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Abstract. We propose a methodology for the recovery of

lithologies from geological and geophysical modelling re-

sults and apply it to field data. Our technique relies on classi-

fication using self-organizing maps (SOMs) paired with geo-

scientific consistency checks and uncertainty analysis. In the

procedure we develop, the SOM is trained using prior ge-

ological information in the form of geological uncertainty,

the expected spatial distribution of petrophysical proper-

ties and constrained geophysical inversion results. We en-

sure local geological plausibility in the lithological model

recovered from classification by enforcing basic topologi-

cal rules through a process called “post-regularization”. This

prevents the three-dimensional recovered lithological model

from violating elementary geological principles while main-

taining geophysical consistency. Interpretation of the result-

ing lithologies is complemented by the estimation of the un-

certainty associated with the different nodes of the trained

SOM. The application case we investigate uses data and

models from the Yerrida Basin (Western Australia). Our re-

sults generally corroborate previous models of the region but

they also suggest that the structural setting in some areas

needs to be updated. In particular, our results suggest the

thinning of one of the greenstone belts in the area may be

related to a deep structure not sampled by surface geological

measurements and which was absent in previous geological

models.

1 Introduction

The idea of geoscientific integration is not new and has been

advocated since the inception of quantitative geoscientific

studies involving geophysics and during the advances of geo-

physics as a discipline (see, for instance, Wegener, 1920;

Nettleton, 1949; Towles, 1952; Jupp and Vozoff, 1975; Lines

et al., 1988; Li and Oldenburg, 2000). In the natural resource

sector, the exploitation of the fundamental complementar-

ity between geology and geophysics in modelling the same

object (the Earth) has been recognized as one of the pre-

requisites to exploration success as early as the 1940s during

the early years of the Society of Exploration Geophysicists

(Eckhardt, 1940; Green, 1948). Numerous authors have since

tackled the issue of integrating petrophysical and geological

information to model geophysical quantities (seismic veloci-

ties, mass density, etc.) through inversion, with an increasing

trend in the past 15 years or so (see, for instance, references

reviewed in Lelièvre and Farquharson 2016; Meju and Gal-

lardo 2016; Moorkamp et al., 2016; Giraud et al., 2017). In

contrast, the recovery of geological quantities from geophys-

ical inversion has seen much less effort. Recent studies have

started to rectify this by proposing the idea of lithological

differentiation of inversion results (Paasche et al., 2010; Sun

and Li, 2015; Paasche and Tronicke, 2007), which consists of

the identification of lithologies from inversion results. While

lithological differentiation is expected to hold much poten-

tial in mineral exploration, it still remains underexplored (Li

et al., 2019).
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In oil and gas exploration scenarios, seismic facies anal-

yses and classification using techniques developed for what

is commonly called machine learning (neural networks, sup-

port vector machine algorithms, etc.) have become popular

in recent years (Zhao et al., 2015; Chopra and Marfurt, 2018;

Wrona et al., 2018; Zhang et al., 2018). This was driven by

the need for quantitative interpretation methods in the geo-

sciences and by the “renaissance” phase machine learning

went through after 2006 (Goodfellow et al., 2016, chap. 5).

Once recovered, spatial facies distribution can be used for

geological interpretation and downstream decision making.

However, like all modelling results, the identification of fa-

cies or lithologies using machine learning relies upon statisti-

cal models and is affected by ambiguity and uncertainty. One

reason for this is that validation datasets are usually treated

as the ground “truth”, while they are fraught with uncertainty.

For instance, the interpretation of borehole data or outcrops

with their uncertainty can lead to significantly different mod-

els honouring geological measurements equally well (Well-

mann et al., 2010; de la Varga et al., 2019; Pakyuz-Charrier

et al., 2018a, b, c).

Lithologies (or facies) can be characterized by a broad

range of rock properties that are the result of geological

processes, such as weathering, compaction, metamorphism

and deformation. These physical processes are usually non-

linear, especially when in combination, and produce complex

representations of different lithotypes which are difficult to

discriminate from geophysical data. In this context, one pos-

sible solution is to use neural networks for lithological classi-

fication, as they are “universal approximators” (van der Baan

and Jutten, 2000). As a consequence, however, lithological

classification is affected by uncertainty from the data used to

train and validate the algorithm. Such uncertainty is difficult

to quantify and is rarely estimated or even considered.

To date, whether it be in oil and gas or mining explo-

ration, uncertainty in recovered lithologies is a research av-

enue, which, to the best of our knowledge, only a few au-

thors have addressed. Sun and Li (2019) assess uncertainty

by varying the number of clusters in their lithological differ-

entiation scheme, and Bauer et al. (2003) classify lithologies

and estimate the resolution of their results using synthetic

data. As a result of the lack of comprehensive uncertainty

analyses, practitioners often lack quantitative, robust uncer-

tainty modelling necessary to inform interpretation or risk

evaluation (Jessell et al., 2018). In addition, apart from Zhao

et al. (2017), who account for seismic data-driven stratigra-

phy in their seismic facies classification, established work-

flows relying on neural networks to identify facies or litholo-

gies in three dimensions give little to no consideration of ge-

ological information and rules for their classification.

To complement existing methodologies, we propose a so-

lution that partially addresses the lack of consideration given

to geological information during classification. We introduce

a general post-processing (i.e. post-inversion) workflow for

the recovery of lithologies from geoscientific modelling re-

sults and the estimation of the related uncertainty. For this

purpose, we complement existing classification techniques

by ensuring the geological and geophysical consistency of,

and estimating the confidence in, the recovered lithologies.

Using an artificial neural network trained in a fully controlled

environment (all variables in the model used for training be-

ing perfectly known) with attributes characterizing the in-

version results, we perform lithological classification apply-

ing plausibility filters relying on geological principles, which

we refer to as “geological post-regularization”. The applica-

tion of geological post-regularization is to reduce the non-

geological character of models obtained through classifica-

tion. After classification, we calculate the frequentist prob-

ability of the different lithologies (i.e. apparition frequency

relative to all lithologies) associated with each unit of the

self-organizing map (SOM) and report it in each model cell

discretizing the studied area for interpretation.

The methodology we propose can serve two main objec-

tives. Our first objective is to introduce a methodology that is

made efficient by leveraging existing geoscientific inputs and

prior information, and cost-effective by imposing require-

ments that do not exceed the computational power available

on a personal computer. Secondly, our aim is to comple-

ment inversion workflows by providing a general, automated

method to derive a non-deterministic lithological interpreta-

tion of inversion results. Thirdly, we propose a real-world

application based on a case study in the Yerrida Basin (West-

ern Australia), where we build upon recent work by Giraud

et al. (2019a) and Lindsay et al. (2018), who performed the

geophysical inversion and geological modelling of data col-

lected in the area, respectively.

In this work, lithologies are identified though a classifica-

tion technique relying on a simple artificial neural network.

We chose SOMs (Kohonen, 1982a, b), a well-established

algorithm that has been successfully applied to seismic fa-

cies classification and geological mapping purposes (Chang

et al., 2002; Klose, 2006; Köhler et al., 2010; Bauer et al.,

2012; Carneiro et al., 2012; Du et al., 2015; Roden et al.,

2015). We first train and test the SOMs using data extracted

from a semi-synthetic dataset (i.e. a geophysical inversion

feasibility study based on geological and petrophysical field

data) assumed to represent the geophysical characteristics of

the studied area. We utilize this controlled environment to

estimate the accuracy our predictions for each class identi-

fied in the studied volume without the errors associated with

well positioning or lithology interpretation errors. We then

use the trained network to perform classification using field

data only. We obtain, for each model cell, a suite of frequen-

tist probabilities for each lithology observed in the area. In

both cases, geological post-regularization is applied before

the calculation of uncertainty metrics to ensure the geologi-

cal consistency of the results.

The rest of this paper develops as follows. Section 2 pro-

vides the theoretical background necessary to reproduce the

work presented. It first briefly describes the geophysical and
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geological modelling schemes (Sect. 2.1) used to obtain the

models that are used as input for classification using SOM

(Sect. 2.2). Post-regularization as applied to such classified

lithologies (Sect. 2.3) and the related uncertainty analysis in

terms of prediction accuracy and geophysical consistency is

then detailed (Sect. 2.4). Following this, Sect. 3 presents an

application case using data from the Yerrida Basin (Western

Australia), which was investigated using gravity data, petro-

physical and geological information. Geological and geo-

physical modelling results are first summarized and the rules

defining the post-regularization operator in the area are intro-

duced (Sect. 3.1). The classification of results from geologi-

cal and geological modelling and post-regularization is then

presented alongside the related uncertainty analysis, support-

ing a potential re-interpretation of the geological model of

the area (Sect. 3.2). The discussion and conclusion sections

follow and complete this contribution.

2 Methodology for geoscientific modelling and

classification

In this section, we first introduce essential information about

the geophysical and geological modelling used as a pre-

requisite to this study. We then introduce the utilization of

SOM and the tools we developed in sufficient detail to allow

the reproducibility of the procedure.

2.1 Geophysical and geological modelling

Inverse geophysical modelling was performed using the

least-square inversion TOMOFAST-X platform. This inver-

sion platform enables the use of a series of constraints as de-

tailed in Martin et al. (2018), Giraud et al. (2019a, b). Con-

straints are enforced through a minimum-structure gradient

regularization approach where weights vary locally accord-

ingly with geological uncertainty (Giraud et al., 2019a). The

cost function to minimize is given as

θ (d,m) = ‖Wd (d − g (m))‖2
2 + αm

∥

∥Wm

(

m − mp

)∥

∥

2

2

+ αs‖Ws∇m‖2
2, (1)

where d represents observed data and m is the model; g is the

forward operator calculating the predicted data m produces;

mp is the prior model. In Eq. (1), subscripts d , m and s refer

to data, model and smoothness, respectively. In this contribu-

tion, Wd is a diagonal matrix where each element is equal to

the inverse of the sum of squares of the geophysical measure-

ments; Wm and Ws are diagonal covariance matrices; here,

Wm is the identity matrix. The scalars αm and αs are weights

controlling the relative importance of the different terms in

the equation; ∇ is the spatial gradient operator. The last term

of the Eq. (1), the smoothness term, constrains the structural

features of the inverted model. The values in diagonal matrix

Ws are determined from prior information. In the presented

work, Ws is obtained from geological modelling results and

is a proxy for geological uncertainty

The matrix Ws is calculated following Giraud et

al. (2019a), who use the probabilistic geological modelling

approach described in Pakyuz-Charrier et al. (2018b, c,

2019). In the case of gravity inversion as presented here,

the complete Bouguer anomaly of density contrast model m

is calculated as the product of the Jacobian matrix G with

model m. Therefore, we have g (m) = Gm.

Geological uncertainty is estimated from probabilistic ge-

ological modelling. During this process, an ensemble of ge-

ological models is generated using the Monte Carlo uncer-

tainty estimator (MCUE) of Pakyuz-Charrier et al. (2018a,

b, c, 2019). MCUE relies on the perturbation of orientation

measurements (interfaces and foliations) defining structures

of a reference geological model accordingly with their uncer-

tainty. From this series of models, geological uncertainty can

be estimated (Wellmann and Regenauer-Lieb, 2012) through

calculation of Shannon’s entropy (Shannon, 1948) for the

simulated geological models. Shannon’s entropy, which can

be used as a proxy for geological uncertainty, indicates how

well geological information constrains the model locally. It

can be used to constrain inversion in a structural sense when

integrated in Ws as per Eq. (1) (Giraud et al., 2019a).

More detailed information about the usage of MCUE re-

sults in geophysical inversion can be found in Giraud et

al. (2017, 2018a, 2019a, b).

2.2 Classification using SOM

The SOM artificial neural network relies on competitive,

non-supervised learning. The relative simplicity and the effi-

ciency of the SOM algorithm has made it a popular tool for

classification, data imputation, visualization and dimension-

ality reduction (Vesanto and Alhoniemi, 2000; Kalteh et al.,

2008; Miljkovic, 2017; Klose, 2006; Kohonen, 1998, 2013;

Roden et al., 2015; Martin and Obermayer, 2009). In essence,

it consists in the projection of the SOM’s latent space onto a

manifold of superior dimension (i.e. our dataset). This map,

which can be 2-D or 3-D, is made of a predefined number

of interconnected neurons (also referred to as “nodes” or

“units”) that have a fixed network configuration. Projection

occurs during the training phase, where the locations of the

neurons in the manifold are iteratively adjusted so approxi-

mation is optimal.

In this study, we follow common practice by training two-

dimensional (2-D) maps using a hexagonal lattice topology

and applying a Gaussian-shaped neighbourhood function.

We chose to use a 2-D map for the sake of simplicity after

our testing revealed that other configurations did not improve

results significantly. The hexagonal lattice topology seemed

to provide better results than square lattice topology using

the dataset we present here.

Ideally, the SOM should be trained in a controlled environ-

ment where all the variables used are perfectly known, which
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motivates the utilization of synthetic geophysical data. We

calculate such data from a geological structural framework

derived from real-world field geological and petrophysical

field measurement data in the same fashion as for a geophys-

ical feasibility study. The training and tests datasets are com-

prised of the following variables:

1. starting model for inversion mstart;

2. inverted model minv;

3. geological uncertainty Ws;

4. spatial gradient in the inverted model ‖∇minv‖2; and

5. most likely lithology obtained from geological mod-

elling (training lithological model).

The starting model is obtained from prior information.

Here, it is the expected petrophysical property model from

geological modelling. Each datum from the training and

tests datasets is a vector x ǫ Rnv , with a number of variables

nv = 5, where x(5) is the lithology assigned to this unit. This

choice of training variables was motivated by the necessity to

account for the available information in terms of geological

modelling and measurements, uncertainty and structural set-

ting. The starting model for inversion encapsulates the pre-

inversion state of knowledge. The inverted model comprises

the update of this model using information extracted from

geophysical measurements and translated into a 3-D model.

The lithological model refers directly to the interpreted geo-

logical observations of the area. The spatial gradients of the

inverted models provide structural information about the lo-

cation of the geological units that can be recovered by inter-

pretation from the inverted density contrast model.

During training, we examine SOM quality using quantiza-

tion error Q and lithology prediction accuracy. Quantization

error “measures the average distance between each data vec-

tor and its best matching unit [BMU]” (Uriarte and Martín,

2005), thereby indicating how well the different BMUs ap-

proximate the dataset. It can be interpreted as analogous to a

misfit between calculated and observed data. The mean quan-

tization error Q of the SOM is expressed as follows for n data

vectors xi :

Q(x,BMU) =
1

n

∑n

i=1
‖BMUi − xi‖2

2, (2)

where BMUi is the BMU of xi . In the application of SOM

to field data, the trained map is used for the classification

of inversion results, where inputs 1 through 4 listed above

are obtained from previous modelling and lithologies are the

quantity sought for. In our case, the utilization of SOM for

partitioning the input models allows the recovery of lithol-

ogy, which is a geological quantity reflective of all input data.

It is also useful in that, as we will see later, the consistency

of the recovered lithological model can be analysed from a

geophysical point of view.

In the approach we follow, the optimum number of neu-

rons (or units) is determined using the elbow curve of the

mean quantization error Q (Eq. 2) of the trained SOM. Note

that we apply the same principle as the well-known L-curve

principle (Hansen and O’Leary, 1993; Hansen and Johnston,

2001; Santos and Bassrei, 2007) for the determination of op-

timum weights in least-square geophysical inversion. Here,

we train the SOM using functions from the SOM Matlab

toolbox implemented by Vatanen et al. (2015).

2.3 Geological post-regularization

This subsection introduces the post-regularization scheme

used in this work and details its implementation and usage

in the workflow introduced here.

2.3.1 Motivations

Geological rules have the potential to provide an important

constraint on the classification of lithologies recovered from

inversion. Such rules, like adjacency (Egenhofer and Her-

ring, 1990), define which rock bodies can be in contact with

each other and which cannot. These rules are typically ex-

pressed in geological terms as stratigraphy, where the relative

age and event classification of geological units are stated. For

example, a sedimentary depositional event of five separate

units may define a simple subhorizontal layer cake config-

uration, where the oldest unit is never adjacent (or in con-

tact) with the youngest unit. A magmatic event that follows

may result in a vertical dyke that intrudes all sedimentary lay-

ers adjacent to all other rock units. Using geological rules as

a constraint relies on finding those that are restrictive (such

as the youngest unit never being in contact with the oldest)

rather than permissive (such as the intruding dyke). Thiele

et al. (2016), Pellerin et al. (2017) and Anquez et al. (2019)

show how these can constrain parametric geological mod-

elling. It is therefore important to honour geological rules if

known and include them in classification schemes such as

those to ensure that geological plausibility is not compro-

mised in pursuit of an otherwise petrophysically and geo-

physically consistent model.

The process of post-regularization, which consists in the

application of spatial–contextual filters to the classification

results to eliminate geologically unrealistic features, has

been shown to increase prediction accuracy in surface (2-D)

geological mapping (Tarabalka et al., 2009; Stavrakoudis et

al., 2014; Cracknell and Reading, 2015).

2.3.2 Implementation

The post-regularization scheme we develop for the recov-

ery of lithologies in 3-D relies on two hypotheses. Firstly,

we assume that the presence of isolated lithologies contra-

dicts the geological principle of continuity. Although such

post-regularization has been used mostly in 2-D or shal-

low 3-D, there is no theoretical obstacle to the extension of

Solid Earth, 11, 419–436, 2020 www.solid-earth.net/11/419/2020/
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Figure 1. Summary of topological filtering used during post-regularization.

this methodology to the purely 3-D classification case we

present here. Secondly, we introduce the utilization of adja-

cency relationships between the different lithologies in post-

regularization to ensure that base topological rules are re-

spected across the entirety of the three-dimensional volume.

This is particularly important for structural geological inter-

pretation (Freeman et al., 2010; Godefroy et al., 2019). Here,

we extend existing post-regularization approaches (i.e. Tara-

balka et al., 2009; Stavrakoudis et al., 2014; Cracknell and

Reading, 2015) by integrating geological information in the

classification analysis in the form of topological relationships

(see Egenhofer and Herring, 1990; Zlatanova, 2000; Thiele et

al., 2016, for the different topologies) defined by geological

principles.

The general formulation of post-regularization is as fol-

lows, for a given model cell:

BMU = BMUk, wherek

= argmin(‖uk − BMU‖ |conditions) , (3)

where arg min returns the argument k satisfying the condi-

tions it precedes. Here, we set

conditions =
{

∃c U |c = BMUk(5) ∩ 1T Mk · Mf 1

= 0nl,nl
∩ stratigraphy

}

, (4)

where 1 is nl × 1 column vector of ones, and 0nl,nl
is the

nl × nl matrix of zeros; Mf and Mk are adjacency matrices,

and Mk · Mf is the Hadamard product of Mk and Mf , such

that
(

Mk · Mf
)

ij
=

(

Mk
)

ij

(

Mf
)

ij
, and 0nl,nl

is the zero ma-

trix of dimension nl×nl; Mf encapsulates geological knowl-

edge and principles about contacts between lithologies; Mk

contains the adjacency relationships between the considered

cell and its neighbourhood U . The derivation of Mf and Mk

is detailed below.

The first part of the condition in Eq. (4) is enforced us-

ing morphological closing where isolated lithologies are re-

placed by the most prevalent one in their neighbourhood (see

Benavent et al., 2012; Ackora-Prah et al., 2015). In such

cases, the BMU is updated as follows. Isolated cells (in terms

of their lithology) are identified through examination of the

26-cell 3-D cubic Moore neighbourhood U of every model

cell. A cell is considered isolated if, and only if, at least 25

cells of U have a lithology that differs from it. Once such a

cell is identified, its BMU is updated using the closest neu-

ron, ensuring continuity between adjacent cells in the neigh-

bourhood U , where the lithology to be assigned is deter-

mined by a majority vote in U subject to adjacency condi-

tions. These conditions are determined by geological knowl-

edge (as explained below). This process is repeated for all lo-

cations until the lithological model stops changing. The gen-

eral principle of post-regularization is illustrated in Fig. 1.

We point out that in contrast to Tarabalka et al. (2009)

and Stavrakoudis et al. (2014), who used the first and sec-

ond Chamfer neighbourhoods in 2-D around the considered

model cell, we do not follow the same approach in 3-D. Our

implementation of the extension of their approach to 3-D

showed that, in our application case study, the adjustments

of the recovered lithological model it imposes are detrimen-

tal to the consistency of the classification with geophysical

measurements. That is, the perturbation of the corresponding

geophysical response of the model it generates exceeds noise

level and compromises the geophysical validity of the recov-

ered model (see geophysical validation subsection below for

more details). The same remark applies to the utilization of a

mode filter with a 3 × 3 × 3 kernel.

The conditions relating to adjacency relationships forces

the model to honour adjacency relationships extracted from

surface geology (Burns, 1988; Thiele et al., 2016) in the re-

covered lithological model.

We determine lithological topology by identifying the con-

tacts between adjacent model cells and represent the topo-

www.solid-earth.net/11/419/2020/ Solid Earth, 11, 419–436, 2020
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Figure 2. Schematic summary of proposed methodology.

logical signature of lithological models using the adjacency

representation of Godsil and Royle (2001). Let the adjacency

matrix M of a given cell be defined as

Mi>j,j = nij ,Mi≤j,j = 0, (5)

where nij is the number of contacts between lithologies i

and j . Similarly, geological laws and knowledge allow the

derivation of a matrix Mf defined as follows:











M
f

i>j,j = 1 if contact between i and

j contradicts geology.

M
f

i>j,j = 0 otherwise.

(6)

From there, it is straightforward to identify occurrences

of forbidden contacts by calculating Mk · Mf . Therefore,

1TMk · Mf 1 = 0 (Eq. 4) indicates that no contact violating

the condition imposed by Mf is observed. The last condi-

tion in Eq. (4) can be used to prevent the local stratigraphy

(in the Moore neighbourhood U of the considered cell) from

violating geological rules such as “lithology B must be in

conformable sequence between lithologies A and C”.

After identification of configurations forbidden by the con-

ditions set in Eq. (4), its BMU is updated using the closest

neuron honouring the set of conditions (Fig. 2, box 4a).

The next stage of the methodology we introduce is the

calculation of the apportionment of each neuron in terms

of the lithologies of the testing data vectors (from the syn-

thetic survey) they predict (Fig. 2, box 5a). For instance, in a

two-lithology scenario, a given node may be found to predict

lithology A using the validation dataset correctly 80 % of the

time (80 % accuracy) and lithology B correctly 20 % of the

time (20 % accuracy). This process is described below.

The methodology is summarized in Fig. 2.

2.4 Uncertainty analysis

2.4.1 Prediction accuracy of the recovered lithologies

The prediction accuracy τi of lithology iǫ[1, . . .,nl] (with nl

the total number of lithologies) is the ratio of correct predic-

tions to the total number of predictions. It is obtained from

the “matching matrix” of the recovered lithologies Mc. We

remind that the “matching matrix” (or “confusion matrix” in

supervised learning) is a matrical representation of the num-

ber of occurrences of true/false positives/negatives.

We use the prediction accuracy τi as a metric measuring

the capability of the node i of the trained SOM to recover

lithologies. Let τi be expressed as

τi =
Mc

ii

Mc
ii +

∑nl

j 6= i

j = 1

Mc
ij

, (7)

which is a particular case of the overall accuracy τ :

τ =
∑nl

i=1M
c
ii

∑nl

i=1

∑nl

j=1M
c
ij

. (8)

From Eq. (7), it appears that τi is equivalent to the fre-

quentist probability of the ith lithology over the entire SOM.

When considering a specific node j , it becomes the relative

frequentist probability of the lithology i for cells classified as

having the j th node as their BMU, noted τij .

2.4.2 Geophysical consistency

The consistency of the classification performed using SOM

after application of post-regularization with field geophysi-

cal measurements might be altered by both the classification

Solid Earth, 11, 419–436, 2020 www.solid-earth.net/11/419/2020/
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Figure 3. (a) Geological map of the area and (b) complete Bouguer anomaly (reproduced from Giraud et al., 2019a). The dashed red line

outlines the modelled area. Capital letters “A”, “B” and “C” symbolize the possible outlines for the greenstone belts in the area.

itself and by post-regularization. It is therefore necessary to

ensure that the approximation of the dataset by values from

the units of SOM is consistent with geophysical measure-

ments. To this end, we verify that the geophysical response of

the density contrast model mSOM corresponding to the BMUs

of each cell in the studied area fits the field measurement

d within a certain tolerance assumed to approximate noise

level. Consequently, we ensure that the difference between

minv and mSOM, 1m = minv − mSOM, satisfies the following

condition:

‖Wd ((d − g (minv)) − (d − g (mSOM)))‖2
2

= ‖WdG1m‖2
2 ≤ tol, (9)

where tol is the threshold depending on noise levels in the

data above which minv and mSOM are not considered geo-

physically equivalent.

The implication of Eq. (9) is that the difference 1m be-

longs to the null space of the inverse problem considered.

The null space is characteristic of geophysical inversion’s

non-uniqueness. It is defined as the ensemble of models that

reproduce geophysical data with a comparable misfit. The

models honouring Eq. (9) can therefore be considered equiv-

alent from a geophysical data point of view (Muñoz and

Rath, 2006; Chen et al., 2007; Deal and Nolet, 1996). For

qualitative assessment of geophysical consistency, we com-

plement the utilization of Eq. (9) with the visual comparison

of data misfit maps corresponding to the model correspond-

ing to minv and mSOM.

3 Application case: Yerrida Basin

3.1 Survey setting

This subsection introduces and summarizes the geologi-

cal and geophysical context of the application case pre-

sented here. More details about the geology of the area and

the initial geophysical inversion can be found in Giraud et

al. (2019a) and Lindsay et al. (2018, 2020).

3.1.1 Geological and geophysical setting

The Paleoproterozoic Yerrida Basin is located in the southern

part of the Capricorn Orogen (WA) and covers approximately

150 km N–S and 180 km E–W (Pirajno and Adamides, 2000)

(Fig. 3a). The structures of interest in this work are Archean

greenstone belts (Fig. 3), as they are prospective for Au and

Ni and underlie the younger basin rocks. The basement to

the Yerrida Basin is considered to be Archean granite–gneiss

or greenstone rocks of the Yilgarn Craton. Lithospheric ex-

tension initiated the formation of the Yerrida Basin at ap-

proximately 2200 to 1990 Ma with deposition of the Wind-

plain Group (Occhipinti et al., 2017; Pirajno and Adamides,

2000). The Goodin Inlier remains exposed in the central part

of the basin and is in unconformable contact with the Wind-

plain Group. A hiatus ensued, followed by deposition of the

younger Mooloogool Group, which was then overlain in the

east by the Tooloo Group of the Earaheedy Basin.

The density contrast of the lithologies observed in the area

ranges between 0 and 330 kg m−3, making it appropriate for
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Figure 4. Prior geological modelling. Preferred lithology volume

(a), geological uncertainty volume (b) and starting density contrast

model (c). Modified from Giraud et al. (2019a).

gravity modelling and inversion (Giraud et al., 2019a; Lind-

say et al., 2018). While basin rocks exhibit some density con-

trast, the greenstone is conspicuous in gravity data with a

density contrast expected to lie between 190 and 270 kg m−3,

making it an attractive subject for gravity inversion. Field ge-

ological measurements (orientation data in the form of in-

terfaces and foliations) and petrophysical data were used to

build the reference geological model. Airborne geophysical

data, Landsat and Aster 8 satellite data were also used to sup-

port the interpretation of geological measurements.

The gravity anomaly dataset we consider (Fig. 3b) is

comprised of a total of 4882 measurement points. The

model is discretized into 100 × 100 × 42 cells of dimen-

sions 2.335 km × 1.875 km × 1.0475 km down to approxi-

mately 44 km depth. Weights and parameters used for the

inversion of synthetic data follow the settings of Giraud et

al. (2019a) on field data.

Figure 5. True density contrast model for calculation of synthetic

geophysical data (a), inverted model obtained from geophysical in-

version of synthetic geophysical data (b), corresponding spatial gra-

dient of density contrast (c) and synthetic geophysical data (d).

3.1.2 Geological modelling and synthetic geophysical

survey

This subsection introduces the semi-synthetic survey we per-

formed for the training of SOM.

The volumes of most probable lithology, WS and the start-

ing model are shown in Fig. 4. Volumes shown in Fig. 4a,

b and c are used for the training and validation dataset for

SOM training as explained in Sect. 2.2.

We use the modelling results shown in Fig. 4 to calculate

a synthetic geophysical dataset (Fig. 5d). The model used to

generate the synthetic geophysical measurements is shown in

Fig. 5a. The corresponding inverted model and its gradients

are shown in Fig. 5b and c. Volumes shown in Fig. 5b and c

are used for training and validation.

3.1.3 Field geophysical data inversion

The density contrast model obtained from inversion of field

geophysical data and its gradients are shown in Fig. 6a and

b. Visual comparison of inverted models shown in Figs. 6a
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Figure 6. Inverted model obtained from geophysical inversion of

field geophysical data (a) and corresponding spatial gradient of den-

sity contrast (b).

Figure 7. Matrix defining forbidden contact between lithologies in

the Yerrida Basin. Here, 1 means that two units may be in con-

tact with each other, 0 means that they may not, and ϕ represents

symmetric relationships or when the same unit is adjacent to itself

(which geologically may occur across a fault but cannot be resolved

by the geophysical data available).

and 5b reveals that mesoscale structures are similar with the

exception of large structures presenting low-density contrasts

at depth (darker shades of blue in Fig. 6a). This is reflected

in Fig. 6b, which exhibits low gradient values in these areas.

The classification of lithologies using SOM is performed

applying the trained network to volumes shown in Figs. 4b, c

Figure 8. (a) Elbow curve of the quantization error for the deter-

mination of the optimum number of neurons (or units) in SOM and

(b) prediction accuracy for the different lithologies present in the

training and validation datasets. Note that after 750 units, the quan-

tization error for the different lithologies stabilizes and oscillates

around its maximum values.

and 6a, b. The next subsections describe the geological laws

used for post-regularization (Sect. 3.1.4) and the classifica-

tion process (Sect. 3.2.2).

3.1.4 Geological rules for post-regularization

As mentioned above, for clarity in this demonstration, only

adjacency relationships are considered. The utilization of

simple relationships such as adjacency is also chosen be-

cause in areas of sparse data, a full description of geological

rules (fault relationships with fault and stratigraphy) is often

not known. Given the complexity of the Yerrida Basin and

its magmatic and deformation history, several base geolog-

ical rules can be derived to assess the plausibility of recov-

ered lithological models. Using fundamental geological prin-

ciples (such as uniformitarianism, superposition, Walther’s

law, cross-cutting relationships and original horizontality),

the two most likely restrictive adjacency rules are as fol-

lows. We assume that the mafic greenstone bodies cannot

be in contact with the Killara Formation (in the Mooloogool

Group) since our field data suggest that the Killara Forma-

tion is a volcanic unit that is restricted to the Yerrida Basin

and thus not in contact with the mafic greenstone. In addi-

tion, we assume that the mafic greenstone cannot be in con-

tact with the Goodin Inlier and background (or basement),

as the mafic greenstone is modelled to be enveloped by the

felsic component of the greenstone.

The matrix Mf defining the contacts forbidden by geology

as described above is given in Fig. 7.
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Figure 9. Recovered lithologies before post-regularization (a) and after (b) next to the corresponding adjacency matrix (right-hand side).

The indices used to designate lithologies are indicated in the legend of the volume (left-hand side).

3.2 Geologically constrained SOM classification and

uncertainty analysis

3.2.1 Training the neural network

In this work, we use approximately 500 neurons (units) for

the training of SOM. This number is inferred from the anal-

ysis of the elbow curve we calculated using the validation

datasets (see Fig. 8) and approximately matches the proposed

value of 5
√

N (with N the total number of observation) pro-

posed by Vesanto and Alhoniemi (2000) and commonly used

since (Shalaginov and Franke, 2015). The chosen number

of units is corroborated by the lithology prediction accuracy

(Fig. 8) as approximating the point of diminishing returns,

i.e. the number of nodes beyond which additional nodes are

becoming nearly redundant.

The trained map presents a mean quantization Q equal to

0.075, which indicates relatively good approximation of the

datasets by the trained SOM. This is illustrated by Fig. 8,

where all lithologies are recovered with a prediction accuracy

superior to 90 %.

3.2.2 Classification and post-regularization

After classification of the recovered model, we performed

post-regularization to remove geologically unrealistic fea-

tures from the classified lithological volume. Figure 9 shows

the classification results before and after post-regularization,

along with the associated adjacency matrix.

As can be inferred from the adjacency matrices plotted in

Fig. 9, the number of contacts between units with indices 1

and 2, respectively, is reduced by the application of post-

regularization. One reason for this is the presence of a num-

ber of inclusions of lithology 1 in lithology 2, and vice versa;

a total of 2561 such inclusions was identified. Overall, the

number of contacts between lithologies 5 and 2 increased
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Figure 10. Frequentist probability volumes of recovered lithologies calculated as per Eq. (3). The arrows are drawn to support interpretation.

slightly due to post-regularization because a large percentage

of contacts between lithologies 5 and 1 has been reassigned

as contacts between lithologies 5 and 2. The elimination of

contacts between lithologies 5 and 6 is also visible in Fig. 9.

3.2.3 Estimated confidence in recovered lithologies

For each node of the SOM, we calculate the prediction ac-

curacy τi (Eq. 3) for the different lithologies observed in the

area using the cross-validation dataset. After application of

the trained SOM for the classification of inversion results ob-

tained from the inversion of field geophysical data, we obtain

a frequentist probability volume for each lithology. Figure 10

shows the resulting frequentist probability volumes for the

six lithologies present in the Yerrida Basin.

Figure 10 exhibits probabilities between 0.3 and 0.6 in

the area marked by the two arrows. This suggests that these

zones are the least well constrained. Note that from Fig. 10,

we can interpret the presence of mafic greenstone with confi-

dence, as it shows high frequentist probability nearly every-

where classification suggests its presence. For completeness,

assessment of the prediction accuracy of the different litholo-

gies is shown by the corresponding box plot in Appendix B.

3.2.4 Geophysical null space validation and

implications for geological interpretation

Applying Eq. (9), we obtain ‖WdG1m‖2
2 = 6 × 10−4, indi-

cating that the model can be considered geophysically equiv-

alent overall. This is illustrated by the map of the correspond-

ing data misfits (see Fig. B1 in Appendix B), which indicates

that we can consider the recovered lithological model after

application of post-regularization as reflective of both geo-

physical and geological information. Focusing on the mafic

greenstone belts of interest in the area (Fig. 11), the classi-

fication results allow us to propose the following geological

interpretations.

Figure 11 shows that the northern portion of the green-

stone belts A and B recovered by geophysical inversion and

SOM classification is thinner in their northern part than was

proposed by the initial geological model. Likewise, green-

stone belt C seems to be much thinner near its centre than ex-

pected. Given the data density and lack of understanding we

have about the depth of this greenstone belt, this observation

is plausible. It confirms and refines considerably the crude,

preliminary lithology differentiation of Giraud et al. (2019a)

that was based only on density contrast value. The cause of

the thinning of mafic greenstone belt C could be attributed

to faulting, folding or the topography of the palaeoenviron-
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Figure 11. Mafic greenstone belts and their surroundings following geological modelling only (a) and after SOM classification (b). The cells

shows in panels (a) and (b) have the same geographical location and are coloured according to lithology. The vertical arrows show areas

where mafic greenstone is thinner than suggested by geology only. The elliptical shapes shows zones where expected non-mafic greenstone

is replaced by the background lithology.

ment where the protoliths to the belt were formed, which

are not captured directly by surface geology. The portion of

the southern Merrie Greenstone Belt (mafic greenstone C) is

shown to be thinner than expected, prompting a review of the

structure of existing models. A plausible reason is the pres-

ence of structure that has not been identified from the initial

interpretation of geophysical data. In addition, the potential

presence of deep-penetrating faults or shear zones, as shown

in Fig. 11b by the arrows around greenstone C, hints at a

possible false assumption that the Merrie Greenstone Belt is

a single and coherent geological body.

4 Discussion

The application of the technique presented here is not re-

stricted to usage of the particular geophysical or geological

modelling schemes generating the modelling inputs to this

study. The methodology we introduced is general and any

different stand-alone geophysical and geological modelling

schemes could also be used.

The work presented here relied on SOM, which can be

seen as an extension of the k-means and c-means clustering

algorithms used for lithological differentiation (Paasche and

Tronicke, 2007; Carter-McAuslan et al., 2015; Sun and Li,

2015, 2016; Maag and Li, 2018; Ward et al., 2014; Singh

and Sharma, 2018), with which it shares a number of charac-

teristics. We can therefore assume that our findings may hold

true for these techniques.

We have shown that the utilization of post-regularization

can be effective for increasing geological realism in the re-

covered lithological models while preserving the geophysical

validity of the corresponding model. The geological princi-

ples we used to design our post-regularization operator apply

to lithological topology and focus on the adjacency relation-
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ship between cells. Ideally, post-regularization should also

consider the surface area of contacts and their topology. This

could be followed by, for instance, a 3-D extension of the ge-

ological model-editing approach of Anquez et al. (2019) to

produce genuine geological models honouring age relation-

ships, stratigraphic principles, etc. Provided that the resulting

models honour Eq. (9), this approach would ensure that while

they are geophysically valid, they can be readily used for in-

terpretation or by commercial or non-commercial geological

modelling engines, reservoir simulations, etc. without further

processing.

We also believe that post-regularization can be success-

fully applied to other clustering techniques. In addition, the

implementation of post-regularization presented here can be

readily applied to existing classification, regardless of the

classification algorithm used, as it only adjusts the classifica-

tion using spatial–contextual features in the classified model

and could assist the geological characterization of inversion

results (Melo et al., 2017).

The example we have shown uses a covariance matrix Ws

(Eq. 1) that results from geological modelling. It is used as

a proxy for the uncertainty about our knowledge in terms of

structural geology. Such prior information could also be de-

rived from techniques other than geological modelling such

as prior geophysical modelling, be it using the same or dif-

ferent geophysical methods. While we do not address the un-

certainty in the density model directly, we assume that non-

uniqueness and measurement uncertainty affect both field

data and synthetic data in the same manner due to the noise

component and parameterization of each being the same.

An important result produced here involves the identifica-

tion of regions which do not adequately conform to the initial

model parameters (Fig. 11). While this issue remains unre-

solved, the capability of our method to identify problematic

regions is useful to drive reinterpretation of data, considera-

tion of additional models and, eventually, increased geologi-

cal knowledge of the target.

Future work may include the generation of multiple litho-

logical models using the trained SOM and the frequentist

probability volume associated with it. By selecting models

belonging to the null space of the geophysical data (i.e. sat-

isfying Eq. 9), we expect that this would allow the identi-

fication of a series of a few archetypes that would be rep-

resentative of the various datasets used in the geoscientific

modelling workflow.

5 Conclusions

We have introduced a post-inversion classification technique

relying on SOM that enables the recovery of lithologies, the

corresponding frequentist probability voxet thereby remedi-

ating to some of the limitations of deterministic inversion.

The proposed technique utilizes a post-regularization scheme

enforcing elementary geological principles to the recovered

lithological model while maintaining geophysical validity.

We have applied this new methodology to the Yerrida Basin

(Western Australia) and shown how it improves the geolog-

ical plausibility of the recovered model. Results allowed us

to confirm previous results and bring new insights into pos-

sible reinterpretation of the geometry of prospective green-

stone belts.
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Appendix A: Data misfit generated by SOM

classification and post-regularization

In Fig. A1, data misfit and the absolute data misfit difference

(Fig. A1b and c, respectively) show values which, in places,

are relatively high but which are in line with the gravity data

inversions. Figure A1a and b show similar features to the ex-

ception of a patch in the central part of the model (northing

∼ 7.09 × 106 m – easting ∼ 7.7 × 105 m), where Fig. A1b

shows values that are approximately 1.5 mGal higher. Fig-

ure A1c shows misfit differences generally on the order of,

or lower than, 2 mGal. Also note that there are places where

Fig. A1b shows lower misfit than Fig. A1a.

Figure A1. (a) Comparison of absolute data misfit maps obtained

for the inverse model used here (reproduced from Giraud et al.,

2019a) and (b) after post-regularization, with (c) the misfit differ-

ences between panels (a) and (b).

Appendix B: Data misfit generated by SOM

classification and post-regularization

Figure B1. Box plot of prediction accuracies for the different

lithologies. Red crosses mark outliers.
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