Towards Physical Mashups in the Web of Things

Dominique Guinard, Vlad Trifa
SAP Research Zurich and

Institute for Pervasive Computing ETH Zurich, Switzerland

Contact email: dguinard@ethz.ch

Abstract—Wireless Sensor Networks (WSNs) have promising
industrial applications, since they reduce the gap between tra-
ditional enterprise systems and the real world. However, every
particular application requires complex integration work, and
therefore technical expertise, effort and time which prevents
users from creating small tactical, ad-hoc applications using
sensor networks. Following the success of Web 2.0 “mashups”, we
propose a similar lightweight approach for combining enterprise
services (e.g. ERPs) with WSNs. Specifically, we discuss the tradi-
tional integration solutions, propose and implement an alternative
architecture where sensor nodes are accessible according to the
REST principles. With this approach, the nodes become part
of a “Web of Things” and interacting with them as well as
composing their services with existing ones, becomes almost as
easy as browsing the web.

I. INTRODUCTION AND RELATED WORK

In order to be globally competitive, enterprises need efficient
IT systems that provide comprehensive and timely informa-
tion. This implies the need for a continuous information
flow, from industrial machines up to business applications,
and therefore the integration of many heterogeneous systems.
Nowadays, enterprise application integration has already gone
beyond the interconnection of a few large back-end systems.
However, this integration does not stop here: more and more
everyday objects are now augmented with computing and
communication capabilities. With technologies like WSNs and
RFID, the physical world becomes thus “integrable” with
computer networks, and makes the state of objects and their
surroundings seamlessly accessible to software systems. The
“Internet of Things” [1] is a global communication network
that is emerging with the dissemination of such devices, and
is rapidly expanding.

As a matter of fact, most projects in this field are based on
monolithic system architectures, which are brittle and difficult
to adapt. While some general purpose frameworks exist,
developing a new application in a specific domain requires
strong skills across a wide spectrum of technologies. For this
reason, smart devices and WSNss are still underexploited. In the
area of enterprise application integration, a few projects have
explored the use of “mashup” architectures, also known as
user-generated composite applications, to enable more flexible
software composition within (and outside) the enterprise [2],
[3]. However, they mainly focus on mashing up on-line ser-
vices and do not address the issues and requirements that come
with a physical world integration, which is our aim. Some
issues of integration with the physical world are discussed

Thomas Pham, Olivier Liechti
University of Applied Sciences HEIG-VD
Institute for Information Technologies, Switzerland

in [4], [5]. In these approaches, UPnP or the Web Services
standards (WS-*) are used for integration. The complexity of
these underlying protocols implies a steep learning curve and
is geared towards software engineers. We propose exploring
a different approach that empowers individual end-users with
moderate computer literacy to create simple, ad-hoc applica-
tions that combine real-time data and services provided by
sensor nodes with enterprise services: the “physical mashups”.

Dickerson et et al. [6] have used Web feeds to access
data provided by sensor nodes. In particular, they describe
an extension to RSS better suited to accommodate high-rate
data streams with a web-oriented querying interface to retrieve
sensor data. A direct consequence of the stream abstraction is
that sensors are considered solely as data publishers, not as
service providers. In [7] a RESTful architecture for sensor
networks is proposed and evaluated. Similarly to [8] we push
the REST principles (see [9] and subsection II-B) further down
to the sensor level rather than the gateway level, which goes
along with the developments of IP stacks for WSNs. In order to
further diminish the footprint of the application on the nodes,
we propose the use of JSON! as a data interchange format.
JSON is a lightweight alternative to the XML format used
in [7], [8]. Our main contribution is on the application level.
Following on the web paradigm we expose the functionalities
of sensor nodes as web resources and link them together
hierarchically, like web pages. This reduces searching for
services to web-browsing. We then discuss how this architec-
ture can facilitate the creation of ad-hoc applications by end-
users and discuss the alternative architectures. As an example
we consider a composite application, that could be built by
an end-user, where a sensor node updates the temperature
status of a shipment in an ERP (Enterprise Resource Planning)
application on a regular basis.

II. APPROACHES FOR SYSTEM INTEGRATION

Just as “digital mashups* are getting useful for business [3]
and everyday applications, we believe that ’physical mashups*
will become so. Still, the current software integration plat-
forms are not adapted to ad-hoc scenarios, because they lack
simple and open interfaces for simple purposes. To illustrate
this we start by discussing the common integration techniques
used to link the physical world and enterprise applications.

Thttp://www.json.org

A. Custom Middleware Integration

In the world of business software, specialized enterprise
middleware is often used to create an abstraction layer between
the manufacturing plant devices with management applica-
tions. In the field of manufacturing, such a middleware is
called a Manufacturing Execution System (MES). The prob-
lem is that today, most devices expose proprietary interfaces
and communication protocols. For this reason, their integration
into an enterprise system requires a substantial effort. For
every type of device, a custom adapter must be developed and
integrated into the enterprise middleware. This approach may
be sufficient for rather static environments where the set of
device types is known and does not evolve often. However, it
is not suitable for dynamic environments where new kinds of
devices and machines need to be integrated on a regular basis.
In addition, middleware solutions are often fairly complex
systems, which makes them hard to use them for ad-hoc and
simple service composition.

B. Classic Web Service Oriented Approach

To overcome the burden of proprietary interfaces, WS-*
Web Services standards (also known as WS-* stack, or Big
Web Services [10]) have been proposed. Web Services are
loosely coupled software components that offer standardized
interfaces based on mainly two languages: the Web Service
Definition Language (WSDL) which is used to define the
syntax of the interfaces, and SOAP which defines the format
of messages that are exchanged when invoking services. The
WS-* approach was initially designed to propose a distributed
component architecture that could be used to integrate and
combine different computer systems, with a clear emphasis
on business architectures and for digital services (but not
on the physical world). This emphasis resulted in relatively
heavy standards: both the interface definition (WSDL) and the
messages (SOAP) are rather complicated instances of XML
documents. This makes the WS-* services quite demanding in
terms of required computing power, bandwidth and storage.

Several initiatives attempted to apply the WS-* paradigm
beyond the closed-world of servers and mainframes. For
example, in SOCRADES [5] Web service standards are pushed
down to the device level, so that all the actors of the physical
world (sensors, machines, augmented objects, etc.) can expose
their services through a common interfacing language. The
Device Profile for Web Services (DPWS, a subset of WS-*
standards) can be used to enable Web service messaging, dis-
covery, description and eventing on devices with constrained
resources [11]. However, DPWS needs to be further developed
in order to fit the needs of WSNs as its current footprint is
still too big for most nodes. While this problem is probably a
matter of time, it remains that DPWS uses a complex set of
standards. Based on our experience within SOCRADES [5] we
can state that it requires significant expert knowledge and tools
that average users do not posses. We suggest that this stack is
suited for well-defined integration scenarios, but remains too
complicated for ad-hoc integration scenarios by end-users.

C. Resource Oriented Approach: RESTful Web Services

The Internet is a stunning example of a scalable global
network of computers that interoperate smoothly across het-
erogeneous hardware and software platforms. It also illustrates
well how simple and open standards (e.g., HTTP, XML) can
be used to build very efficient and flexible systems. The
architectural principle that is at the heart of the Web, namely
Representational State Transfer (REST) as defined by Roy
Fielding [9], shares a similar goal with the WS-* standards:
increase interoperability for a looser coupling between parts
of distributed applications. However, the goal of REST is to
achieve this in a more lightweight and simpler manner, by re-
using web patterns. In particular, REST uses the Web as an
application platform and fully leverages all the features inher-
ent to HTTP such as authentication, authorization, encryption,
compression and caching. Moreover, it brings services “into
the browser”: the resources can be linked and bookmarked and
the results are directly visible in any Web browser, without the
need for generating complicated source code out of WSDL
files for interacting with the service. These advantages mainly
explain why REST services are the technological basis for
an increasing number of Web 2.0 services such as Flickr,
Facebook, Del.icio.us, Doodle, or Amazon.

To achieve this, REST proposes two basic rules: 1) The
application model is transformed from operation-centric (i.e.
service operations in WS-*) into a data-centric one. This
means “everything” that offers services becomes a resource
(e.g. a temperature sensor is a resource of a the sensor node
resource) that can be identified unambiguously using a URL
2) The four main operations provided by HTTP (GET, POST,
PUT, DELETE) are the only available operations on resources,
they define a uniform interface.

REST services also have certain limitations, however. For
instance, the inherent simplicity of REST paradoxically com-
plicates the creation of complex services. But Pautasso et
al. [12] compared WS-* services with REST services and
suggested that WS-* services are to be preferred for *“pro-
fessional enterprise application integration scenarios, with a
longer lifespan and advanced QoS requirements”. Conversely,
thank to their simplicity, lightweighness and uniform interface,
RESTful service are preferred for “tactical, ad-hoc integration
over the Web”.

III. A REST ARCHITECTURE FOR WIRELESS SENSOR
NETWORKS

In order to empirically test the potential advantages of the
Web and HTTP principles, we implemented a RESTful archi-
tecture on the SunSPOT Java sensor nodes. The architecture
is composed of three subparts implemented in Java Micro
Edition (CLDC): the software deployed on the sensor nodes
themselves, the software deployed on the gateway, and the
enterprise integration software.

A. Embedded Software Stack

Integration at a lower-level is also facilitated by using
RESTH(ul interactions with devices. For that, we implemented

Sun SPOT
[ﬂl Stream Connection Manager

(*—HTTP ENGINE

HTTP Response
Builder

- _l A
—Resources—¥ |
SPOT |
JSON
B E— Formatter
Sensors Actuators Mgt

Sun SPOT API
| Native API |

Discovery
(o])

Fig. 1. Architecture deployed on the SunSPOTS.

an embedded HTTP server directly on the SunSPOT nodes
that natively supports the four main operations of the HTTP
protocol (GET, POST, PUT, DELETE, i.e the verbs of REST).
The HTTP server is deployed on each sensor node, making it
an independent and autonomous device. Each SunSPOT offers
a number of sensors (light, temperature, accelerometer, etc.), a
number of actuators (digital outputs, leds, etc.) and a number
of internal components (radio, battery). These (including the
SunSPOT themselves) are the resources of our REST archi-
tecture. Resources are organized in a tree hierarchy and each
of them implements or inherits the four verbs.

Requests for services (i.e. verbs on resources) are formu-
lated using a standard URL. For instance, typing a URL such
as http://webofthings.com:8080/spot1/sensors/temperature in a
browser, requests the resource “temperature” of the resource
“sensor” of “spotl” with the verb GET. The request is routed
by the RequestDispatcher to the correct resource (see Fig. 1)
on which it invokes the doGet () operation. The resource
then reads the current temperature using the native SunSPOT
API and sends it to the formatter. While this component can
support various format, we decided to use JSON (JavaScript
Object Notation), an alternative to XML often used as an
data-interchange format for web mashups. Since JSON is a
lightweight format we believe it is more adapted to devices
with limited capabilities both because the amount of data
transfered is reduced and the parsers require less resources.
The JSON data resulting from the call for temperature is
shown on Figure 2. This data is finally wrapped into an HTTP
packet and sent further to the gateway. Note that alternatively
the results can be distributed asynchronously to a URL when
the values overcome a certain threshold configurable through
the REST interface as well.

B. Gateway Middleware

SunSPOTs do not support the IP (Internet Protocol) stack
(yet?). Their radio communication is based on the IEEE
802.15.4 standard. The Web is not directly linked to this
protocol, thus a gateway that bridges the Web requests (from

Devices Informations Web Services Explorer Rules Agent Manager

Current web service path : http:/localhost:8080/spot1/sensors/temperature/

Web services Tree :
© spott

HTTP Methods Allowed for this resource : GET
Main value of this resource -

© sensors [88.251
© temperature
rules

notificationsProvider

light unit - fahrenheit R
acceleration
POST GET PUT DELETE

actuators Original JSON Message

e {"valuesn: {"main": [88.25],
Gnit”, "msed":"R",
ahrenheit”}]}, "children™:
notificationsProvider”], "methodRllowed":

"params":

management
© spot3

= sensors

© temperature
rules
notificationsProvider
light

acceleration
switches
actuators

management

Fig. 2. Using the AJAX Resource Explorer, users can explore directly the
resources provided by the device. This sample shows how users can get the
current temperature resource values and the formalism of the JSON response.

TCP/IP) and to the devices over the IEEE 802.15.4 link is
needed. To allow flexible mashups, we wanted the nodes
to be mobile, travelling from gateways to gateways, which
requires a dynamic discovery process to find new nodes and
registers their basic information (the MAC address, a short
description, their URL). This process is carried out by a
Discovery Component, which broadcasts invitation messages
on a regular basis on a dedicated port. On their side, the
nodes listen to this port and can decide to subscribe to
the broadcasting gateway. Then Reverse Proxy registers the
node’s address. When receiving an HTTP request from the
Internet/Intranet it reads the request URL and maps it to one
of the registered nodes. In case the node is busy, it also serves
as a buffer by queuing requests and resubmitting them later.
In order to deal with URL and HTTP packets parsing, the
gateway uses and extends the functionalities of RESTlet, an
open-source Java REST library.

As shown on Figure 2, the Resource Explorer component
offers to users (i.e. mashup builders) an interface to browse
the available services. Just as they would navigate on websites,
they can explore the device hierarchy and test services by
clicking on the link structure reflecting the hierarchy of the
physical world (e.g. a temperature sensor is the “son” of a
sensor node). The explorer dynamically adapts its content
to the available devices and is implemented as an AJAX
application designed to minimize the connections to the nodes
while looking for a service.

C. Integration with Enterprise Applications

The real benefits of using a REST architecture are to be
seen at the level of the enterprise-side integration, where the
mashup is built. In our prototype, the integration was done with
SAP MII, a commercial business solution used in the manufac-
turing industry. SAP MII enables non-programmers to visually
combine data sources such as Web Services, databases, XML

documents with higher level business applications such as an
ERP (Enterprise Resource Planning) application, by simply
drag and drop building bricks from a palette. In this respect
we can consider MII as a mashup editor, meant for end-users
to create small applications useful for their particular business.

Let us imagine a composite application that reports the
temperature of a shipment (to which a SunSPOT was attached)
to an ERP application. We briefly expose the simplified
steps required for building such an application comparing an
implementation that uses Web Services and RESTful services,
emphasizing on the conceptual differences.

The first step is to identify the temperature service on the
SunSPOT. In the WS-* world this is usually done by searching
for the previously registered service on a UDDI (Universal
Description, Discovery and Integration) server. For real-world
services this process is rather complicated since we are looking
for one particular service on one particular device, meaning
context (and in particular location) is of prime importance.
For RESTful services the identification method is exploratory.
Thanks to the links between the resources the user finds the
service by clicking links (with the Resource Explorer, see
Figure 2, or plain HTML pages in a web browser) as she would
browse web pages, eventually finding the correct service.

Once the service is identified, its interface needs to be
used. For the WS-* service the interface is the WSDL file.
Once retrieved, this WSDL file can be fed to a Web-Service
building brick which generates an invocation class to be used
when consuming the service (a stub). During our experiments
this process was error-prone because WSDL files, although
standardized, often contain proprietary subtleties that make
them hard to parse for MII. For RESTful services the URI
(http://.../spotl/sensors/temperature) of the resource providing
the service along with one of the HTTP verbs (e.g GET) is
the interface. Thus, this URL can be fed to an HTTP building
brick of MII without the need for it to generate anything like
a stub. One of the direct advantages of this approach is that
the service can be tested directly from the browser, by typing
its URL, without the need for using a dedicated tool as for
WS-* services. The next step consists of using an XML (in
the case of WS-*) or a JSON (in the case of our RESTful
implementation) processor to extract the actual data out of the
service response. In the last step we feed this data to an ERP
building brick taking care of mapping the correct ERP field
to the temperature.

IV. DISCUSSION AND FUTURE WORK

In this paper we introduced several integration techniques
for the use of embedded devices to create physical mashups
within the enterprise. We especially focused on our experience
with WS-* web services deployed on embedded sensors as
well as the use of middleware solutions. While web services
seem to be suitable for integration scenarios with a longer
lifespan and strong QoS requirements it is also rather rigid
and too heavy to be deployed on most embedded devices.
Furthermore, due to the programatic complexity, WS-* or
middleware approaches are not well-suited for empowering

end-user to create ad-hoc applications. Thus, we proposed the
use of a RESTful approach, implemented it on the SunSPOT
plateform. Reusing the existing, successful and well-known
standards of the web allows to make any physical object part of
a “Web of Things”, therefore directly addressable and usable
using well-known tools.

The reported work also exposes a number of issues that
require further investigation, as for example improving scal-
ability of the architecture when concurrent requests occur on
single nodes, better support for asynchronous communication
of the sensed values, standards and models for the returned
values. Finally, we are currently further evaluating the archi-
tecture, both in quantitative terms (e.g. overhead introduced
by using HTTP and REST on the nodes) and qualitative terms
(e.g. ease of integration and development).

ACKNOWLEDGMENT

The authors would like to thank the European Commission
and the partners of the European IST FP6 project “Service-
Oriented Cross-layer infRAstructure for Distributed smart Em-
bedded devices” (SOCRADES - www.socrades.eu) for their
support.

REFERENCES

[1]1 E. Fleisch and F. Mattern, Das Internet der Dinge. Springer, 2005.

[2] X. Liu, Y. Hui, W. Sun, and H. Liang, “Towards service composition
based on mashup,” in Proc. of IEEE Service Computing, 2007, pp. 332—
339.

[3] V. Hoyer, K. Stanoesvka-Slabeva, T. Janner, and C. Schroth, “Enterprise
mashups: Design principles towards the long tail of user needs,” in Proc.
of IEEE Services Computing, vol. 2, 2008, pp. 601-602.

[4] M. Marin-Perianu, N. Meratnia, P. Havinga, L. de Souza, J. Muller,
P. Spiess, S. Haller, T. Riedel, C. Decker, and G. Stromberg, “De-
centralized enterprise systems: a multiplatform wireless sensor network
approach,” IEEE Wireless Communications, 2007.

[5] L. M. S. de Souza, P. Spiess, D. Guinard, M. Koehler, S. Karnouskos,
and D. Savio, “Socrades: A web service based shop floor integration
infrastructure,” in Proc. of the Internet of Things Conference (10T 2008).
Springer, 2008.

[6] R. Dickerson, J. Lu, J. Lu, and K. Whitehouse, “Stream feeds - an
abstraction for the world wide sensor web,” in Proc. of the Internet of
Things Conference (IOT 2008), 2008.

[71 T. Luckenbach, P. Gober, S. Arbanowski, A. Kotsopoulos, and K. Kim,
“Tinyrest - a protocol for integrating sensor networks into the internet,”
in Proc. of the Workshop on Real-World Wireless Sensor Network (SICS),
Stockholm, Sweden, 2005.

[8] W. Drytkiewicz, I. Radusch, S. Arbanowski, and R. Popescu-Zeletin,
“pREST: a REST-based protocol for pervasive systems,” in Proc of the
IEEE Conference on Mobile Ad-hoc and Sensor Systems, 2004, pp. 340—
348.

[9] R. T. Fielding, “Architectural styles and the design of network-based

software architectures,” Ph.D. dissertation, University of California,

Irvine, 2000.

L. Richardson and S. Ruby, RESTful Web Services.

May 2007.

[11] E. Zeeb, A. Bobek, H. Bohn, S. Priiter, A. Pohl, H. Krumm, I. Liick,
F. Golatowski, and D. Timmermann, “WS4D: SOA-Toolkits making
embedded systems ready for Web Services,” in Proceedings of the Open
Source Software and Product Lines Workshop (OSSPL07), 2007.

[12] C.Pautasso, O. Zimmermann, and F. Leymann, “Restful web services vs.
”big”” web services: making the right architectural decision,” in Proc. of
the International Conference on World Wide Web (WWW 2008). ACM,
2008, p. 805814.

[10] O’Reilly Media,

