

[22] BSI. BS IEC 61882:2001 : Hazard and operability studies (HAZOP stud-

ies). Application guide. British Standards Institute, 2001.

[23] M. Burgess. System Administration and Micro-Economic Modelling. In

J. Bergstra and M. Burgess, editors, Handbook of Network and System Ad-

ministration, chapter 6.3, pages 729–773. Elsevier, 2007.

[24] E. M. Clarke, O. Grumberg, and D. Peled. Model Checking. MIT Press,

2000.

[25] L. Cloth and B. R. Haverkort. Model Checking for Survivability. In QUEST

’05: Proc. 2nd Int. Conference on the Quantitative Evaluation of Systems,

pages 145–154. IEEE Computer Society, 2005.

[26] R. Cocchiara. Beyond disaster recovery: becoming a resilient business.

Technical report, IBM, 2005. http://ibm.com/services/its/resilience.

[27] B. Cunningham, T. Dykstra, E. Fuller, C. Gatford, A. Gold, M.P. Hoag-

berg, A. Hubbard, C. Little, S. Manzuik, G. Miles, C.F. Morgan, K. Pfeil,

R. Rogers, T. Schack, and S. Snedaker. The Best Damn IT Security Man-

agement Book Period. Syngress Publishing, November 2007.

177

BIBLIOGRAPHY

[28] F. den Braber, I. Hogganvik, M. S. Lund, K. Stolen, and F. Vraalsen.

Model-based security analysis in seven steps — a guided tour to the

CORAS method. BT Technology Journal, 25(1):101–117, 2007.

[29] S. Distefano and L. Xing. A New Approach to Modeling the System Reli-

ability: Dynamic Reliability Block Diagrams. In RAMS ’06: Annual Reli-

ability and Maintainability Symposium, pages 189–195, Washington, DC,

USA, 2006. IEEE Computer Society.

[30] J.B. Dugan, S.J. Bavuso, and M.A. Boyd. Dynamic Fault-Tree Models

for Fault-Tolerant Computer Systems. IEEE Transactions on Reliability,

41(3):363–377, September 1992.

[31] Elsevier, editor. Handbook of Constraint Programming. F. Rossi, P. van

Beek and T. Walsh, August 2006.

[32] A. Evangelidis, J. Akomode, A. Taleb-Bendiab, and M. Taylor. Risk As-

sessment & Success Factors for e-Government in a UK Establishment. In

Electronic Government, volume 2456/2002, pages 93–99. Springer Berlin

/ Heidelberg, 2002.

[33] F. Flammini, N. Mazzocca, M. Iacono, and S. Marrone. Using Repairable

Fault Trees for the evaluation of design choiches for critical repairable sys-

tems. In HASE ’05: Proc. Ninth IEEE International Symposium on High-

Assurance Systems Engineering, pages 163–172, Washington, DC, USA,

2005. IEEE Computer Society.

[34] K. Goseva-Popstojanova, A. Hassan, A. Guedem, W. Abdelmoez, D.E.M.

Nassar, H. Ammar, and A. Mili. Architectural-level risk analysis using

UML. IEEE Transactions on Software Engineering, 29:946 – 960, October

2003.

[35] X. Gu, K. Nahrstedt, R.N. Chang, and C. Ward. QoS-Assured Service

Composition in Managed Service Overlay Networks. In International Con-

ference on Distributed Computing Systems, page 194, Los Alamitos, CA,

USA, 2003. IEEE Computer Society.

[36] C.A. Gunter, E.L. Gunter, M.A. Jackson, and P. Zave. A reference

model for requirements and specifications. IEEE Software, 17(3):37–43,

May/June 2000.

[37] D.S. Herrmann. Complete Guide to Security and Privacy Metrics. Auer-

bach Publications, Boston, MA, USA, 2007.

178

BIBLIOGRAPHY

[38] G. J. Holzmann. The SPIN model checker. Addison-Wesley, 2003.

[39] K.J. Soo Hoo. How much is enough: a risk management approach to com-

puter security. PhD thesis, Stanford University, Stanford, CA, USA, 2000.

[40] F. Innerhofer-Oberperfler and R. Breu. Using an Enterprise Ar-

chitecture for IT Risk Management. In ISSA ’06: Proc. In-

formation Security South Africa Conference, 2006. URL:

http://icsa.cs.up.ac.za/issa/2006/Proceedings/Full/115 Paper.pdf.

[41] British Standards Institute. BS 25999-1 - Business continuity management

- Part1: Code of practice, 2006.

[42] ISO/IEC 13335:2001 - Information Technology - Security techniques -

Guidelines for the management of IT security, 2001.

[43] ISO/IEC 15408:2006 - Common Criteria for Information Technology Se-

curity Evaluation. http://www.commoncriteriaportal.org/

thecc.html, September 2006.

[44] ISO/IEC 17799:2000 - Information Security - Code of Practice for Infor-

mation Security Management, 2000.

[45] ISO/IEC 27001:2005 - Information technology – Security techniques – In-

formation security management systems – Requirements, 2005.

[46] ISO/IEC 27002:2005 - Information technology – Security techniques –

Code of practice for information security management, 2005.

[47] S. Jha and J. M. Wing. Survivability analysis of networked systems. In

ICSE ’01: Proc. 23rd Int. Conference on Software Engineering, pages 307–

317. IEEE Computer Society, 2001.

[48] A.M. Jrad, C.K. Chan, and T.B. Morawski. Incorporating the downtime

due to disaster events in the network reliability model. In NETWORKS

2004: Proc. 11th International Telecommunications Network Strategy and

Planning Symposium, pages 365–371. IEEE Computer Society, 2004.

[49] G. Kar, A. Keller, and S. Calo. Managing Application Services over Service

Provider Networks: Architecture and Dependency Analysis. In NOMS ’00:

Proc. of the 7th IEEE/IFIP Network Operations and Management Sympo-

sium, pages 61–75. IEEE Press, 2000.

179

http://www.commoncriteriaportal.org/thecc.html
http://www.commoncriteriaportal.org/thecc.html

BIBLIOGRAPHY

[50] I-J. Kim, Y-J. Jung, JG. Park, and D. Won. A Study on Security Risk

Modeling over Information and Communication Infrastructure. In SAM

’04: Proc. of the International Conference on Security and Management,

pages 249–253. CSREA Press, June 2004.

[51] W. Lam. Ensuring Business Continuity. IT Professional, 4(3):19–25, 2002.

[52] K. Larsen, G. Behrmann, E. Brinksma, A. Fehnker, T. Hune, P. Pettersson,

and J. Romijn. As Cheap as Possible: Efficient Cost-Optimal Reachability

for Priced Timed Automata. LNCS, 2102:493–506, 2001.

[53] K. G. Larsen, P. Pettersson, and W. Yi. UPPAAL in a Nutshell. Int. Journal

on Software Tools for Technology Transfer, 1(1–2):134–152, 1997.

[54] C. Leangsuksun, H. Song, and L. Shen. Reliability Modeling Using UML.

In Software Engineering Research and Practice, pages 259–262, 2003.

[55] A. Lenstra and T. Voss. Information Security Risk Assessment, Aggrega-

tion, and Mitigation. In ACISP ’04: Information Security and Privacy:

Australasian Conference, 2004.

[56] R.P. Lippmann and K.W. Ingols. An Annotated Review of Past Papers

on Attack Graphs. Technical report, Defense Technical Information Cen-

ter OAI-PMH Repository [http://stinet.dtic.mil/oai/oai]

(United States), 1998. http://en.scientificcommons.org/

18618950.

[57] Z. Liu and M. Joseph. Verification of Fault Tolerance and Real Time. In

FTCS ’96: 26th IEEE Symposium on Fault Tolerant Computing Systems,

pages 220–229. IEEE Computer Society, 1996.

[58] H. Maciejewskia and D. Caban. Estimation of repairable system availa-

bility within fixed time horizon. Reliability Engineering & System Safety,

93(1):100–106, January 2006.

[59] Military Standard MIL-STD-1629A. Procedures for Performing a Fail-

ure Mode, Effects and Criticality Analysis. USA Department of Defense,

November 1980.

[60] R.R. Muntz, E. de Souza e Silva, and A. Goyal. Bounding Availability

of Repairable Computer Systems. SIGMETRICS Performance Evaluation

Review, 17(1):29–38, 1989.

180

http://stinet.dtic.mil/oai/oai
http://en.scientificcommons.org/18618950
http://en.scientificcommons.org/18618950

BIBLIOGRAPHY

[61] R. L. Murphy, C. J. Alberts, R. C. Williams, R. P. Higuera, A. J. Dorofee,

and J. A. Walker. Continuous Risk Management Guidebook. Carnegie

Mellon Software Engineering Institute, 1996.

[62] Office of Government Commerce (OGC). Introduction to the ITIL Service

Lifecycle. TSO (The Stationery Office), 2007.

[63] Office of Government Commerce (OGC). ITIL Version 3 Service Design.

TSO (The Stationery Office), 2007.

[64] Office of Government Commerce (OGC). ITIL Version 3 Service Strategy.

TSO (The Stationery Office), 2007.

[65] M. C. Paulk, C. V. Weber, B. Curtis, and M. B. Chrissis. The capability

maturity model: guidelines for improving the software process. Addison-

Wesley Longman Publishing Co., Inc., 1995.

[66] R. Pawson and N. Tilley. Realistic Evaluation. Sage Publications, 1997.

[67] T. Reitan. System Reliability. In J. Bergstra and M. Burgess, editors, Hand-

book of Network and System Administration, chapter 6.4, pages 775–809.

Elsevier, 2007.

[68] S. Ross. Introduction to Probability Models, Seventh Edition. Harcourt

Academic Press, 1989.

[69] J.E.Y. Rossebo, S. Cadzow, and P. Sijben. eTVRA, a Threat, Vul-

nerability and Risk Assessment Method and Tool for eEurope. In

ARES ’07: Second International Conference on Availability, Reliabil-

ity and Security, pages 925–933. IEEE Computer Society Press, April

2007. http://ieeexplore.ieee.org/xpls/abs_all.jsp?

arnumber=4159893.

[70] S. A. Sayana. Auditing Business Continuity. Information Systems Control

Journal, 1:11–13, 2005. http://www.isaca.org/TemplateRedirect.cfm?/

template=/ContentManagement/

ContentDisplay.cfm&ContentID=23553.

[71] O. Sheyner, J. Haines, S. Jha, R. Lippmann, and J.M. Wing. Automated

Generation and Analysis of Attack Graphs. IEEE Symposium on Security

and Privacy, page 273, 2002.

[72] S. Smale. On the average number of steps of the simplex method of linear

programming. Mathematical Programming, 27(3):241–262, October 1983.

181

http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=4159893
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=4159893

BIBLIOGRAPHY

[73] G. Stoneburner, A. Goguen, and A. Feringa. NIST SP 800-30 - Risk Man-

agement Guide for Information Technology Systems. Technical report,

NIST National Institute of Standards and Technology, 2002.

[74] K.J. Sullivan, J.B. Dugan, and D. Coppit. The Galileo fault tree analysis

tool. In Proc. of Twenty-Ninth Annual International Symposium on Fault-

Tolerant Computing, pages 232–235. IEEE Computer Society, 1999.

[75] J.G. Torres-Toledano and L.E. Sucar. Bayesian Networks for Reliability

Analysis of Complex Systems. In IBERAMIA ’98: Proceedings of the

6th Ibero-American Conference on AI, pages 195–206, London, UK, 1998.

Springer-Verlag.

[76] W.E. Vesely, F.F. Goldberg, N.H. Roberts, and D.F. Haasl. Fault Tree Hand-

book. Technical report, US Nuclear Regulatory Commission NUREG-

0492, 1981.

[77] R.J. Wieringa and J.M.G. Heerkens. Designing requirements engineering

research. In CERE ’07: Workshop on Comparative Evaluation in Require-

ments Engineering, pages 36–48. IEEE Computer Society Press, October

2007. http://eprints.eemcs.utwente.nl/13002/.

[78] R.J. Wieringa, N. Maiden, N. Mead, and C. Rolland. Requirements en-

gineering paper classification and evaluation criteria: a proposal and a dis-

cussion. Requirements Engineering Journal, 11:102–107, November 2006.

[79] R. Winther, O. Johnsen, and B.A. Gran. Security assessments for safety

critical systems using hazops. In Proc. of SAFECOMP 2001, pages 14–24.

Springer, 2001.

[80] T. Yu and K-J. Lin. Service Selection Algorithms for Web Services with

End-to-End QoS Constraints. In IEEE International Conference on E-

Commerce Technology, pages 129–136, Los Alamitos, CA, USA, 2004.

IEEE Computer Society.

[81] L. Zeng, B. Benatallah, A.H.H. Ngu, M. Dumas, J. Kalagnanam,

and H. Chang. QoS-Aware Middleware for Web Services Compo-

sition. IEEE Transactions on Software Engineering, 30(5):311–327,

2004. http://ieeexplore.ieee.org/xpls/abs_all.jsp?

arnumber=1291834.

182

http://eprints.eemcs.utwente.nl/13002/
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=1291834
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=1291834

BIBLIOGRAPHY

Web References (Last Accessed: October 2010)

[82] C. J. Alberts and A. J. Dorofee. OCTAVE Criteria. Technical Report ESC-

TR-2001-016, Carnegie Mellon - Software Engineering Institute, Decem-

ber 2001. http://www.cert.org/octave/.

[83] Alion Science and Technology. CounterMeasures. http://www.

countermeasures.com.

[84] The ArchiMate project, 2009. http://www.archimate.org.

[85] Risk management - AS/NZS 4360:2004. http://www.

riskmanagement.com.au/, October 2004.

[86] Basel II: Revised international capital framework. http://www.bis.

org/publ/bcbsca.htm, 2005.

[87] BiZZdesign. Architect. http://www.bizzdesign.nl/index.

php/tools/bizzdesignarchitect, 2010.

[88] BlockSim: System Reliability and Maintainability Analysis Software Tool.

http://www.reliasoft.com/BlockSim/.

[89] CISCO Systems. Cisco 2007 Annual Security Report. http:

//www.cisco.com/web/about/security/cspo/docs/

Cisco2007Annual_Security_Report.pdf, 2007.

[90] CobiT 4.1 - Control Objectives for Information and related Technology.

http://www.isaca.org, 2007.

[91] L. Cottrell. Network Monitoring Tools. http://www.slac.

stanford.edu/xorg/nmtf/nmtf-tools.html, 2010.

[92] CRAMM v5.1 Information Security Toolkit. http://www.cramm.

com, 2009.

[93] A. Deladrière and M. Morrison. The risk management chal-

lenge. http://www.bankingfinance.be/40915/default.

aspx, March 2008.

[94] EBIOS - Expression des Besoins et Identification des Objectifs de Sécurité

- Section 2: Approach. http://www.ssi.gouv.fr/en/, 2004.

[95] The ECLiPSe Constraint Programming System. http://87.230.22.

228/.

183

http://www.cert.org/octave/
http://www.countermeasures.com
http://www.countermeasures.com
http://www.archimate.org
http://www.riskmanagement.com.au/
http://www.riskmanagement.com.au/
http://www.bis.org/publ/bcbsca.htm
http://www.bis.org/publ/bcbsca.htm
http://www.bizzdesign.nl/index.php/tools/bizzdesignarchitect
http://www.bizzdesign.nl/index.php/tools/bizzdesignarchitect
http://www.reliasoft.com/BlockSim/
http://www.cisco.com/web/about/security/cspo/docs/Cisco2007Annual_Security_Report.pdf
http://www.cisco.com/web/about/security/cspo/docs/Cisco2007Annual_Security_Report.pdf
http://www.cisco.com/web/about/security/cspo/docs/Cisco2007Annual_Security_Report.pdf
http://www.isaca.org
http://www.slac.stanford.edu/xorg/nmtf/nmtf-tools.html
http://www.slac.stanford.edu/xorg/nmtf/nmtf-tools.html
http://www.cramm.com
http://www.cramm.com
http://www.bankingfinance.be/40915/default.aspx
http://www.bankingfinance.be/40915/default.aspx
http://www.ssi.gouv.fr/en/
http://87.230.22.228/
http://87.230.22.228/

BIBLIOGRAPHY

[96] ENISA. Risk Management: Implementation principles and Inventories for

Risk Management/Risk Assessment methods and tools. Technical report,

European Network and Information Security Agency (ENISA), June 2006.

http://www.enisa.europa.eu/rmra/rm_home.html.

[97] Federal Office for Information Security (BSI). GSTool. http://www.

bsi.bund.de/english/gstool/.

[98] HP. HP Business Availability Center. https://h10078.www1.

hp.com/cda/hpms/display/main/hpms_content.jsp?zn=

bto&cp=1-11-15-25_4000_100__, August 2009.

[99] Hyperic. http://www.hyperic.com.

[100] IBM. IBM Tivoli. http://www.ibm.com/software/tivoli/,

August 2009.

[101] BSI Standard 100-1 - Information Security Management Systems (ISMS).

http://www.bsi.de/english/gshb/, 2005.

[102] http://www.kpmg.com.

[103] R. Allen Long. Beauty & the Beast – Use and Abuse of

Fault Tree as a Tool. http://www.fault-tree.net/papers/

long-beauty-and-beast.pdf, Last checked in 2010.

[104] R. Marty. SecViz - Security Visualization. http://www.secviz.

org/, 2010.

[105] McAfee. In the Crossfire - Critical Infrastructure in the Age

of Cyber War. http://resources.mcafee.com/content/

NACIPReport, 2010.

[106] MEHARI 2007 - Risk Analysis Guide. https://www.clusif.

asso.fr/en/clusif/present/, April 2007.

[107] Nagios. http://www.nagios.org.

[108] NIST National Vulnerability Database. http://nvd.nist.gov/,

2009.

[109] PriceWaterhouseCoopers. BERR Information Security Breaches Survey

2008. http://www.pwc.co.uk/pdf/BERR_ISBS_2008(sml)

.pdf, 2008.

184

http://www.enisa.europa.eu/rmra/rm_home.html
http://www.bsi.bund.de/english/gstool/
http://www.bsi.bund.de/english/gstool/
https://h10078.www1.hp.com/cda/hpms/display/main/hpms_content.jsp?zn=bto&cp=1-11-15-25_4000_100__
https://h10078.www1.hp.com/cda/hpms/display/main/hpms_content.jsp?zn=bto&cp=1-11-15-25_4000_100__
https://h10078.www1.hp.com/cda/hpms/display/main/hpms_content.jsp?zn=bto&cp=1-11-15-25_4000_100__
http://www.hyperic.com
http://www.ibm.com/software/tivoli/
http://www.bsi.de/english/gshb/
http://www.fault-tree.net/papers/long-beauty-and-beast.pdf
http://www.fault-tree.net/papers/long-beauty-and-beast.pdf
http://www.secviz.org/
http://www.secviz.org/
http://resources.mcafee.com/content/NACIPReport
http://resources.mcafee.com/content/NACIPReport
https://www.clusif.asso.fr/en/clusif/present/
https://www.clusif.asso.fr/en/clusif/present/
http://www.nagios.org
http://nvd.nist.gov/
http://www.pwc.co.uk/pdf/BERR_ISBS_2008(sml).pdf
http://www.pwc.co.uk/pdf/BERR_ISBS_2008(sml).pdf

BIBLIOGRAPHY

[110] Relex Software Corporation. http://www.relex.com.

[111] Shadow-Planner, Business Continuity Management software. http://

www.office-shadow.com/.

[112] Sarbanes-Oxley Act of 2002. http://frwebgate.access.

gpo.gov/cgi-bin/getdoc.cgi?dbname=107_cong_bills&

docid=f:h3763enr.tst.pdf, 2002.

[113] The Open Group. TOGAF (The Open Group Architecture Frame-

work), 2003. http://www.opengroup.org/architecture/

togaf8-doc/arch/.

[114] The Zachman Institute for Framework Advancement. Zachman Frame-

work. http://www.zifa.com/, 2007.

[115] Emmanuele Zambon. VisualSibyl: a GUI frontend for A2THOS. http:

//www.vf.utwente.nl/˜zambone/visual_sybil, 2010.

185

http://www.relex.com
http://www.office-shadow.com/
http://www.office-shadow.com/
http://frwebgate.access.gpo.gov/cgi-bin/getdoc.cgi?dbname=107_cong_bills&docid=f:h3763enr.tst.pdf
http://frwebgate.access.gpo.gov/cgi-bin/getdoc.cgi?dbname=107_cong_bills&docid=f:h3763enr.tst.pdf
http://frwebgate.access.gpo.gov/cgi-bin/getdoc.cgi?dbname=107_cong_bills&docid=f:h3763enr.tst.pdf
http://www.opengroup.org/architecture/togaf8-doc/arch/
http://www.opengroup.org/architecture/togaf8-doc/arch/
http://www.zifa.com/
http://www.vf.utwente.nl/~zambone/visual_sybil
http://www.vf.utwente.nl/~zambone/visual_sybil

BIBLIOGRAPHY

186

Nomenclature

BC Business Continuity

BCP Business Continuity Plan

BIA Business Impact Analysis

COBIT Control Objectives for Information and related Technology

CRM Customer Relationship Management

CTMC Continuous Time Markov Chain

DoS Denial of Service

FT Fault Tree

GIT Global IT Infrastructure

IT Information Technology

ITIL Information Technology Infrastructure Library

MTBF Mean Time Between Failure

MTPD Maximum Tolerable Period of Disruption

MTTR Mean Time To Repair

QualTD Qualitative Time Dependency

RA Risk Assessment

RBD Reliability Block Diagram

187

BIBLIOGRAPHY

RM Risk Mitigation

RMC Risk Management and Compliance

RPO Recovery Point Objective

RTO Recovery Time objective

SLA Service Level Agreement

SLM Service Level Management

TD Time Dependency

TDR Time Dependency and Recovery

ToA Target of Assessment

TVA Threat/Vulnerability Assessment

188

Samenvatting

De beschikbaarheid van de IT-infrastructuur binnen een organisatie is van es-

sentieel belang voor de ondersteuning van bedrijfsactiviteiten. IT-uitval veroorza-

akt concurrerende aansprakelijkheid, tast de financiële prestaties en reputatie van

een bedrijf aan. Om het maximum aan IT-beschikbaarheid te bereiken binnen het

beschikbare budget, moeten organisaties een reeks analyseactiviteiten uitvoeren

om prioriteiten vast te stellen en beslissingen te nemen op basis van de bedrijfs-

behoeften. Deze reeks analyseactiviteiten wordt: “IT-beschikbaarheidsplanning”

genoemd.

De meeste (grote) organisaties leiden de IT-beschikbaarheidsplanning af van

één of meer van de drie belangrijkste facetten: informatie risico beheer, bedrijfs-

continuı̈teit en service level-beheer. Informatie risico beheer bestaat uit het iden-

tificeren, analyseren, evalueren en tegengaan van risicos die de informatie, verw-

erkt door een organisatie, en de informatieverwerkings-systemen kan beı̈nvloeden.

Bedrijfscontinuı̈teit bestaat uit het creëren van een logistiek plan, genoemd bedri-

jfscontinuı̈teitsplan, die de procedures en alle benodigde informatie bevat om de

cruciale processen van een bedrijf te herstellen na een ernstige verstoring. Service

level-beheer bestaat hoofdzakelijk uit het organiseren, documenteren en vezek-

eren van een bepaald kwaliteitsniveau (bijv. de beschikbaarheid) van de door het

IT-systeem aangeboden diensten aan de business units van een organisatie.

Er bestaan verscheidene standaarddocumenten welke een organisatie voorzien

van richtlijnen voor het opzetten van processen risico-, bedrijfscontinuı̈teit- and

service level-beheer. Echter, om te zorgen dat deze richtlijnen zo algemeen mo-

gelijk toepasbaar zijn omvatten ze geen implementatie details. Derhalve dient elke

organisatie afzonderlijk een IT-beschikbaarheidsplanning te ontwikkelen naar eigen

behoefte. Om praktisch bruikbaar te zijn moeten deze technieken nauwkeurig ge-

noeg zijn om de stijgende complexiteit van de IT-infrastructuur te ondervangen en

daarnaast uitvoerbaar blijven binnen het beschikbare budget van de organisatie.

Zoals we in dit proefschrift beargumenteren, basisbenaderingen die tegenwoordig

toegepast worden door organisaties zijn haalbaar maar vaak met een gebrek aan

nauwkeurigheid.

In dit proefschrift presenteren we een graafgebaseerd framework voor de beschik-

baarheidsafhankelijkheden van de componenten van een IT-infrastructuur èn on-

twikkelen we technieken gebaseerd op dit framework om de IT-beschikbaarheidsplanning

te ondersteunen. In meer detail behandelen we:

• het “Time Dependency model”, dat IT-managers ondersteunt bij het vast-

stellen van een reeks tegenmaatregelen om IT-beschikbaarheids gerelateerde

risico’s te verlagen met minimale kosten;

• het “Qualitative Time Dependency model”, dat bedoeld is om systematisch

de aanwezigheid van IT-beschikbaarheidsgerelateerde risico’s vast te stellen

in combinatie met bestaande risicoanalysemethodiek;

• het “Time Dependency and Recovery model”, dat een middel verstrekt aan

IT-managers om hesteltijd doeleinden op de componenten van een IT-architectuur

te bepalen of te bevestigen, die vervolgens worden gebruikt om het IT-

gerelateerde gedeelte van een bedrijfscontinuı̈teitsplan te creëren;

• A2THOS, om te controleren of de beschikbare SLA’s, die de provisioning

van de IT-diensten tussen de business units van dezelfde organisatie reg-

uleren, kunnen worden nageleefd wanneer de uitvoering van deze diensten

gedeeltelijk is uitbesteed aan externe bedrijven, èn om dienovereenkomstig

te kiezen voor aanbiedingen van externe bronnen.

We doen case studies om met behulp van de gegevens van een primaire verzek-

eringsmaatschappij en een grote multinational de voorgestelde technieken te testen.

De resultaten laten zien dat organisaties zoals verzekeringsmaatschappijen of fab-

rikanten, welke gebruik maken van IT, ter ondersteuning van hun bedrijf, kunnen

profiteren van de optimalisering van de beschikbaarheid van hun IT-infrastructuur.

Het is mogelijk technieken te ontwikkelen die de IT-beschikbaarheidsplanning on-

dersteunen en realiseerbaar zijn met beperkte uitgaven. Het door ons voorgestelde

framework laat zien dat de structuur van de IT-architectuur praktisch kan worden

toegepast met dergelijke technieken om de nauwkeurigheid ten opzichte van de

huidige praktijk te verhogen.

Titles in the IPA Dissertation Series since 2005

E. Ábrahám. An Assertional Proof

System for Multithreaded Java -

Theory and Tool Support- . Faculty

of Mathematics and Natural Sciences,

UL. 2005-01

R. Ruimerman. Modeling and Re-

modeling in Bone Tissue. Faculty of

Biomedical Engineering, TU/e. 2005-

02

C.N. Chong. Experiments in Rights

Control - Expression and Enforce-

ment. Faculty of Electrical Engineer-

ing, Mathematics & Computer Sci-

ence, UT. 2005-03

H. Gao. Design and Verification of

Lock-free Parallel Algorithms. Fac-

ulty of Mathematics and Computing

Sciences, RUG. 2005-04

H.M.A. van Beek. Specification

and Analysis of Internet Applications.

Faculty of Mathematics and Computer

Science, TU/e. 2005-05

M.T. Ionita. Scenario-Based System

Architecting - A Systematic Approach

to Developing Future-Proof System

Architectures. Faculty of Mathematics

and Computing Sciences, TU/e. 2005-

06

G. Lenzini. Integration of Analy-

sis Techniques in Security and Fault-

Tolerance. Faculty of Electrical En-

gineering, Mathematics & Computer

Science, UT. 2005-07

I. Kurtev. Adaptability of Model

Transformations. Faculty of Electrical

Engineering, Mathematics & Com-

puter Science, UT. 2005-08

T. Wolle. Computational Aspects of

Treewidth - Lower Bounds and Net-

work Reliability. Faculty of Science,

UU. 2005-09

O. Tveretina. Decision Procedures

for Equality Logic with Uninterpreted

Functions. Faculty of Mathematics

and Computer Science, TU/e. 2005-

10

A.M.L. Liekens. Evolution of Fi-

nite Populations in Dynamic Environ-

ments. Faculty of Biomedical Engi-

neering, TU/e. 2005-11

J. Eggermont. Data Mining using

Genetic Programming: Classification

and Symbolic Regression. Faculty

of Mathematics and Natural Sciences,

UL. 2005-12

B.J. Heeren. Top Quality Type Error

Messages. Faculty of Science, UU.

2005-13

G.F. Frehse. Compositional Verifica-

tion of Hybrid Systems using Simu-

lation Relations. Faculty of Science,

Mathematics and Computer Science,

RU. 2005-14

M.R. Mousavi. Structuring Struc-

tural Operational Semantics. Faculty

of Mathematics and Computer Sci-

ence, TU/e. 2005-15

A. Sokolova. Coalgebraic Analysis

of Probabilistic Systems. Faculty of

Mathematics and Computer Science,

TU/e. 2005-16

T. Gelsema. Effective Models for

the Structure of pi-Calculus Processes

with Replication. Faculty of Math-

ematics and Natural Sciences, UL.

2005-17

P. Zoeteweij. Composing Constraint

Solvers. Faculty of Natural Sciences,

Mathematics, and Computer Science,

UvA. 2005-18

J.J. Vinju. Analysis and Transfor-

mation of Source Code by Parsing

and Rewriting. Faculty of Natural

Sciences, Mathematics, and Computer

Science, UvA. 2005-19

M.Valero Espada. Modal Abstrac-

tion and Replication of Processes with

Data. Faculty of Sciences, Division of

Mathematics and Computer Science,

VUA. 2005-20

A. Dijkstra. Stepping through

Haskell. Faculty of Science, UU.

2005-21

Y.W. Law. Key management and link-

layer security of wireless sensor net-

works: energy-efficient attack and de-

fense. Faculty of Electrical Engineer-

ing, Mathematics & Computer Sci-

ence, UT. 2005-22

E. Dolstra. The Purely Functional

Software Deployment Model. Faculty

of Science, UU. 2006-01

R.J. Corin. Analysis Models for Se-

curity Protocols. Faculty of Electrical

Engineering, Mathematics & Com-

puter Science, UT. 2006-02

P.R.A. Verbaan. The Computational

Complexity of Evolving Systems. Fac-

ulty of Science, UU. 2006-03

K.L. Man and R.R.H. Schiffelers.

Formal Specification and Analysis of

Hybrid Systems. Faculty of Math-

ematics and Computer Science and

Faculty of Mechanical Engineering,

TU/e. 2006-04

M. Kyas. Verifying OCL Specifi-

cations of UML Models: Tool Sup-

port and Compositionality. Faculty

of Mathematics and Natural Sciences,

UL. 2006-05

M. Hendriks. Model Checking Timed

Automata - Techniques and Applica-

tions. Faculty of Science, Mathemat-

ics and Computer Science, RU. 2006-

06

J. Ketema. Böhm-Like Trees for

Rewriting. Faculty of Sciences, VUA.

2006-07

C.-B. Breunesse. On JML: topics in

tool-assisted verification of JML pro-

grams. Faculty of Science, Mathemat-

ics and Computer Science, RU. 2006-

08

B. Markvoort. Towards Hybrid

Molecular Simulations. Faculty of

Biomedical Engineering, TU/e. 2006-

09

S.G.R. Nijssen. Mining Structured

Data. Faculty of Mathematics and

Natural Sciences, UL. 2006-10

G. Russello. Separation and Adap-

tation of Concerns in a Shared Data

Space. Faculty of Mathematics and

Computer Science, TU/e. 2006-11

L. Cheung. Reconciling Nondeter-

ministic and Probabilistic Choices.

Faculty of Science, Mathematics and

Computer Science, RU. 2006-12

B. Badban. Verification techniques

for Extensions of Equality Logic. Fac-

ulty of Sciences, Division of Mathe-

matics and Computer Science, VUA.

2006-13

A.J. Mooij. Constructive formal

methods and protocol standardization.

Faculty of Mathematics and Computer

Science, TU/e. 2006-14

T. Krilavicius. Hybrid Techniques for

Hybrid Systems. Faculty of Electrical

Engineering, Mathematics & Com-

puter Science, UT. 2006-15

M.E. Warnier. Language Based Se-

curity for Java and JML. Faculty of

Science, Mathematics and Computer

Science, RU. 2006-16

V. Sundramoorthy. At Home In Ser-

vice Discovery. Faculty of Electrical

Engineering, Mathematics & Com-

puter Science, UT. 2006-17

B. Gebremichael. Expressivity of

Timed Automata Models. Faculty of

Science, Mathematics and Computer

Science, RU. 2006-18

L.C.M. van Gool. Formalising Inter-

face Specifications. Faculty of Math-

ematics and Computer Science, TU/e.

2006-19

C.J.F. Cremers. Scyther - Semantics

and Verification of Security Protocols.

Faculty of Mathematics and Computer

Science, TU/e. 2006-20

J.V. Guillen Scholten. Mobile Chan-

nels for Exogenous Coordination of

Distributed Systems: Semantics, Im-

plementation and Composition. Fac-

ulty of Mathematics and Natural Sci-

ences, UL. 2006-21

H.A. de Jong. Flexible Heteroge-

neous Software Systems. Faculty of

Natural Sciences, Mathematics, and

Computer Science, UvA. 2007-01

N.K. Kavaldjiev. A run-time re-

configurable Network-on-Chip for

streaming DSP applications. Faculty

of Electrical Engineering, Mathemat-

ics & Computer Science, UT. 2007-02

M. van Veelen. Considerations on

Modeling for Early Detection of Ab-

normalities in Locally Autonomous

Distributed Systems. Faculty of Math-

ematics and Computing Sciences,

RUG. 2007-03

T.D. Vu. Semantics and Applica-

tions of Process and Program Alge-

bra. Faculty of Natural Sciences,

Mathematics, and Computer Science,

UvA. 2007-04

L. Brandán Briones. Theories for

Model-based Testing: Real-time and

Coverage. Faculty of Electrical En-

gineering, Mathematics & Computer

Science, UT. 2007-05

I. Loeb. Natural Deduction: Sharing

by Presentation. Faculty of Science,

Mathematics and Computer Science,

RU. 2007-06

M.W.A. Streppel. Multifunctional

Geometric Data Structures. Faculty of

Mathematics and Computer Science,

TU/e. 2007-07

N. Trčka. Silent Steps in Transition

Systems and Markov Chains. Faculty

of Mathematics and Computer Sci-

ence, TU/e. 2007-08

R. Brinkman. Searching in encrypted

data. Faculty of Electrical Engineer-

ing, Mathematics & Computer Sci-

ence, UT. 2007-09

A. van Weelden. Putting types to

good use. Faculty of Science, Math-

ematics and Computer Science, RU.

2007-10

J.A.R. Noppen. Imperfect Informa-

tion in Software Development Pro-

cesses. Faculty of Electrical Engineer-

ing, Mathematics & Computer Sci-

ence, UT. 2007-11

R. Boumen. Integration and Test

plans for Complex Manufacturing

Systems. Faculty of Mechanical En-

gineering, TU/e. 2007-12

A.J. Wijs. What to do Next?:

Analysing and Optimising System Be-

haviour in Time. Faculty of Sciences,

Division of Mathematics and Com-

puter Science, VUA. 2007-13

C.F.J. Lange. Assessing and Improv-

ing the Quality of Modeling: A Series

of Empirical Studies about the UML.

Faculty of Mathematics and Computer

Science, TU/e. 2007-14

T. van der Storm. Component-

based Configuration, Integration and

Delivery. Faculty of Natural Sci-

ences, Mathematics, and Computer

Science,UvA. 2007-15

B.S. Graaf. Model-Driven Evolution

of Software Architectures. Faculty of

Electrical Engineering, Mathematics,

and Computer Science, TUD. 2007-16

A.H.J. Mathijssen. Logical Calculi

for Reasoning with Binding. Faculty

of Mathematics and Computer Sci-

ence, TU/e. 2007-17

D. Jarnikov. QoS framework for

Video Streaming in Home Networks.

Faculty of Mathematics and Computer

Science, TU/e. 2007-18

M. A. Abam. New Data Structures

and Algorithms for Mobile Data. Fac-

ulty of Mathematics and Computer

Science, TU/e. 2007-19

W. Pieters. La Volonté Machinale:

Understanding the Electronic Voting

Controversy. Faculty of Science,

Mathematics and Computer Science,

RU. 2008-01

A.L. de Groot. Practical Automa-

ton Proofs in PVS. Faculty of Science,

Mathematics and Computer Science,

RU. 2008-02

M. Bruntink. Renovation of Id-

iomatic Crosscutting Concerns in Em-

bedded Systems. Faculty of Electrical

Engineering, Mathematics, and Com-

puter Science, TUD. 2008-03

A.M. Marin. An Integrated System

to Manage Crosscutting Concerns in

Source Code. Faculty of Electrical

Engineering, Mathematics, and Com-

puter Science, TUD. 2008-04

N.C.W.M. Braspenning. Model-

based Integration and Testing of

High-tech Multi-disciplinary Systems.

Faculty of Mechanical Engineering,

TU/e. 2008-05

M. Bravenboer. Exercises in Free

Syntax: Syntax Definition, Parsing,

and Assimilation of Language Con-

glomerates. Faculty of Science, UU.

2008-06

M. Torabi Dashti. Keeping Fairness

Alive: Design and Formal Verification

of Optimistic Fair Exchange Proto-

cols. Faculty of Sciences, Division of

Mathematics and Computer Science,

VUA. 2008-07

I.S.M. de Jong. Integration and Test

Strategies for Complex Manufacturing

Machines. Faculty of Mechanical En-

gineering, TU/e. 2008-08

I. Hasuo. Tracing Anonymity with

Coalgebras. Faculty of Science,

Mathematics and Computer Science,

RU. 2008-09

L.G.W.A. Cleophas. Tree Algo-

rithms: Two Taxonomies and a

Toolkit. Faculty of Mathematics and

Computer Science, TU/e. 2008-10

I.S. Zapreev. Model Checking

Markov Chains: Techniques and

Tools. Faculty of Electrical Engineer-

ing, Mathematics & Computer Sci-

ence, UT. 2008-11

M. Farshi. A Theoretical and Exper-

imental Study of Geometric Networks.

Faculty of Mathematics and Computer

Science, TU/e. 2008-12

G. Gulesir. Evolvable Behavior Spec-

ifications Using Context-Sensitive

Wildcards. Faculty of Electrical En-

gineering, Mathematics & Computer

Science, UT. 2008-13

F.D. Garcia. Formal and Com-

putational Cryptography: Protocols,

Hashes and Commitments. Faculty of

Science, Mathematics and Computer

Science, RU. 2008-14

P. E. A. Dürr. Resource-based Verifi-

cation for Robust Composition of As-

pects. Faculty of Electrical Engineer-

ing, Mathematics & Computer Sci-

ence, UT. 2008-15

E.M. Bortnik. Formal Methods in

Support of SMC Design. Faculty of

Mechanical Engineering, TU/e. 2008-

16

R.H. Mak. Design and Performance

Analysis of Data-Independent Stream

Processing Systems. Faculty of Math-

ematics and Computer Science, TU/e.

2008-17

M. van der Horst. Scalable Block

Processing Algorithms. Faculty of

Mathematics and Computer Science,

TU/e. 2008-18

C.M. Gray. Algorithms for Fat Ob-

jects: Decompositions and Applica-

tions. Faculty of Mathematics and

Computer Science, TU/e. 2008-19

J.R. Calamé. Testing Reactive Sys-

tems with Data - Enumerative Meth-

ods and Constraint Solving. Faculty

of Electrical Engineering, Mathemat-

ics & Computer Science, UT. 2008-20

E. Mumford. Drawing Graphs for

Cartographic Applications. Faculty of

Mathematics and Computer Science,

TU/e. 2008-21

E.H. de Graaf. Mining Semi-

structured Data, Theoretical and Ex-

perimental Aspects of Pattern Evalua-

tion. Faculty of Mathematics and Nat-

ural Sciences, UL. 2008-22

R. Brijder. Models of Natural Com-

putation: Gene Assembly and Mem-

brane Systems. Faculty of Mathemat-

ics and Natural Sciences, UL. 2008-23

A. Koprowski. Termination of

Rewriting and Its Certification. Fac-

ulty of Mathematics and Computer

Science, TU/e. 2008-24

U. Khadim. Process Algebras for Hy-

brid Systems: Comparison and Devel-

opment. Faculty of Mathematics and

Computer Science, TU/e. 2008-25

J. Markovski. Real and Stochastic

Time in Process Algebras for Perfor-

mance Evaluation. Faculty of Math-

ematics and Computer Science, TU/e.

2008-26

H. Kastenberg. Graph-Based Soft-

ware Specification and Verification.

Faculty of Electrical Engineering,

Mathematics & Computer Science,

UT. 2008-27

I.R. Buhan. Cryptographic Keys

from Noisy Data Theory and Applica-

tions. Faculty of Electrical Engineer-

ing, Mathematics & Computer Sci-

ence, UT. 2008-28

R.S. Marin-Perianu. Wireless Sensor

Networks in Motion: Clustering Algo-

rithms for Service Discovery and Pro-

visioning. Faculty of Electrical En-

gineering, Mathematics & Computer

Science, UT. 2008-29

M.H.G. Verhoef. Modeling and Val-

idating Distributed Embedded Real-

Time Control Systems. Faculty of Sci-

ence, Mathematics and Computer Sci-

ence, RU. 2009-01

M. de Mol. Reasoning about Func-

tional Programs: Sparkle, a proof as-

sistant for Clean. Faculty of Science,

Mathematics and Computer Science,

RU. 2009-02

M. Lormans. Managing Require-

ments Evolution. Faculty of Electrical

Engineering, Mathematics, and Com-

puter Science, TUD. 2009-03

M.P.W.J. van Osch. Automated

Model-based Testing of Hybrid Sys-

tems. Faculty of Mathematics and

Computer Science, TU/e. 2009-04

H. Sozer. Architecting Fault-Tolerant

Software Systems. Faculty of Elec-

trical Engineering, Mathematics &

Computer Science, UT. 2009-05

M.J. van Weerdenburg. Efficient

Rewriting Techniques. Faculty of

Mathematics and Computer Science,

TU/e. 2009-06

H.H. Hansen. Coalgebraic Mod-

elling: Applications in Automata The-

ory and Modal Logic. Faculty of Sci-

ences, Division of Mathematics and

Computer Science, VUA. 2009-07

A. Mesbah. Analysis and Testing of

Ajax-based Single-page Web Applica-

tions. Faculty of Electrical Engineer-

ing, Mathematics, and Computer Sci-

ence, TUD. 2009-08

A.L. Rodriguez Yakushev. Towards

Getting Generic Programming Ready

for Prime Time. Faculty of Science,

UU. 2009-9

K.R. Olmos Joffré. Strategies for

Context Sensitive Program Transfor-

mation. Faculty of Science, UU.

2009-10

J.A.G.M. van den Berg. Reason-

ing about Java programs in PVS using

JML. Faculty of Science, Mathematics

and Computer Science, RU. 2009-11

M.G. Khatib. MEMS-Based Stor-

age Devices. Integration in Energy-

Constrained Mobile Systems. Faculty

of Electrical Engineering, Mathemat-

ics & Computer Science, UT. 2009-12

S.G.M. Cornelissen. Evaluating Dy-

namic Analysis Techniques for Pro-

gram Comprehension. Faculty of

Electrical Engineering, Mathematics,

and Computer Science, TUD. 2009-13

D. Bolzoni. Revisiting Anomaly-

based Network Intrusion Detection

Systems. Faculty of Electrical En-

gineering, Mathematics & Computer

Science, UT. 2009-14

H.L. Jonker. Security Matters: Pri-

vacy in Voting and Fairness in Digi-

tal Exchange. Faculty of Mathematics

and Computer Science, TU/e. 2009-

15

M.R. Czenko. TuLiP - Reshaping

Trust Management. Faculty of Elec-

trical Engineering, Mathematics &

Computer Science, UT. 2009-16

T. Chen. Clocks, Dice and Processes.

Faculty of Sciences, Division of Math-

ematics and Computer Science, VUA.

2009-17

C. Kaliszyk. Correctness and Av-

ailability: Building Computer Algebra

on top of Proof Assistants and mak-

ing Proof Assistants available over the

Web. Faculty of Science, Mathematics

and Computer Science, RU. 2009-18

R.S.S. O’Connor. Incompleteness &

Completeness: Formalizing Logic and

Analysis in Type Theory. Faculty of

Science, Mathematics and Computer

Science, RU. 2009-19

B. Ploeger. Improved Verification

Methods for Concurrent Systems. Fac-

ulty of Mathematics and Computer

Science, TU/e. 2009-20

T. Han. Diagnosis, Synthesis and

Analysis of Probabilistic Models. Fac-

ulty of Electrical Engineering, Math-

ematics & Computer Science, UT.

2009-21

R. Li. Mixed-Integer Evolution

Strategies for Parameter Optimization

and Their Applications to Medical Im-

age Analysis. Faculty of Mathematics

and Natural Sciences, UL. 2009-22

J.H.P. Kwisthout. The Compu-

tational Complexity of Probabilistic

Networks. Faculty of Science, UU.

2009-23

T.K. Cocx. Algorithmic Tools for

Data-Oriented Law Enforcement.

Faculty of Mathematics and Natural

Sciences, UL. 2009-24

A.I. Baars. Embedded Compilers.

Faculty of Science, UU. 2009-25

M.A.C. Dekker. Flexible Access

Control for Dynamic Collaborative

Environments. Faculty of Electrical

Engineering, Mathematics & Com-

puter Science, UT. 2009-26

J.F.J. Laros. Metrics and Visuali-

sation for Crime Analysis and Ge-

nomics. Faculty of Mathematics and

Natural Sciences, UL. 2009-27

C.J. Boogerd. Focusing Automatic

Code Inspections. Faculty of Elec-

trical Engineering, Mathematics, and

Computer Science, TUD. 2010-01

M.R. Neuhäußer. Model Check-

ing Nondeterministic and Randomly

Timed Systems. Faculty of Electrical

Engineering, Mathematics & Com-

puter Science, UT. 2010-02

J. Endrullis. Termination and Pro-

ductivity. Faculty of Sciences, Di-

vision of Mathematics and Computer

Science, VUA. 2010-03

T. Staijen. Graph-Based Specifi-

cation and Verification for Aspect-

Oriented Languages. Faculty of Elec-

trical Engineering, Mathematics &

Computer Science, UT. 2010-04

Y. Wang. Epistemic Modelling and

Protocol Dynamics. Faculty of Sci-

ence, UvA. 2010-05

J.K. Berendsen. Abstraction, Prices

and Probability in Model Checking

Timed Automata. Faculty of Science,

Mathematics and Computer Science,

RU. 2010-06

A. Nugroho. The Effects of UML

Modeling on the Quality of Software.

Faculty of Mathematics and Natural

Sciences, UL. 2010-07

A. Silva. Kleene Coalgebra. Faculty

of Science, Mathematics and Com-

puter Science, RU. 2010-08

J.S. de Bruin. Service-Oriented

Discovery of Knowledge - Founda-

tions, Implementations and Applica-

tions. Faculty of Mathematics and

Natural Sciences, UL. 2010-09

D. Costa. Formal Models for Com-

ponent Connectors. Faculty of Sci-

ences, Division of Mathematics and

Computer Science, VUA. 2010-10

M.M. Jaghoori. Time at Your Ser-

vice: Schedulability Analysis of Real-

Time and Distributed Services. Fac-

ulty of Mathematics and Natural Sci-

ences, UL. 2010-11

R. Bakhshi. Gossiping Models: For-

mal Analysis of Epidemic Protocols.

Faculty of Sciences, Department of

Computer Science, VUA. 2011-01

B.J. Arnoldus. An Illumination of

the Template Enigma: Software Code

Generation with Templates. Faculty of

Mathematics and Computer Science,

TU/e. 2011-02

E. Zambon. Towards Optimal IT

Availability Planning: Methods and

Tools. Faculty of Electrical Engineer-

ing, Mathematics & Computer Sci-

ence, UT. 2011-03

	Introduction
	Availability Planning
	The Problem
	Technical Research Questions
	Contributions
	Thesis Overview and Publications

	Quantitative Decision Support for Model-Based Mitigation of Availability Risks
	Introduction
	Relevant methodologies for IT availability management
	The Time Dependency (TD) model
	Risk mitigation

	Prototype implementation
	UPPAAL implementation
	Prolog implementation

	Discussion
	Related work
	Concluding remarks

	Model-based Qualitative Risk Assessment for Availability of IT Infrastructures
	Introduction
	The Qualitative Time Dependency (QualTD) model
	Definition of the ToA
	Risk identification
	Risk evaluation
	Output of a RA using the QualTD model

	Case-study
	The industrial context
	Availability RA using the QualTD model

	Case-study evaluation
	Stakeholders, goals and criteria
	Design of the evaluation process
	Evaluation of the criteria
	Applicability to other scenarios

	Related work
	Combining the QualTD model to standard RA Methods
	Dependency-based techniques for RA

	Concluding remarks

	A Model Supporting Business Continuity Auditing & Planning in Information Systems
	Introduction
	Time Dependency and Recovery model
	Incidents and their propagation
	Assessing the RTO

	The Practice
	Discussion
	Related Work
	Concluding remarks

	A2thOS: Availability Analysis and Optimisation in SLAs
	Introduction
	Related Work
	Analysis of the minimal service availability
	Optimisation of outsourced services
	Implementation and benchmarks
	Methodology - practical use of A2thOS
	Concluding remarks
	Proof of Theorem 5.1
	Representation capabilities

	Concluding Remarks
	Summary and conclusions
	Future work

	Dependency Graphs Analysis, FTA and FMEA
	Building Dependency Graphs

