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ABSTRACT Big Data (BD), Machine Learning (ML) and Internet of Things (IoT) are expected to have a

large impact on Smart Farming and involve the whole supply chain, particularly for rice production. The

increasing amount and variety of data captured and obtained by these emerging technologies in IoT offer the

rice smart farming strategy new abilities to predict changes and identify opportunities. The quality of data

collected from sensors greatly influences the performance of the modelling processes using ML algorithms.

These three elements (e.g., BD, ML and IoT) have been used tremendously to improve all areas of rice

production processes in agriculture, which transform traditional rice farming practices into a new era of

rice smart farming or rice precision agriculture. In this paper, we perform a survey of the latest research on

intelligent data processing technology applied in agriculture, particularly in rice production. We describe the

data captured and elaborate role of machine learning algorithms in paddy rice smart agriculture, by analyzing

the applications of machine learning in various scenarios, smart irrigation for paddy rice, predicting paddy

rice yield estimation, monitoring paddy rice growth, monitoring paddy rice disease, assessing quality of

paddy rice and paddy rice sample classification. This paper also presents a framework that maps the activities

defined in rice smart farming, data used in data modelling and machine learning algorithms used for each

activity defined in the production and post-production phases of paddy rice. Based on the proposed mapping

framework, our conclusion is that an efficient and effective integration of all these three technologies is

very crucial that transform traditional rice cultivation practices into a new perspective of intelligence in rice

precision agriculture. Finally, this paper also summarizes all the challenges and technological trends towards

the exploitation of multiple sources in the era of big data in agriculture.

INDEX TERMS Rice production, big data analytics, Internet of Things, machine learning, smart farming,

precision agriculture, agriculture supply chain.

I. INTRODUCTION

The current global population of 7.8 billion (2020) persons is

expected to reach 9.7 billion by 2050 [1]. It is expected that

the world would require 70% more food than what available

at the moment with less natural resources like land and water

due to urbanization, soil erosion, climatic changes, water

shortages and excessive use by livestock. It is estimated that

there is about 33% wastage of agriculture production due

The associate editor coordinating the review of this manuscript and

approving it for publication was Mario Luca Bernardi .

to poor logistics and storage [2]–[4]. As result, the key for

coping strategies in the contexts of climate change and food

security is to implement precision agricultural or smart farm-

ing. Precision agriculture is a technology-enabled approach to

farming management that observes, measures, and analyzes

the needs of individual fields and crops [5]. Smart farming

is defined as the application of information and data tech-

nologies for optimizing complex farming systems. It focuses

on how the collected agriculture related information can be

used in a smart way, rather than the storage of data, access to

data and the application of these agriculture data. Big data and
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machine learning algorithms are two main important compo-

nents in paddy rice smart farming. Big Data can be defined as

a data that can be described using three key concepts: volume,

velocity, and variety. Volume refers to size of the data, variety

refers to the various types of data (e.g., text, numbers, images,

videos and audios) and Velocity refers to the increasing speed

at which big data is created (e.g., live stream data). Machine

learning focuses on the development of computer programs

that can access data and use it learn for themselves.

Applying smart farming technologies will definitely assist

farmers in various tasks to increase crop productions. In order

to narrow down the scope of this paper, we focus on paddy

rice smart farming as rice is an increasingly important staple

food in Asia Pacific region and other parts of the world.

The changes over time in land use and soil salinity levels

have significant impact on the production of rice yields [6].

In addition to that, unpredictable weather conditions and inef-

ficient techniques to predict weather conditions are amongst

the few factors that reduce rice yields production [7], [8]. For

instance, most farmers in Myanmar face heavy rains during

the rice growing season and that crop damage and yield losses

due to heavy rains cause extensive losses among farmers [9].

As a result, the ability to predict weather or climate trends and

environmental factors (e.g., soil nutrient) is very important in

enhancing paddy farmers’ productivity [7].

The current practices, which heavily rely on fertilizers and

pesticides to increase productivity are not supporting the sus-

tainable rice yields production because these activities are not

environmentally friendly farming systems [10]. In addition

to that, the timing for rice yields harvesting also influences

the production of rice yields as the best timing for paddy

harvesting showed a linear relationship with grain loss [11].

As a result, monitoring the growth of paddy is very crucial to

sustain rice yields production.

Rice production in coastal areas is frequently affected by

typhoons. The lack of ability to manage impacts from natural

events and disasters that include contamination of water bod-

ies, loss of harvest, and destruction of irrigation systems and

other agricultural infrastructure is another shortcoming that

requires attention [12], [13]. With smart farming, the appli-

cation of data mining and analytical techniques designed so

far for prediction, detection and development of appropriate

disaster management strategy based on the collected data

from disasters can be used to manage these impacts and

consequently support agriculture or farming activities with

more effectively and efficiently.

Variation within farms and region based on resource

endowments, location topography and farmers circumstances

make it difficult to apply the same strategy in maximiz-

ing rice yields productivity. Towards the end of the twen-

tieth century, precision agriculture began to be utilized that

applies information technologies to capture and integrate

data from multiple sources (e.g., farmers, sensors) in order

to have a more robust strategy associated with crop man-

agement and thus can be used to maximize agriculture

productivity [14].

Unsustainable rice yields production [6], inefficient tech-

niques to predict weather conditions, lack of ability to man-

age calamities [7], [8], [12], variation within farms and

region [14] and poor logistics and storage [2]–[4] are among

the reasons why smart farming should be adopted to sustain

and optimize rice yields productivity.

In this paper, we conduct a systematic literature

review (SLR) of the latest research on intelligent data pro-

cessing technology involved in rice smart farming focusing

on the rice production and post-production phases of the

agriculture supply chain. We describe the main datasets or

features extracted for data modelling. We then elaborate

role of machine learning algorithms in smart agriculture,

by analyzing the applications of machine learning in various

scenarios in the rice production and post-production phases

of the agriculture supply chain. This paper also presents

a framework that maps the activities defined in rice smart

farming, datasets or features used in data modelling and

machine learning algorithms used to analyze these features

for each activity defined in the early stage of agriculture

supply chain.

The remainder of this article is organized as fol-

lows. Section II provides the literature review of the

most recent reviews conducted related to smart farming.

Section 3 describes the existing frameworks related to agri-

culture supply chain. Section 4 provides an in-depth analysis

of the type of big data used in rice smart farming agricul-

ture focusing on the variety of sources used, the variety of

machine learning algorithms used and finally the variety tasks

involved in the rice production and post-production phases of

smart farming. The research work presented in this section

is classified based on the sources and types of data that

are used, the types of tasks involve in smart farming and

also the type of machine learning algorithms used to model

these data. Section 5 presents a framework that maps the

activities defined in smart farming, datasets or features used

in data modelling and machine learning algorithms used to

analyze these features for each activity defined in the early

stage of agriculture supply chain. Finally, Section 6 concludes

this paper and presents challenges and technological trends

towards the exploitation of multiple sources in the era of big

data in agriculture.

II. LITERATURE REVIEW

A survey has been conducted to look into the global cov-

erage in terms of innovation related to smart farming and

the usage of machine learning in smart farming. The survey

was conducted by using two methods; looking at the trends

of number of scholarly works over time related to Smart

Farming, Machine Learning in Smart Agriculture, Artificial

Intelligence in Smart Agriculture and Internet of Things in

Smart Agriculture, and reviewing all review studies that were

conducted on several elements of I4.0 and its applications in

smart farming for improving the productivity.

Firstly, the trends of number of scholarly works over

time related to Smart Farming, Machine Learning in Smart
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FIGURE 1. The trends of scholarly works over time related to Smart Farming.

FIGURE 2. The trends of scholarly works over time related to Machine Learning in Smart Farming.

Agriculture, Artificial Intelligence in Smart Agriculture and

Internet of Things in Smart Agriculture, can be obtained by

using the Lens website (https://www.lens.org). Lens provides

open datasets of patent documents, scholarly research works

and any inventions related to machine learning, artificial

intelligence, internet of things and smart farming disclosed

in patents [15]. The Lens serves global patent and schol-

arly knowledge as a public resource to make science- and

technology-enabled problem solving more effective, efficient

and inclusive. This knowledge may help show ways forward

such as new or repurposed ideas and inventions, better strate-

gies and targeted partnerships for collective action. Based

on these four keywords used in searching for trends in

smart farming research, the usage of Machine Learning (ML)

in smart farming, the usage of Artificial Intelligence (AI) in

smart farming and the usage of Internet of Things (IoT) in

smart farming, Fig. 1 through Fig. 4 display the increasing

trends of number of scholarly works over time related to

these keywords. For instance, based on these Fig. 1, Fig. 2,

Fig. 3 and Fig. 4, several scholarly works have been filed
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FIGURE 3. The trends of scholarly works over time related to Artificial Intelligence in Smart Farming.

FIGURE 4. The trends of scholarly works over time related to Internet of Things in Smart Farming.

and recorded and the number of scholarly works filed has

increased between the year of 2018 and 2019.

Secondly, in the past, few review studies were conducted

on several elements of I4.0 and its applications in smart

farming for improving the productivity in agriculture sec-

tors as mentioned in Table 1. These studies have focused

on I4.0 applications in the smart farming covering specific

aspects like Internet of Things, Cloud Computing and Big

Data Analytics (Machine Learning). Table 1 shows several

reviews that were conducted recently that are related to smart

farming or precision agriculture. Several reviews conducted

were focusing on the application of machine learning algo-

rithms in smart farming [16], [17]. For instance, Sharma et al.

investigated the current state of research on machine learn-

ing (ML) applications in Agriculture Supply Chain (ASC)

that includes the application of ML in four different phases

in ASC; pre-production, production, processing and distri-

bution [16]. It was concluded that all three ML algorithms

can be leveraged to develop a sustainable ASC. A Machine

Learning-Agriculture Supply Chain performance framework
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TABLE 1. Review papers: Elements of I4.0 and its applications in smart farming.

was introduced in which the machine learning algorithms are

mapped into all four different phases in ASC based on the

type of data used. However, these data are not explained and

categorized comprehensively.

Mekonnen et al. conducted a review on the application of

various machine learning methods in analyzing data captured

from sensors within the agricultural ecosystem [17]. In this

review, a limited number of machine learning algorithms is

listed based on the data that are captured using different types

of Wireless Sensor Networks (WSN) (e.g., ZigBee WSN,

GSM and GPS WSN, LoRa WSN, Wifi and MQTT Sensor

based with Raspberry pi and Arduino) and also remotely

sensed data (multispectral or hyperspectral data) and vege-

tation indices. Based on the trend obtained from this review,

there will be an increased use of more advanced techniques

like distributed (or edge) deep learning.

Several reviews also conducted focusing on the application

of deep learning algorithms only in smart farming [18]–[21].

One of the findings from these reviews is that the deep

learning algorithms are proven to be better in providing high
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accuracy results compared with other machine learning algo-

rithms in terms of accuracy when applied to various agricul-

tural problems, such as disease detection and identification,

fruit or plants classification and fruit counting among other

domains.

The evolution of agriculture systems involves the adoption

of incoming data from various sources [27] and also the

application of big data applications in smart farming [26].

Together these big data technologies and the capability of

machine learning algorithms in forecasting certain outcomes

will cause major changes in the scope and organization of

smart farming [16], [17], [26]. Lytos et al. conducted a survey

paper that covers the state-of-the-art big data architectures

and agriculture systems in order to bridge the knowledge

gap between agriculture systems and exploitation of big data.

However, in this review, the authors list out the name of the

databases and features used in the agriculture systems only

without outlining how these data are processed or analyzed.

The quality and type of dataset collected from sensors

greatly influence the performance of the forecasting algo-

rithm in predicting the crop yields. For instance, in opti-

mizing the performance of forecasting crop yields, Fabrizio

Balducci et al. have investigated the performance of several

machine learning algorithms based on different subsets of

features extracted from the environmental sensors [29].

There are quite a number of reviews conducted related to

Internet of Things (IoT) technologies [38]. The emergence

of Internet of Things (IoT) technologies has also improved

the performance of a real-time monitoring of the data related

to smart farming [20]. IoT are mainly used in monitoring

crop, soil and weather, forecasting disease and crop yields,

controlling irrigation machinery and autonomous vehicles

and robots [22]. Based on several reviews, it can be concluded

that incorporating precision livestock farming technologies

(Sensors), big data analytics, and the IoT in smart farm-

ing practices puts forth a possible solution to assist us to

improve agriculture productivity and meet projected global

agricultural product demands [23]–[25], [28]. The increasing

amount and variety of data captured and obtained by these

emerging technologies in IoT offer the smart farming strategy

new abilities to predict changes and identify opportunities.

However, to the best of our knowledge, no such studies

are conducted to review comprehensively the present map-

ping of datasets or features and machine learning algorithms

based on different types of tasks involved in the paddy rice

production and post-production phases of the ASC. There

are several related works conducted about the applications of

machine learning on the paddy rice smart farming. Several

researches have been conducted that apply machine learn-

ing algorithm (e.g., Support Vector Machine (SVM) [46],

[98], [127], Convolutional Neural Network (CNN) [94], [95],

and hybrid approaches [103], [124]) in paddy rice sample

recognition and classification using high-resolution images.

Remotely sensed, vegetation indices and climate data are

commonly used to predict paddy rice yield estimation [34],

[35], [48], [76], [77], [109] and to monitor paddy rice

growth [63], [73], [84] using artificial neural networks and

its variants and also linear regression approaches. In addi-

tion to that, hyperspectral and high-resolution images have

been used to accurately and affectively monitor paddy rice

disease [40], [41], [87], [88], [118] and assessing quality

of paddy rice [93], [104], [105] by using deep learning

algorithms.

In this paper, we will present a framework that maps

three elements which include a) Paddy rice production and

post-production activities defined in the ASC, b) datasets

or features related to agriculture components captured from

sensors, and c) machine learning algorithms used to analyze

these features for each activities defined in the early stage of

ASC. This is done by

i Identifying the phases and tasks involved in the paddy

rice smart farming that require intelligent data processing

technologies.

ii Describing the main datasets or features captured and

used by intelligent data processing technologies in each

task identified in the paddy rice smart farming.

iii Elaborating the roles of machine learning technology in

paddy rice smart agriculture, by analyzing the applica-

tions of machine learning in various tasks and phases in

the paddy rice smart farming.

III. PHASES AND TASKS IN PADDY RICE SMART

FARMING

This paper focuses on the smart farming technologies used

in paddy growth and production. This section elaborates the

selected phases and tasks involved in the paddy rice smart

farming [16]. The applications of machine learning algo-

rithms and smart technologies in the agriculture supply chain

can be divided into 4 phases and include pre-production, pro-

duction, post-production and finally distribution phases [16],

[30], [31]. However, in this work, we focus on several

tasks that require intelligent data processing technologies that

can be fully utilized to improve the production of paddy

rice. Thus, this review focuses on the rice production and

post-production phases.

In the rice production phase, several activities are con-

ducted sequentially such as planting, managing water, mon-

itoring soil fertility, managing weed and finally managing

pests and diseases. Then, in the rice post-production phase,

the activities can be divided into harvesting, drying, storage

and milling and processing. Based on these phases and tasks,

we will look into the features or datasets that are applied

by machine learning algorithms in this rice production pro-

cesses. The SLR framework used for presenting the review

findings is presented in Fig. 5. Fig. 5 highlights two main

categories which are the paddy growing activities and the

smart farming activities associated with the paddy growing

activities. The paddy growing activities can be divided into

production and post-production phases. The first step in rice

production phase is planting. Rice crops can either be direct

seeded or transplanted. Next, ensuring the rice plant to get

adequate water is very important since rice is extremely
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FIGURE 5. Rice production and post-production phases in paddy rice smart farming.

sensitive to water shortages. Managing good practices for

smart paddy irrigation is very critical to maximize water

efficiency and yield. Smart irrigation for paddy rice deals

with maintaining a predetermined water height in paddy

fields automatically based on the growth stages of the paddy

rice [32], [33]. Managing weeds is crucial to reduce the

amount of weed pressure in the field. Next, monitoring soil

fertility is also very essential to optimize the growth of a

rice plant. At the same time, timely and accurate diagnosis

of paddy diseases and managing pests are highly required to

reduce loses. Monitoring paddy rice disease involves activ-

ities such as detection and recognition of diseases from

paddy plant leaf images [37], [39] or classifying, detect-

ing, and predicting infestation patterns of the Brown Plan-

thopper in rice paddies [40], [41]. Generally, monitoring

the growth of paddy rice involves analyzing the growth of

paddy rice based on climate data or remotely sensed data

and vegetation indices. This also includes developing an

approach for mapping rice-growing areas at field level using

phenology-based rice crop classification or paddy growth

stages classification [34]–[36]. Predicting paddy rice yield

estimation involves tasks such as yield assessment of paddy

fields usingmachine learning algorithms [42] ormapping rice

planted area using the hyperspectral data or remotely sensed

data and vegetation indices [43].

In the rice post-production phase, paddy harvesting activi-

ties include reaping, stacking, handling, threshing, cleaning,

and hauling. Harvesting paddy should be performed effi-

ciently as the speed of paddy harvesting showed a linear

relationship with grain loss [11]. When rice is harvested,

it will contain up to 25%moisture. Highmoisture level during

storage can lead to grain discoloration, encourage develop-

ment of molds, and increase the likelihood of attack from

pests. It can also decrease the germination rate of the rice

seed. Assessing the quality of paddy rice can be performed by

using any machine learning algorithms. Assessing the quality

of paddy rice usually involves activities such as assessing the

quality of the rice [44] or investigating the impact of climate

change on paddy rice production [45]. Next, drying process

will involve the process of drying paddy by using traditional

ormechanical systems. It is important to dry rice grain as soon

as possible after harvesting (ideally within 24 hours). After

that, these dried rice grain will be stored to prevent grain loss

caused by adverse weather, moisture, rodents, birds, insects

andmicro-organisms like fungi. Finally, the last activity in the

post-production phase is the milling process which remove

the husk and the bran layers, and produce an edible, white

rice. Paddy rice sample recognition and classification can

be applied to perform the milling process. In paddy rice

sample recognition and classification, the main task is to

separate and classify objects of rice sample based on color

and texture features with the help of image processing and

machine learning techniques [46], [47].

IV. APPLICATION OF BIG DATA AND MACHINE

LEARNING IN RICE PRODUCTION TASKS

A. BIG DATA USED IN RICE PRODUCTION TASKS

Data that are commonly used in paddy rice smart farming

can be categorized into sensor data, remotely sensed data and

vegetation indices, drone based data and finally paddy rice

leaf analysis data. Table 2 tabulates the types of data and

features used in paddy rice smart farming according to the

smart farming activities described in Fig. 5.

1) SENSOR DATA

Firstly, the typical types of sensor data captured that can be

used in monitoring paddy rice growth or yield estimation of

paddy rice are data related to meteorological.
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TABLE 2. Types of data and features used in paddy rice smart farming.

Meteorological data (or climate data) can be used to

monitor paddy rice growth [45], [48] and disease [41].

For instance, Guruprasad et al. conducted a yield estimation

modeling paddy crop at different spatial resolution (SR)

levels based on weather and soil data as input features.

These features include day and night temperature (min, max,

mean), diffused irradiance, precipitation (cumulative), rela-

tive humidity, wind speed, rainfall, pH, soil moisture and

temperature (0-40cm) [48].

It was observed that the disease incidence on paddy rice

growth is also directly affected by the level of temperature,

wetness duration [50], [51]. Paddy rice production is also

affected by the level of precipitation. For instance, the paddy

rice production was found to be affected by the decreasing

post-monsoon precipitation as this time coincides with the

sensitivity of the paddy fruiting and ripening stages [54].

Besides that, windsmay also affect the growth and production

of paddy rice plants as strong winds are very detrimental to

the growth and production of rice plants, especially when they

occur during the flowering and ripening phases of rice [49].

Rainfall was found to be the main climate driver of the paddy

rice yield [111]. The suitable soil pH for rice cultivation is

at pH 6.0 [52] or 6.25 [53]. Analyzing the nitrogen level of

paddy rice can also be used to assess the quality of paddy

rice [105].

2) REMOTELY SENSED DATA AND VEGETATION INDICES

Secondly, remote sensing data or remotely sensed data and

vegetation indices can be used in different ways in estimating

paddy yield, monitoring paddy growth and diseases. Many

studies are based on the mapping of rice-growing are [35],

[43] [57], mapping cropping patterns [57]–[59], mapping

paddy vulnerability to flooding [58].

The Moderate Resolution Imaging Spectroradiome-

ter (MODIS) sensors have a total of 36 spectral bands and

seven of them are related to vegetation and land surfaces that

include several ranges [60]. Seven of the most used spectral

bands includes

i) Red (620–670 nm) - Band 1

ii) Near Infrared One (NIR1) (841–875 nm) - Band 2

iii) Blue (459–479 nm) - Band 3

iv) Green (545–565 nm) - Band 4

v) Near Infrared Two (NIR2) (1230–1250 nm) - Band 5

vi) Shortwave Infrared One (SWIR1) (1628–1652 nm) -

Band 6

vii) Shortwave Infrared Two (SWIR2) (2105–2155 nm) -

Band 7

Based on these spectral bands, several measurements can

be derived and computed such as Land Surface Water Index

(LSWI), Enhanced Vegetation Index (EVI), Normalized Dif-

ference Vegetation Index (NDVI), Modified Normalized Dif-

ference Water Index (MNDWI), Leaf Area Index (LAI) (see

Table 2).

LSWI is sensitive to the total amount of liquid water in

vegetation and its soil background. LSWI was developed by

considering two bands of the shortwave infrared (SWIR) and

the NIR regions of the electromagnetic spectrum to compute

the estimation of water content of the land surface [61]. LSWI

is computed based on Eq. 1;

LSWI =
ρNIR− ρSWIR1

ρNIR+ ρSWIR1
(1)

where ρNIR is the reflectance in the NIR, ρSWIR1 is the

reflectance in the Shortwave Infrared One. LSWI can be used

to detect and classify paddy rice phenology in paddy fields

with complex cropping patterns [35], [62]. It was also used to

assess the damage of regional rainfed paddy rice after severe

floods [44] and monitoring rice growth [63]. Liou and Sha

found that the value of LSWI increases and becomes higher

that NDVI and EVI [44].
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EVI can be used to quantify vegetation greenness [64].

Son et al. have constructed a time-series EVI and LSWI data

in order to perform the phenology-based rice crop classifica-

tion [35]. EVI can be measured as follows;

EVI = G×
ρNIR− ρRed

ρNIR+ (C1 × ρred − C2 × ρBlue) + L
(2)

where ρNIR is the reflectance in the NIR, ρRed is the

reflectance in the red, ρBlue is the reflectance in the blue, C1,

C2, and L are coefficients and G is the gain factor. The coef-

ficients adopted in the MODIS-EVI algorithm are; L = 1,

C1 = 6, C2 = 7.5, and G = 2.5. EVI is normally combined

with other vegetation indices (e.g., NDVI, LSWI) to predict

paddy rice yields’ estimation [35], [58] [59], [62], assess

damage of regional rainfed paddy rice [44] and monitor rice

growth [62], [63]. The results of applying MODIS-based

paddy rice phenological detection algorithm in classify-

ing paddy growth stages are found to be encouraging and

can be used to monitor paddy rice agriculture at a larger

scale [62], [63].

Indices that correlate with vegetation cover are also used in

estimating paddy yield and monitoring paddy growth such as

the NDVI, which is mostly used to predict paddy rice yields’

estimation [43], [57], [59], assessing damage of regional rain-

fed paddy rice [44] and monitoring rice growth [63]. NVDI

is used to measure the level of greenness and biomass of

vegetation. NDVI measurements are most often taken from

satellites in orbit around the Earth. NDVI can be computed

based on differences in the response patterns of vegetation in

the red and NIR ranges as follows [65];

NDVI =
ρNIR− ρRed

ρNIR+ ρRed
(3)

where ρNIR is the reflectance in the NIR and ρRed is the

reflectance in the red and this NDVI ranges between -1 (no

vegetation) and +1 (green vegetation). Both the NDVI and

EVI are most commonly used vegetation indices to monitor

the health of vegetation on the fields [35], [43], [57], [59],

[66]–[69]. However, some researchers have reported that

EVI is often preferred than NDVI as EVI is more respon-

sive to biophysical variables, such as LAI [35], [67]. For

instance, EVI is more robust in capturing the difference in

well-vegetated areas [67].

MNDWI is computed based on differences in the response

patterns of vegetation in the green and SWIR1 ranges for the

enhancement of openwater features [70] and can bemeasured

as follows;

MNDWI =
ρGreen− ρSWIR1

ρGreen+ ρSWIR1
(4)

where ρNIR is the reflectance in the NIR, ρSWIR1 is the

reflectance in the Shortwave Infrared One. The integra-

tion of NDVI and MNDWI from Sentinel-2A image has

shown increased accuracy of predicting the paddy rice yield

estimation [57].

LAI is a dimensionless quantity that characterizes plant

canopies that typically can be defined as the ratio of one sided

leaf area per unit ground area (m2/m2) and can be considered

as a measure of paddy crop growth and productivity since it

characterizes plant canopy structure and gives an idea of the

amount of biomass available in a field. LAI can be measured

using a plant canopy analyzer [71]. Some works have been

conducted to estimate paddy rice LAI with a fixed point

continuous observation of near infrared reflectance using a

calibrated digital camera [71], [72]. Estimating paddy rice

LAI can also be done using machine learning methods [69]

and also statistical methods [73] based on hyperspectral data.

The leaf area index (LAI) and plant nitrogen concentra-

tion (PNC) were also used to estimate the nitrogen nutritional

index (NNI) in paddy rice [74].

Hyperspectral images (Red, Blue, Green and Near Infrared

One) can also be used to predict paddy rice yield estima-

tion [75]–[77], assess the quality of paddy rice [69], [71],

[72], [78], [79] and monitor paddy rice disease [80], [81].

Another remotely sensed data that is widely used in smart

farming called C-Band Synthetic Aperture Radar (SAR) data.

C-Band SAR data can be obtained from the Sentinel-1A

satellite which provides a collection of data in all-weather,

day or night. C-Band SAR data has been used in a wide

range of applications that include sea and land monitoring.

For instance, C-Band SAR has been used in predicting paddy

rice yield estimation [82], monitoring paddy rice growth [83]

and monitoring paddy rice disease [40].

3) DRONE BASED DATA

Next, drone based data include all imageries captured using

the drone technology. The high resolution images captured

using drone can be used to estimate the paddy rice yield [42],

[84]–[86], monitor paddy rice disease [37], [39], [87]–[92],

classify paddy rice samples [46], [47], [93]–[101] and also

assess the quality of paddy rice [102]–[104]. For instance,

a near real-time deep learning approach for detecting rice

phenology has also been designed based on high resolutions

images taken by using drones [86].

For instance, a SVM classifier can be used to perform

segmentation and classification of paddy rice samples [46].

The prediction of nitrogen deficiency of rice crop can also

be done to access the quality of the rice using deep learning

methods [104].

B. APPLICATIONS OF MACHINE LEARNING ALGORITHMS

IN PADDY RICE SMART FARMING

This section elaborates the roles of machine learning tech-

nology in paddy rice smart agriculture, by analyzing the

applications of machine learning algorithms and smart tech-

nologies in various scenarios in the paddy rice production

and post-production phases of the ASC. As mentioned ear-

lier, intelligent data processing technologies can be applied

in various scenarios in all the paddy rice production and

post-production phases of the ASC and these tasks include

smart irrigation for paddy rice, predicting paddy rice yield

estimation, monitoring paddy rice growth, monitoring paddy

50366 VOLUME 9, 2021



R. Alfred et al.: Towards Paddy Rice Smart Farming: A Review on BD, ML, and Rice Production Tasks

FIGURE 6. State-of-the-art for the tasks involved in the smart paddy rice farming.

TABLE 3. Applications of smart technologies (e.g., Internet of Things (IoT)) in various scenarios in the paddy rice pre-production and production phases of
the ASC.

rice disease, assessing quality of paddy rice, paddy rice sam-

ple recognition and classification.

The state-of-the-art for the tasks involved in the smart

paddy rice farming is illustrated in Fig. 6. First, all the

acquired data (Sensor, Remotely sensed data and vegetation

indices, and drone based data) will be cleaned, fusioned

or integrated. Then, the dimensionality of the data can be

reduced using feature selection, construction, transformation

and weighting processes [162]–[164]. Next, once the data

are prepared, then they will be divided into training and

testing data depending on the types of task (e.g., classifica-

tion, regression or clustering) or machine learning algorithms

(e.g., estimation, linear and non-linear methods) used to

model the data. Finally, model evaluation and interpretation

will be performed to extract knowledge that supports the tasks

in the smart paddy rice farming (e.g., PaddyYield Estimation,

Monitoring Paddy Growth, Assessing the Quality of Paddy

Rice, Determining Paddy Rice Classes andMonitoring Paddy

Rice Diseases).

1) SMART IRRIGATION SYSTEM FOR PADDY RICE

Automatic drip irrigation system requires a lesser amount

of water to maintain a predetermined water height in paddy

fields [32], [33] and this system can be controlled based

on the captured climate data (e.g., temperature, humid-

ity, light and rain) from sensors. Using a wireless sensor

and actuator network (WSAN) to build a smart irriga-

tion system for paddy fields can also conserve signif-

icant amount of water [106], [107]. Automatic irrigation

system can cause a significant increase of rice produc-

tion by making more arable land available for paddy rice

plantation [33].

Besides that, smart sensors for climate and soil

[36], [36], Radio-frequency identification (RFID), load

Sensor and Global Positioning System (GPS) are also

used in estimating paddy rice yield [113], [114]. Table 3

tabulates the applications of smart sensors (Internet of

Things (IoT)) in various tasks involved in paddy rice smart

farming.
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TABLE 4. Applications of machine learning algorithms in predicting paddy rice yield estimation.

2) PREDICTING PADDY RICE YIELD ESTIMATION

Most researches model the paddy rice estimation based on the

hyperspectral and climate data in predicting paddy rice yield

estimation (see Table 4). These studies conducted using var-

ious types of remotely sensed data and vegetation indices to

predict paddy rice yield estimation [34], [35], [57], [58], [67].

Thus, one of the issues is determining the best combination

of data obtained from remotely sensed data and vegetation

indices to improve the accuracy of predicting paddy rice

yield estimation. For instance, the integration of NDVI and

MNDWI from Sentinel-2A image with temporal backscatter

increased the accuracy by 0.08 [57]. Combining hyperspec-

tral data (e.g., NDVI and MNDWI) will also increase the

accuracy of estimating the paddy rice yield by using Clas-

sification And Regression Trees (CART) [57]. CART is one

of the variants of Decision Tree (DT) classifiers that can

be used for classification or regression predictive modeling

problems [57], [66], [144]. DT is one of important types of

algorithm for supervised learning, particularly in predictive

modeling [78], [81], [126]. DT are constructed via an algo-

rithmic approach that optimizes the splitting of a data set

based on different conditions of the data features. In addition

to that, using multi-features fusion method can also improve

the accuracy of predicting paddy rice yields using a deep

learning approach [112].

Partial Least Squares (PLS) algorithm can be found

in many researches conducted to estimate the paddy rice

yields [34], [35], [75]. For instance, short wave infrared

region was found to be very essential for estimating the paddy

yield using PLS algorithm [34]. PLS was developed based

on the principal component regression that can be used to

build models that can predict more than one dependent vari-

able [63], [69], [136]. PLS was also found to produce higher

R2 of 0.984 compared to Principal Components Regres-

sion (PCR) in predicting paddy rice yield estimation [75].

PCR is based on Principal Component Analysis (PCA) that

is used to analyze the multiple regression data that suffer

frommulticollinearity [132] (e.g., predicting paddy rice yield

estimation [75]). Before any modelling can be performed,

PCA can be used to extract features of the datasets [128].

PCA is a well-known technique used for reducing the dimen-

sionality of the datasets [129]. This is done to increase the

interpretability but at the same time minimizing information

loss [130], [131].

A few variants of deep learning algorithms have also

been used to predict paddy rice yield estimation based on

NDVI [109], climate data [48], [110]–[112], [155] and hyper-

spectral data (Bands 1 ∼ 4) [75]–[77] with higher accuracy

results. These deep learning algorithms include Artificial

Neural Network (ANN) [48], [77], [110], [111], Convolu-

tional Neural Network (CNN) [76], [109], [112], Recurrent

Neural Network (RNN) [155]). For instance, neural network

algorithms achieved better overall accuracy compared to Ran-

dom Forest (RF) and Support Vector Machine (SVM) using

either the hyperspectral or climate data [48], [109], [110].

Inspired by the way biological nervous systems, ANN is
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basically an information processing technique that works like

the way human brain processes information [150]. An ordi-

nary neural networkmay consist of hidden layers and weights

while CNN has filters which collectively make up the con-

volution layers. CNN is most commonly applied to analyze

images and it is a class of deep neural networks. CNN is

suitable to be used for spatial data such as images. In con-

trast, RNN is suitable to be used for temporal data which

is also called sequential data. Compared to ANN, RNN

is able to learn time-series data since it has a recurrent

connection on the hidden state and this looping constraint

ensures that sequential information is captured in the input

data [151], [155]. Although, deep learning algorithms are

known to be very effective and robust to forecast yields paddy

rice yield estimation, [76], [77], [109], [111], [155] they

require a large amount of time-series data to improve the

prediction performance [112].

RF requires two parameters namely the number of trees

and the number of features to split the data set based on dif-

ferent conditions [143]. RF has been found to be effective in

predicting paddy rice yield estimation and monitoring paddy

rice growth [48], [82]. Several works related to applying

SVM in paddy rice smart farming have been reviewed in this

paper [48], [109]. However, they produced lower accuracies

compared to deep learning algorithms. SVM is a supervised

machine learning model that can be used for binary clas-

sification tasks [146]. The objective of the SVM is to find

the optimum hyperplane in an N-dimensional space that can

distinctly classifies the data points.

Unsupervised learning algorithm can also be used to

predict the paddy rice estimation using the hyperspectral

data [58]. For instance, Iterative Self-Organizing (ISO) has

been used to generate paddy cropping pattern to predict

paddy rice yield estimation [58]. ISO is an unsupervised

learning algorithm that can be used to generate rice cropping

patterns [58]. The ISO algorithm is a modification of the

k-means clustering algorithm. The merging and splitting of

clusters are based on a predefined threshold by the user. If the

difference of distance in multispectral feature space is less

than the predefined threshold, the merging or splitting of

clusters will be performed [153].

There are several optimization approaches that produce

estimates of unknown variables or parameters based on a

series of measurements observed over time, such as the

Extended Kalman Filter (EKF), Unscented Kalman Fil-

ter (UKF) and Moving horizon estimation (MHE) [133], that

can be used to predict paddy rice yield estimation. Mov-

ing Horizon Estimator with Pre-Estimation (MHE-PE) is an

optimization-based estimator introduced and use an auxiliary

estimator to describe the dynamics of the state over the

horizon [134], [135]. MHE-PE is found to be more effective

compared to MHE [68] for crop start date estimation in

tropical area [68].

Some of the limitations found in these studies include

the resolution limitations, topographic effects and limited

and small size of time-series data that lead to estimation

errors. For instance, the low fractional coverage of small-size

rice paddies in the complex and hilly landscapes could also

lower the probability of identification using the OTSU’s algo-

rithm [108]. OTSU’s method is an image segmentation algo-

rithm that segments a gray level image with only one modal

distribution in gray level histogram [100], [148]. Stepwise

classification (SW) is another classification approach that

applies a strategy that combines two heterogeneous data sets

in a novel way, and this can be used in estimating rice yields

production [67]. Table 4 tabulates the applications of machine

various learning algorithms found in some of works to predict

paddy rice yield estimation.

3) MONITORING PADDY RICE GROWTH

Monitoring the growth of paddy rice can be performed by

mapping paddy rice and assessing the growth stages of the

paddy rice. One of the issues or challenges in monitoring

paddy rice growth using machine learning algorithms is to

determine the optimum features combination. With optimum

features combination, the overall accuracy of the classifica-

tion results can be improved [115]. For instance, the optimum

features combination can be achieved by using the robust

adaptive spatial temporal fusion model (RASTFM) [116].

NDVI [63], [66], [69], [115], EVI [63] and Hyperspectral

bands 1 ∼ 4 [73], [78] are the most commonly used in

monitoring the growth of paddy rice.

The Multilayer Perceptron (MLP) [63], a class of feed-

forward ANN, and RF [69], [115] algorithms show better

accuracies [69], [115] compared to PLS, SVM [63], [78], [83]

and Support Vector Regression (SVR) [69] in performing the

paddy growth stages classification. SVR is characterized by

the use of kernels, sparse solution, and the original control

of the margin and the number of support vectors [141]. SVR

trains using a symmetrical loss function, which equally penal-

izes high and low misestimates and it has been proven to be

an effective algorithm in estimating real-value [69].

Least-squares support-vector machines (LS-SVM) is

found to produce better results compared to Multiple Linear

Regression (MLR) and PLS, in estimating LAI of paddy

rice from optimal hyperspectral bands [73]. LS-SVMs are

least-squares versions of SVM which can be used for classi-

fication and regression analysis problems [73], [123], [140].

MLR is a statistical technique that uses several indepen-

dent variables to predict the outcome of the dependent

variable [34], [73], [111], [137]. Multiple regression is an

extension of linear (OLS) regression that applies only one

independent variable.

Besides remotely sensed data, vegetation indices, climate

and soil data obtained from smart sensors are also used in

monitoring paddy rice growth [36], [36] (see Table 3). Table 5

tabulates the applications of machine various learning algo-

rithms in monitoring paddy rice growth.

4) MONITORING PADDY RICE DISEASE

The color of the paddy rice leaves will change when they

are infected by any disease and these colored spots are
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TABLE 5. Applications of machine learning algorithms in monitoring paddy rice growth.

created on leaves. For that reason, most of the researches

used high-resolution images in monitoring the paddy rice

disease [37], [39], [41], [87]–[92], [117]–[120] and hyper-

spectral images [80], [81] to detect and assess the paddy

rice diseases. The ANN algorithm and its variants, CNN,

are found to be very effective in classifying task for

monitoring the paddy rice diseases [39]–[41], [81], [87], [88],

[90], [118]. For instance, the ANN achieved better classifica-

tion results compared to FC and SVM algorithms [39] and the

calibrated CNNmodel still showed good classification ability

in a small-scale sample set and it was selected as the best

classification model compared to DT, k-NN and SVM [81].

However, CNN requires a large number of samples for train-

ing purposes [88], [112]. In fuzzy classification (FC) appli-

cations, once a set of classes has been defined, one can

determine the degree of membership of every object x under

consideration [149]. Fuzzy classification allows object x to

belong to two or more classes.

k-Nearest Neigbour (k-NN) algorithm is also very effec-

tive in detecting diseases from paddy plant leaf images and

identifying Brown Planthopper in paddy field and other clas-

sification problems [37], [81], [92], [96], [117]. Given an

unknown sample, k-NN finds k samples that are nearest to

this unknown sample based on certain distance functions

(e.g., Euclidean or Cosine distance methods) and take the

average of the response variables from these k samples as the

label (class) of the unknown samples [145]. k-NN can be used

for paddy rice sample classification [59], [99], [103]. Com-

pared to SVM, k-NN produces better accuracy in detecting

and recognizing diseases from paddy plant leaf images [37].

Some combined approaches show promising results that

involve deep learning approaches [40], [41] and SVM algo-

rithms [40], [91]. For instance, a combination approach of

two machine learning algorithms (e.g., CNN + SVM) has

been used to identify the cultivated paddy regions (e.g., Using

CNN), and to detect areas damaged (e.g., Using SVM)

by Brown Planthopper attacks [40]. Other works include

building a semantic framework that models an ontology

related to rice plant knowledge and applying this framework

to help farmers to identify rice diseases, receive early warn-

ings of possible spreadable diseases, and receive treatments

based on multiple observations [121].

Minimum Distance Classifier (MDC) achieved better

accuracy compared to k-NN in classifying high-resolution

images for monitoring paddy rice disease [117]. MDC classi-

fies unknown sample data to classes which minimize the dis-

tance between this sample data and the class in multi-feature

space [147]. One of the works reviewed has applied MDC to

classify images in the task of monitoring and controlling rice

diseases using Image processing techniques [117].

There are also researches conducted on developing

expert systems using optimized fuzzy inference system

(OFIS) [122] and forward chaining [89] for monitoring paddy

rice disease. Table 6 tabulates the applications of machine

various learning algorithms in monitoring paddy rice disease.

5) ASSESSING QUALITY OF PADDY RICE

The quality of paddy rice can be assessed using the

hyperspectral data [74], [79], climate and soil data [105]

and also high-resolution images of the paddy rice [93], [104],

[123]. SVM and CNN algorithms are the twomost commonly

used machine learning algorithms for assessing the quality of

paddy rice [79], [93], [104], [105], [123]. CNN is found to

be more effective compared to SVM algorithm in assessing

the quality of the paddy rice [93]. However, a combination

of classical artificial neural networks and SVM also has been

used to predict nitrogen deficiency of rice crop [104].

Fuzzy c-means (FCM) has also been used to assess the

quality of the paddy rice. FCM is a method of clustering

which allows one piece of data to belong to two or more

clusters [74], [154]. Table 7 tabulates the applications of

machine various learning algorithms in assessing quality of

paddy rice.
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TABLE 6. Applications of machine learning algorithms in monitoring paddy rice disease.

TABLE 7. Applications of machine learning algorithms in assessing quality of paddy rice.

6) PADDY RICE SAMPLE CLASSIFICATION

Machine learning algorithms are normally combined with

computer vision techniques to perform paddy rice sam-

ple classification with more effectively. Applying computer

vision andmachine learning techniques to recognize and clas-

sify rice varieties is a method that can be used to increase the

accuracy of classification process in real applications. Several

studies have been conducted that apply and examine several

morphological and textural features of rice seeds’ images to

evaluate their efficacy in identification of rice varieties [97]

and classification of paddy rice adulteration levels [96].

In most studies related to the application of machine learning

algorithm for paddy rice sample classification, deep learning

algorithms are found to be very effective in classifying rice

samples [94]–[97], [99], [101], [124].

The classification of the paddy rice samples

can be improved with PCA-based reduced features [96],

[103], [124]. PCA can be combined with other classifiers to
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TABLE 8. Applications of machine learning algorithms in paddy rice sample classification.

FIGURE 7. Mapping of big data, machine learning and paddy rice smart farming tasks.

improve the accuracy of paddy rice sample classification [96],

[103], [124] and also to perform qualitative analysis in mon-

itoring paddy rice disease [80].

Deep learning algorithms (e.g., BPNN, CNN) produced

better accuracy compared to SVM algorithm [46], [101] in

classifying paddy rice samples [95], [96]. When the label

or number of varieties are not available, an unsupervised

learning algorithm, such as clustering algorithm, can also be

used to cluster paddy rice samples. For instance, k-Means

clustering algorithm provides clusters with considerable sep-

arability as measured using separability indexmeasures [103]

based on the PCA-based reduced features. In k-means clus-

tering, n observations are partitioned into k clusters in which

each observation is assigned to the nearest cluster centroid.

The k-means clustering is also known as a method of vector

quantization [152]. By using the k-means clustering method

in paddy rice sample classification, the H channel data can

provide clusters with considerable separability as measured

using separability index measures [103]. k-means clustering

also can be used as part of the approach to classify the

annual cropping patterns of paddy crop based on k number

of classes [59].

Adaptive Boosting (AdaBoost) has been used to clas-

sify paddy rice samples. AdaBoost algorithm combines

multiple weak classifiers to form a single strong classi-

fier [91], [95], [142]. AdaBoost is also known as ensem-

ble method as it consists of multiple weak classifiers.

However, deep learning algorithms are found to be more
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superior than AdaBoost algorithm in classifying paddy rice

samples [91], [95].

A multi-classifier cascade based rice spike detection

method has also been proposed that consists of SVM,

CNN and k-Means algorithm [99]. Other works include

training machine learning algorithms to predict weight

and size of rice kernels [125], application of machine

learning algorithm in detecting adulterated admixtures

of white rice based on mass spectrometry data [126]

and classifying organic rice samples using original rice

elements [127]. Table 8 tabulates the applications of

machine various learning algorithms in paddy rice sample

classification.

V. RESULTS AND CONCLUSION

Based on the reviews of several works in this paper, a new

framework is proposed that maps three entities that include

big data, machine learning and paddy rice smart farming

tasks. In this review, the types of machine learning algorithms

used are highly dependent on the availability of data. At the

same time, the type of data required depends directly on the

type of tasks stated in each production and post-production

phases of paddy rice smart farming. These machine learning

algorithms are used to perform the intelligent data processing

that will assist farmers in various tasks mentioned in the

production and post-production phases. Based on the find-

ings summarized in the previous sections, machine learning

algorithms and smart technologies can be used to improve

the overall efficiency of the paddy rice production system.

The potential benefits lead to an improvement in the return

of investment (ROI) for all paddy rice production systems

by minimizing the losses or costs involved in the production

of paddy rice. As a result, we use these findings found in

the literature to map these three components (e.g., datasets,

machine learning algorithms and tasks stated in the pro-

duction of paddy rice) and develop a Big Data-ML-Task

applications framework that can be used by the practitioners.

The proposed framework shown in Fig. 7 has three main

components, the types of datasets, types of ML algorithms,

the types of tasks in paddy rice smart farming and paddy rice

supply chain performance.

With smart irrigation system, the usage of water can be

reduced and at the same time fully utilized to increase the

paddy rice yield [32], [106], [107]. Automatic irrigation sys-

tem also may cause a significant increase of rice produc-

tion by making more arable land available for paddy rice

plantation [33].

The task of estimating the yield of paddy rice precisely

is very important for national food security and develop-

ment evaluation. The development of an integrated aerial

crop monitoring solution using an Unmanned Aerial Vehi-

cle (UAV) has motivated researchers to apply vegetation

indices retrieved from hyperspectral images to estimate

paddy rice yield [77]. Several studies have estimated the

paddy rice yield based on time-series climate data [48],

[110]–[112], [155]. Rainfall was found the main climate

driver of the rice yield [111]. Other studies considered hyper-

spectral data to estimate the yield of paddy rice [34], [35],

[57], [58], [67], [68], [75], [76], [108], [109]. Deep learning

algorithms were found to be more effective compared to

other machine learning algorithms for modeling paddy rice

yield [48], [76], [77], [109]–[112], [155]. Maximum quality

of paddy rice harvested can be obtained by using sensors to

monitor humidity, temperature, pH, soil moisture and light

intensity in real [113], [114].

Monitoring the growth of paddy rice is critical for under-

standing the growing status and yield estimation of paddy

rice. For instance, the self-sufficient level (SSL) for paddy

rice in Malaysia is only 70%. As the world population is

increasing, intensifying paddy rice farming ismore preferable

over the expansion of agriculture land due to limited arable

land [156]. Monitoring the growth of paddy rice is difficult

for traditional farmers due to climate change, soil conditions,

age of the farmers and time consumed to monitor the whole

area. With remotely sensed data, creating paddy rice crop

growth map is possible using the hyperspectral images [66]

and synthetic aperture radar (SAR) data [83], [115]. For

example, the paddy rice growth based on rice growth param-

eters (e.g., rice height and biomass) can be monitored with

the backscattering coefficient from RADARSAT-2 data [83].

The paddy rice leaf chlorophyll contents can also be retrieved

from the rice canopy hyperspectral imagery to analyze the

paddy rice plant growth [63]. Leaf area index (LAI) is com-

monly used as a surrogate for productivity in precision agri-

culture (PA) and is widely used in plant growth [69], [73].

In short, the applications of machine learning algorithms have

enabled us to timely and accurately monitor paddy rice plant-

ing area for national food security and management [115].

Using smart sensors to monitor soil pH, lux and temperature

also provides insight in understanding the stages of paddy rice

growth [36], [36].

Due to the lack of knowledge and awareness of suitable

management to rectify rice plant leaf diseases, the rice pro-

duction is being reduced in recent years [157]. The manual

detection of plant diseases based on naked eye observation of

experts is very time consuming, expensive and sometimes it

produces an error when identifying the disease type [158].

Machine learning (ML) algorithm can be used to provide

early warnings to anticipate rice blast and detect its presence,

thus supporting the applications of biocidal chemical com-

pounds or biological organisms used to kill parasitic fungi

or their spores. Based on several studies reviewed in this

paper, the applications of ML, in detecting the presence of

rice blast, has also provided suitable solutions for preventive

remedial actions targeting the mitigation of yield losses and

the reduction of fungicide use [159]. This review will be

beneficial for modelers, farmers and stakeholders, to guide

them in model development and selection for the most suit-

able models for the effective paddy rice disease detection and

forecasting. The identification of paddy diseases may also

assist farmer in providing them the remedies based on the

types of disease [160].
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The quality of paddy rice production depends highly on

the quality of soil properties. These soil properties include

soils’ pH and moisture, nitrogen and organic carbon content

of the soil. For instance, a CNN produced promising results

in assessing the nitrogen deficiency of paddy rice crop [104].

These soil properties can be captured using sensors or

retrieved from the hyperspectral images [74]. SVM and CNN

are the two most common machine learning algorithms used

in assessing the quality of paddy rice. Compared to SVM,

CNN produced better assessment accuracy [93]. Besides soil

properties [105], some studies have conducted the assessment

of the paddy rice quality based on the high-resolution images

of the paddy rice leaf [93], [104], [123] and the hyperspectral

images of the paddy rice field [74], [79].

Improving the management and productivity of the paddy

rice farming is important to strengthen the food security

initiatives. Due to variation in economic value of different

varieties of rice, rice quality identification is very important in

the international and national rice market [97], [100], [101].

The quality of the rice is used to evaluate the

milling process. Rice sample may consist of full rice, broken

rice, damaged rice, paddy, stones and foreign objects. Image

processing and machine learning techniques can be used to

separate and classify objects of rice sample [46]. Other than

hyperspectral images [98], most of the studies related to

paddy rice sample classification use high-resolution images

and apply machine learning techniques such as SVM [46],

[96], [98]–[100], [127] and deep learning algorithms

[94]–[98], [101], [124]. Combining efficient feature extrac-

tion method (e.g., PCA) [103] with neural network algorithm

(e.g., Back-propagation Neural Network (BPNN)) shows

better accuracy results in paddy rice sample classification

[96], [124] and also better clustering results for paddy rice

grade identification [103]. Other image pre-processing such

as histogram of oriented gradients (HOG) also affects the

performance of the classifiers [94], [99]. Combining features

in paddy rice sample classification also improves the classi-

fication accuracies [96].

Multi-classifier cascade can also be used to improve the

performance of the paddy rice sample classification [99].

In order to get a good model, low bias and variance are

required in order to have high accuracies or lower errors.

An optimal balance of bias and variance would never overfit

and underfit the model. Reducing variance of the final classi-

fier model can be achieved by fitting multiple final models

or using hybrid approaches [99], [103], [124] or increase

the training size. In addition to that, example of low-bias

machine learning algorithms include DT, k-NN and SVM.

Based on the findings of this review, the performance of all

these three machine learning algorithms are very competi-

tive in predicting paddy rice yield estimation [109], moni-

toring paddy rice growth [78], [83], monitoring paddy rice

disease [37], [40], [81], [91], [117], [119], [120], assessing

quality of paddy rice [79], [104], [123] and paddy rice sample

classification [46], [98], [99], [127].

VI. CONCLUSION

This paper provides a structured overview of the recent appli-

cations of machine learning algorithms and smart devices for

paddy rice smart farming. In addition to that, this paper has

proposed a framework that maps big data, machine learning

and paddy rice smart farming tasks. The review study reveals

considerable benefits to the production of paddy rice that have

applied the machine learning techniques and smart devices

in the paddy rice smart farming. As with any research, here,

we also summarize the following guidelines based on the

findings obtained from this review for future works.

First, there is a need to explore further the capability of

ensemble models or hybrid models based on deep learning

methods using multi-source data, as these have been shown

to improve the performance of the base model. However,

deep learning methods require large number of samples to

come up with efficient models. For instance, in predicting

paddy rice yield and monitoring paddy rice disease using the

deep learning approach, a large amount of time-series data is

required to improve the prediction performance [88], [112].

Since most of the studies conducted for paddy rice sample

classification are based on image processing, the optimization

of the classification accuracy (e.g., using hybrid or ensemble

approach) is another issue that requires more explorations.

For instance, more works on the variety of wavelet transforms

for texture analysis and different classification techniques

(decision tree, random forest) for paddy rice sample classi-

fication can be explored [96].

Second, a limited number of investigations conducted in

the area of the application of machine learning algorithm

based on multi-sources data as the findings from existing

studies have shown that a more comprehensive understanding

can be obtained by integrating multi-sources data or deter-

mining the optimum features combination. We can produce

better modelling results comprehensively by analysing these

complex relationships among multi-sources data or by find-

ing the optimum features combination. For instance, using

only spectral reflectance, shape and texture of paddy rice will

not provide better results and additional ground truth data

is required in order to classify and differentiate paddy rice

accurately [161]. Using multi-features fusion (e.g., combin-

ing Landsat and SAR Time Series Data) can also improve the

accuracy of predicting paddy rice yield using a deep learning

approach [112]. Limited works are found in exploring and

combining multiple sources of data (e.g., Sensored data (cli-

mate and soil properties), Remotely sensed data, vegetation

indices and drone-based data (e.g., high-resolution images))

to improve the modelling of data for smart irrigation for

paddy rice, predicting paddy rice yield estimation, monitor-

ing paddy rice growth, monitoring paddy rice disease, assess-

ing quality of paddy rice, paddy rice sample classification.

Finally, a more comprehensive analysis needs to be con-

ducted to investigate the efficiency of processing software

to perform image preprocessing for modelling. For exam-

ple, Monitoring the growth of paddy rice based on spectral
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reflectance has limitations of the processing software and

the complicated steps to process the images [66]. More

researches need to be conducted to acquire high resolutions

remotely sensed time series imagery data in both time and

space through effective and efficient image segmentation

process using data blending approaches [108].
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