

 University of Groningen

Towards pattern-driven requirements engineering
de Brock, Bert

Published in:
Model-Driven Engineering Workshop (MoDRE)

DOI:
10.1109/MoDRE.2018.00016

IMPORTANT NOTE: You are advised to consult the publisher's version (publisher's PDF) if you wish to cite from
it. Please check the document version below.

Document Version
Publisher's PDF, also known as Version of record

Publication date:
2018

Link to publication in University of Groningen/UMCG research database

Citation for published version (APA):
de Brock, B. (2018). Towards pattern-driven requirements engineering: Development patterns for functional
requirements. In Model-Driven Engineering Workshop (MoDRE) (pp. 73-78). IEEE.
https://doi.org/10.1109/MoDRE.2018.00016

Copyright
Other than for strictly personal use, it is not permitted to download or to forward/distribute the text or part of it without the consent of the
author(s) and/or copyright holder(s), unless the work is under an open content license (like Creative Commons).

The publication may also be distributed here under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license.
More information can be found on the University of Groningen website: https://www.rug.nl/library/open-access/self-archiving-pure/taverne-
amendment.

Take-down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Downloaded from the University of Groningen/UMCG research database (Pure): http://www.rug.nl/research/portal. For technical reasons the
number of authors shown on this cover page is limited to 10 maximum.

Download date: 10-08-2022

https://doi.org/10.1109/MoDRE.2018.00016
https://research.rug.nl/en/publications/dbda25ee-1436-4552-8b7e-925402484da2
https://doi.org/10.1109/MoDRE.2018.00016

Towards pattern-driven requirements engineering:
Development patterns for functional requirements

Bert de Brock
University of Groningen

Groningen, The Netherlands
E.O.de.Brock@rug.nl

Abstract—A recent paper answered the question how to come
from initial user wishes up to a running system in a straightfor-
ward, transparent, modular, traceable, feasible, and agile way.
That paper sketched a complete development path for functional
requirements, starting from user stories via use cases and their
system sequence diagrams to a so-called information machine and
then to a realization, an information system.

To support that promising approach and increase its effective-
ness, we now introduce development patterns for such develop-
ment paths (focusing on functional requirements). We present the
basic idea, several generally applicable development patterns
(including patterns for the important and well-known class of
CRUD functions), and various examples. This leads us into the
direction of Pattern-Driven Requirements Engineering (PaDRE).

To reach our goal we had to cross the boundaries of several
(sub)disciplines such as requirements engineering, machine theo-
ry, and (database) systems development. Although we used (vari-
ants of) many existing ingredients, the strength of our approach
also lies in the combination of the ingredients chosen (and the
ones ignored).

Index Terms—Requirements engineering, user story, use case,
system sequence diagram, information machine, information
system, development path, development pattern, CRUD.

I. INTRODUCTION

There are several ways (when we also consider various pos-
sible intermediate steps) to come from initial user wishes to a
running system, even when we limit ourselves to the functional
requirements. In [1] a straightforward development path for
functional requirements is sketched. As pointed out there that
development path is complete, transparent, allows an agile and
traceable approach, and leads to apparently modular systems.

To support that approach and increase its effectiveness, the
current paper introduces development patterns for such devel-
opment paths (focusing on functional requirements). As gener-
ally known, patterns can enhance productivity.

Section II recalls and illustrates the necessary basic notions
from [1]. Section III presents the (incremental) development
path proposed in [1].

Section IV presents several development patterns and forms
the core of this paper. It starts with the introduction and expla-
nation of a very general development pattern (in subsection A).
This general development pattern will be illustrated under B.

Under C (‘Me, Myself, and I’) we present a general devel-
opment pattern for the often-occurring situation that the user

him/herself represents a ‘hidden’ parameter (value), a special
case of the very general development pattern of subsection A.

In subsection D we recall the four important basic functions
generally applicable to data in a system, known in the literature
as CRUD (Create, Read, Update and Delete). They are repre-
sentative for many use cases. In subsection E we elaborate on
general development patterns for the CRUD functions. In prin-
ciple, those CRUD patterns are special cases of the general
development patterns sketched in subsections A and C.

II. BASIC NOTIONS

Following [1] we sketch the basic notions for our develop-
ment patterns for functional requirements, starting from user
stories via use cases and their system sequence diagrams to a
so-called information machine and then to a realization, an
information system.

Informally, a user story (US) is a ‘wish’ of a (future) user
which the system should be able to fulfil [2], e.g., the wish of
a university employee to ‘Remove a student’. Initially written
USs might need to be improved (refined/detailed/ completed)
to clarify what the system should do. E.g., the wish above
could be sharper: ‘Remove a student with a given student
number’. So, the user should also indicate which student to
remove. According to [3] user stories are popular as a method
for representing requirements, especially in agile development
environments, e.g., using a simple (but popular) template like

‘As a <role>, I want to <wish> [so that <benefit>]’
originating from [4]. For our example this would be: ‘As an
administrator, I want to Remove a student with a given student
number’, leaving out the optional benefit-part.

A use case (UC) is a text in natural language that describes
the consecutive steps in a typical usage of the system [5, 6]. A
UC roughly corresponds to an elementary business process in
business process engineering [7]. For structuring purposes
larger UCs are often refined into smaller parts (sub-functions
or ‘sub use cases’), usually factoring out duplicate sub-steps
shared by other UCs [7]. Further elaborating our US ‘Remove
a student with a given student number’ could lead to the UC
1. An administrator (the ‘user’) asks the system to Remove a

student with a given student number
2. The system removes the student info (only if the student was

known to the system)
3. The system informs the administrator that it did it (or that the

student number was unknown)

73

2018 8th International Model-Driven Requirements Engineering Workshop

978-1-5386-8406-1/18/$31.00 ©2018 IEEE
DOI 10.1109/MoDRE.2018.00016

A system sequence diagram (SSD) of a UC is a ‘diagram’
that depicts the interaction between the primary actor (user),
the system, and other actors (if any), including the messages
(with their parameters) between them; e.g., see [7]. An SSD is
a kind of stylised UC that makes the prospective inputs, state
changes, and outputs more explicit. Although SSDs can be
drawn in much fancier ways (e.g., see [7, 8]) we only draw
their bare essence (because that eases their analysis). For
example, an SSD for (a refined version of) the UC just given:
o User → System: RemoveStudent(<number>);
o if the student number is known to the system

then System → System: remove the student info;
System → User: “Done”

else System → User: “Unknown student number”

USs, UCs and their corresponding SSDs can be expressed
in the natural language of the user (say English or Dutch).

An information machine is a 5-tuple (I, O, S, G, T)
consisting of:
1. a set I (of inputs)
2. a set O (of outputs)
3. a set S (of states)
4. a function G: S x I → O (the output function),

mapping state-input pairs to the corresponding output
5. a function T: S x I → S (the transition function),

mapping state-input pairs to the corresponding next state
The notation f: X → Y indicates that f is a function with X as
its domain and its range being a subset of Y. (An information
machine (IM) is equivalent to a – not necessarily finite –
Mealy machine without a special start state; see [9, 10].)

A state often consists of several sets, e.g., a set
representing students, a set representing lecturers, a set for
courses, etc. Therefore, we might model a state as a function
over a collection of labels that assigns such sets to the labels.
E.g., s(STUD) might represent the set of students in state s. An
element of such a set, e.g., t � s(STUD) representing an
individual student, often is modelled as a function as well, a
function assigning to each relevant property the value for that
element, e.g., t(NR) representing the student number.

We can distinguish three types of basic SSD steps – each
represented in our earlier SSD example – but now with ‘User’
generalized to ‘Actor’, where an actor can be any other system
or person with which the system communicates. Those three
basic SSD steps and their relationship with an IM are:
Actor → System: Elucidates part of the set I of inputs
System → Actor: Elucidates part of the set O of outputs and

of the output function G of the IM
System → System: Elucidates part of the set S of states and

of the transition function T of the IM

For instance, our earlier SSD example ‘Remove student with a
given student number’ leads to inputs of the form
RemoveStudent(<number>) and to the outputs “Unknown
student number” or “Done”. Suppose in this case that each
state s�S contains STUD as a label for the set of students and
NR as a property label for the elements of s(STUD). Now we
can easily read from the SSD that if the student number is

known to the system, that is, if n� { t(NR) │ t � s(STUD) }
and i = RemoveStudent(n) then output G(s, i) will be “Done”
and the student table in the new state T(s, i) will be { t �
s(STUD) │ t(NR) � n}. Otherwise, output G(s, i) will be
“Unknown student number” and the new state T(s, i) will be s;
i.e., the state stays the same.

An IM is a kind of blueprint. It is a useful intermediate
mathematical model, both as a clear, unambiguous capture of
the user wishes regarding the functional requirements as well
as a formal model of the system to be built.

An IM can have quite different realizations. For instance,
an IM can be realized by a human servant (say a clerk), by an
‘SQL servant’ (i.e., a computer with SQL software), or by a
‘Java servant’ (i.e., a computer with Java software). We often
illustrate realizations using SQL specifications.

We call the realization of an IM an information system
(IS), i.e., ‘an organized system for the collection, organization,
storage and communication of information’ [11, 12]. Output
G(s,i) and state T(s,i) can be seen as the postconditions for
input i. The aforementioned sets and their elements in a state
of an IM translate to classes and objects in an OO system and
to tables and tuples in a relational database system.

For a realization of user stories, we might use methods in
an OO system or (stored) procedures in a relational system.
We should look at the earlier SSD and the details in the IM.
E.g., translating our user story ‘Remove a student with a given
student number’ to, say, SQL leads naturally to the procedure
below. (Parameter names are preceded by an “@” in SQL.)

CREATE PROCEDURE RemoveStudent @n INTEGER,
 @output VARCHAR OUTPUT AS
IF @n IN (SELECT NR FROM STUD)
THEN DELETE FROM STUD t WHERE t.NR = @n;
 SELECT @output = “Done”
ELSE SELECT @output = “Unknown student number”

III. DEVELOPMENT PATH

Starting from a set of USs via their UCs and their
corresponding SSDs we can define an IM, which is a blueprint
for a realization, an IS. Interaction modelling mainly takes
place in UCs and SSDs. In an incremental/agile development
environment, developers will start with a simple, small version
and extending/adapting it in several small steps into larger,
more sophisticated versions. [1] presents the following general
scheme (where the arrows indicate what is input for what):

USs

UCs

SSDs

IMs

ISs

US … US
↓ … ↓

UC … UC
↓ … ↓

SSD … SSD
↘ … ↙

 IMv1 →
↓

 ISv1 →

⁞
⁞
⁞
⁞
⁞

→

→

US … US
↓ … ↓

UC … UC
↓ … ↓

SSD … SSD
↘ … ↙

→ IMv2 →
↓

→ ISv2 →

⁞
⁞
⁞
⁞
⁞

→

→

…

…

Fig. 1. Proposed development path (incrementally)

In other words, via one or more USs, UCs, and their
corresponding SSDs (and the previous version of the IM) we

74

can define an initial (resp. next) version of the IM and, based
on the IM (and the previous IS-version), we can define an
initial (resp. next) version of the IS. Altogether, this forms a
straightforward and complete development path.

So, we can ignore all kinds of separate intermediate
(logical) languages for instance. Essentially, this is because we
translate from the natural language of the user (say English or
Dutch) into the language of the system (say Java or SQL),
with a precise mathematical model as an intermediate stage.

As indicated in [1], this approach is applicable in an agile
development of functional requirements too, when a simple
‘core’ scenario (or ‘Main Success Scenario’) of a - maybe yet
unclear - ‘full’ use case might be delivered first, followed by
‘fuller’/improved/refined versions in subsequent cycles (see
[7]). Hence, previously developed US/UC/SSD-triples might
be incrementally extended in later development rounds.

IV. DEVELOPMENT PATTERNS

After having worked out many cases along these lines we
could recognize certain ‘development patterns’. We will treat
some of them here.

A. A General Development Pattern
We start on a very general level. First, we consider the popular
general template for a user story taken from [4]:
As a <role>, I want to <wish> [so that <benefit>]
According to [3], 70% of the practitioners use this template.
For the development of functional requirements, we primarily
look at the wish-part. The role-part becomes relevant in case of
a ‘personal wish’ (see subsection C) and (later) when privileges
have to be granted to roles (that can be assigned to concrete
users afterwards). We will ignore the optional benefit-part.

Starting from a user story we consider a use case as the next
step in the development of functional requirements, with the
<role>-part of a US corresponding to the primary actor of a
UC and the <wish>-part corresponding to the title of the UC !

For the general US-template given above the main steps of
a corresponding use case scenario could be as follows:
1. A <role> (the ‘user’) asks the system to <wish>
2. The system tries to <wish>
3. The system informs the user about the result
We emphasize that the system tries to execute the wish (see
Step 2) because that is not always possible, e.g., due to viola-
tions of constraints or presuppositions (e.g., try to update the
address of a student who is not known to the system).

For the above UC-template the SSD could look as follows:
1. User → System: <name of wish>(<parameters>)
2. System → System: try to <wish>
3. System → User: result
The name of the wish introduced in Step 1 (RemoveStudent in
our earlier example), usually derived from the original user
story, can be used for input of the IM and subsequently as the
name of the procedure or method that implements the wish in
the IS, as we did in our example. This will keep the develop-
ment path (from US, via UC and its SSD to the IM and then to

the IS, the realization) traceable and leads to transparent and
apparently modular systems.

Step 1 mentions parameters because usually a US and a UC
contain parameters as well (e.g., a student number), even if it is
only implicit in the natural language expression (see for in-
stance subsection C). As we can see in our running example,
these parameters will come back as part of the input of the IM
and subsequently as parameters in the procedure or method that
implements the wish in the IS.

Within Step 2 the system might need to interact with anoth-
er system, e.g., to ask for some information. That other system
(a.k.a. a supporting actor) has to send the answer back. In that
case, Step 2 has to be replaced by multiple steps, including 2
steps of the form:
o System → System2: the question
o System2 → System: the answer
The wish in Step 2 might include the wish to send a message to
somebody (or something) else. In that case, Step 2 can be re-
placed by multiple steps including one of the form:
o System → <other ‘actor’>: the message
In Step 3 the result could consist of:
(a) the information asked for, in case of retrieval,
(b) “Done” (plus any system generated values), in case of a

successful state change, or
(c) the reason(s) why the wish could not be executed.
In several cases, Step 1 in the UC-template and SSD-template
above might be replaced by a few (sub)steps, where the user
first indicates which US he/she wants to execute (e.g., remove
a student), without mentioning the parameter values. After that
the system can present the potential values for one of the pa-
rameters, after which the user can choose the intended value for
that parameter (e.g., which student to remove). This can be
repeated when there is more than one parameter with a limited
set of potential values. Maybe this set of potential values can
even become more restricted based on the chosen value for the
earlier parameter(s). All in all, the first step in the SSD-pattern
could then be replaced by:
1. User → System: <name of wish>
2. System → User: potential values for 1st parameter
3. User → System: intended value for 1st parameter
4. System → User: remaining potential values for 2nd param.
5. User → System: intended value for 2nd parameter
6. Etc. (if there are more parameters)
Something similar will hold for the preceding UC-template.
This of course influences the set of possible inputs of the IM
and the interaction pattern between the user and the final sys-
tem. For instance, the system should now also be able to re-
trieve the potential values for the 1st parameter, the remaining
potential values for the 2nd parameter, etc.

B. An Illustrative Example
The next, subtler example illustrates all the foregoing:
User Story: As a lecturer, I want to
Enter the grade of a given student for a given exam of a given course

75

Probably the set of potential courses is the most limiting
option, especially when restricted to the courses that lecturer is
responsible for. The set of potential exams of the chosen
course (i.e., the exams in near future) is probably very small
and the set of students enrolled for that exam is also limited.
This brings us to the following elaboration:
Use Case
1. A lecturer asks the system to Enter a grade
2. The system presents the potential courses (of that lecturer)
3. The lecturer indicates the intended course
4. The system presents the potential exams for that course
5. The lecturer indicates the intended exam
6. The system presents the students enrolled for that exam
7. The lecturer indicates the intended student
8. The lecturer adds the grade
9. The system tries to

Enter that grade of that student for that exam of that course
10. The system informs the lecturer about the result

This brings us systematically to the following SSD:
System Sequence Diagram
1. User → System: EnterGrade
2. System → User: all courses of that user/lecturer
3. User → System: course C1
4. System → User: all (future) exams of C1
5. User → System: exam E1
6. System → User: all students enrolled for E1
7. User → System: student S1
8. User → System: grade G1
9. System → System: EnterGrading(G1, S1, E1)
10. System → User: “Done” or reason(s) why not

Hence, the system should also be able to retrieve the following
sets (where L1 represents the lecturer executing the UC):
For Step 2: { c │ c is a course for which lecturer L1 is responsible }
For Step 4: { e │ e is a (future) exam of course C1 }
For Step 6: { s │ s is a student enrolled for exam E1 }
It already follows from the foregoing that exam E1 and student
S1 are known to the system and that S1 is enrolled for E1.

Translating all this to an IM: Suppose that each state y of
the IM contains as a component a set y(Gradings). If input i is
of the form EnterGrading(g, s, e) and [g; s; e] represents the
grading with grade g for student s on exam e, then the output
G(y, i) will be “Done” and the Gradings table in the new state
T(s, i) will be s(Gradings) � { [g; s; e] } when the grading
could be added successfully. Otherwise, the new state T(y, i)
will be y, i.e. the state stays the same, and the output G(y, i)
will contain the reason(s) why the grading couldn’t be added.

In a realization in, say, SQL we assume at least the next
tables, attributes, keys (bold), and foreign keys (underlined):
Students: SID │
Lecturers: LID │
Courses: CID, LID │refers to the responsible lecturer
Exams: EID, CID │refers to the course
Enrolments: EID, SID │refers to the exam and to the student
Gradings: EID, SID, Grade│refers to the enrolment

So, {EID, SID} is a key for Enrolments and for Gradings too.
In case of SQL we might introduce a (stored) procedure

EnterGrading, with three input parameters: @g, @s, and

@e, representing the grade, the student ID, and the exam ID.
The main statement in the SQL-procedure will then be
INSERT INTO Gradings(Grade, SID, EID)
VALUES(@g, @s, @e)

and the three auxiliary sets for steps 2, 4 and 6 can be retrieved
by means of (simple) SQL-statements of the form
SELECT * FROM <table> WHERE <condition>, namely:

2: SELECT * FROM Courses c WHERE c.LID = L1.LID
4: SELECT * FROM Exams e WHERE e.CID = C1.LID
6: SELECT * FROM Students s WHERE
 s.SID IN (SELECT x.SID FROM Enrolments x
 WHERE x.EID = E1.EID)

Note that this is a straightforward translation of the three auxil-
iary sets specified earlier.

C. Me, Myself, and I
Increasingly people are allowed to (or forced to) maintain their
own data in a system (‘Do-it-yourself’). What does that mean
for the USs, UCs, etc.? For example:
User Story: As a student, I want to Remove myself
The basic idea behind this is that the user was already authenti-
cated (so ‘known’) by the system and that the system is able to
reconstruct the ‘object’ that user represents. In this example the
user represents a student, in the case in Section B a lecturer.

We can now change the general US-template into
As a <role>, I want to <my wish>
The UC for our sample US could be
1. A student (the ‘user’) asks the system: Remove me
2. The system identifies the user as a certain student
3. The system tries to Remove that student
4. The system informs the user about the result

Our general UC-template can therefore change into
1. A <role> (the ‘user’) asks the system: <my wish>
2. The system identifies the user as a certain <role>
3. The system tries to <wish of that <role>>
4. The system informs the user about the result

Here we consider <my wish> as a special case of <wish>,
where the user represents a concrete <role> object in the gen-
eral <wish>. The SSD for our sample UC could then be
1. User → System: RemoveMeASaStudent()
2. System → System: Me := student represented by the user
3. System → System: try to RemoveStudent(Me.NR)
4. System → User: result

where Me in Step 2 is introduced as a variable. The general
SSD-template can therefore change into
1. User → System: <name of my wish>(<parameters>)
2. System → System: Me := <role> represented by the user
3. System → System: try to <wish of Me>
4. System → User: result
We note that <my wish> (‘personal wish’) usually has less
parameters than the corresponding more general <wish> be-
cause the (known) user represents a ‘hidden’ parameter.

76

We also note that the <role> might provide a relevant hint
of what should happen. E.g., the next US should lead to the
removal of the same person but now as, say, an employee:
User Story: As a student assistant, I want to Remove myself

The ‘personal’ <my wish> is (much) more limited than the
corresponding <wish>. E.g., a student can only remove him/
herself but a lecturer can remove ‘any’ student in our examples.

D. CRUD Functionality
We now have a look at the 4 general basic functions applicable
to data in a system, known in the literature as CRUD (Create,
Read, Update and Delete); e.g., see [13, 14]. One can add data
to the system (Create), only ‘look’ at data in the system (Read),
change data in the system (Update), or remove data from the
system (Delete). Figure 2 presents some alternative verbs as
well as the corresponding operations in SQL. Verbs in (the
wish-part of) USs, UCs and SSDs should preferably already
indicate this, i.e., indicate what should be done with the data.

Name Alternatively used verbs SQL
Create Register, Add, Enter INSERT
Read Retrieve, View, See, Search SELECT
Update Change, Modify, Edit, Alter, Adapt, Replace UPDATE
Delete Remove, Destroy DELETE

Fig. 2. CRUD, alternative verbs, and the SQL-counterparts

The main example in subsection B is clearly a Create while
the auxiliary functions for steps 2, 4, and 6 are Read-examples.
The running example ‘Remove student’ in Section II obviously
is a Delete. An example of an Update would be the user story

As a lecturer, I want to do a grade correction, i.e.,
Adapt the grade of a given student for a given exam of a given course

This example will be like the one in subsection B, with only a
few changes:
(1) The texts ‘Enter’ must be replaced by ‘Adapt’
(2) UC-step 8 becomes: The lecturer gives the new grade
(3) When the grading could be changed successfully and og

represents the old grade, the gradings table in the new state
T(s, i) will be (s(Gradings) – { [og; s; e] }) � { [g; s; e] },
i.e., the old gradings table minus the old grade entry plus
the new grade entry

(4) The new main statement in the SQL-procedure becomes
UPDATE Gradings SET Grade = @g
WHERE SID = @s AND EID = @e

E. CRUD Patterns
In principle, CRUD patterns are special cases of the general
development patterns sketched in subsections A and C. We will
now zoom in on each of them.

1) Create
If the <wish> in the general US-template in subsection A starts
with a verb like Enter, Register, Create, or Add, then it proba-
bly concerns a Create. In that case the <wish> is often of the
form ‘Enter/Register/Create/Add <specific object>’, e.g., a
specific student, lecturer, or grading. When applying that US,

the values for the relevant properties of that object should be
given as well, e.g., the student’s name, address, city, etc.

Translating this to an IM: Suppose that state s�S contains
a label E for the set of objects where some <specific object> t
has to be added. Then the set of E-objects in the new state
T(s,i) will be s(E) � { t }, i.e., the old set of E-objects plus the
new object. The output could be “Done”. In some cases, the
system must also generate one or more additional values, e.g.,
a student number or an order number. Those system generated
values should also be part of the output given back to the user.

In an OO-based IS the main method will be a set-method.
In case of a realization in an SQL-based IS, the main statement
in the (stored) procedure implementing the Create will be an
INSERT statement, as already indicated in Fig. 2. In particular,
the statement will have the form
INSERT INTO E(a1, …, an) VALUES(v1, …, vn)

where E is the table, a1, …, an are the attributes, and v1, …, vn
are their respective values (whether or not system generated).

2) Read
If the <wish> in the general US-template in subsection A starts
with a verb like View, Retrieve, Read, or See, then it probably
concerns a Read (so, retrieval).

Translating this to an IM: In case of a Read, the state stays
the same, i.e., the new state T(s,i) in the IM will be s, and out-
put G(s,i) will either contain the information asked for or the
reason(s) why the information couldn’t be given.

In case of a realization in an SQL-based IS, the main
statements in the (stored) procedure implementing the Read
will be (one or more) SELECT statements. In an OO-based IS
the main methods will be get-methods.

Retrievals can be simple like the three auxiliary retrievals
in subsection B. But retrievals can also be very complicated,
especially regarding the specification of what exactly should
be in the result. An example is the following user story:
As a manager, I want to
See an overview of my department over the last month

First of all, here are two ‘hidden’ parameters, namely, the de-
partment (‘my department’) and the overview period (‘last
month’). The actual value for each of these parameters can be
reconstructed via the authenticated user (see subsection C) and
the ‘clock’ in the system. The general, parameterized wish in
the SSD will be something like DepOverview(d, m) with de-
partment and month as parameters, or DepOverview(d, bd, ed)
with department, begin date, and end date of the relevant peri-
od as parameters (which is more general).

But the question remains what kind of information should
be in that overview. And in which detail? When a US contains
open terms like ‘overview’, ‘report’, etc., (quite) some extra
(requirements engineering) work has yet to be done. For ex-
ample, summarized information might require complex and
subtle underlying computations (summations, averages, etc.).

3) Update
If the <wish> in the general US-template in subsection A starts
with a verb like Change, Increase, Decrease, Modify, Edit,
Alter, Replace, Update, or Adapt, then it probably concerns an
Update. In that case, the <wish> might be of the form

77

‘Change/Increase/… <specific components in a specific way
for each object with a given property>’. For example:
Increase the number of expected students by 10% and the work load
by 5% for each master course for academic year 18/19

As a special case, often only 1 component of 1 object
needs to be changed, like in the example in subsection D,
where only 1 grade of 1 student needs to be changed.

Translating this to an IM: Suppose that each state s � S
contains E as a label for the set of objects under consideration
(say Courses in our example) and P(t) indicates that t � s(E)
has the intended property P (in our example: at master level
and for academic year 18/19). Then the set of E-objects in the
new state T(s,i) will be
{ t │ t � s(E) and not P(t) } � { t' │t � s(E) and P(t) }
where t' represents the update result for t. The output could be
“Done” (and, as a service, might contain the number of updat-
ed objects too).

Translating this to, e.g., an SQL-based IS would lead to
UPDATE E SET a1 = e1, …, ak = ek WHERE P'

where a1, …, ak are the attributes to be updated, e1, …, ek are
the expressions (in terms of the old values) to compute their
new values, and P' is the SQL-representation of property P.
For our ‘master course’ example it becomes something like
UPDATE Courses
SET NES = NES * 1.1,
 WL = WL * 1.05
WHERE Level = ‘Master’ AND Year = ‘18/19’

4) Delete
If the <wish> in the general US-template in subsection A starts
with a verb like Remove, Delete, or Destroy, then it probably
concerns a Delete. In that case, the <wish> is often of the form
‘Remove/Delete/… <each object with a given property>’, e.g.,
Remove each course of last year. As a special case, sometimes
only 1 object should be removed: ‘Remove <the object with a
given ID value>’. For example, the student with a given stu-
dent number or the department with a given name.

Translating this to an IM: If each state s�S contains E as a
label for the set of objects under consideration (say Courses in
our example) and P(t) indicates that t � s(E) has the intended
property P (of last year in our example), then the set of E-
objects in the new state T(s,i) will be { t � s(E) │not P(t)}.
The output could be “Done” (and, as a service, might contain
the number of deleted objects too).

Translating this to, e.g., an SQL-based IS would lead to
DELETE FROM E WHERE P'

where P' is the SQL-representation of property P.

V. IN CONCLUSION

A straightforward and complete development path how to
come from initial user wishes to a running system was sketched
in [1]. Building on that, the current paper introduced the notion
of development patterns for such development paths (focusing
on functional requirements). Several generally applicable de-
velopment patterns were introduced (e.g., patterns for the im-

portant and well-known class of CRUD functions). We also
presented various examples of such development patterns. This
resulted in generally applicable development patterns that are
transparent and enhance traceability. This leads us into the di-
rection of Pattern-Driven Requirements Engineering (PaDRE).
The development patterns add to the knowledge and skills of
those involved in the development process from initial user
wishes up to a running system. So, a significant contribution.

Although we mainly used (variants of) existing ingredients,
the strength of our overarching approach also lies in the combi-
nation of the ingredients we chose (and the ones we ignored).

To reach our goal, we had to cross the boundaries of several
(sub)disciplines such as requirements engineering, machine
theory, and (database) systems development.

VI. FUTURE WORK

We are extending our theory with additional development
patterns, e.g., for more complicated USs, UCs, and SSDs,
more complex CRUD functionality (e.g., cascading deletes,
compound transactions, and rollbacks), for batches (sequences
of inputs and their outputs), and for interacting systems. We
are also extending our theory with a ‘grammar’ for SSDs and,
e.g., the semantics and correctness of (complex) transactions.

ACKNOWLEDGMENTS

The author wants to thank Herman Balsters and Rein
Smedinga for our fruitful discussions.

REFERENCES

[1] E.O. de Brock, Towards a Theory about Continuous
Requirements Engineering for Information Systems, CRE
Workshop, REFSQ, 2018

[2] G.G. Lucassen, Understanding User Stories, PhD thesis, Utrecht
University, 2017.

[3] G. Lucassen, F. Dalpiaz, J. M. E. M. van der Werf, and S.
Brinkkemper, The Use and Effectiveness of User Stories in
Practice, Proceedings of the International Working Conference
on Requirements Engineering: Foundation for Software Quality
(REFSQ), pp. 205–222, 2016.

[4] M. Cohn, User Stories Applied: For Agile Software
Development, Addison Wesley Professional, 2004.

[5] I. Jacobson et al, Use Case 2.0: The Guide to Succeeding with
Use Cases, Ivar Jacobson International, 2011.

[6] https://en.wikipedia.org/wiki/Use_case
[7] C. Larman, Applying UML and patterns, Addison Wesley, 2004.
[8] https://en.wikipedia.org/wiki/System_sequence_diagram
[9] G.H. Mealy, A Method for Synthesizing Sequential Circuits,

Bell System Technical Journal, pp. 1045–1079, 1955.
[10] https://en.wikipedia.org/wiki/Mealy_machine
[11] L. Jessup, J. Valacich, Information systems today, Pearson, 2008
[12] https://en.wikipedia.org/wiki/Information_system
[13] J. Martin, Managing the Data-base Environment, Prentice Hall,

1983.
[14] https://en.wikipedia.org/wiki/Create,_read,_update_and_delete

All links were last accessed on 2018/07/17

78

