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ABSTRACT

This paper proposes an efficient algorithm to synthesize pre-
fix graph structures that yield adders with the best performance-
area trade-off. For designing a parallel prefix adder of a
given bit-width, our approach generates prefix graph struc-
tures to optimize an objective function such as size of pre-
fix graph subject to constraints like bit-wise output logic
level. Besides having the best performance-area trade-off
our approach, unlike existing techniques, can (i) handle more
complex constraints such as maximum node fanout or wire-
length that impact the performance/area of a design and (ii)
generate several feasible solutions that minimize the objec-
tive function. Generating several optimal solutions provides
the option to choose adder designs that mitigate constraints
such as wire congestion or power consumption that are dif-
ficult to model as constraints during logic synthesis. Ex-
perimental results demonstrate that our approach improves
performance by 3% and area by 9% over even a 64-bit full
custom designed adder implemented in an industrial high-
performance design.

Categories and Subject Descriptors

B.2.m [Hardware, Arithmetic and Logic Structure]:
Miscellaneous;

General Terms

Algorithms, Design, Performance

Keywords

Logic synthesis, Parallel prefix adder, Bottom-up approach

1. INTRODUCTION
Datapath logic constitutes a significant portion of a gen-

eral purpose microprocessor and frequently occurs on the
timing-critical paths in high-performance designs. Arith-
metic components, such as adders, multipliers, shifters are
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the basic building blocks in datapath logic and hence, to
a great extent dictate the performance of the entire chip.
Binary addition is one of the most fundamental and widely
used arithmetic operations in microprocessors. Today, adders
are designed in 2 ways - either manually through full custom
design or in an automated manner using synthesis tools. In
a custom adder design methodology, a designer has to manu-
ally choose between regular adder structures such as Kogge-
Stone [1], Sklansky [2], Brent-Kung [3] and tune physical de-
sign parameters such as placement, gate sizing, buffer opti-
mization to maximize performance under power constraints
for the target technology [4][5]. Hence, custom adder design
methodology is expensive, takes a long time to converge to a
satisfactory design, and is inflexible to late design changes.

In contrast, automated synthesis approach is productive
and flexible to late design changes but traditionally has
lagged behind in performance as compared to custom de-
signs. Therefore, the prevalent design approach for high-
performance datapath logic continues to be custom design.
In the past, several algorithms have been proposed to gener-
ate parallel prefix adders targeting minimization of the size
of the prefix graph (s) under given bit-width (N) and logic
level (L) constraints. Snir [6] has given a theoretical bound
of s for L ≥ 2 log2 N − 2 with uniform input profile. [7]
presents a recursive construction of parallel prefix graphs
to obtain a trade-off between size and level, but it could
not achieve the bound provided by [6]. Other existing algo-
rithms like a greedy depth-decreasing heuristic [8], dynamic
programming based approaches ([9], [10]) or non-heuristic
optimization [11] could achieve this bound for some cases
but yield a non-optimal result as logic level constraints are
reduced (for e.g. to log2 N) – which is more relevant for
high performance adders. The most recent approach [9],
that uses dynamic programming (DP) on a restricted search
space to generate a seed prefix graph followed by an area-
heuristic to further reduce the size of the seed prefix graph,
is also the most effective in minimizing the size of the pre-
fix graphs. However, the quality of the area-heuristic so-
lution depends on the selection of seed solution from DP,
which is not unique. Furthermore, this algorithm cannot
handle fanout/wire-length constraints on nodes in the pre-
fix graph or arrival/required time constraints on individual
input/output bits that impact the performance, area, and
power consumption of the adder after physical design. In
[12], an exhaustive approach is attempted to explore the op-
timal arithmetic-circuit architectures through selective fac-
torization, but it is very limited in terms of scalability.

To tackle these issues, this paper proposes an efficient al-



gorithm to generate prefix graphs for synthesizing adders
with the best performance-area trade-off. In this approach,
prefix graph structures are constructed in bottom-up fashion
by exhaustively generating all possible n+1 bit prefix graphs
from n bit prefix graphs. For scalability to large adders up
to 128 bits, our approach proposes a novel compact data
structure for manipulating prefix graphs, efficient memory
management techniques like lazy copy for storing several
prefix graph solutions, and search space reduction strate-
gies like level-restriction, dynamic size pruning, repeatabil-
ity pruning for targeting prefix graph structures relevant for
achieving the best performance-area trade-off. Compared
to existing algorithms our approach has the following ad-
vantages:

1. It is more effective than all existing algorithms in min-
imizing the size of the prefix graph for given bit-width
N and bitwise input/output logic level constraints.

2. It provides greater opportunity for improving perfor-
mance of the adder because the algorithm can handle
fanout/wire-length constraints on nodes in the prefix
graph and arrival/required time constraints on indi-
vidual input/output bits.

3. It generates many candidate prefix graph structures for
a given set of constraints, which can also be evaluated
for placement and wiring congestion to yield efficient
physical and routing implementation.

The rest of the paper is organized as follows. Section 2
describes binary addition as a prefix graph problem. Section
3 presents our algorithm for generating prefix graph struc-
tures. Section 4 presents the results of this approach with a
conclusion in section 5.

2. PRELIMINARIES
Given an ordered n inputs x0, x1, ..., xn−1 (where xn−1

is the MSB and x0 is the LSB) and an associative operation
o, prefix computation of n outputs is defined as follows:

yi = xi o xi−1 o...o x0 ∀i ∈ [0, n− 1] (1)

where i-th output depends on all previous inputs xj (j ≤
i). A prefix graph of width n is a directed acyclic graph (with
n inputs/outputs) whose nodes correspond to the associative
operation “o” in the prefix computation and there exists an
edge from node vi to node vj if vi is an operand of vj . Fig.
1 represents a prefix graph for 6 bit. In this example, we
can write y5 as

y5 = i1 o y3 = (x5 o x4) o (i0 o y1)

= (x5 o x4) o ((x3 o x2) o (x1 o x0)) (2)

Next, we will explain this prefix graph in the context of
binary addition.

Binary addition problem is defined as follows: given n bit
augend A = an−1....a1a0 and n bit addend B = bn−1....b1b0,
compute the sum S = sn−1....s1s0 and carry out Cout =
cn−1, where si = ai⊕bi⊕ci−1 and ci = aibi+aici−1+bici−1.

With bitwise (group) generate function g (G) and prop-
agate function p (P ), n bit binary addition can be mapped
to a prefix computation problem as follows:

• Pre-processing: Bitwise g, p generation

gi = ai.bi and pi = ai ⊕ bi (3)
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Figure 1: Prefix Graph Representation

• Prefix-processing: The concept of generate/propagate
is extended to multiple bits and G[i:j], P[i:j] (i ≥ j) are
defined as

P[i:j] =

{

pi if i = j

P[i:k].P[k−1:j] otherwise

G[i:j] =

{

gi if i = j

G[i:k] + P[i:k].G[k−1:j] otherwise
(4)

The computation for (G, P ) is expressed in terms of
associative operation o as:

(G,P )[i:j] = (G,P )[i:k] o (G,P )[k−1:j] (5)

= (G[i:k] + P[i:k].G[k−1:j], P[i:k].P[k−1:j])

• Post-processing: Sum generation

si = pi ⊕ ci−1 and ci = G[i:0] (6)

Among the three components of binary addition prob-
lem, both pre-processing and post-processing parts are fixed
structures. However, o being an associative operator, pro-
vides the flexibility of grouping the sequence of operations
in prefix processing part and executing them in parallel. So
the structure of the prefix graph determines the extent of
parallelism.

At the technology independent level, size of the prefix
graphs (# of prefix nodes) gives the area measure and the
logic levels of the nodes estimate roughly the timing. It is
important to note that the actual timing depends on other
parameters as well like fan-out distribution and size of the
prefix graph. Smaller sizes of prefix graph offer better flexi-
bility during post-synthesis gate sizing.

3. OUR APPROACH
This section describes a compact data structure for stor-

ing and manipulating a prefix graph, efficient memory man-
agement strategies for storing several prefix graph solutions,
and pruning strategies to scale our approach up to 128 bit
adders. Due to the associative nature of the prefix operation o,
each output bit (m) can be constructed by combining the
previous input bits 0, 1 ... m in any way keeping their
relative orders intact and the number of possible ways is
catalan(m), where catalan(m) = 1

m+1

(

2m
m

)

. Let Gn de-
notes the set of all possible prefix graphs with bit-width n.
Then size of Gn grows exponentially with n and is given by
catalan(n− 1) ∗ catalan(n− 2) ∗ .... catalan(0). For ex-
ample, |G8| = 332972640, |G12| = 2.29 ∗ 1024. As the search
space is huge, we require compact data structure, efficient



memory management and search space reduction techniques
to scale this approach.

3.1 Compact Notation and Data Structure
We represent the prefix graph by a sequence of indices.

Each prefix node is represented by an index, which is the
most significant bit (MSB) of the node. Fig.2 illustrates the
compact notation, where the sequence is determined in topo-
logical order, and in addition, precedence is given to higher
significant bits in the sequence of indices. For instance, in
Fig.2 (right side), indices {3,1} and {3,2} occur at first and
second topological levels respectively. With only topologi-
cal ordering, 4 possible sequences are possible - 3132, 3123,
1332, 1323. Since 3 is given precedence over 1 and 2 at
the first and second topological levels respectively, the only
possible sequence here is 3132. On the other hand, we can
construct a prefix graph by traversing the sequence of in-
dices from left to right in the following way: for each index
i in the sequence, we add a node p which is derived from 2
nodes – the most recent node r with index i (or input bit i)
and the node just before p in the sequence (or the input bit
LSB(r) − 1). For example, in the sequence ‘3132’ in Fig.2,
the node for first 3 is constructed from input bits 3 and 2,
where as that for second 3 is constructed from the node for
first 3 and the node (with index 1) just before it.
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Figure 2: Compact Notation for a prefix graph

Apart from storing the index, we also need to track the
LSB, level, fanout for each node in the prefix graph. We
store all this information using a single integer for each node,
and represent a prefix graph by a list/sequence of integers.
Since we want to explore adders up to 128 bits and provision
a carry-in as the 129th bit, we reserve 8 bits (⌈log2(129)⌉)
for index, level, fanout and LSB. Thus, all information for
a node can be stored in a single integer as shown in Fig.3.

8888

MSB(index)levelfanoutLSB

Figure 3: Bit Slicing

This compact data structure helps in reducing memory
usage and runtime (due to faster copy/delete operation for
a prefix node) as compared to using a structure to store
index, LSB, level, and fanout as individual integers.

3.2 Exhaustive Bottom-up Enumeration
We start from a prefix graph of 2 bits (represented by

a single index sequence ‘1’) and construct the prefix graph
structures for higher bits in an inductive way, i.e. given
all possible prefix graphs (Gn) for n bit, we construct all
possible prefix graphs (Gn+1) of n + 1 bit. The process of
generating such graphs of n+1 bit from an element of Gn by

inserting n at appropriate positions is a recursive procedure.
Fig.4 explains this for an element (‘12’) of G3 with the help
of a recursion tree.

xx

00

0

0

0

0

11

1

1

1

1

22

2

2

2

2

33

3

3

3

1

2

3

4

5

6

7

8

12

12

123
312

312

3312

33312 3132

Figure 4: An illustrative example

At the beginning of this recursive procedure (RP ), we
have a sequence ‘12’ (node 1) with an arrow on ‘1’. The ar-
row points to the index before which 3 can be inserted. At
any stage, there are two options, either insert 3 and call RP ,
or move the arrow to a suitable position and then call RP .
This position is found by iterating the list/sequence in for-
ward direction until searchIndex (= LSB(RecentNode(3))−
1) is found, where RecentNode(i) signifies the most recent
node with index i in the sequence. The left subtree denotes
the first option and the right subtree indicates the second
option. So the procedure either inserts ‘3’ at the beginning
of ‘12’ and goes to node 2 or it goes to node 7 by moving
the arrow to the appropriate position. We can see that,
searchIndex = LSB(RecentNode(3)) − 1 = 3 − 1 = 2 for
this case. Similarly, for node 2, the searchIndex has be-
come 2 − 1 = 1, and so this procedure either inserts ‘3’
(in node 3) or shifts the pointer after ‘1’ (in node 5). The
traversal is done in pre-order and this recursion is contin-
ued till LSB(RecentNode(3)) becomes ‘0’ or alternatively,
a 4 bit prefix graph is constructed. The right subtree of a
node is not traversed if a prefix graph for 4 bits has been
constructed at the left child of the node. For example, we
do not traverse the right subtree of node 3 and node 5.

Algorithm 1 illustrates the steps of this exhaustive enu-
meration technique. The algorithm preserves the uniqueness
of the solutions by inserting the indices at appropriate posi-
tions. In the ‘buildRecursive’ procedure, nodeList is an STL
list (insert and erase operations are thus O(1) operations),
recentNode is passed as a parameter which is used to find
searchIndex and to track if a solution has been generated.
currIter is the iterator corresponding to ↓ in Fig.4. The
return value of the procedure is true, when nodeList is a
solution of Gn+1, thereby indicating that the right subtree
of parent of nodeList does not require traversal.

3.3 Efficient Recursion Implementation
The key step of Algorithm 1 is the recursive procedure as

explained in Fig.4. In a pre-order traversal of typical recur-
sion tree implementation, when we move from root node to



Algorithm 1 Exhaustive Bottom-up Enumeration

1: //Given Gn construct Gn+1..
2: for all g ∈ Gn do

3: buildRecursive(g, null, g.begin, n);
4: end for

5: Procedure buildRecursive(nodeList, recentNode, currIter,
index)

6: if recentNode 6= null and LSB(recentNode) = 0 then

7: save solution nodeList in Gn+1;
8: return true;
9: end if

10: searchIndex← LSB(recentNode)− 1;
11: newIter← nodeList.insert(currIter, index);
12: newNode← value at newIter;
13: flag ← buildRecursive(nodeList, newNode, currIter,

index);
14: if flag = true then

15: return false;
16: end if

17: nodeList.erase(newIter);
18: repeat

19: node← value at currIter;
20: currIter ← currIter+ 1;
21: until MSB(node) 6= searchIndex and currIter 6=

nodeList.end
22: buildRecursive(nodeList, recentNode, currIter, index);
23: end Procedure

its left subtree, a copy of the root node is stored to traverse
the right subtree at later stage. In our approach, we copy
the sequence only when we get a valid prefix graph, other-
wise keep on modifying the sequence. As for example, we
do not store the sequences (‘312’, ‘3312’) in Fig.4, i.e. when
we move to the left subtree of a node in the recursion tree,
we insert the index and delete it while coming back to the
node in the pre-order traversal, and store only the leaf nodes.
This notion of late copy is motivated by a concept in object-
oriented-programming, known as lazy copy or copy-on-write
[13] which is a combination of deep copy and shallow copy.
In lazy-copy, when an object is copied initially, a shallow
copy (fast) is used and then deep copy (slow) is performed
when it is absolutely necessary (for example, modifying a
shared object). Lazy copy helps to significantly reduce run
time by replacing list copy and delete operations with list
entry insertion and deletion operations at a given position
(iterator) which, being an O(1) operation, does not impact
the runtime. For the simple example shown in Fig. 4, an
implementation without lazy copy needs 5 list copy and 2
list delete operations whereas an implementation with lazy
copy only needs 3 list copy operations and no list delete op-
erations. The benefits of lazy copy increase exponentially
with bit-width.

3.4 Search Space Reduction
As the size of the solution space of all prefix graphs is huge,

it is not feasible to generate all possible prefix graphs. Many
prefix graphs are also not relevant because they do not have
a good performance-area trade-off. We are interested only
in generating candidate solutions to optimize performance
(prefix graphs with minimum logic levels) and area (prefix
graphs with minimum number of prefix nodes). Hence, the
following search space reduction techniques are employed to
scale this approach.

Level Pruning: The performance of an adder depends di-
rectly on the number of logic levels of the prefix graph. Our

approach intends to minimize the number of prefix nodes
with given bit-width and logic level (L) constraints. In Al-
gorithm 1, we keep track of the levels of each prefix node
and solutions are discarded if the level of the inserted node
(or index) becomes greater than L. This work focusses on
synthesizing adders with maximum performance and hence,
constrains the level at each output bit to the smallest pos-
sible value, i.e., bit m is constrained to be at level ⌈log2 m⌉.

Dynamic Size Pruning: As discussed in section 3.2, we
construct the set Gn+1 from Gn. While doing this, we prune
the solution space based on size (# of prefix nodes) of el-
ements in Gn. Let smin be the size of the minimum sized
prefix graph(s) of Gn. Then we prune the solutions (g) for
which size(g) > smin+∆. For example, suppose the sizes of
the solutions in Gn = [9 10 11] and ∆ = 2. To construct
Gn+1, we select the graphs of Gn in increasing order of sizes
and build the elements of Gn+1. Let the graphs with sizes
X1 = [12 13 14 15], X2 = [11 14] and X3 = [13 16]
be respectively constructed from the graphs of sizes 9, 10,
11 in Gn. In this case, the minimum size solution is the so-
lution with size 11 and so the sizes of the solutions stored in
Gn+1 = [[12 13], [11], [13]]. This pruning is done to choose
the potential elements of Gn+1, which can give minimum
size solution for the higher bits. The selection of ∆ is criti-
cal to reduce the search space and we found empirically that
∆ = 3 is sufficient to get minimum size solutions for log2 N
level till 128 bit. But any kind of restriction (like fanout)
on the graph structure requires higher ∆ to achieve feasible
solutions. In that case, we store a fixed number of solutions
of Gn for each size s (smin ≤ s ≤ smin + ∆), which allows
higher ∆ without increasing memory usage too much.

However, pruning the superfluous solutions after construct-
ing the whole set Gn+1 can cause peak memory overshoot.
So we employ the strategy “Delete as early as possible”, i.e.
we generate solutions on the basis of current minimum size
scurrent
min . Let us take the same example to illustrate this. In
X1, s

current
min = 12 and so we do not construct the graph with

size 15, as 15 > 12 + 2. Similarly, when we get the solution
with size 11 in X2, we delete the graph with size 14 from
X1 and do not construct the graph with size 14 in X2 and
16 in X3. Indeed, whenever the size of the list/sequence in
algorithm 1 exceeds scurrent

min by ∆ + 1, the flow is returned
from RP . Apart from reducing the peak memory usage, this
dynamic pruning of solutions helps in improving run time by
reducing copy/delete operations.

Repeatability Pruning: The sequence (in our notation)
denoting a prefix graph can have consecutive indices. We
denote the maximum number of consecutive indices in a se-
quence by R. For example, ‘33312’ in Fig.4 has 3 consecutive
3’s in the sequence so R = 3. We have observed that R = 1
does not degrade the solution quality, but significantly re-
duces the search space at an early stage. For example, in
Fig.5, ‘3132’ is a better solution than ‘33312’ both in terms
of logic level and size. Algorithm 1 is modified to track
repeatability and prune solutions with R > 1.

Prefix Structure Restriction: This is a special restric-
tion in prefix graph structure for 2n bit adders with n logic
levels. For example, if we need to construct an 8 bit adder
with logic level 3, the only possible way to realize the MSB
using the same notation as Eqn.(2) is given by

y7 = ((x7 o x6) o (x5 o x4)) o((x3 o x2) o (x1 o x0)) (7)
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Figure 5: 3132 is better prefix structure than 33312
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Figure 6: Search Space Reduction for each output

bit m at level ⌈log2m⌉

So 7 nodes or alternatively (2n − 1) prefix nodes are fixed
for the 2n bit adder with n level. We impose this restriction
in our implementation for generating the sequence of indices,
which helps in improving the run time significantly.

Fig.6 plots the number of solutions (each output bit m

being at level ⌈log2m⌉) with bit-width for 3 cases, first the
exhaustive solution space which grows exponentially with
bit-width, next the solution space with ∆ = 3, R = 1 and
without any structure restriction and finally that with struc-
ture restriction and ∆ = 2, R = 1. We have observed that
the third case is able to generate the same first 1786 mini-
mum size solutions for 32 bit as that of second case which
reinforces that the prefix structure restriction can help in
achieving same solution quality with less search space ex-
ploration, thereby reducing runtime.

4. RESULTS
We have implemented our approach in C++ and executed

on a linux machine with 12 GB RAM and 2.8 GHz CPU.
First, we present our results at the logic synthesis (tech-
nology independent) level. As the dynamic programming
based area-heuristic approach presented in [9] has achieved
better results compared to the other existing techniques, we
have implemented this approach as well to compare with
our experimental results. Table 1 presents the comparison
of number of prefix nodes for adders with different bit-width
(N) with log2 N logic level constraint for all output bits. In
this case, the input profile is uniform, i.e. the arrival times
of all input bits are assumed to be the same. Results for
non-uniform profile for 32 bit adder are shown in table 2.
We can see that our approach outperforms [9] in both cases.
The runtime of our approach for generating 128 bit prefix
graphs with level constraint of 7 is 25 seconds, which is ac-
ceptable for any logic synthesis tool.

As mentioned earlier, the existing approaches ([9], [10],
[11] etc) are not flexible in restricting parameters like fan-

Table 1: Prefix Graph size for log2 N level
Bit-width Our Approach Area Heuristic [9]

16 31 31
24 45 46
32 74 74
48 105 106
64 167 169
128 364 375

Table 2: Prefix Graph size for non-uniform input

profile in a 32 bit adder
Profile Our Approach Area Heuristic [9]

A 55 56
B 55 58
C 56 60
D 54 59
E 53 59
F 55 59
G 53 57

out, which is a critical parameter to optimize post-synthesis
design performance. Usually, electrical violations at high-
fanout points are mitigated by buffer-insertion and gate-
sizing, but at the cost of performance. Hence, for high-
performance designs, Kogge-Stone [1] is the most effective
adder structure. An important property of this structure
is that maximum fan-out (MFO) of a n bit adder is less
than log2 n (without any buffer insertion) and the fan-out
for prefix nodes at logic level log2 n− 1 is 2. Table 3 shows
that, even with a fan-out restriction of 2 for all prefix nodes,
the prefix graph generated by our approach has fewer prefix
nodes than the prefix graph for a Kogge-Stone adder.

We have integrated our approach to a placement driven
synthesis [14] tool and run the tool on the minimum size so-
lutions of 8,16,32,64 bit adders. A cutting-edge technology
node is used for technology mapping. We present the various
metrics like area, worst negative slack (WNS), wire-length,
figure of merit (FOM) after placement in Table 4 for the so-
lution having best WNS. FOM signifies the sum of the total
negative slacks at the timing end-points. Both wirelength
and area are unitless. Area is reported as the number of
icells and wirelength as the number of tracks. An icell has
a constant area based on pitch. Our approach is compared
against regular adders like Brent-Kung (BK), Kogge-Stone
(KS) adders, adders generated by Dynamic Programming
(DP) [9], and 64 bit full custom adder (CT). It is to be noted
that we have prevented Vth-swapping in the placement tool,
so leakage power would be proportional to area.

Fig.8 represents the plot of area versus WNS for the so-
lutions provided by our approach along with those provided
by other methods. We can draw a pareto curve with the so-
lution points obtained using our approach, which gives the
option to select the individual points on the pareto curve
based on area/power budget. We see that the solution points
of the other methods are above and/or to the right of this
curve, which indicates that we can always get some solution
on the pareto front, which is better in terms of performance
and/or area than each of the other methods. For a 16 bit
adder, the total number of pareto-optimal points is 4 and
the single point p1 provides better solution than DP, KS

Table 3: Comparison with Kogge-Stone Adder
Bit-width Our Approach Our Approach Kogge-Stone

(MFO = 2) (MFO = log2 N)
8 14 13 17
16 42 35 49
32 114 89 129
64 290 238 321
128 706 631 769
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Figure 8: Area vs. Worst Negative Slack plot for 16 and 32 bit adders

Table 4: Post Placement Comparison

n Method Area
Worst Wire FOM

Slack (ps) Length (ps)
8 Brent-Kung 828 -71.7 3996 -527

Kogge-Stone 1146 -48.9 5889 -391
Dyn. Prog. 853 -47.4 3761 -371

Our Approach 871 -43.4 3804 -351
16 Brent-Kung 2147 -75.7 12712 -1156

Kogge-Stone 2101 -55.5 13604 -878
Dyn. Prog. 1980 -56.2 9776 -852

Our Approach 2152 -50.7 11102 -812
32 Brent-Kung 4292 -107.5 26397 -3072

Kogge-Stone 5495 -65.5 39474 -2082
Dyn. Prog. 4538 -71.3 25784 -2096

Our Approach 4692 -64.9 24683 -2074
64 Brent-Kung 9832 -120.3 59402 -6931

Kogge-Stone 13389 -84.5 120600 -5181
Dyn. Prog. 10718 -88.9 66249 -5334
Custom 10905 -89.1 71054 -5709

Our Approach 10048 -83.8 60450 -5230

Figure 7: 64 bit adder after placement.

and BK. For a 32 bit adder, the points p1, p2, p3 are better
solutions than BK, DP, KS respectively.

Fig.7 compares these metrics for single solution (with best
WNS) of 64 bit adder with other approaches. Our approach
improves performance by 19% with 2% higher area over a
Brent-Kung adder, improves performance and area by 0.4%
and 33%, respectively over a Kogge-Stone adder, improves
performance and area by 3% and 6.7%, respectively over Dy-
namic Programming [9], and improves performance and area
by 3.2% and 8.5% over a full custom adder design. Note that
the performance improvement was computed based on the
actual critical path delay value and not the worst negative
slack. Our approach also improves wire-length and FOM
over both Kogge-Stone and full custom adder design.

5. CONCLUSION AND FUTURE WORK

In this paper, a highly efficient parallel prefix graph gen-
eration driven high performance adder synthesis technique
is presented. The complexity of parallel prefix graph gen-
eration problem for adders is exponential in the number of
bits. We presented efficient pruning strategies and imple-
mentation techniques to scale this approach up to 128 bit
adders. The results, both at the technology-independent
level and after physical synthesis (post placement) show that
this approach significantly improves over existing techniques
by yielding better quality of results in terms of both tim-
ing and wire length for high performance adders in state
of the art microprocessor designs. The proposed approach
improves over even the manually designed custom adders
yielding, up to 3% better delay and 9% better area. As our
approach can generate multiple prefix graph structures for
given constraints, it provides a framework for further explo-
ration to identify structures that can account for practical
design issues like wire congestion and power consumption.
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APPENDIX

A. NON-UNIFORM INPUT PROFILE
In Table 2, we have compared the result for non-uniform

input profile. The required time of arrival for all output bits
are set to 9 and the input arrival levels have been randomly
generated between 0-4. Table 5 presents those arrival levels
of each input bit for all profiles.

Table 5: Input Arrival Times for Table 2

Bit A B C D E F G
0 1 2 1 2 1 2 2
1 2 1 3 3 2 3 1
2 1 3 2 1 1 3 1
3 3 2 3 1 1 1 2
4 4 1 2 2 1 2 1
5 2 0 1 3 3 1 2
6 1 4 3 2 2 1 1
7 3 3 2 1 3 1 2
8 1 2 1 4 4 1 1
9 2 1 3 3 2 2 3
10 1 3 4 2 3 2 2
11 0 2 2 1 1 2 2
12 3 2 1 3 2 3 2
13 2 1 2 2 3 2 2
14 1 4 4 1 2 3 2
15 4 2 1 1 1 2 1
16 2 1 3 2 2 1 3
17 2 2 1 3 2 1 1
18 1 3 2 2 1 4 1
19 0 1 1 1 2 1 2
20 1 4 2 3 1 2 3
21 3 0 1 1 1 1 4
22 4 2 1 4 2 1 4
23 1 1 2 1 2 2 4
24 2 2 3 2 2 1 2
25 2 1 2 3 2 2 1
26 1 3 4 2 1 1 4
27 3 2 1 3 3 2 2
28 1 1 3 1 2 1 4
29 2 3 2 2 4 1 1
30 2 1 2 1 1 2 2
31 3 2 1 2 2 1 3

Table 6 compares our approach with [9] and [11] for cor-
related input profile, like late higher words or monotonically
increasing inputs, appeared in [11].

Table 6: Comparison on Zimmermann’s examples

DATA Our Area [9] Zimmermann [11]
Approach Heuristic

A 49 49 50
B 59 61 61
C 56 56 56
D 63 64 63
E 50 55 55
F 73 73 73
G 56 58 59
H 78 79 78
I 68 68 68

B. IMPACT OF MFO ON POST PLACEMENT

RESULT
In Fig.9, the worst negative slack (WNS) is plotted against

the size of the prefix graph for 16 bit adders. We can see that
the prefix graphs of higher node count and smaller maximum
fan-out (MFO) are better for timing.
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Figure 9: # of Prefix Nodes vs. WNS for 16 bit

adder

C. PREFIX GRAPHS
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Figure 10: Size of a 16 bit prefix graph with level 4
and fanout 2 generated by our approach is less than

that of Kogge Stone by 7
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Figure 11: 8 bit prefix graphs with level 3


