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Abstract. While methods based on partial differential equations (PDEs) and
variational techniques are powerful tools for denoising and inpainting digital im-
ages, their use for image compression was mainly focussing on pre- or post-
processing so far. In our paper we investigate their potential within the decod-
ing step. We start with the observation that edge-enhancing diffusion (EED), an
anisotropic nonlinear diffusion filter with a diffusion tensor, is well-suited for
scattered data interpolation: Even when the interpolation data are very sparse,
good results are obtained that respect discontinuities and satisfy a maximum–
minimum principle. This property is exploited in our studies on PDE-based image
compression. We use an adaptive triangulation method based on B-tree coding for
removing less significant pixels from the image. The remaining points serve as
scattered interpolation data for the EED process. They can be coded in a compact
and elegant way that reflects the B-tree structure. Our experiments illustrate that
for high compression rates and non-textured images, this PDE-based approach
gives visually better results than the widely-used JPEG coding.

1 Introduction

In recent years several partial differential equations (PDEs) and variational techniques
have shown their usefulness in so-called inpainting methods [19,2,4,13,27]. Here one
aims at filling in missing informations in certain corrupted image areas by means of sec-
ond or higher-order PDES. The basic idea is to regard the given image data as Dirichlet
boundary conditions, and interpolate the data in the inpainting regions by solving appro-
priate boundary value problems. Related variational and PDE methods have also been
investigated for more classical interpolation problems such as zooming into an image
by increasing its resolution [3,18]. For such interpolation problems with data given on
a regular grid, these techniques are in competition with cubic or quintic splines, radial
basis functions and sinc-based interpolation techniques; see e.g. [17,20]. If the data are
not available on a regular grid, scattered data interpolation techniques have been pro-
posed [11,22], among which radial basis functions such as thin plate splines [9] are
popular and well-performing.

Interestingly, not many of the variational and PDE-based interpolation and inpaint-
ing techniques have been used for scattered data interpolation. It seems that the sparsity
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of the scattered data constitutes a real challenge for these techniques: While second-
order PDEs may satisfy a maximum–minimum principle, they often create singularities
at isolated interpolation points in 2-D. Higher-order PDEs, on the other hand, may give
smoother solutions, but the violation of an extremum principle can lead to undesirable
over- and undershoots; see e.g [3].

The goal of the present paper is twofold: First we address the before mentioned
problem by investigating a partial differential equation that has not been considered
for interpolation problems before, namely edge-enhancing anisotropic diffusion (EED)
[28]. It uses a diffusion tensor that allows smoothing along discontinuities while inhibit-
ing smoothing across them. In our experiments we will see that this technique performs
favourably in the context of scattered data interpolation. A second goal of our paper is
to investigate if this property can be used for lossy image compression. While contem-
porary image compression methods are dominated by concepts that involve the discrete
cosine transform (such as the widely-used JPEG standard [23]) or the discrete wavelet
transform (in JPEG2000 [26]), our goal is to give a proof-of-concept that there are al-
ternatives where PDEs may be beneficial. The basic idea is to reduce the image data to
a well-adapted set of significant sparse points that can be coded in an efficient way. De-
coding is accomplished by using these scattered data and interpolating them by means
of edge-enhancing anisotropic diffusion. As a tool for creating a useful sparse point
representation, we consider the B-tree triangular coding (BTTC) by Distasi et al. [8],
since it is relatively simple and allows an efficient coding of the sparsified image data.

Our paper is organised as follows. In Section 2 we describe PDE-based interpolation
techniques and show that scattered data interpolation with EED performs particularly
well. In Section 3 we review the BTTC model for image coding and describe how it can
be coupled with PDE-based interpolation. Experiments on EED-based image coding
are presented in Section 4, and the paper is concluded with a summary in Section 5.

Related Work. In the context of image compression, PDEs and related variational tech-
niques have mainly been used as a preprocessing step before coding [10,16] or as a post-
processing tool for removing coding artifacts [1,12,21,29,30]. Our works differs from
these papers by the fact that we use PDEs within the decoding step rather than as pre- or
postprocessing tools. Chan and Zhou [5] used total variation regularisation in order to
modify the coefficients in a wavelet decomposition such that oscillatory edge artifacts
are reduced, while Solé et al. [25] investigate three PDEs for interpolating structures in
digital elevation maps and report the most favourable results with the Laplacian oper-
ator. An interesting coding scheme that exploits scattered data interpolation has been
proposed by Demaret et al. [7]. They construct an adaptive Delaunay triangulation that
is used for decoding the image by linear interpolation. Their experiments show that it
can be an alternative to JPEG 2000 coding for texture-free images.

2 PDE-Based Interpolation

We start by considering a PDE approach to image interpolation. First we discuss a gen-
eral model, then we investigate four possibilities for smoothing operators, and finally
we present an experiment that illustrates their properties.
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2.1 General Model

Let Ω ⊂ IRn denote an n-dimensional image domain. We want to recover some un-
known scalar-valued function v : Ω → IR, from which we know its values on some
subset Ω1 ⊂ Ω. Our goal is to find an interpolating function u : Ω → IR that is smooth
and close to v in Ω \ Ω1 and identical to v in Ω1.

We may embed this problem in an evolution setting with some evolution parameter
(the ”time”) t ≥ 0. It solution u(x, t) gives the desired interpolating function as its
steady state (t → ∞). We initialise the evolution with some function f : Ω → IR that
is identical to v on Ω1 and that is set to some arbitrary value (e.g. to 0) on Ω \ Ω1:

f(x) :=
{

v(x) if x ∈ Ω1
0 else.

(1)

We consider the evolution

∂tu = (1−c(x))Lu − c(x) (u − f) (2)

with f as initial value,
u(x, 0) = f(x), (3)

and reflecting (homogeneous Neumann) boundary conditions on the image boundary
∂Ω. The function c : Ω → IR is the characteristic function on Ω1, i.e.

c(x) :=
{

1 if x ∈ Ω1
0 else,

(4)

and L is some elliptic differential operator. The idea is to solve the steady state equation

(1−c(x))Lu − c(x) (u − f) = 0 (5)

with reflecting boundary conditions. In Ω1 we have c(x) = 1 such that the interpolation
condition u(x) = f(x) = v(x) is fulfilled. In Ω \ Ω1 it follows from c(x) = 0 that the
solution has to satisfy Lu = 0. This elliptic PDE can be regarded as the steady state of
the evolution equation

∂tu = Lu (6)

with Dirichlet boundary conditions given by the interpolation data on Ω1.

2.2 Specific Smoothing Operators

Regarding the elliptic differential operator L, many possibilities exist. The simplest one
uses the Laplacian Lu := ∆u leading to homogeneous diffusion [15]:

∂tu = ∆u. (7)

A prototype for a higher order differential operator is the biharmonic operator Lu :=
−∆2u giving the biharmonic smoothing evolution

∂tu = −∆2u. (8)

Using it for interpolation comes down to thin plate spline interpolation [9], a rotationally
invariant multidimensional generalisations of cubic spline interpolation. Note that only



40 I. Galić et al.

the second-order differential operators allow a maximum–minimum principle, where
the values of u stay within the range of the values of f in Ω1.

Nonlinear isotropic diffusion processes are governed by Lu := div (g(|∇u|2)∇u).
This gives [24]

∂tu = div (g(|∇u|2)∇u) (9)

where the diffusivity function g is decreasing in its argument, since the goal is to re-
duce smoothing at edges where |∇u| is large. One may e.g. choose the Charbonnier
diffusivity [6]

g(s2) =
1√

1 + s2/λ2
(10)

with some contrast parameter λ > 0. Since (9) uses a scalar-valued diffusivity we name
this process isotropic (in contrast to the nomenclature in [24]).

Real anisotropic behaviour is possible when a diffusion tensor is used. As a proto-
type for nonlinear anisotropic diffusion filtering we consider edge-enhancing diffusion
(EED) [28]. The idea is to reduce smoothing across edges while still permitting diffu-
sion along them. The EED diffusion tensor has one eigenvector parallel to ∇uσ, where
uσ is obtained from convolving u with a Gaussian with standard deviation σ. The corre-
sponding eigenvalue is given by g(|∇uσ|2) with a diffusivity function such as (10). The
other eigenvectors are orthogonal to ∇uσ and have corresponding eigenvalues 1. If we
use the convention to extend a scalar-valued function g(x) to a matrix-valued function
g(A) by applying g to the eigenvalues on A and leaving the eigenvectors unchanged,
then EED can be formally linked to Lu := div (g(∇uσ∇u�

σ )∇u). Hence, its evolution
is governed by

∂tu = div (g(∇uσ∇u�
σ )∇u). (11)

2.3 Experiments on Interpolation

In order to evaluate the potential of the preceding PDEs for scattered data interpola-
tion, we have discretised them with central finite differences in space. For the diffusion
equations, we performed a semi-implicit time discretisation with SOR as solver for the
linear systems of equations, while for biharmonic smoothing an explicit scheme was
used. Runtimes for a non-optimised C implementation on a 1.5 GHz Centrino laptop
range between a few seconds and several minutes for a 256 × 256 image.

In Figure 1 we present an experiment that illustrates the use of the different smooth-
ing operators for scattered data interpolation. It depicts a zoom into the famous lena
image, where 2 percent of all pixels have been chosen randomly as scattered interpo-
lation points. We observe that homogeneous diffusion is not very suitable for scattered
data interpolation, since it creates singularities at the interpolation points. This can be
avoided with interpolation using biharmonic smoothing. It gives fairly good results, but
suffers from over- and undershoots near edges due to the violation of an extremum prin-
ciple (see e.g. the shoulder). Interestingly, going from homogeneous diffusion to non-
linear isotropic diffusion does not give an improvement: Although nonlinear isotropic
diffusion may allow discontinuities, its interpolant is too flat and tends to keep many
interpolation points as isolated singularities. The fact that EED, on the other hand, gives
the best results shows the importance of the anisotropic behaviour. Its ability to smooth
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along edges seems to be very beneficial for avoiding singularities at interpolation points.
Moreover, this second-order PDE respects a maximum–minimum priciple, such that the
solution is within the greyscale bounds of the interpolation points.

Fig. 1. (a) Top left: Zoom into the test image lena, 256 × 256 pixels. (b) Top middle: Grey
values of the scattered interpolation points (2 percent of all pixels, chosen randomly). (c) Top
right: Interpolation by linear diffusion. (d) Bottom left: Biharmonic smoothing. (e) Bottom
middle: Nonlinear isotropic diffusion (λ = 0.1). (f) Bottom right: EED (λ = 0.1, σ = 1).

Table 1. Average absolute errors (AAE) for the PDEs used for scattered data interpolation in
Figure 1

PDE method AAE
homogeneous diffusion (7) 16.977
biharmonic smoothing (8) 15.787
Charbonnier diffusion (9) 21.864
edge-enhancing diffusion (11) 14.584

Our visual impression is confirmed by Table 1, in which we have computed the
average absolute error (AAE) between the interpolated image and the original image.
For two images (uij) and (vij) with N pixels, the AAE is defined as

AAE(u, v) =
1
N

∑
i,j

|uij − vij |. (12)
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Nonlinear isotropic diffusion performes worst, followed by homogeneous diffusion and
biharmonic smoothing, while EED gives the smallest interpolation error. This shows
that for scattered data interpolation, EED is a very promising PDE that has not been
investigated in this context before.

3 Image Coding by Binary Trees

Now that we have seen that EED is useful for scattered data interpolation, we want to
exploit this technique for image compression. To this end we have to couple it with a
method that provides a useful sparse image representation with scattered data.

3.1 Creating Scattered Interpolation Points

Our image compression and decompression scheme relies on an adaptive sparsification
of the image data by means of the triangulation from B-tree triangular coding (BTTC)
[8]. In this coding, an image is decomposed into a number of triangular regions such
that within each region it can be recovered in sufficient quality by interpolation from the
vertices. In our case, all regions are isosceles rectangular triangles. The decomposition
into triangles then is stored in a binary tree structure.

In order to describe the compression procedure, let us assume we have an image
v = (vij) of size (2m +1)× (2m +1). Smaller images should be filled up to such a size
in a suitable way. Initially, the image is split by one of its diagonals into two triangles.
The four image corners (1, 1), (1, 2m+1), (2m+1, 1) and (2m+1, 2m+1) are vertices
of these two triangles.

To refine this initial configuration, an approximation (uij) of the image (vij) is
calculated by using only the grey values from the vertices and interpolating linearly
within each triangle. If the error eij := |uij − fij | satisfies eij ≤ ε for all pixels
(i, j), with a given tolerance parameter ε > 0, the representation by triangles is con-
sidered sufficiently fine. Otherwise, for each pixel (i, j) for which eij > ε holds, the
triangle which contains (i, j) is split into two similar triangles by the height on its hy-
potenuse. The centre of the hypotenuse thereby becomes an additional vertex of the
representation. By recalculating approximation errors within the new smaller triangles,
it is determined whether to split these again etc. Since the approximation error is zero
at vertices, triangles with legs of length 1 are not split further, which guarantees that the
recursive splitting terminates. Moreover, vertices throughout the process have integer
coordinates. Which pixels are vertices is indicated in a vertex mask of size equal to the
image that is generated during the triangulation.

One point which needs additional consideration is the treatment of pixels located
on the sides of triangles during the splitting process. If the error bound is violated in
such a pixel, it is sufficient for our compression and decompression method to split one
of the two adjacent triangles. This allows to reduce the number of triangles noticeably
since in regions with fine details, a large number of small triangles occur, and many
pixel positions then happen to be located on sides.
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3.2 Coding

To efficiently store the triangulation, we notice that the hierarchical splitting of trian-
gles gives rise to a binary tree structure. Each triangle occurring during the splitting
process is represented by a node while leaves correspond to those triangles which are
not divided further. When a triangle is split, its two subtriangles become the children
of its representing node. To store the structure of the tree, one traverses the tree and
stores one bit per node: a 1 for a node that has children, and a 0 for a leave. Preorder
or level-order traversal are equally possible. Note that by the tree structure, the vertex
mask is fully determined. Further space in storing the tree is saved by measuring glob-
ally the minimal and maximal depth of the tree. Only for nodes at intermediate levels,
the corresponding bits are stored.

For coding the grey values in all vertices, we first zig zag traverse the sparse im-
age created with the binary tree structure and store it in a sequence of grey values.
This sequence is then compressed with Huffman coding [14], a lossless variable-length
prefix code that assigns smaller codes to more frequent characters. It also uses a tree
structure.

Our entire coded image format then reads as follows:

– image size (4 bytes)
– minimal and maximal depth of the binary tree (together 2 bytes)
– binary string encoding binary tree structure (1 bit for each node between minimal

and maximal depth, filled up with zeros to the next byte boundary)
– first grey-value in a sequence of grey values (1 byte)
– minimal and maximal depth of the Huffman coded binary tree (2 bytes)
– binary string for Huffman-coded binary tree (1 bit for each node between minimal

and maximal depth, filled up with zeros to the next byte boundary)
– Huffman dictionary (less than 256 bytes)
– sequence of Huffman-coded grey values

We further enhanced this coding by a (lossy) requantisation step that reduced the
number of grey values in the initial image from 256 to 64.

3.3 Decoding

Decompression takes place in two steps. In the first step, the vertex mask is recovered
from the binary tree representation, and the stored grey values are placed at the ap-
propriate pixel positions to give the sparse image. To recover the vertex mask, the tree
is generated in the same order as it was stored. Along with generating nodes, vertex
positions are calculated and marked in the vertex mask.

The second step consists in the interpolation of the image, where the vertex mask
becomes the interpolation mask. In the BTTC scheme of Distasi et al. [8], linear in-
terpolation within each traingle is used. In the sequel we will denote this technique by
BTTC-L.

Since we have already seen that EED performs favourably as a scattered data in-
terpolant, it is natural to renounce the linear interpolation step in the BTTC-L method
and apply EED to the interpolation mask that has been created by the BTTC method.
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We abbreviate this novel method by BTTC-EED. Note that in contrast to BTTC-L,
BTTC-EED does not rely on the triangulation, only on its vertices as interpolation
points.

4 Experiments on Compression

Let us now investigate the effects of our EED-based interpolation in the context of
image coding. Figures 2 and 3 show two test images and their compressed versions
using BTTC-EED, respectively. We have chosen the threshold parameter ε such that
compressions of 0.8, 0.4 and 0.2 bits per pixel (bpp) are achieved. Since the usual
coding uses 1 byte per pixel, this comes down to compression ratios of 1:10, 1:20 and
1:40. In Fig. 3, we display both the coded pixels with their corresponding grey values,
and the result after scattered data interpolation with EED. We observe that even at high
compression rates, fairly realistic results are possible.

Fig. 2. Test images, 257 × 257 pixels. (a) Left: trui. (b) Right: peppers.

In order to illustrate the differences between BTTC-EED and BTTC-L as well as
JPEG, we depict the corresponding results in Fig. 4. We perform this comparison at the
high compression rate of 1:40 (or equivalently 0.2 bpp) where the visual differences
are well visible. We observe that JPEG coding suffers from severe block artifacts that
result from the fact that the discrete cosine transform is computed within blocks of 8×8
pixels. The BTTC-L method, on the other hand, creates artifacts where the underlying
triangulation becomes visible. Since BTTC-EED only uses the interpolation points from
the BTTC method, but not the corresponding triangulation, it is clear that this method
cannot suffer from such a shortcoming. If not enough data are available, its interpolation
tends to be on the smoother side. It gives the visually most convincing results among
the three methods.

This visual impression is also confirmed by the quantitative measurements in Ta-
ble 2, where the average absolute error is listed. We see that at the compression rate
1:40, JPEG performs worst, BTTC-L is in the midfield, and BTTC-EED gives the best
results.
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Fig. 3. First row, left to right: Adaptive sparsification of trui, using BTTC with compression
to 0.8 bpp, 0.4 bpp, 0.2 bpp. Second row, left to right: Corresponding EED-based interpolation.
Third row, left to right: Adaptive sparsification of peppers, using BTTC with compression to
0.8 bpp, 0.4 bpp, 0.2 bpp. Fourth row, left to right: Corresponding EED-based interpolation.
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Fig. 4. Comparison at high compression rates (0.2 bpp) for the test images trui and peppers. Left
column: JPEG. Middle column: BTTC-L. Right column: BTTC-EED.

Table 2. Comparison of the average absolute error for the different images and compression
methods at 0.2 bpp

compression trui peppers
JPEG 11.25 12.99
BTTC-L 8.63 11.22
BTTC-EED 8.45 9.99

5 Conclusions

In this paper we presented a proof-of-concept that edge-enhancing anisotropic diffu-
sion (EED), a PDE originally designed for denoising, can also be useful for scattered
data approximation and for image compression. In the latter case we sparsified the im-
age data by B-tree triangular coding, and used EED as a scattered data interpolant for
decoding. Our experiments indicate that this strategy is particularly useful when high
compression rates become necessary.

Since modern image compression methods have reached a high degree of sophis-
tication, it is evident that our paper can only serve as a first step towards PDE-based
image compression. In our ongoing work we are investigating different options for fur-
ther performance improvements and a more detailed performance evaluation including
also upcoming standards such as JPEG 2000.



Towards PDE-Based Image Compression 47

Acknowledgements. Our research is partly funded by the International Max-Planck
Research School (IMPRS). This is gratefully acknowledged. Joachim Weickert also
thanks Vicent Caselles for interesting discussions on EED-based interpolation during
a stay at the University Pompeu Fabra, Barcelona.

References

1. F. Alter, S. Durand, and J. Froment. Adapted total variation for artifact free decompression
of JPEG images. Journal of Mathematical Imaging and Vision, 23(2):199–211, September
2005.

2. M. Bertalmı́o, G. Sapiro, V. Caselles, and C. Ballester. Image inpainting. In Proc. SIG-
GRAPH 2000, pages 417–424, New Orleans, LI, July 2000.

3. V. Caselles, J.-M. Morel, and C. Sbert. An axiomatic approach to image interpolation. IEEE
Transactions on Image Processing, 7(3):376–386, March 1998.

4. T. F. Chan and J. Shen. Non-texture inpainting by curvature-driven diffusions (CDD). Jour-
nal of Visual Communication and Image Representation, 12(4):436–449, 2001.

5. T. F. Chan and H. M. Zhou. Total variation improved wavelet thresholding in image com-
pression. In Proc. Seventh International Conference on Image Processing, volume II, pages
391–394, Vancouver, Canada, September 2000.
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