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Abstract—The abundance and value of mining large time
series data sets has long been acknowledged. Ubiquitous in
fields ranging from astronomy, biology and web science the size
and number of these datasets continues to increase, a situation
exacerbated by the exponential growth of our digital footprints.
The prevalence and potential utility of this data has led to a vast
number of time-series data mining techniques, many of which
require symbolization of the raw time series as a pre-processing
step1 for which a number of well used, pre-existing approaches
from the literature are typically employed. In this work we note
that these standard approaches are sub-optimal in (at least)
the broad application area of time series comparison leading
to unnecessary data corruption and potential performance loss
before any real data mining takes place. Addressing this we
present a novel quantizer based upon optimization of compar-
ison fidelity and a computationally tractable algorithm for its
implementation on big datasets. We demonstrate empirically that
our new approach provides a statistically significant reduction in
the amount of error introduced by the symbolization process
compared to current state-of-the-art. The approach therefore
provides a more accurate input for the vast number of data
mining techniques in the literature, providing the potential of
increased real world performance across a wide range of existing
data mining algorithms and applications.

I. INTRODUCTION

Time series are an exceptionally common form of big data,

fuelled by the increasing proportions of our daily lives that

are logged and recorded. Research into how best to extract

value from this data has produced an exceptional array of data

mining techniques for classifying, clustering and predicting.

However, a common pre-processing step in many of these is to

convert continuous time series into symbolic representations.

This is implemented for a variety of reasons: for big data it is

often crucial due to computational and storage constraints, but

it is also often used to reduce noise, enhance interpretation, or

simply to allow application of algorithms designed specifically

for discrete domains [1]–[3]. Due in part to the extensive use

of symbolization, it is often thought of as a solved problem.

We will show in this paper that this is far from the case and

that current methods of symbolization are often not optimal

for the task they are being used for leading to information

loss and performance degradation in many machine learning

algorithms.

1for example over 90 recent data mining publications used Symbolic Ag-
gregation Approximation (SAX) (see http://www.cs.ucr.edu/∼eamonn/SAX.
htm.)

The symbolization (or quantization) of time series is cer-

tainly a well-studied problem within information theory, and

for many the process equates to reducing reconstruction error

which is optimized by minimizing the mean squared error

(MSE) between the original time series and its quantized

form2. But this only considers a single application - signal

reconstruction - and while MSE is optimal for that case, it

is sub-optimal for a broad range of other applications. In

particular it is sub-optimal for the most common use of sym-

bolized time series within data mining: time series similarity

search. This seems an important oversight: similarity search is

the cornerstone of many important subproblems such as time

series clustering, classification, motif discovery and anomaly

detection. We argue therefore that it is not reconstruction

fidelity of times series which should be of most concern, but

comparison fidelity. We develop this notion, resulting in a

novel quantization technique for data mining which we refer

to as an Independent Comparison Error (ICE) quantizer.

We show through empirical experiments that our imple-

mentation of ICE outperforms state-of-the-art alternatives (to

statistically significant levels and over a range of time series

lengths and symbol set cardinalities) - despite not being

strictly optimal due to simplifications invoked for purposes

computational tractability. This approach provides the main

contribution of our paper, covering a wide range of real world

applications and providing a theoretical underpinning upon

which additional algorithms may be derived in the future.

II. PROBLEM STATEMENT

This work considers the task of learning an optimal quan-

tizer for univariate time series where the quantized data is

then used for time series comparisons. Univariate time series

are an extremely common digital commodity with examples

including measures of usage (e.g. household energy or hourly

website traffic), measures of communication (e.g. daily email

traffic) and movement data (encoded, for example, as relative

displacement) [6]. Note that the task of learning an optimal

quantizer is distinct from the process of actually quantizing

that time series with it - once a quantizer has been learnt it is

2There are of course other proposed notions of good quantization includ-
ing the maximisation of symbol entropy (e.g. the often used SAX method [1]
and it’s subsequent refinements [4], [5]) or the optimisation of the end result
of classifiers for signal detection. These are further discussed in section III.
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trivial (i.e. exhibits constant time complexity) to apply, since

a quantizer is merely a non-linear mapping from a domain of

high cardinality (typically continuous) to discrete domain of

significantly lower cardinality.

The specific quantization problem addressed is that of

finding an m−level scalar quantizer Q(x), where Q(x) is a

zero-memory nonlinear mapping that takes a real valued scalar

input, x, and maps it to one of m values based on which of

the m quantization intervals contains the input. Formally:

(1)Q(x) =































q1 B0 < x ≤ B1

q2 B1 < x ≤ B2

...

qm Bm−1 < x ≤ Bm

where B0 = −∞ and Bm = ∞.

Consider a set of N univariate time series T =
〈T1, T2, . . . , TN 〉 where the ith time series Ti = 〈Ti1, Ti2, . . .〉
is indexed by the natural numbers. The quantization of that

time series involves the repeated application of the quantizer to

each point in the time series, Q̂(Ti) = 〈Q(Ti1), Q(Ti2), . . .〉.
The problem is then, given some data and an objective func-

tion, to find the symbol values (the set of qi’s) and boundary

values (the set of Bi’s) such that the objective function is min-

imal, and hence represents the optimal quantizer. Specifically,

to solve the optimisation problem:

argmin
Q

E(T , Q) (2)

where E(T , Q) is some error/objective function, identifying

the divergence between the original time series (T ) with their

quantized forms, Q = 〈Q̂(T1), Q̂(T2), . . . , Q̂(TN )〉.
We have chosen to focus on the quantization of univariate

time series via a zero-memory quantizer, rather than the more

complex cases of multivariate time series and/or quantizers

with memory due to two reasons. First, the use of zero-

memory quantizers are exceptionally common in practice.

Second, and more importantly, the more complex cases can

generally be viewed and implemented as extensions to the

zero-memory univariate case, which therefore provides an

ideal theoretical basis and the obvious starting point to un-

derpin the development and evaluation of a novel quantizer.

As further motivation for this decision, we point to the

fact that extensions utilising temporal dependencies in time

series commonly apply linear pre-processing followed by zero-

memory scalar quantization [7, p.66] - and as such can also

be directly be applied to this work.

A. Defining a “good” quantization: Time series comparisons

The generalized quantization problem is instantiated within

an application domain by an objective function which quan-

tifies the notion of a good quantization. Note, however, there

are large classes of applications for which a single objective

function can be justified. Specifically, here we consider the

large class of applications which are based on time series

comparisons. For this class good translates to minimizing the

comparison error between any two time series, leading to the

following, previously unconsidered, definition of E :

E(T , Q) =
∑

∀Ta,Tb∈T

|δ(Ta, Tb)− δ(Q̂(Ta), Q̂(Tb))| (3)

where δ(Ta, Tb) is the distance between time series Ta and Tb

and δ(Q̂(Ta), Q̂(Tb)) is the distance between the two quan-

tized time series Q̂(Ta), Q̂(Tb). While any distance measure

is possible, in this work we consider the commonly chosen

Euclidean distance as the measure of distance between time

series - and hence we intend to maintain, after quantization, as

good as an approximate as possible of the original Euclidian

distances between time series. Armed with this new objective

function, the question therefore arises as to whether the current

methods, which are optimal for their original goals (such as

reconstruction), are also optimal for time series comparisons.

III. THE SUBOPTIMALITY OF EXISTING QUANTIZERS FOR

TIME SERIES COMPARISON

As previously noted, although a number of methods for

quantizing time series have been proposed in the literature,

none have addressed the end goal of maintaining the fidelity

of time series comparisons. This is surprising given, first, the

substantial literature on quantization for signal reconstruction,

classification or maximization of human perception (see [7],

[8], [9]–[11] and [12] respectively for examples) and, second,

the huge amount of quantized time series data that is being reg-

ularly indexed and retrieved via computational comparisons.

For instance, the often cited SAX method for indexing time

series makes no consideration of the end goal of time series

comparison. This is despite its frequent use as part of k-

nearest neighbour or range queries. Specifically, the quantizer

embedded within SAX (and additionally within iSAX [13],

iSAX 2.0 [5] and variants) utilises a restricted maximum

entropy quantizer and does not consider data point values, but

rather only their frequencies. As will be shown empirically

later in section V, this leads to the approach to symbolization

performing sub-optimally for time series comparisons, where

evaluations occur based upon these values. This is not a

specific criticism of SAX, for which quantization is only one

component, rather it is a criticism of the lack of research into

the effect of quantization for the broad application of time

series comparison. Note that even in the recent work presented

in [14] (which providing valuable insights through the compar-

ison of different representation methods for time series data)

there is no consideration of the effect (or alternatives) of the

type of quantization performed within the representations.

We provide below a concise review of current quantization

techniques. Under the sub-section Example of failure, we

highlight the sub-optimality for comparison based applications

of each of these techniques via a counter-example, giving an

example where the method does not provide the best quantisa-

tion with respect to maintaining the distance between two time

series. When applicable, we use an illustrative toy example

Ta = [10, 10, 4] and Tb = [10, 0, 4] where Tai, Tbi ∈ [0, 4, 10]



to highlight sub-optimality. Under optimal comparison quan-

tization of these time-series into a binary alphabet, Ta and Tb

become [10, 10, 10] and [10, 0, 10] respectively because such

an encoding best preserves the Euclidean distance between

the two original time series of 10 (minimizing equation 3).

Once more, it is worth emphasizing that we are not proposing

that there are inherent short comings with current techniques

themselves - all provide optimal solutions for some applica-

tion. Rather the issue is in their erroneous application to data

mining tasks which rely on time series comparisons, where a

quantizer specifically designed for that purpose should have

been preferred.

A. Uniform quantization

Uniform quantization is by far the simplest form of time

series quantization and is simply the partitioning of all po-

tential values into m equal regions. No information regarding

the distribution, values or end use are taken into account. The

centre point of each region is then assigned to any points in the

time series that fall into that region. The non-optimal nature of

such an approach with respect to post-quantization time series

comparisons is easily seen by numerous toy examples.

Example of failure: Under uniform quantization Ta, Tb are

quantized to [7.5,7.5,2.5], [7.5,2.5,2.5] respectively resulting in

a distance of 5. This is only half the distance of 10, captured

by the optimal encoding of [10, 10, 10] and [10, 0, 10].

B. Minimal reconstruction error (MSE)

A mean squared error objective function minimizes the

reconstruction error between the original and quantized time

series. Specifically, for a given set of time series the quanti-

zation levels are selected so that the following error function

E is minimized:

E(T , Q) =
∑

Ta∈T

n
∑

i=1

(Tai −Q(Tai))
2 (4)

While intuitive, MSE does not take into account how often

comparisons are made, nor adjust its quantization accordingly,

as is shown in the example case:

Example of failure: Under MSE, Ta, Tb are quantized to

[10, 10, 3], [10, 3, 3], resulting in a separation distance of 7.

While better than the uniform quantizer, again the optimal

solution, 10, is not achieved.

C. Maximum Output Entropy (MOE) quantization

MOE quantization aims to maximise the average mutual in-

formation between the input and the output. If Y is the number

output levels in the resulting quantizer and m is the number

of levels in the quantizer, then the average mutual information

is maximized between the input and output of the quantizer

when P (Yk) = 1/m [15]. Despite ensuring each symbol will

convey an optimal amount of shannon information, an MOE

quantization is not optimal when comparing post-quantized

time series under distance measures that penalize changes in

the amplitude. This is because the distance measure values

large changes in magnitude far more than small changes. And

since an MOE quantizer’s only goal is only to maximise the

amount of per symbol information, and not the importance

of that information to a specific task, it can significantly

underperform when quantizing with respect to maintaining the

fidelity of a distance metric.

Example of failure: Here we use a slightly more involved il-

lustrative example. Consider series the time series: [0,0,0,0,-1,-

1,-1,-1,50,60,70,80] and [-1,-1,-1,-1,0,0,0,0,80,70,60,50]. Un-

der MOE with 3 symbols these quantize to [0,0,0,0,-1,-1,-

1,-1,65,65,65,65] and [-1,-1,-1,-1,0,0,0,0,65,65,65,65] respec-

tively. Calculating the distance between the quantized series

produces a results of 2.83, which is far below the actual

Euclidean distance of 44.81 (whereas the best possible result

obtainable using a three level quantizer is in fact, the far closer

value of 42.43).

D. SAX, iSAX, iSAX 2.0 and variants:

Symbolic Aggregation Approximation is a time series rep-

resentation that actually supports an arbitrary underlying quan-

tizer [5, pg. 59] (as denoted by Q in equation 1). However, in

their research SAX’s authors have chosen to use a quantizer

based on MOE, but with the added assumption of a normal

distribution [1]. It is this quantizer variant used within SAX

that we consider, henceforth denoted as qSAX. Note we only

address the performance of this specific part of the SAX

representation, and not the other aspects such as temporal

quantization or the efficient indexing of the symbolic repre-

sentation addressed in subsequent publications (e.g. extended

SAX [4], iSAX [13] or iSAX 2.0 [5], which continue to use

qSAX as the underlying quantizer). Importantly, all of the

quantizers evaluated in this work could also be used in any

of the overall SAX frameworks, allowing any performance

improvements we report to also benefit these more involved

approaches to working with time series data.

Example of failure: Consider the same series as detailed for

MOE. Under qSAX with 3 symbols both of the subject time-

series quantize to [-1,-1,-1,-1,-1,-1,-1,-1,65,65,65,65]. This

surprising result is due to the assumption of a normal prior, and

results in a reported distance of 0. This is clearly suboptimal

when the actual Euclidean distance is, as before, 44.81.

E. Other quantizers

Other quantizers proposed in the literature seek to minimize

objective functions specific to their individual problem spaces.

For instance perceptual distance quantizers aim to maximise

the ability to discriminate in the context of a binary decision

where two hypotheses and associated conditional probabilities

(giving the probability of the input assuming a pre-specified

hypothesis is true) are known in advance [16]. Assuming ad-

ditional, application specific knowledge, these approaches are

not applicable to the general class of time-series comparison

problems we consider. Other proposed quantizers have in-

cluded perceptual distance quantizers, which seek to quantize

such that as much perceptual information is retained [17], and

the Persist algorithm [18] which aims to quantize such that the

symbols are persistent temporally with a focus on the human



interpretability of the states. While approaching their specific

problems from a similar angle to ourselves, the end use, the

problems addressed, and the subsequent developments of a

custom quantizer, are very different to that presented here.

IV. LEARNING IMPROVED QUANTIZERS FOR TIME SERIES

COMPARISON

In section III we discussed the fact that current state-of-

the-art solutions are not optimal with respect to the goal of

comparing time series. That this is the case is of no real

surprise since this prior work makes no claim to be optimal

in this sense, nor do they even attempt to strive towards this

type of optimality. However, these techniques have been used

(perhaps deleteriously) as part of data mining processes due

to their prevalence and availability. In theory, therefore, such

approaches to learning quantizers should be avoided in favour

of those directly attempting to find the optimal quantization

with respect to minimizing time series comparison error. Un-

fortunately, enumerating all possible quantizers and selecting

the one with the lowest comparison error is intractable since

simply checking a solution has a runtime complexity quadratic

in the number of time series multiplied by the time series

length.

Addressing this issue we now present a novel alternative

approach which we have named Independent Comparison

Error quantization (ICE). Our ICE implementation is based

upon simulated annealing, for which we provide an excep-

tionally cheap to compute error function based on equation

3. Specifically, our error function enables a solution to be

checked in O(m2) time3 and is independent of the number and

length of the time series making it particularly applicable to

big datasets. This tractability is gained through the introduction

of two approximations/assumptions, coupled with a specific re-

formulation of the problem and an integrated caching strategy.

Recall from equation 2 that our goal in learning a quantizer

is to minimize comparison error, argminQ(·) E(T , Q). If we

were trying to optimize with respect to a reconstruction error

function, then we could have used one of a number of algo-

rithms that provide a computationally tractable deterministic

solution [19] (in practice, the stochastic Max-Lloyd algorithm

[8] still predominates, due to its computational efficiency and

in spite of the fact that it may return only a locally optimal

solution). We do not possess a tractable deterministic solution

to optimizing comparison error (i.e. equation 3) so by necessity

(rather than choice) we use a global optimisation method

(in similar fashion to [20] who minimized reconstruction

error in the case of vector quantization). Specifically, our

optimization approach is based upon a modification of the

algorithm detailed in [21], which implements a basic simulated

annealing algorithm in a parallel fashion on the GPU, thus

enabling a far greater search space to be considered.

In implementing a simulated annealing approach, a state

within the system is defined as a specific instance of a quan-

tizer Q as defined in equation 1. The cost function is an error

3recall that m is the number of output symbols produced by the quantizer,
and is assumed to be relatively small.

function (E(T , Q)) of the form previously discussed, with a

function producing a randomised set of valid permutations of

boundary and symbol values being used as the next neighbour

function. In order to ensure that this approach is tractable,

the cost of checking each potential solution must be very low

due to the vast size of the space that must be iterated through.

Therefore, checking equation 3 directly is simply not an option

due to its quadratic complexity in the number of time series

and their length, leading to computational intractability. As

such, we present a solution to this problem via a re-formulation

of the error function which is able to reduce the cost of

checking a solution to being quadratic only in the number

of symbols quantized to, m. Since m is typically small the

quadratic nature is not a concern. Importantly, we are now

independent of both the number and length of the time series.

Note that when the assumptions we present hold exactly,

the learnt quantizer is guaranteed to be optimal. Although

situations where they do hold perfectly are unlikely to occur

within real world datasets, we show empirically in section

V via real world data that even when these assumptions

are moderately violated the learnt quantizer still performs

extremely well.

A. A novel quantizer for time series comparisons

Consider using the error function from equation 3 as the

cost function in the simulated annealing, instantiated with the

standard Euclidean distance as previously motivated (letting n
and N denote the length of an individual time series and the

number of time series respectively):

E(T , Q)=
∑

∀Ta,Tb∈T

∣

∣

∣

∣

∣

∣

√

√

√

√

n
∑

i=1

[Tai−Tbi]
2
−

√

√

√

√

n
∑

i=1

[Q(Tai)−Q(Tbi)]
2

∣

∣

∣

∣

∣

∣

Note that the terminology error function and cost function

is interchangeable here since they have the same functional

form. Specifically, just like E(T , Q) the simulated annealing

cost function has available the time series set and evaluates a

fixed instantiation of a quantizer, Q, in this case corresponding

to a state within the simulating annealing algorithm.

As previously discussed, using this equation directly as the

cost function within the simulated annealing process via a

brute force computation is intractable. In order to achieve

tractability we reconsider our choice of the Euclidean distance

as the distance function δ, substituting it with the Manhattan

distance. The rational for utilising the Manhattan distance

is purely pragmatic4, allowing the subsequent reformulations

presented in this work (when considering applications which

are inextricably tied to L2 metrics this change can be consid-

ered a practical approximation). Having selected the Manhat-

tan distance the error (cost) function then becomes:

E(T , Q) =
∑

∀Ta,Tb∈T

∣

∣

∣

∣

∣

n
∑

i=1

|Tai − Tbi| −

n
∑

i=1

|Q(Tai)−Q(Tbi)|

∣

∣

∣

∣

∣

4Although we note that the Manhattan distance is an equally good choice
in end use tasks such as classification [22] and hence is worth optimising for
in its own right.



Since the order of the elementwise comparisons considered

is not of a concern within the distance measure each member

of T can be modelled as a random variable, and assuming the

time series are all of the same length, the above equation can

be rewritten as:

E(T , Q) =
∑

∀Ta,Tb∈T

∣

∣

∣

∣

n

∫∫ ∞

−∞

P (Ta = x, Tb = y)|x− y| dx dy

−n

∫∫ ∞

−∞

P (Ta = x, Tb = y) |Q(x)−Q(y)| dx dy

∣

∣

∣

∣

which can be rearranged to:

n
∑

∀Ta,Tb

∈T

∣

∣

∣

∣

∫∫ ∞

−∞

P (Ta=x, Tb=y) [|x−y|−|Q(x)−Q(y)|] dx dy

∣

∣

∣

∣

where P (Ta = x, Tb = y) is the empirical probability that a

particular value in Ta will be compared with a particular value

in Tb when the time series are examined against each other.

Unfortunately, even in this form we still need to calculate the

empirical probabilities between each pair of time series, and

are facing a time complexity quadratic in the total number of

time series within our dataset. Therefore, we take the further

step of bringing the outer modulus within the integration itself,

as this allows us to make the logical interpretation of our

overall error function as being the sum of the magnitude of

the per time series element comparison errors. The validity

of making this adjustment is sound for time series of low

length (it is identical for time series of length one), but the

adjustment becomes more tenuous as these lengths grow and

the likelihood increases that sign changes within component

parts of the integration will occur, producing unpredictable

interaction effects. The assumption here, therefore, is that these

sign changes do not occur. While this is highly unlikely to

be true in general, our empirical results indicate that this

formulation still provides a good approximation of the desired

objective function in practice. At the same time we divide

by the constant n × N2 (the manipulation of the equation

via constants will not change the resultant optimisation). The

result is our proposed error (cost) function:

ICE(T , Q) =

1

N2

∑

∀Ta,Tb

∈T

∫∫ ∞

−∞

P (Ta=x, Tb=y) ||x−y|−|Q(x)−Q(y)|| dx dy

which can be rearranged to:

∫∫ ∞

−∞

1

N2

∑

∀Ta,Tb

∈T

P (Ta=x, Tb=y) ||x−y|−|Q(x)−Q(y)|| dx dy

Defining P (x, y) as the probability of a comparison between

values x,y over all comparisons within pairwise time series

comparisons in T we get:

(5)ICE(T , Q)=

∫∫ ∞

−∞

P (x, y) ||x−y|−|Q(x)−Q(y)|| dx dy

It is this specific re-arrangement of the proposed function

that we primarily refer to as Independent5 Comparison Error

(ICE). We now provide a tractable, O(m2), algorithm for

computing equation 5 for use within the simulated annealing

algorithm. Recall that the error (cost) function is evaluating a

fixed quantizer (Q) which maps values, via boundary points

(Bi) to a set of symbols with values qi. By noting that

equation 5 can (1) be re-interpreted as a double summation

over the comparison of possible symbol mappings and (2) that

within a single comparison between two symbol mappings that

|Q(x)−Q(y)| = qij is a constant we get:

ICE(T , Q)=

∫∫ ∞

−∞

P (x, y) ||x− y|−|Q(x)−Q(y)|| dx dy

=

m
∑

i=1

m
∑

j=1

∫ Bi

Bi−1

∫ Bj

Bj−1

P (x, y) ||x−y|−qij | dx dy (6)

From these observations and reformulations the O(m2) com-

plexity can be achieved by computing the double integral from

equation 6 in constant time by first pre-computing φ(a, b, qij),
the joint cumulative functions for x and y for any qij :

(7)φ(a, b, qij) =

∫ a

−∞

∫ b

−∞

P (x, y) ||x− y| − qij | dx dy

In practice φ(a, b, qij) is approximated and pre-computed

via an arbitrarily fine uniform discretization of the continuous

space. Note that for a large number of symbols a uniform

discretization introduces very little error [23] and thus it is

appropriate in this instance. A fixed double integral instance

from equation 6 can then be evaluated in constant time via:

(8)

∫ Bi

Bi−1

∫ Bj

Bj−1

P (x, y) ||x− y| − qij | dx dy

= φ(Bi, Bj , qij) + φ(Bi−1, Bj−1, qij)

− φ(Bi−1, Bj , qij)− φ(Bi, Bj−1, qij)

This approach has cubic space complexity in the chosen

uniform discretization, with one two-dimensional array re-

quired for each possible qij value. This complexity provides

a practical limit on how arbitrarily fine-grained the uniform

quantization can be. In this work we set this value at 900.

This allows the function to be precomputed and stored within

a 3GB GPU6. In section V empirical evaluations indicate that

the choice of 900 is sufficiently high. Note that the amount of

memory used here is solely based on this choice, and not the

number or lengths of the time series within the data set.

The time complexity to construct this function is also of

cubic complexity and additionally dependent on the cost of

calculating P (x, y) over the time series data. In both cases

this is only done once as a pre-processing step outside of

the simulated annealing. With the fine-grained approximation

set at 900, the former presents no computational barrier,

5Referring to the alteration of the error function to be the sum of the
independent, per time series element, comparison errors

6Using a 64bit floating point representation. The cumulative function is
symmetric so only the upper triangle (including the diagonal) is stored.



contributing negligible time to process. The latter calculation

of P (x, y), however, is potentially dependent on the length and

number of time series. While computing this within the GPU

means a significant number of time series can be processed

in reasonable time, this is not possible for truly big data

sets. Instead, rather than exhaustively computing P (x, y) one

must therefore accurately approximate the joint probability

distribution via random sampling of a sufficiently large number

of time series7 based on standard statistical techniques. Once

the joint cumulative function has been pre-computed the error

function from equation 5 can be computed in O(m2) enabling

its use in simulated annealing algorithms since m, the number

of resulting symbols, is small.

In summary, the cost function for use within the simulated

annealing algorithm is:

costICE(φ,Q) =
∑m

i=1

∑m

j=1[ φ(Bi, Bj , |qi − qj |)

+ φ(Bi−1, Bj−1, |qi − qj |)

− φ(Bi−1, Bj , |qi − qj |)

− φ(Bi, Bj−1, |qi − qj |)]

V. EXPERIMENTAL EVALUATION

The novel symbolization method presented within this work

is evaluated against five of the most prevalent quantization

methods within the literature, with evaluations performed on

three datasets, covering both synthetic and real world data. The

quantization methods evaluated (including their abbreviations

which are used throughout) are:

UNI - Uniform quantization

aMSE - Mean Squared Error quantization (sim. annealing)

lMSE - Mean Squared Error quantization (Lloyd-Max)

MOE - Maximum output entropy quantization

qSAX - MOE quantization assuming a normal distribution.

ICE - Comparison Error minimization (proposed method)

The first five methods represent prominent approaches within

the literature as discussed in section III. Of these lMSE

and aMSE are both methods for symbolization based on

reconstruction error. aMSE denotes the minimization of the

MSE objective function via simulated annealing within the

GPU based on the fine-grained discretization of the continuous

space to 900 levels and utilises the same simulated annealing

algorithm used in ICE. This enables a fair comparison with

respect to the amount of computational resources used in

the optimisation. lMSE denotes the direct optimisation of the

reconstruction error in the continuous space based on the

commonly used Lloyd-Max algorithm8. This serves to provide

an indication as to the validity of the chosen value of 900

for the approximation of the continuous space in the GPU

methods. While it is not expected that the simulated annealing

and Lloyd-Max versions of the algorithm will be exactly the

same, if the continuous approximation is fine-grained enough it

7The GPU implementation used can easily compute the joint probability
distribution from tens of thousands of randomly sampled time series.

8The implementation from http://www.r-project.org/ was used.

is expected that the simulated annealing approach will perform

as well as, if not better than, the Lloyd-Max algorithm in the

continuous space.

In order to assess their performances in a practical applica-

tion within the target domain of this work (the large class of

applications based on time series comparisons), we examine

the impact of each quantizer on the extremely common task of

nearest-neighbour search based on the Euclidean distance. As

such the use of the Manhattan distance in the ICE quantizer

becomes an approximation. Note that a nearest neighbour

search based on the Manhattan distance would be equally valid

(since it obtains similar performance in real world tasks [22])

and would likely result in improved performance of the ICE

quantizer. However, we chose to use the Euclidean distance

in the first instance since it represents the standard baseline.

Investigating the performance under other valid applications

remains interesting future work.

For our tests the set of time-series data, T , is partitioned into

a test set TA, and a training set, TB . Given an input time series

from TA, our binary evaluation function will return one if it’s

nearest neighbour in TB is the same under both its symbolized

and original form, returning zero if this is not the case. We

iterate over each time-series in the test set to find the average

rate of successful matches. Let NA be the number of time

series in TA then formally:

ENN =
1

NA

∑

A∈TA















1 if argminB∈TB
L2(A,B) =

argminB∈TB
L2(Q(A), Q(B))

0 otherwise

(9)

where L2(·, ·) is the standard L2 norm (Euclidean distance)

and in this case Q(·) was learnt on the set TB since this reflects

the real world case where the data being queried is known.

The error function (equation 9) is used as part of a

cross validation procedure in order to evaluate the expected

error across varying test and training sets and to provide

a statistical significance on the expected error. Specifically

we use the procedure motivated and discussed in-depth in

[24], correcting the variance to account for the data reuse

inherent in cross-validation and perform statistical tests using

the corrected resampled t-test [24, pg 251]. Since multiple

methods are compared the p-values are corrected according

to the Holm procedure8. For a given training and test set the

evaluation measure is the proportion of nearest-neighbours that

are correctly identified using the symbolized time series by

considering the original time series as the ground truth. The

mean of these proportions is the generalised error. Note that

corrected t-tests are able to be used since the distribution of the

sample proportions are approximately normal by the central

limit theorem [25].



A. Results: Smart Meter Electricity data

For real world data, data from The Commission for Energy

Regulation (CER), Electricity Customer Behaviour Trial9 was

used. The data set consists of over 6435 time series of building

energy usage sampled at 30 minute intervals. The average time

series length is 24, 552 data points. The distribution of the

combined temporal samples was typically log-normal. Time

series lengths of 24 (12 hours), 48 (1 day) and 96 (2 days)

were considered and symbolization to 8, 16 and 24 symbols

was evaluated. The results are shown in Table I (a) - (c).

B. Results: 80 Million Tiny Images

As a second real world dataset we use a subset of the 80

Million Tiny Image dataset as detailed in [26]10. Following

the work of [5] in evaluating time series, we convert each

image to a colour histogram with 256 bins. These histograms

can be considered as time series with a length of 256 and the

same techniques and evaluation applied. For this experiment

a dataset of the first 5, 000 images was considered. The

evaluation procedure as previously detailed was once again

used and the results are shown in Table I (d).

C. Results: Synthetic data

Finally, we consider synthetic random walk time series.

We produced test sets of size 5,000 for time series of

lengths 24, 48 and 96 using the random walker code from

http://www.cs.ucr.edu/∼mueen/MK/. The data was evaluated

via the previously discussed cross-validation procedure for

symbolization to 8, 16 and 24 symbols. The results are shown

in Table I (e) - (g).

VI. DISCUSSION

Overall the ICE quantizer consistently provided the best

performance out of all the quantizers tested. In the real world

datasets, ICE produced the best results for all time series

lengths (which were up to 256 elements). For all quantizations

that employed more than eight symbols this was to a statisti-

cally significant level (to 95% confidence), with ICE showing

an increase in performance of 9.58% on average compared to

the next best performing method.

In general all quantizers followed the expected trend of

monotonically increasing performance with respect to the

number of symbols used for quantization and the length of

time series tested. Note that this increase in performance

is generally expected due to the fact that increasing the

number of symbols and/or the time series length provides more

detailed time series from which to discriminate. Importantly,

the ICE quantizer also followed this trend, showing the validity

of approximation of the comparison error used in practice.

While ICE provided the best performance on all experi-

ments using real-world data, its performance was less marked

when quantizing with 8 symbols (with MSE and qSAX still

providing strong competition at this level). This is likely due

9Avaliable from the Irish Social Science Data Archive: http://www.ucd.
ie/issda/data/commissionforenergyregulationcer/

10Available from http://horatio.cs.nyu.edu/mit/tiny/data/index.html

(a) Electricity Dataset: Time series of length 24

Num Syms: 8 16 24

ICE 0.2295 (0.0160) 0.4464 (0.0154) 0.5269 (0.0241)

aMSE 0.1211 (0.0155) 0.3005 (0.0181) 0.4166 (0.0248)
lMSE 0.1905 (0.0279) 0.2199 (0.0446) 0.2168 (0.0274)
qSAX 0.1992 (0.0268) 0.3504 (0.0208) 0.4531 (0.0246)
UNI 0.0081 (0.0034) 0.0236 (0.0048) 0.0483 (0.0092)
MOE 0.1928 (0.0147) 0.3100 (0.0199) 0.4021 (0.0164)

(b) Electricity Dataset: Time series of length 48

Num Syms: 8 16 24

ICE 0.3343 (0.0168) 0.5863 (0.0154) 0.6664 (0.0189)

aMSE 0.2505 (0.0181) 0.4887 (0.0180) 0.5720 (0.0184)
lMSE 0.3259 (0.0311) 0.3204 (0.0483) 0.3031 (0.0294)
qSAX 0.2919 (0.0177) 0.4724 (0.0186) 0.5818 (0.0198)
UNI 0.0164 (0.0057) 0.0542 (0.0087) 0.1115 (0.0136)
MOE 0.2080 (0.0163) 0.3564 (0.0222) 0.4737 (0.0209)

(c) Electricity Dataset: Time series of length 96

Num Syms: 8 16 24

ICE 0.3894 (0.0214) 0.6229 (0.0221) 0.6995 (0.0218)

aMSE 0.2630 (0.0163) 0.5235 (0.0103) 0.5841 (0.1208)

lMSE 0.3624 (0.0133) 0.3442 (0.0411) 0.3240 (0.0420)
qSAX 0.3260 (0.0289) 0.4993 (0.0303) 0.5976 (0.0214)
UNI 0.0158 (0.0064) 0.0671 (0.0088) 0.1314 (0.0068)
MOE 0.2032 (0.0161) 0.3554 (0.0160) 0.4702 (0.0169)

(d) Image Dataset: Time series of length 256

Num Syms: 8 16 24

ICE 0.4435 (0.0222) 0.6569 (0.0192) 0.7468 (0.0225)

aMSE 0.2660 (0.0180) 0.5643 (0.0199) 0.6716 (0.0160)
lMSE 0.4195 (0.0216) 0.5255 (0.0507) 0.3380 (0.0313)
qSAX 0.3736 (0.0300) 0.5348 (0.0333) 0.6020 (0.0279)
UNI 0.0175 (0.0057) 0.0404 (0.0103) 0.0591 (0.0079)
MOE 0.2499 (0.0438) 0.3571 (0.0256) 0.4461 (0.0325)

(e) Random Walk Dataset: Time series of length 24

Num Syms: 8 16 24

ICE 0.2233 (0.0192) 0.4796 (0.0197) 0.6180 (0.0270)

aMSE 0.2035 (0.0109) 0.4481 (0.0199) 0.5948 (0.0220)

lMSE 0.0248 (0.0361) 0.1200 (0.0608) 0.3053 (0.1129)

qSAX 0.2499 (0.0186) 0.4795 (0.0220) 0.5809 (0.0128)

UNI 0.0769 (0.0124) 0.2168 (0.0154) 0.3555 (0.0208)
MOE 0.2207 (0.0214) 0.4419 (0.0263) 0.5659 (0.0185)

(f) Random Walk Dataset: Time series of length 48

Num Syms: 8 16 24

ICE 0.3024 (0.0230) 0.5723 (0.0196) 0.6945 (0.0189)

aMSE 0.2780 (0.0177) 0.5508 (0.0213) 0.6871 (0.0142)

lMSE 0.0179 (0.0189) 0.2173 (0.1214) 0.3715 (0.1270)

qSAX 0.3184 (0.0228) 0.5429 (0.0249) 0.6555 (0.0220)

UNI 0.0885 (0.0140) 0.2936 (0.0190) 0.4721 (0.0183)
MOE 0.2939 (0.0288) 0.5209 (0.0244) 0.6515 (0.0195)

(g) Random Walk Dataset: Time series of length 96

Num Syms: 8 16 24

ICE 0.3761 (0.0174) 0.6652 (0.0172) 0.7720 (0.0161)

aMSE 0.3399 (0.0198) 0.6444 (0.0259) 0.7612 (0.0165)

lMSE 0.0225 (0.0204) 0.1172 (0.0814) 0.3616 (0.1271)
qSAX 0.3688 (0.0253) 0.5911 (0.0162) 0.6963 (0.0177)
UNI 0.0929 (0.0110) 0.3123 (0.0124) 0.5347 (0.0176)
MOE 0.3449 (0.0178) 0.5787 (0.0196) 0.6936 (0.0210)

TABLE I
EXPERIMENTAL RESULTS: MEAN (STDEV) OF THE PROPORTION OF

NEAREST NEIGHBOURS CORRECTLY FOUND. BOLD INDICATES THE BEST

PERFORMING METHOD(S) WITH MULTIPLE HIGHLIGHTED IF THEY ARE

NOT SEPARATED BY A STATISTICALLY SIGNIFICANT DIFFERENCE FROM

THE BEST (p < 0.05) PERFORMING METHOD.



to the fact that, for such small symbol sets, all comparisons

begin to occur with same frequency and hence the advantages

of ICE become less pronounced.

For our synthetic random-walk dataset ICE again generally

provided the best performance - but this time the results could

not be confirmed to a statistically significant level, even for

larger symbol sets. Note that in general the synthetic data

provided an easier task, with almost all methods performing

better than for the real world energy data when quantizing

to the same number of symbols. A potential explanation is

that the nature of the random walk means that the time series

are more spread out in the space11, and hence it is easier to

discriminate between time series in general. This results in

less refined symbolizations (with respect to comparisons) still

being able to correctly identify the nearest neighbour and in-

creases their performance closing the gap on the ICE quantizer

as shown in the results. Finally, note that in this dataset the

symbol distributions for the time series are Gaussian, and this

helps promote the effectiveness of qSax.

It is worth also noting that aMSE (which used the same core

simulated annealing algorithm as ICE, varying only the cost

function) generally matched, and often performed better than,

lMSE and this offers evidence that our chosen value of 900 for

the approximation of the continuous space in the GPU methods

was of an appropriate granularity. A final observation is with

regard to the poor performance of the MOE and Uniform

quantizers. Their consistent losses, and general inability to

identify the majority of nearest neighbours correctly, serve to

highlight that the consideration of quantization approach can

be vital to the effectiveness of data mining algorithms.

VII. CONCLUSIONS

Many quantization techniques which are thought of as

optimal, are in fact only optimal within the context of a specific

problem domain such as signal reconstruction. In this work we

have shown that in the extremely prevalent case where quan-

tized input is used as the basis for time-series comparisons,

standard approaches can lead to potential performance loss. To

address this issue we have presented a novel quantizer (ICE)

based on minimising the comparison error, with adjustments

made to provide a computationally tractable implementation

effective to large data. Our empirical results based upon three

different datasets (and using various time-series lengths and

symbol-set cardinalities) have provided initial evidence for the

superiority of ICE for comparison-based data mining tasks.

Even though one might expect the assumptions that underpins

ICE to be violated by many real-world datasets, our results

have indicated that even when such violations occur our

quantizer can still provide superior performance to current

state-of-the-art quantization approaches.
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