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ABSTRACT

While deep learning has shown tremendous success in a wide range of domains, it
remains a grand challenge to incorporate physical principles in a systematic man-
ner to the design, training and inference of such models. In this paper, we aim to
predict turbulent flow by learning its highly nonlinear dynamics from spatiotem-
poral velocity fields of large-scale fluid flow simulations of relevance to turbulence
modeling and climate modeling. We adopt a hybrid approach by marrying two
well-established turbulent flow simulation techniques with deep learning. Specif-
ically, we introduce trainable spectral filters in a coupled model of Reynolds-
averaged Navier-Stokes (RANS) and Large Eddy Simulation (LES), followed by
a specialized U-net for prediction. Our approach, which we call Turbulent-Flow
Net (TF-Net), is grounded in a principled physics model, yet offers the flexibility
of learned representations. We compare our model, TF-Net, with state-of-the-
art baselines and observe significant reductions in error for predictions 60 frames
ahead. Most importantly, our method predicts physical fields that obey desirable
physical characteristics, such as conservation of mass, whilst faithfully emulat-
ing the turbulent kinetic energy field and spectrum, which are critical for accurate
prediction of turbulent flows.

1 INTRODUCTION

Modeling the dynamics of physical processes that evolve over space and time and vary over a wide
range of spatial and temporal scales is a fundamental task in science. Computational fluid dynam-
ics (CFD) is at the heart of climate modeling and has direct implications for understanding and
predicting climate change. However, the current paradigm in atmospheric CFD is purely physics-
driven: known physical laws encoded in systems of coupled partial differential equations (PDEs)
are solved over space and time via numerical differentiation and integration schemes. These meth-
ods are tremendously computationally-intensive, requiring significant computational resources and
expertise. Recently, data-driven methods, including deep learning, have demonstrated great success
in the automation, acceleration, and streamlining of highly compute-intensive workflows for science
(Reichstein et al., 2019). But existing deep learning methods are mainly statistical with little or no
underlying physical knowledge incorporated, and are yet to be proven to be successful in capturing
and predicting accurately the properties of complex physical systems.

Developing deep learning methods that can incorporate physical laws in a systematic manner is a key
element in advancing AI for physical sciences (Steven Brunton, 2019). Towards this goal, we inves-
tigate the challenging problem of predicting a turbulent flow, governed by the high-dimensional non-
linear Navier-Stokes equations. Recently, several studies have attempted incorporating knowledge
about a physical system into deep learning. For example, Emmanuel de Bezenac (2018) proposed
a warping scheme to predict the sea surface temperature, but only considered the linear advection-
diffusion equation. Xie et al. (2018) and Jonathan Tompson (2017) developed deep learning models
in the context of fluid flow animation, where physical consistency is less critical. Wu et al. (2019)
and Tom Beucler (2019) introduced statistical and physical constraints in the loss function to regu-
larize the predictions of the model. However, their studies only focused on spatial modeling without
temporal dynamics, besides regularization being ad-hoc and difficult to tune the hyper-parameters.

In this work, we propose a hybrid learning paradigm that unifies turbulence modeling and deep repre-
sentation learning. We develop a novel deep learning model, Turbulent-Flow Net (TF-Net), that en-
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hances the capability of predicting complex turbulent flows with deep neural networks. TF-Net ap-
plies scale separation to model different ranges of scales of the turbulent flow individually. Building
upon a promising and popular CFD technique, the RANS-LES coupling approach (E. Labourasse,
2004), our model replaces a priori spectral filters with trainable convolutional layers. We decom-
pose the turbulent flow into three components, each of which is approximated by a specialized U-net
to preserve invariance properties. To the best of our knowledge, this is the first hybrid framework
of its kind for predicting turbulent flow. We compare our method with state-of-the-art baselines for
forecasting velocity fields up to 60 steps ahead given the history. We observe that TF-Net is capa-
ble of generating accurate and physically meaningful predictions that preserve critical quantities of
relevance. In summary, our contributions are as follows:

1. We study the challenging task of turbulent flow prediction as a test bed to investigate incor-
porating physics knowledge into deep learning in a principled fashion.

2. We propose a novel hybrid learning framework, TF-Net, that unifies a popular CFD tech-
nique, RANS-LES coupling, with custom-designed deep neural networks.

3. When evaluated on turbulence simulations, TF-Net achieves 11.1% reduction in predic-
tion RMSE, 30.1% improvement in the energy spectrum, 21% turbulence kinetic energy
RMSEs and 64.2% reduction of flow divergence in difference from the target, compared to
the best baseline.

2 BACKGROUND IN TURBULENCE MODELING

Most fluid flows in nature are turbulent, but theoretical understanding of solutions to the governing
equations, the Navier–Stokes equations, is incomplete. Turbulent fluctuations occur over a wide
range of length and time scales with high correlations between these scales. Turbulent flows are
characterized by chaotic motions and intermittency, which are difficult to predict.

Figure 1: A snapshot of the Rayleigh-Bénard convection flow, the velocity fields along x direction
(top) and y direction (bottom) (Chirila, 2018). The spatial resolution is 1792 x 256 pixels.

The physical system we investigate is two-dimensional Rayleigh-Bénard convection (RBC), a model
for turbulent convection, with a horizontal layer of fluid heated from below so that the lower surface
is at a higher temperature than the upper surface. Turbulent convection is a major feature of the
dynamics of the oceans, the atmosphere, as well as engineering and industrial processes, which has
motivated numerous experimental and theoretical studies for many years. The RBC system serves
as an idealized model for turbulent convection that exhibits the full range of dynamics of turbulent
convection for sufficiently large temperature gradients.

Let w be the vector velocity field of the flow with two components (u, v), velocities along x and y
directions, the governing equations for this physical system are:

∇ ·w = 0 Continuity Equation

∂w

∂t
+ (w · ∇)w = −

1

ρ0
∇p+ ν∇2w + f Momentum Equation

∂T

∂t
+ (w · ∇)T = κ∇2T Temperature Equation (1)

where p and T are pressure and temperature respectively, κ is the coefficient of heat conductivity,
ρ0 is density at temperature at the beginning, α is the coefficient of thermal expansion, ν is the
kinematic viscosity, f the body force that is due to gravity. In this work, we use a particular approach
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to modeling RBC that uses a Boussinesq approximation, resulting in a divergence-free flow, so ∇·w
should be zero everywhere (Chirila, 2018). Figure 1 shows a snapshot in our RBC flow dataset.

CFD allows simulating complex turbulent flows, however, the wide range of scales makes it very
challenging to accurately resolve all the scales. More precisely, fully resolving a complex turbulent
flow numerically, known as direct numerical simulations – DNS, requires a very fine discretiza-
tion of space-time, which makes the computation prohibitive even with advanced high-performance
computing. Hence most CFD methods, like Reynolds-Averaged Navier-Stokes and Large Eddy
Simulations (McDonough, 2007a; Pierre Sagaut, 2006; McDonough, 2007b), resort to resolving the
large scales whilst modeling the small scales, using various averaging techniques and/or low-pass
filtering of the governing equations (Eqn. 1). However, the unresolved processes and their interac-
tions with the resolved scales are extremely challenging to model. CFD remains computationally
expensive despite decades of advancements in turbulence modeling and HPC.

Deep learning (DL) is poised to accelerate and improve turbulent flow simulations because well-
trained DL models can generate realistic instantaneous flow fields with physically accurate spa-
tiotemporal coherence, without solving the complex nonlinear coupled PDEs that govern the system
(Tompson et al., 2017; Maziar Raissi, 2019; 2018). However, DL models are hard to train and are
often used as "black boxes" in physical science as they lack knowledge of the underlying physics
and are very hard to interpret. While these DL models may achieve low prediction errors they often
lack scientific consistency and do not respect the physics of the systems they model. Therefore, it is
critical to infusing known physics and design efficient turbulent flow prediction DL models that are
not only accurate but also physically meaningful.

3 TURBULENT-FLOW NET

Inspired by techniques used in CFD to separate scales of this multi-scale system, the global idea
behind TF-Net is to decompose the flow into three components of different scales with trainable
modules for simulating each component. First, we provide a brief introduction of the CFD tech-
niques which are built on this basic idea.

Figure 2: Turbulent Flow Net: three identical encoders to learn the transformations of the three
components of different scales, and one shared decoder that learns the interactions among these three
components to generate the predicted 2D velocity field at the next instant. Each encoder-decoder
pair can be viewed as a U-net and the aggregation is weighted summation.

Reynolds-averaged Navier–Stokes (RANS) decomposes the turbulent flow w into two separable
time scales: a time-averaged mean flow w̄ and a fluctuating quantity w′. The resulting RANS
equations contain a closure term, the Reynolds stresses, that require modeling, the classic closure
problem of turbulence modeling. While this approach is a good first approximation to solving a
turbulent flow, RANS does not account for broadband unsteadiness and intermittency, characteristic
of most turbulent flows. Further, closure models for the unresolved scales are often inadequate,
making RANS solutions to be less accurate. T here is the moving average window size.

w(x, t) = w̄(x, t) +w′(x, t), where w̄(x, t) =
1

T

∫ t

t−T

G(s)w(x, s)ds (2)
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Large Eddy Simulation (LES) is an alternative approach based on low-pass filtering of the
Navier-Stokes equations that solves a part of the multi-scale turbulent flow corresponding to the
most energetic scales. In LES, the large scales are a spatially filtered variable w̃, which is usu-
ally expressed as a convolution product by the filter kernel G. The kernel G is often taken to be a
Gaussian kernel. Ωi is a subdomain of the solution and depends on the filter size (Sagaut, 2001).

w(x, t) = w̃(x, t) +w′(x, t), where w̃(x, t) =

∫

Ωi

G(x|ξ)w(ξ, t)dξ (3)

The key difference between RANS and LES is that RANS is based on time averaging, leading to
simpler steady equations, whereas LES is based on a spatial filtering process which is more accurate
but also computationally more expensive.

Figure 3: Three level spectral
decomposition of velocity w,
E(k) is the energy spectrum
and k is wavenumber.

Hybrid RANS-LES Coupling combines both RANS and LES
approaches in order to be able to take advantage of both methods
(E. Labourasse, 2004; Chaoua, 2017). It decomposes the flow vari-
ables into three parts: mean flow, resolved fluctuations and unre-
solved (subgrid) fluctuations. RANS-LES coupling applies the spa-
tial filtering operator G1 and the temporal average operator G2 se-
quentially. We can define w̄ in discrete form with using w∗ as an
intermediate term,

w∗(x, t) = G1(w) =
∑

ξ

G1(x|ξ)w(ξ, t) (4)

w̄(x, t) = G2(w
∗) =

1

T

t
∑

s=t−T

G2(s)w
∗(x, s) (5)

then w̃ can be defined as the difference between w∗ and w̄:

w̃ = w∗ − w̄, w′ = w −w∗ (6)

Finally we can have the three-level decomposition of the velocity field.

w = w̄ + w̃ +w
′

(7)

Figure 3 shows this three-level decomposition in wavenumber space (E. Labourasse, 2004). k is the
wavenumber, the spatial frequency in the Fourier domain. E(k) is the energy spectrum describing
how much kinetic energy is contained in eddies with wavenumber k. Small k corresponds to large
eddies that contain most of the energy. The slope of the spectrum is negative and indicates the
transfer of energy from large scales of motion to the small scales. This hybrid approach combines the
ease and computational efficiency of RANS with the resolving power of LES to provide a technique
that is less expensive and more tractable than pure LES.

Turbulent Flow Net We describe TF-Net, a hybrid deep learning framework based on the multi-
level spectral decomposition of hybrid RANS-LES Coupling method. We decompose the velocity
field into three components of different scales using two scale separation operators, the spatial filter
G1 and the temporal filter G2. In traditional CFD, these filters are usually pre-defined, such as the
Gaussian spatial filter. In our model, both filters are trainable neural networks. The spatial filtering
process is realized by applying one convolutional layer with a single 5×5 filter to each input image.
The temporal filter is implemented as a convolutional layer with a single 1×1 filter applied to every
T images. The motivation for this design is to explicitly guide the DL model to learn the non-linear
dynamics of both large and small eddies as relevant to the task of spatio-temporal prediction.

We design three identical encoders to encode the three scale components separately. We use a shared
decoder to learn the interactions among these three components and generate the final prediction.
Each encoder and the decoder can be viewed as a U-net without duplicate layers and middle layer in
the original architecture (Olaf Ronneberger, 2015). The encoder consists of four convolutional layers
with double the number of feature channels of the previous layer and stride 2 for down-sampling.
The decoder consists of one output layer and four deconvolutional layers with summation of the
corresponding feature channels from the three encoders and the output of the previous layer as input.
Figure 2 shows the overall architecture of our hybrid model TF-Net. To generate multiple time-
step forecasts, we perform one-step ahead prediction and roll out autoregressively. Furthermore,
since the turbulent flow under investigation has zero divergence (∇ ·w should be zero everywhere),
we include ||∇ ·w||2 as a regularizer to constrain the predictions, leading to Con TF-Net.
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4 RELATED WORK

Turbulence Modeling Recently, machine learning models, especially DL models have been used
to accelerate and improve the simulation of turbulent flows. For example, Ling et al. (2016); Fang
et al. (2018) studied tensor invariant neural networks to learn the Reynolds stress tensor while pre-
serving Galilean invariance, but Galilean invariance only applies to flows without external forces.
In our case, RBC flow has gravity as an external force. Most recently, Kim & Lee (2019) studied
unsupervised generative modeling of turbulent flows but the model is not able to make real time
future predictions given the historic data. Raissi et al. (2017) applied a Galerkin finite element
method with deep neural networks to solve PDEs automatically, what they call “Physics-informed
deep learning”. Though these methods have shown the ability of deep learning in solving PDEs di-
rectly and deriving generalizable solutions, the key limitation of these approaches is that they require
explicitly inputs of boundary conditions during inference, which are generally not available in real-
time. Arvind Mohan (2019) proposed a purely data-driven DL model for turbulence, compressed
convolutional LSTM, but the model lacks physical constraints and interpretability. Wu et al. (2019)
and Tom Beucler (2019) introduced statistical and physical constraints in the loss function to regu-
larize the predictions of the model. However, their studies only focused on spatial modeling without
temporal dynamics, besides regularization being ad-hoc and difficult to tune the hyper-parameters.

Fluid Animation In parallel, the computer graphics community has also investigated using deep
learning to speed up numerical simulations for generating realistic animations of fluids such as water
and smoke. For example, Tompson et al. (2017) used an incompressible Euler’s equation with a cus-
tomized Convolutional Neural Network (CNN) to predict velocity update within a finite difference
method solver. Chu & Thuerey (2017) propose double CNN networks to synthesize high-resolution
flow simulation based on reusable space-time regions. Xie et al. (2018) and Jonathan Tompson
(2017) developed deep learning models in the context of fluid flow animation, where physical con-
sistency is less critical. Steffen Wiewel (2019) proposed a method for the data-driven inference of
temporal evolutions of physical functions with deep learning. However, fluid animation emphases
on the realism of the simulation rather than the physical consistency of the predictions or physics
metrics and diagnostics of relevance to scientists.

Video Prediction Our work is also related to future video prediction. Conditioning on the ob-
served frames, video prediction models are trained to predict future frames, e.g., Mathieu et al.
(2015); Finn et al. (2016); Xue et al. (2016); Villegas et al. (2017); Chelsea Finn (2016). Many of
these models are trained on natural videos with complex noisy data from unknown physical pro-
cesses. Therefore, it is difficult to explicitly incorporate physical principles into the model. The
turbulent flow problem studied in this work is substantially different from natural video prediction
because it does not attempt to predict object or camera motions. Instead, our approach aims to em-
ulate numerical simulations given noiseless observations from known governing equations. Hence,
some of these techniques are perhaps under-suited for our application.

5 EXPERIMENTS

5.1 DATASET

The dataset for our experiments comes from two dimensional turbulent flow simulated using the
Lattice Boltzmann Method (Chirila, 2018). We use only the velocity vector fields, where the spatial
resolution of each image is 1792 x 256. Each image has two channels, one is the turbulent flow
velocity along x direction and the other one is the velocity along y direction. The physics parameters
relevant to this numerical simulation are: Prandtl number = 0.71, Rayleigh number = 2.5×108 and
the maximum Mach number = 0.1. We use 1500 images (snapshots in time) for our experiments.
The task is to predict the spatiotemporal velocity fields up to 60 steps ahead given 10 initial frames.

We divided each 1792 by 256 image into 7 square sub-regions of size 256 x 256, then downsample
them into 64 x 64 pixels sized images. We use a sliding window approach to generate 9,870 samples
of sequences of velocity fields: 6,000 training samples, 1,700 validation samples and 2,170 test
samples. The DL model is trained using back-propagation through prediction errors accumulated
over multiple steps. We use a validation set for hyper-parameters tuning based on the average error
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of predictions up to six steps ahead. The hyper-parameters tuning range can be found in Table 2 in
the appendix. All results are averaged over three runs.

5.2 BASELINE

We compare our model with a series of state-of-the-art baselines for turbulent flow prediction.

• ResNet (Kaiming He, 2015): a 34-layer Residual Network by replacing the final dense layer
with a convolutional layer with two output channels.

• ConvLSTM (Xingjian Shi, 2015): a 3-layer Convolutional LSTM model used for spatiotemporal
precipitation nowcasting.

• U-Net (Olaf Ronneberger, 2015): Convolutional neural networks originally developed for image
segmentation, also used for video prediction.

• GAN: U-net trained with a discriminator like the Generative Neural Networks.

• SST (Emmanuel de Bezenac, 2018): hybrid deep learning model using warping scheme for linear
energy equation to predict sea surface temperature, which is also applicable to the linearized
momentum equation that governs the velocity fields.

• DHPM (Raissi, 2018): Deep Hidden Physics Model is to directly approximate the solution of
partial differential equations with fully connected networks using space and time as inputs. The
model is trained twice on the training set and the test set with boundary conditions.

Here ResNet, ConvLSTM, U-net and GAN are pure data-driven spatiotemporal deep learning
models for video predictions. SST and DHPM are hybrid techniques that aim to incorporate prior
physical knowledge into deep learning for fluid simulation.

5.3 EVALUATION METRICS

Even though Root Mean Square Error (RMSE) is a widely accepted metric for quantifying the dif-
ferences between model predictions and the ground truth, it is still insufficient to apply the predicted
turbulent flows with good RMSE to scientific fields. We need to check whether the predictions are
physically meaningful and preserve desired physical quantities, such as Turbulence Kinetic Energy,
Divergence and Energy Spectrum. Therefore, we include a set of additional metrics for evaluation.

Root Mean Square Error We calculate the RMSE of all predicted values from the ground truth for

each pixel,

√

∑N

i=1
(ŵi −wi)2/N .

Divergence Since we investigate incompressible turbulent flows in this work, which means the
divergence, ∇ · w, at each pixel should be zero, we use the average of absolute divergence over all
pixels at each prediction step as an additional evaluation metric.

Turbulence Kinetic Energy In fluid dynamics, turbulence kinetic energy is the mean kinetic energy
per unit mass associated with eddies in turbulent flow. Physically, the turbulence kinetic energy is

characterised by measured root mean square velocity fluctuations, ((u′)2+(v′)2)/2, where (u′)2 =
1

T

∑T

t=0
(u(t) − ū)2 and t is the time step. We calculate the turbulence kinetic energy for each

predicted sample of 60 velocity fields.

Energy Spectrum The energy spectrum of turbulence, E(k), is related to the mean turbulence

kinetic energy as
∫

∞

0
E(k)dk = ((u′)2 + (v′)2)/2. k is the wavenumber, the spatial frequency

in 2D Fourier domain. We calculate the Energy Spectrum on the Fourier transformation of the
Turbulence Kinetic Energy fields. The large eddies have low wavenumbers and the small eddies
correspond to high wavenumbers. The spectrum tells how much kinetic energy is contained in
eddies with wavenumber k.

6 RESULTS

Figure 4 shows the growth of RMSE with prediction horizon up to 60 time steps ahead. TF-Net
consistently outperforms all baselines, and constraining it with divergence free regularizer can fur-
ther improve the performance. We also found DHPM is able to overfit the training set but performs
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Figure 4: Root mean square errors of differ-
ent models’ predictions at varying forecast-
ing horizon

Figure 5: Mean absolute divergence of dif-
ferent models’ predictions at varying fore-
casting horizon

Figure 6: Turbulence kinetic energy of all models’ predictions at the leftmost square field in the
original rectangular field with respect to the target.

poorly when tested outside of the training domain. Neither Dropout nor regularization techniques
can improve its performance. Also, the warping scheme of the Emmanuel de Bezenac (2018) relies
on the simplified linear assumption, which was too limiting for our non-linear problem.

Figure 7: The Energy Spectrum of
TF-Net, U-net and ResNet on the
leftmost square sub-region.

Figure 5 shows the averages of absolute divergence over
all pixels at each prediction step. TF-Net has lower di-
vergence than other models even without additional di-
vergence free constraint for varying prediction step. It is
worth mentioning that there is a subtle trade-off between
RMSE and divergence. Even though explicitly constrain-
ing model with the divergence-free regularizer can reduce
the divergence of the model predictions, it also has the
side effect of smoothing out the small scale eddies, which
results in a larger RMSE.

Figure 6 displays the turbulence kinetic energy fields of
all models’ predictions at the leftmost square field in the
original rectangular field. Figure 7 shows the energy
spectrum of our model and two best baseline at the left-
most square sub-field. We also convert square predicted
images back to the big rectangular ones and calculate
the Energy Spectrum on the entire domain, which can be
found in Figure 10 in the appendix. While the turbulence
kinetic energy of TF-Net, U-net and ResNet appear
to be similar in Figure 6, however, from the energy spectrum in Figure 7 and Figure 10, we can
see that TF-Net predictions are in fact much closer to the target. Extra divergence free constraint
does not affect the energy spectrum of predictions. Thus, unlike other models, TF-Net is able to
generate predictions that are physically consistent with the ground truth.

Figure 8 shows the ground truth and the predicted u velocity fields from all models from time
step 0 to 60. We also provide videos of predictions by TF-Net and several best baselines in
https://www.youtube.com/watch?v=sLuVGIuEE9A and https://www.youtube.
com/watch?v=VMeYHID5LL8, respectively. We see that the predictions by our TF-Net model
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are the closest to the target based on the shape and the frequency of the motions. GAN is able to gen-
erate flows with fine-grained details but physics are not captured in a correct way, which also shows
the benefit of developing hybrid models with embedded physics knowledge. U-net is the best per-
forming data-driven video prediction baseline. N. Thuerey (2019) also found the U-net architecture
is quite effective in modeling dynamics flows.

We also performed an additional ablation study of TF-net to understand each component of TF-
net investigate whether the TF-net has actually learned the flow with different scales. The video,
https://www.youtube.com/watch?v=ysdrMUfdhe0, includes the predictions of TF-
net, and the outputs of each small U-net while the other two encoders are zeroed out. We can
see that the outputs of each small u-net are the flow with different scales. During Inference, we ap-
plied the trained TF-net to the entire input domain instead of square sub-regions. We observed that
the boundaries between square sub-regions in the previous videos have disappeared. We also did
the same experiments on an additional dataset (Rayleigh number = 105). TF-Net still consistently
outperforms the best two baselines, U-net and ResNet, based on all four evaluation metrics. The
results are shown in in Figure 12 in the appendix.

Figure 8: Ground truth and predicted u velocities by all models. From left to right, constrained
TF-Net, TF-Net and all the baselines. From top to bottom, predictions from time T +1 to T +60
(suppose T is the time step of the last input frame).

7 DISCUSSION AND FUTURE WORK

We have presented a novel hybrid deep learning model, TF-Net, that unifies representation learning
and turbulence simulation techniques. TF-Net exploits the multi-scale behavior of turbulent flows
to design trainable scale-separation operators to model different ranges of scales individually. We
provide exhaustive comparisons of TF-Net and baselines and observe significant improvement in
both the prediction error and desired physical quantifies, including divergence, turbulence kinetic
energy and energy spectrum. We argue that different evaluation metrics are necessary to evaluate
a DL model’s prediction performance for physical systems that include both accuracy and physical
consistency. A key contribution of this work is the skillful combination of state-of-the-art turbulent
flow simulation paradigms with deep learning. Future work includes extending these techniques to
very high-resolution predictions, 3D turbulent flows and incorporating additional physical variables
to improve the accuracy and faithfulness of physically-informed deep learning models.
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A APPENDIX

A.1 ADDITIONAL RESULTS

Table 1 displays the number of parameters, the best number of input frames, the best number of
accumulated errors for backpropogation and training time for one epoch on 8 v-100 GPUs for each
model. We can conclude that our model has significantly smaller number of parameters than most
baselines yet achieves the best performance. About 25 historic images are enough for deep learning
models to generate reasonable predictions, and ConvLSTM require large memory and training time,
especially when the number of historic input frames is large. Additionally, Table 2 displays the
hyper-parameters tuning range of models.

Models TF-net U_net GAN ResNet ConvLSTM SST DHPM

#params(10^6) 15.9 25.0 26.1 21.2 11.8 49.9 2.12

input length 25 25 24 26 27 23 \

#accumulated errors 4 6 5 5 4 5 \

time for one epoch(min) 0.39 0.57 0.73 1.68 45.6 0.95 4.591

Table 1: The number of parameters, the best number of input frames, the best number of accumulated
errors for backpropogation and training time for one epoch on 8 v-100 GPUs for each model.

Hyper-parameters Tuning Range

Learning
rate

Batch
Size

#Accumulated
errors for

backpropogation

#Input
frames

Moving average
window size

(TF-net)

Size of the
spatial filter

(TF-net)

#Layers
(ConvLSTM)

Hidden
Dimension

(ConvLSTM)

1e-1 ∼1e-6 16 ∼128 1 ∼10 1 ∼30 2∼10 3∼9 1 ∼5 32 ∼512

Table 2: Hyper-parameters tuning ranges

Figure 9 shows the ground truth and the predicted v velocity fields over 60 time steps. Similar to the
u velocity predictions, we observe that the predictions from TF-Net are the closest to the target.
U-net and GAN generate smooth predictions and miss the details of small scale motion. There is
still room for improvement in long-term prediction for all the models.

We converted square predicted images back to the big rectangular ones and calculated the Energy
Spectrum on the entire domain, as shown in Figure 10. we can see that TF-Net predictions are in
fact much closer to the target on small wavenumbers and more stable on large wavenumbers.

We visualized the learned filters in Figure 11. We only found two types of spatial and temporal
filters from all trained TF-Net models, with and without the divergence regularizer. The meaning
of these learned filters are yet to be explored.

We also performed the same experiments on an additional dataset (Rayleigh number =105). TF-Net
still consistently outperforms the best two baselines, U-net and ResNet, based on all four evalu-
ation metrics. The results are shown in Figure 12.

A.2 IMPLEMENTATION DETAILS

We adapt SST Emmanuel de Bezenac (2018) to model non-linear turbulent flow. SST successfully
infused a deep learning model into the solution of the linear energy equation to predict sea surface
temperature. If we make the assumption that the advection term (w ·∇)u in the momentum equation
is a linear term (c · ∇)u, where c is unknown, then we can use two separate models to predict u and
v, and the inputs of both parts are the same stacked u and v from previous time steps.

For DHPM (Raissi, 2018), we approximate both the velocity field two 6-layer neural networks with
512 neurons per hidden layer and use and a 4-layer neural networks with 512 neurons per hidden
layer to represent pressure p and an non-homogeneous term f that encapsulates the influence of
temperature and viscosity. During the training, we make sure the outputs of these neural networks
satisfy the continuity and momentum equations. It is worth mentioning that the DHPM model is
supposed to be trained twice, first on the training set then on the initial and boundary conditions of
the test set. This model can be formulated as below.

Loss = ‖w − ŵ‖+ ‖∇ · ŵ‖+
∥

∥ŵt + (ŵ · ∇)ŵ − ν∇2ŵ − f
∥

∥
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Figure 9: Ground truth and predicted v velocities by models, suppose T is the time step of the last
input image.

Figure 10: Energy Spectrums of all models’ predictions on the entire rectangular domain.

Where ŵ = NN(x, y, t), and f = NN(x, y, t, û, v̂, ûx, v̂x, ûy, v̂y, ûxx, v̂xx, ûyy, v̂yy)
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Figure 11: Learned spatial and temporal filters in TF-Net

(a) (b)

(c) (d)

Figure 12: The performances of TF-net, U-net and ResNet on an additional dataset(Ra = 10000).
(a): Root mean square errors of different models’ predictions at varying forecasting horizon, (b):
Mean absolute divergence of models’ predictions at varying forecasting horizon, (c): The Energy
Spectrums on the entire domain, (d): Turbulence kinetic energy fields of three models’ predictions.
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