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ABSTRACT Blockchain and other Distributed Ledger Technologies (DLTs) have evolved significantly in

the last years and their use has been suggested for numerous applications due to their ability to provide

transparency, redundancy and accountability. In the case of blockchain, such characteristics are provided

through public-key cryptography and hash functions. However, the fast progress of quantum computing has

opened the possibility of performing attacks based on Grover’s and Shor’s algorithms in the near future. Such

algorithms threaten both public-key cryptography and hash functions, forcing to redesign blockchains to

make use of cryptosystems that withstand quantum attacks, thus creating which are known as post-quantum,

quantum-proof, quantum-safe or quantum-resistant cryptosystems. For such a purpose, this article first

studies current state of the art on post-quantum cryptosystems and how they can be applied to blockchains

and DLTs. Moreover, the most relevant post-quantum blockchain systems are studied, as well as their main

challenges. Furthermore, extensive comparisons are provided on the characteristics and performance of the

most promising post-quantum public-key encryption and digital signature schemes for blockchains. Thus,

this article seeks to provide a broad view and useful guidelines on post-quantum blockchain security to future

blockchain researchers and developers.

INDEX TERMS Blockchain, blockchain security, DLT, post-quantum, quantum-safe, quantum-resistant,

quantum computing, cryptography, cryptosystem, cybersecurity.

I. INTRODUCTION

Blockchain is a technology that was born with the cryptocur-

rency Bitcoin [1] and that is able to provide secure com-

munications, data privacy, resilience and transparency [2].

A blockchain acts as a distributed ledger based on a chain

of data blocks linked by hashes that allow for sharing infor-

mation among peers that do not necessarily trust each other,

thus providing a solution for the double-spending problem

[3]–[5]. Such features have popularized blockchain in the last

years and it has already been suggested as a key technology

for different applications related to smart health [6], mea-

suring systems [7], logistics [8], [9], e-voting [10] or smart

factories [11], [12].

The associate editor coordinating the review of this manuscript and

approving it for publication was Luis Javier Garcia Villalba .

Blockchain users interact securely with the blockchain

by leveraging public-key/asymmetric cryptography, which is

essential for authenticating transactions. Hash functions are

also key in a blockchain, since they allow for generating dig-

ital signatures and for linking the blocks of a blockchain. The

problem is that both public-key cryptosystems and hash func-

tions are threatened by the evolution of quantum computers.

In the case of public-key cryptosystems, secure transaction

data may be recovered fast by future quantum computing

attacks. Such attacks impact the most popular public-key

algorithms, including RSA (Rivest, Shamir, Adleman) [13],

ECDSA (Elliptic Curve Digital Signature Algorithm)

[14], [15], ECDH (Elliptic Curve Diffie-Hellman) [16] or

DSA (Digital Signature Algorithm) [17], which can be bro-

ken in polynomial-time with Shor’s algorithm [18] on a

sufficiently powerful quantum computer. Moreover, quan-

tum computers can make use of Grover’s algorithm [19] to
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accelerate the generation of hashes, which enables recreat-

ing the entire blockchain. Furthermore, Grover’s algorithm

may be adapted to detect hash collisions, which can be

used to replace blocks of a blockchain while preserving its

integrity.

This article analyzes how to evolve blockchain cryptogra-

phy (i.e., its public-key security algorithms and hash func-

tions) so that it can resist quantum computing attacks based

on Grover’s and Shor’s algorithms, thus deriving into the

creation of post-quantum blockchains. To guide researchers

on the development of such a kind of blockchains, this article

first provides a broad view on the current state of the art of

post-quantum cryptosystems. Specifically, the most relevant

post-quantum cryptosystems for blockchains are analyzed,

as well as their main challenges. Furthermore, extensive com-

parisons are provided on the characteristics and performance

of the most promising post-quantum public-key encryption

and digital signature schemes.

The rest of this article is structured as follows. Section II

describes the essential concepts related to blockchain and

to its security primitives. Section III studies the impact of

quantum attacks on blockchain public-key security schemes

and on the most popular hash functions. In addition,

Section III enumerates the most relevant post-quantum initia-

tives, emphasizing the ones related to blockchain and indicat-

ing the main features that a blockchain post-quantum scheme

would need to provide. Section IV reviews the main types

of post-quantum public-key and digital signature schemes,

and analyzes their application to blockchain. Section V stud-

ies the performance of the most promising post-quantum

cryptosystems when running them on hardware that can

be used by blockchain nodes. Section VI details the main

blockchain proposals that have already considered the use of

post-quantum schemes. Section VII indicates the most signif-

icant challenges currently posed by post-quantum blockchain

schemes and points at different paths to be followed by future

researchers and developers. Finally, Section VIII summa-

rizes the most relevant findings of this review article and

Section IX is dedicated to conclusions.

II. BLOCKCHAIN BASICS AND CRYPTOGRAPHIC

PRIMITIVES

A. TERMINOLOGY AND KEY CONCEPTS

Before starting to review the state of the art on post-quantum

blockchains (i.e., on blockchains whose cryptosystems can

resist quantum computing attacks), it is necessary to intro-

duce several basic concepts, since some of the terminology

may vary in the literature from one author to another.

It is first important to note that the concept of blockchain

has evolved significantly since its original definition for Bit-

coin [1]. In fact, researchers are still discussing the different

elements that a blockchain has to contemplate to be actu-

ally considered a blockchain. The most common definition

of blockchain is the one given in the Introduction of this

article: it is a public ledger that stores data (e.g., transaction

information, an event log) that are shared among multiple

entities that do not necessarily trust each other. Every trans-

action on the blockchain is verified and stored by following

a consensus protocol. Once a transaction is stored, ideally,

it cannot be removed from the blockchain without making a

significant computational effort.

A blockchain node is a computational entity able to per-

form operations on the blockchain. It is common to distin-

guish between regular blockchain nodes, which only interact

with the blockchain, and full nodes, which have a copy of

the blockchain and contribute to it by validating transactions.

A blockchain miner is a third type of node that is present in

many blockchains and whose contribution is essential during

blockchain transaction validations: to carry out the validation,

they perform certain actions following a consensus proto-

col. There are many consensus protocols [20], being some

of the most popular Proof-of-Work (PoW) (used by Bitcoin),

the variants of the Byzantine Fault Tolerance (BFT) meth-

ods [21] or Proof-of-Stake (PoS).

The concept of smart contract is also relevant: it is a

piece of code stored on the blockchain that can be executed

autonomously. Smart contracts can be used to automate cer-

tain tasks depending on the state of the blockchain and in

other external data sources called oracles [22].

The previously introduced concepts have contributed

to the success of blockchain and to its main security

features:

• Decentralization. If one node of the blockchain is

attacked or shut down, its information keeps on being

available from the other blockchain nodes.

• Data privacy and integrity. Blockchain uses public-key

cryptography and hash functions for providing data pri-

vacy, integrity and authentication.

• Data immutability. Once a transaction is stored on the

blockchain, it is not possible to make further modifica-

tions on it (the only exception is blockchain forks [2],

which require to reach a consensus among the entities

that participate on the blockchain).

A detailed description on the inner workings of the pre-

viously mentioned blockchain components and algorithms is

out of the scope of this paper, but the interested reader can

find further information in [2], [22]–[28].

B. BLOCKCHAIN SECURITY PRIMITIVES

The security features provided by blockchain are essentially

sustained by public-key/asymmetric cryptography and hash

functions, whose role in blockchain security is detailed in the

next subsections.

1) PUBLIC-KEY CRYPTOGRAPHY

A blockchain usually makes use of public-key cryptosys-

tems for securing information exchanges between parties by

authenticating transactions through digital signatures. During

the signature process, the signer signs with a private key,

while the public key, which is shared publicly, is used to

verify that the signature is valid. Thus, when a signing

21092 VOLUME 8, 2020



T. M. Fernández-Caramés, P. Fraga-Lamas: Towards Post-Quantum Blockchain

algorithm is secure, it is guaranteed that only the person

with a private key could have generated certain signature. For

instance, Bitcoin uses ECDSA signatures with the Koblitz

curve secp256k1, which depends on a private key for signing

messages and on the corresponding public key for checking

the signature.

Public-key cryptography is also essential for the so-called

wallets, which are private key containers that store files and

simple data. Thus, in a blockchain system each user has a

wallet that is associated with at least a public address (usually

a hash of the user public key) and a private key that the user

needs for signing transactions. For instance, in blockchains

like Bitcoin every transaction ends up being ’sent’ to the

public address of the receiver and is signed with the private

key of the sender. In order to spend bitcoins, their owner

has to demonstrate the ownership of a private key. To verify

the authenticity of the received currency, every entity that

receives bitcoins verifies its digital signature by using the

public key of the sender.

2) HASH FUNCTIONS

Hash functions like SHA-256 or Scrypt are commonly used

by blockchains because they are easy to check, but really

difficult to forge, thus allowing the generation of digital

signatures that blockchain users need to authenticate them-

selves or their data transactions in front of others.

Hash functions are also used by blockchains to link their

blocks (i.e., groups of transactions that are considered to

occur at the same time instant). Such blocks are linked in

chronological order, containing each block the hash of the

previous block. It is straightforward to hash a block of a

blockchain, but some blockchains like Bitcoin restrict block

hashing to make it meet a specific mathematical condition

(e.g., the hash should contain a number of leading zeros [1]),

which slows down block addition.

Finally, it is worth mentioning that hash functions are

used in blockchains for generating user addresses (i.e., user

public/private keys) or for shortening the size of public

addresses [29], [30].

III. FROM PRE-QUANTUM TO POST-QUANTUM

BLOCKCHAIN

A. BLOCKCHAIN PUBLIC-KEY SECURITY

It must be first noted that public-key cryptosystems strength

against classical computing attacks has been traditionally

estimated through the so-called bits-of-security level. Such a

level is defined as the effort required by a classical computer

to perform a brute-force attack. For instance, an asymmetric

cryptosystem has a 1024-bit security when the effort required

to attack it with a classical computer is similar to the one

needed to carry out a brute-force attack on a 1024-bit cryp-

tographic key. As a reference, Table 1 indicates the security

level of some of the most popular symmetric and asymmetric

cryptosystems.

TABLE 1. Reference security levels for popular symmetric and
asymmetric cryptosystems (source: [31]).

The cost of breaking current 80-bit security cryptosystems

with classical computers is estimated to be between tens of

thousands and hundreds of millions of dollars. In the case

of 112-bit cryptosystems, they are considered to be secure to

classical computing attacks for the next 30 to 40 years [32].

However, researchers have determined that 160-bit elliptic

curves can be broken with a 1000-qubit quantum computer,

while 1024-bit RSA would need roughly 2,000 qubits [33].

Such a threat affects not only cryptosystems that rely on inte-

ger factorization (e.g., RSA) or elliptic curves (e.g., ECDSA,

ECDH), but also others based on problems like the discrete

logarithm problem [34], which can be solved fast through

Shor’s algorithm.

As of writing, powerful quantum computers are not avail-

able: themost powerful quantum computer (claimed by IonQ)

has only 79 qubits and even technologically-advanced orga-

nizations like the U.S. National Security Agency (NSA)

seem to have not made significant progress on large quan-

tum computers [35]. However, it is estimated that in the

next 20 years such a kind of computers will be functional

enough to be able to break easily current strong public-key

cryptosystems [36]. In fact, organizations like the NSA have

already warned on the impact of quantum computing on

IT products and recommended increasing the ECC (Elliptic

Curve Cryptography) security level of certain cryptographic

suites [34]. Although some researchers have speculated on

the real reasons behind such an NSA announcement [37],

long-term public-key cryptography seems to be threatened

and developers need to prepare current blockchains for the

post-quantum era.

Table 2 indicates the main characteristics of the most

relevant public-key cryptosystems that are affected by the

quantum threat. The Table also includes the characteristics

of other relevant cryptosystems that will be broken or that

will be impacted significantly by quantum attacks related to

Shor’s and Grover’s algorithms.

B. HASH FUNCTION SECURITY

In contrast to public-key cryptosystems, traditional hash

functions are considered to be able to withstand quantum

attacks since it seems unlikely the development of quan-

tum algorithms for NP-hard problems [38]. Although new

hash functions have been recently proposed by academics

to resist quantum attacks [39], it is usually recommended to

increase the output size of traditional hash functions.
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TABLE 2. Main blockchain and popular cryptosystems impacted by the
quantum threat.

This recommendation is related to quantum attacks that can

make use of Grover’s algorithm to accelerate brute force

attacks by a quadratic factor [36]. Specifically, Grover’s algo-

rithm can be used in two ways to attack a blockchain:

• First, to search for hash collisions and then replace entire

blockchain blocks. For instance, in the specific case of

the work described in [41], it is proposed to use Grover’s

algorithm to find collisions in hash functions, conclud-

ing that a hash function would have to output 3*n bits to

provide a n-bit security level. Such a conclusion means

that many current hash functions would not be valid for

the post-quantum era, while others like SHA-2 or SHA-3

will have to increase their output size.

• Second, Grover’s algorithm can be used to accelerate

mining in blockchains like Bitcoin (i.e., it is able to

speed up the generation of nonces), which would allow

for recreating entire blockchains fast, thus undermining

their integrity.

In addition, quantum attacks through Shor’s algorithm also

impact hash functions: if a blockchain hash function is bro-

ken, someone with a powerful enough quantum computer

may use Shor’s algorithm to forge digital signatures, to imper-

sonate blockchain users and to steal their digital assets.

As a reference, Table 2 includes the main characteristics

of the most popular hash functions that are currently used

by relevant blockchains and indicates the impact of quantum

computing on their security level.

C. POST-QUANTUM BLOCKCHAIN INITIATIVES

Post-quantum cryptography is currently a hot topic

that has been addressed by research projects (e.g.,

PQCrypto [42], SAFEcrypto [43], CryptoMathCREST [44]

or PROMETHEUS [45]), standardization initiatives

[46]–[53] and workshops [54]–[56], which obtained rele-

vant results [57]–[59] and produced interesting reports [32],

[60]–[65]. Among the previously mentioned initiatives, it is

worth noting the NIST call for proposals for post-quantum

public-key cryptosystems [66], which is currently in its sec-

ond round [67] and which is expected to deliver the first

standard drafts between 2022 and 2024.

Although the previous projects and initiatives generated

very valuable results, they were not explicitly focused on

post-quantum blockchains. However, there have been spe-

cific post-quantum initiatives related to the most popular

blockchains. For instance, Bitcoin Post-Quantum is an exper-

imental branch of Bitcoin’s main blockchain that uses a post-

quantum digital signature scheme [68]. Another example is

Ethereum 3.0, which plans to include quantum-resistant com-

ponents like zk-STARKs (Zero-Knowledge Scalable Trans-

parent ARguments of Knowledge) [69]. Other blockchain

platforms like Abelian [70] have suggested using lattice-

based post-quantum cryptosystems to prevent quantum

attacks, while certain blockchains such as Corda are exper-

imenting with post-quantum algorithms like SPHINCS [71].
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D. IDEAL CHARACTERISTICS OF BLOCKCHAIN

POST-QUANTUM SCHEMES

In order to be efficient, a post-quantum cryptosystem

would need to provide blockchains with the following main

features:

• Small key sizes. The devices that interact with a

blockchain need to ideally make use of small public

and private keys in order to reduce the required stor-

age space. In addition, small keys involve less com-

plex computational operations when managing them.

This is especially important for blockchains that require

the interaction of Internet of Things (IoT) end-devices,

which are usually constrained in terms of storage and

computational power. It is worth indicating that IoT,

like other emerging technologies (e.g., deep learn-

ing [72]), has experienced a significant growth in

the last years [73]–[77], but IoT devices still face

some important challenges, mainly regarding security

[78]–[82], which are limiting to some extent its jointly

use with blockchain and its widespread adoption.

• Small signature and hash length. A blockchain essen-

tially stores data transactions, including user signa-

tures and data/block hashes. Therefore, if signature/hash

length increases, blockchain size will also increase

as well.

• Fast execution. Post-quantum schemes need to be as fast

as possible in order to allow a blockchain to process a

large amount of transactions per second.Moreover, a fast

execution usually involves low computational complex-

ity, which is necessary to not to exclude resource-

constrained devices from blockchain transactions.

• Low computational complexity. This feature is related

to a fast execution, but it is important to note that a fast

execution with certain hardware does not imply that the

post-quantum cryptosystem is computationally simple.

For instance, some schemes can be executed fast in

Intel microprocessors that make use of the Advanced

Vector Extensions 2 (AVX2) instruction set, but the same

schemes may be qualified as slow when executed on

ARM-based microcontrollers. Therefore, it is necessary

to look for a trade-off between computational complex-

ity, execution time and supported hardware devices.

• Low energy consumption. Some blockchains like Bit-

coin are considered to be power hungrymainly due to the

energy required to execute its consensus protocol. There

are other factors that impact power consumption, like

the used hardware, the amount of performed commu-

nications transactions and, obviously, the implemented

security schemes, which can draw a relevant amount of

current due to the complexity of the performed opera-

tions [83], [84].

IV. POST-QUANTUM CRYPTOSYSTEMS

FOR BLOCKCHAIN

There are four main types of post-quantum cryptosystems

and a fifth kind that actually mixes both pre-quantum and

post-quantum cryptosystems. The following subsections ana-

lyze the potential application of such schemes for the imple-

mentation of encryption/decryption mechanisms and for

signing blockchain transactions.

A detailed description on the algorithms cited in the next

subsections is out of the scope of this article, but the interested

reader can consult the specific references cited throughout

the text and books like [85], which provide a wide but

comprehensive description of the most popular post-quantum

cryptosystems.

As a summary, the five different types of post-quantum

cryptosystems are depicted in Figure 1 together with

examples of encryption and digital signature scheme

implementations.

A. PUBLIC-KEY POST-QUANTUM CRYPTOSYSTEMS

1) CODE-BASED CRYPTOSYSTEMS

They are essentially based on the theory that supports error-

correction codes. For instance, McEliece’s cryptosystem is

an example of code-based cryptosystem [86] that dates back

from the 70s and whose security is based on the syndrome

decoding problem [87]. McEliece’s scheme provides fast

encryption and relatively fast decryption, which is an advan-

tage for performing rapid blockchain transactions. However,

McEliece’s cryptosystem requires to store and perform oper-

ations with large matrices that act as public and private keys.

Such matrices usually occupy between 100 kilobytes and

several megabytes, whichmay be a restriction when resource-

constrained devices are involved. To tackle this issue, future

researchers will have to study matrix compression tech-

niques, as well as the use of different codes (e.g., Low-

Density Parity-Check (LDPC) codes, Quasi-Cyclic Low-

Rank Parity-Check (QC-LRPC) codes) and specific coding

techniques [88].

As a reference, Table 3 compares the main characteris-

tics of the public-key code-based post-quantum encryption

cryptosystems that passed to the second round of the NIST

call. There are other post-quantum cryptosystems [89], but

the NIST second-round candidates are specially interest-

ing due to their standardization chances and because they

have been already thoroughly analyzed by the cryptographic

community.

It is important to note that the parameters of the algo-

rithms compared in Table 3 can be adjusted according to

the required security and thus key size and performance

may vary among them. Specifically, the cryptosystems of the

Table were selected with the objective of comparing the ones

with the smallest key sizes that provided the main quantum

security levels demanded by NIST (128, 192 and 256 bits).

The same criteria were applied for the selection of the algo-

rithms compared in the rest of this article.

As it can be observed in Table 3, the evaluated code-based

cryptographic schemes provide between 128 and 256 bits

of classical security, but such a level is reduced signifi-

cantly in terms of quantum security. Regarding the compared
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FIGURE 1. Post-quantum public-key cryptosystem taxonomy and main practical implementations.

public/private key sizes, they range between very small sizes

(320 bits, for the private keys of ROLLO-II and RQC) and

up to 15.5 KB (for the public key of the highest security

level of HQC). On average, even when making use of com-

pression techniques, the size of code-based scheme keys is

clearly larger than the one required by current ECDSA and

RSA-based encryption systems.

It is worth pointing out that in the case of HQC two key

sizes are indicated: the one inside parentheses is related to

the use of a seed expander. However, note that during the

execution of the algorithm an expanded key will consume the

amount of memory indicated outside the parentheses and will

also need to perform the expansion operation, which slows

down the execution of the algorithm.

Overall, among the schemes compared in Table 3, it seems

that RQC-II provides the best trade-off between security and

key size, although it is not among the fastest post-quantum

schemes (the performance of the algorithms in Table 3 is

analyzed later in Section V).

2) MULTIVARIATE-BASED CRYPTOSYSTEMS

Multivariate-based schemes rely on the complexity of solving

systems of multivariate equations, which have been demon-

strated to be NP-hard or NP-complete [85]. Despite their

resistance to quantum attacks, it is necessary further research

for improving their decryption speed (due to the involved

‘‘guess work’’) and to reduce their large key size and cipher-

text overhead [90].

Currently, some of the most promising multivariate-based

schemes are the ones based on the use of square matrices with

random quadratic polynomials, the cryptosystems derived

from Matsumoto-Imai’s algorithm and the schemes that rely

on Hidden Field Equations (HFE) [91]–[93].

3) LATTICE-BASED CRYPTOSYSTEMS

This kind of cryptographic schemes are based on lattices,

which are sets of points in n-dimensional spaces with a

periodic structure. Lattice-based security schemes rely on

the presumed hardness of lattice problems like the Shortest

Vector Problem (SVP), which is an NP-hard problem whose

objective is to find the shortest non-zero vector within a lat-

tice. There are other similar lattice-related problems like the

Closest Vector Problem (CVP) or the Shortest Independent

Vectors Problem (SIVP) [94], which nowadays cannot be

solved efficiently through quantum computers.

Lattice-based schemes provide implementations that allow

for speeding up blockchain user transactions since they are

often computationally simple, so they can be executed fast
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TABLE 3. Post-quantum code-based public-key encryption schemes that passed to the second round of the NIST call.
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and in an efficient way. However, like it occurs with other

post-quantum schemes, lattice-based implementations need

to store and make use of large keys, and involve large

ciphertext overheads. For example, lattice-based schemes like

NTRU [118] or NewHope [119] often require to manage keys

in the order of a few thousand bits.

As of writing, the most promising lattice-based cryptosys-

tems are based on polynomial algebra [118], [120], [121]

and on the Learning With Errors (LWE) problem and

its variants (e.g., LP-LWE (Lindner-Peikert LWE) or

Ring-LWE [122], [123]).

Table 4 compares the public-key lattice cryptosystems that

passed to the second round of the NIST call. As it can

be observed in the Table, the included schemes provide a

classical security between 128 and 368 bits and a quantum

security between 84 and 300 bits, so their complexity differs

significantly depending on the algorithm and on the provided

security level. Key size also fluctuates remarkably: from the

128-bit private key of the IoT version of Round5, to the

344,704-bit private key of FrodoKEM-1344. As it was previ-

ouslymentioned for the code-based encryption schemes, seed

expanders can be used to compress keys. The lattice-based

cryptosystems that use seed expanders are shown in Table 4

by indicating two key sizes (the key size required when using

a seed expander is inside parentheses).

Among the cryptosystems compared in Table 4 that pro-

vide a roughly 100-bit quantum security level, it seems that

Round5 KEM IoT is the one with the smallest keys and,

as it will be later observed in Section V, it provides a fast

execution.

4) SUPERSINGULAR ELLIPTIC CURVE

ISOGENY CRYPTOSYSTEMS

These schemes are based on the isogeny protocol for ordinary

elliptic curves presented in [124], but enhanced to with-

stand the quantum attack detailed in [125]. There are dif-

ferent promising post-quantum cryptosystems of this type

[126], [127], whose key size is usually in the order of a few

thousand bits [128].

Only one isogeny-based public-key encryption scheme

passed to the second round of the NIST call: SIKE

[129], [130]. SIKE is based on pseudo-random walks in

supersingular isogeny graphs. A good reference of SIKE key

sizes is SIKEp434, which, for a 128-bit level of classical

security, makes use of a 2640-bit public-key and a 2992-bit

private key.

5) HYBRID CRYPTOSYSTEMS

Hybrid schemes seem to be next step towards post-quantum

security, since they merge pre-quantum and post-quantum

cryptosystems with the objective of protecting the exchanged

data both from quantum attacks and from attacks against

the used post-quantum schemes, whose security is currently

being evaluated by industry and academia.

This kind of cryptosystems have been tested by

Google [152], which merged New Hope [119] with an

ECC-based Diffie-Hellman key agreement scheme named

X25519. A second version of the hybrid scheme (CECPQ2) is

currently being tested: it merges X25519 with instantiations

of NTRU (HRSS (Hülsing, Rijneveld, Schanck, Schwabe)

and SXY (Saito, Xagawa, Yamakawa)).

Although these schemes look promising, it must be noted

that they involve implementing two complex cryptosystems,

which require significant computational resources and more

energy consumption. Therefore, future developers of hybrid

post-quantum cryptosystems for blockchains will have to

look for a trade-off between security, computational complex-

ity and resource consumption. In addition, developers will

have to address the large payload problem that arises with

this kind of cryptosystems when providing Transport Layer

Security (TLS) communications (such a problem is due to the

required public-key and ciphertext sizes).

B. POST-QUANTUM SIGNING ALGORITHMS

1) CODE-BASED CRYPTOSYSTEMS

Different post-quantum code-based signing algorithms have

been proposed in the past. Some of the most relevant

subtypes of this kind of cryptosystems are based on the

schemes from Niederreiter [153] and CFS (Courtois, Finiasz,

Sendrier) [154], which are really similar to McEliece’s cryp-

tosystem. The signatures of such schemes are short in length

and can be verified really fast, but, as it occurs with traditional

McEliece’s cryptosystems, the use of large key sizes requires

significant computational resources and, as a consequence,

signature generation may become inefficient.

Other code-based signing algorithms have been proposed

in the literature, such as identification protocols related to

the application of Fiat-Shamir transformation [155], which

in some cases outperform cryptosystems like CFS [156].

Nonetheless, it must be noted that, Fiat-Shamir signatures

are not known to be completely secure against quantum

attacks [157] (only under certain circumstances [158]),

so alternatives like the Unruh transformation should be

considered [157].

2) MULTIVARIATE-BASED CRYPTOSYSTEMS

In this kind of signature schemes the public key is generated

through a trapdoor function that acts as private key. This

fact usually derives into large public keys, but very small

signatures [85].

Some of the most popular multivariate-based schemes

rely on Matsumoto-Imai’s algorithm, on Isomorphism of

Polynomials (IP) [159] or on variants of HFE, which are

able to generate signatures with a size comparable to the

currently used RSA or ECC-based signatures [160]. Other

relevant multivariate-based digital signature schemes have

been proposed, like the ones based on pseudo-random multi-

variate quadratic equations [161] or on Rainbow-like signing

schemes (e.g., TTS [162], TRMS [163] or Rainbow [164]).

Nonetheless, such cryptosystems need to be further improved
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TABLE 4. Post-quantum lattice-based public-key encryption schemes that passed to the second round of the NIST call.
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in terms of key size, since they usually require several tens of

thousands of bytes per key.

Table 5 compares the main characteristics of the digi-

tal signature schemes that passed to the second round of

the NIST call. In such a Table, for schemes like Rainbow,

the values inside parentheses indicate the length of the com-

pressed keys. As it can be observed, among the compared

multivariate-based cryptosystems, MQDSS provides really

small keys, but the sizes of its signatures are among the

largest in the comparison. In contrast, the rest of the compared

multivariate-based schemes require several kilobytes for each

key, but they produce short signatures (with a length between

239 and 1,632 bits).

3) LATTICE-BASED CRYPTOSYSTEMS

Among the different lattice-based signature schemes

described in the literature, the ones based on Short Integer

Solution (SIS) [165] seem to be promising due to their

reduced key size. According to some performance analyses,

BLISS-B (Bimodal Lattice Signatures B), which relies on

the hardness of the SIS problem, provides one of the best

performances for lattice-based signing cryptosystems, being

on a par with RSA and ECDSA [166]. However, note that the

original BLISS [167] was attacked in 2016 under specific

conditions through a side-channel attack [168], while its

variant BLISS-B is also susceptible to cache attacks that are

able to recover the secret signing key after 6,000 signature

generations [169].

Besides BLISS, there are in the literature other lattice-

based signature schemes that rely on the SIS problem

but that were devised specifically for blockchains [170].

Researchers have also developed lattice-based blind sig-

nature schemes [171], which were introduced by David

Chaum in the early 80s for creating an untraceable payment

system [172]. For instance, a lattice-based blind signature

scheme is detailed in [173], which was specifically conceived

for providing user anonymity and untraceability in distributed

blockchain-based applications for IoT.

Finally, it is worth mentioning the lattice-based signature

schemes presented in [174], [175]. Specifically, in [174] the

authors propose a cryptosystem whose public and private

keys are generated through Bonsai Trees [176]. Regarding

the work in [175], it presents a lattice-based signature scheme

optimized for embedded systems, which, for a 100-bit secu-

rity level, makes use of a public key of 12,000 bits and a pri-

vate key of 2,000 bits, and generates signatures of 9,000 bits.

This latter scheme, due to its simplicity and efficiency, was

selected as signature algorithm for blockchain-related devel-

opments like QChain [177], a post-quantum decentralized

system for managing public-key encryption.

Table 5 allows for comparing the main characteristics of

the lattice-based schemes that passed to the second round of

the NIST call. As it can be observed, lattice-based signature

schemes require keys whose size is in general smaller than

the one needed by multivariate-based schemes, but the gen-

erated signatures are slightly larger. Among the compared

lattice-based cryptosystems, FALCON makes use of the

smallest key sizes and signature lengths. Other schemes like

qTESLA are fast (as it will be later observed in Section V),

but their major drawback is their large key sizes [192].

4) SUPERSINGULAR ELLIPTIC CURVE

ISOGENY CRYPTOSYSTEMS

It is possible to use supersingular elliptic curve isogenies

for creating post-quantum digital signature schemes [193],

but there are not in the literature many of such schemes

and they still suffer from poor performance. For instance,

in [194] the authors present different signature schemes

based on isogeny problems and on the Unruh transform,

which makes use of small key sizes and relatively effi-

cient signing and verification algorithms. Another signature

scheme based on the Unruh transform is presented in [195],

which, for a 128-bit quantum security level, makes use of a

336-byte public key and a 48-byte private key, but it gener-

ates 122,880-byte signatures (even when using compression

techniques). Therefore, it is necessary to address key size

issues when implementing isogeny-based cryptosystems and

Supersingular Isogeny Diffie-Hellman (SIDH), especially in

the case of resource-constrained devices, which need to use

key compression techniques that often involve computation-

ally intensive steps [196], [197].

5) HASH-BASED SIGNATURE SCHEMES

The security of these schemes depends on the security of the

underlying hash function instead of on the hardness of amath-

ematical problem. This kind of schemes date back from the

late 70s, when Lamport proposed a signature scheme based

on a one-way function [198]. Currently, variants of eXtended

Merkle Signature Scheme (XMSS) [199] like XMSS-T and

SPHINCS [200] are considered promising hash-based signa-

ture schemes for the post-quantum era that derive from the

Merkle tree scheme described in [201].

However, some researchers consider XMSS and SPHINCS

to be impractical for blockchain applications due to their

performance [202], so alternatives have been suggested. For

example, XMSS has been adapted to blockchain by mak-

ing use of a single authentication path instead of a tree,

while using one-time and limited keys in order to pre-

serve anonymity and minimize user tracking [203]. Other

authors [202] proposed substituting XMSS with XNYSS

(eXtended Naor-Yung Signature Scheme), a signature

scheme that combines a hash-based one-time signature

scheme with Naor-Yung chains, which allow for creating

chains of related signatures [204].

V. PERFORMANCE COMPARISON OF POTENTIAL

BLOCKCHAIN POST-QUANTUM CRYPTOSYSTEMS

A. PUBLIC-KEY ENCRYPTION SCHEMES

Tables 6 and 7 compare the post-quantum public-key encryp-

tion cryptosystems previously mentioned in Section IV when

executed on hardware that can run both a regular blockchain
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TABLE 5. Post-quantum digital signature schemes that passed to the second round of the NIST call.
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TABLE 6. Performance comparison of post-quantum encryption algorithms for blockchain nodes (part 1).
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TABLE 7. Performance comparison of post-quantum encryption algorithms for blockchain nodes (part 2).
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node (i.e., a node that only interacts with the blockchain) or a

full blockchain node (i.e., a node that stores and updates

periodically a copy of the blockchain and that is able to

validate blockchain transactions).

For the sake of fairness, all the evaluation microprocessors

indicated in Tables 6 and 7 are based on Intel x64 archi-

tecture and had Turbo Boost and Hyper-Threading features

disabled. Since the version of the Intel microprocessor varies

among the compared cryptosystems, the obtained results

should be analyzed considering the differences in micropro-

cessor performance. To carry out such an analysis in a fair

way, Table 9 shows the most relevant characteristics of each

microprocessor whose performance is referenced in this arti-

cle. Thus, Table 9 compares the different clock frequencies,

the main target platforms (i.e., laptop, server or desktop),

the microprocessor typical energy consumption (indicated

as Thermal Design Power (TDP)) and the estimated perfor-

mance (making use of the Passmark CPU benchmarks [205]).

In addition, also for the sake of fairness, Tables 6 to 8 compare

the obtained performance results on the number of required

execution cycles, which means that they have been normal-

ized by taking the specific microprocessor clock frequency

into account.

Specifically, Tables 6 and 7 indicate the number of cycles

required by each microprocessor for key generation, encap-

sulation/encryption and decapsulation/decryption. The cycles

required by LEDACrypt are not included because in their

NIST second-round documentation it is only indicated the

total algorithm execution time instead of the number of

cycles. For CRYSTALS-Kyber, Table 6 indicates inside the

parentheses the estimated number of cycles for the case

when key generation is included in the decapsulation process

(to avoid having to store expanded private keys).

In order to show in a clear and fast way to the reader which

algorithms perform the better on the hardware platforms

indicated in Tables 6 and 7 (i.e., without normalizing the

performance differences related to the use of different clock

frequencies), Figure 2 shows a bar chart of the average execu-

tion times of the algorithms listed in such Tables 6 and 7. As it

can be observed, the lightest versions of schemes like NTRU

Prime, Three Bears and SABER are really fast. However,

it is important to note that, while Three Bears and SABER

were evaluated in low-power microprocessors for laptops,

the results obtained for NTRU Prime were obtained when ran

on an Intel Xeon processor, which is a powerful microproces-

sor for servers.

In contrast, SIKE is the overall slowest scheme among

the ones compared, while a cryptosystem like Classic

McEliece suffers from a really slow key generation in

spite of obtaining reduced decapsulation/decryption and

encapsulation/encryption times. Nonetheless, it must be indi-

cated that such slow schemes may be optimized for cer-

tain computational architectures and thus provide smallest

execution times. In addition, post-quantum schemes, once

publicly shared, evolve fast, so new implementations may

be released in the future with the objective of reducing their

computational complexity and, as a consequence, the required

execution time.

B. DIGITAL SIGNATURE SCHEME PERFORMANCE

Table 8 compares the performance of post-quantum dig-

ital signature algorithms that passed to the second round

of the NIST call. The following considerations should be

taken into account regarding the information shown in the

Table:

• In the case of FALCON, the authors measured its per-

formance in terms of spent time instead of cycles.

This is related to the fact that the processor used by

the researchers implemented dynamic frequency scaling

based on load and temperature, which derived into mea-

surements that vary up to 15% [180].

• For Rainbow, the values inside the parentheses indicate

the performance of the key-compressed version, which,

as it can be observed, requires much more computa-

tional effort than the regular version due to the involved

decompression process.

• Most cryptosystems have been evaluated after optimiz-

ing them for AVX2, a 256-bit instruction set provided

by Intel. The only exception is SPHINCS+ performance

for the HARAKA version, whose optimized version was

implemented to take advantage of the AES-NI instruc-

tion set.

Figure 3 shows through a bar chart the average execution

times for the post-quantum cryptosystems listed in Table 8.

Like in the case of the results obtained for the post-quantum

encryption schemes, it is worth noting that the compared

execution times were obtained in similar but not identical

hardware platforms, so performance differences should be

considered just as estimations. In addition, the following

aspects should be taken into account regarding Figure 3:

• The obtained results are sorted by the sum of the three

compared times, which is an estimation of the overall

speed of each algorithm.

• FALCON is not included since there are no data for the

three compared parameters.

• Besides post-quantum cryptosystems, the time required

by two comparable pre-quantum schemes have been

included as a reference: ECDSA (P-256) and RSA-

3072. The execution times shown in the Figure for such

implementations were obtained from [166], where the

author used the libstrongswan library, which acted as

an openssl wrapper for RSA and ECDSA, and whose

measurements were performed on a laptop with an Intel

Core i7-3610QM CPU at 2.30GHz.

• The obtained results show that, as it was expected,

the AVX2/AES-NI optimizations are clearly faster

than the reference versions.

• The fastest schemes are DILITHIUM and the lightest

versions of LUOV, qTESLA, MQDSS and Rainbow.
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FIGURE 2. Comparison of the average execution times (in milliseconds) of NIST call second round public-key encryption
schemes.
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TABLE 8. Performance comparison of post-quantum digital signature algorithms that passed to the second round of the NIST call.
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FIGURE 3. Comparison of the average execution times (in milliseconds) of NIST call second round digital signature schemes.
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TABLE 9. Specifications of Intel microprocessors used for evaluating potential blockchain post-quantum algorithms.

Overall, the AVX2 optimization of DILITHIUM seems

to be, in terms of execution time, the most promis-

ing post-quantum digital signature scheme, since it

obtains very similar results to ECDSA-256. Unfortu-

nately, DILITHIUM key sizes are larger than the ones

used by ECDSA-256, so researchers should focus on

developing new approaches to reduce them.

• The slowest cryptosystems are the most secure versions

of PICNIC2, GeMSS, Rainbow and SPHINCS. In the

case of PICNIC2, its lack of speed is due to slow verifi-

cation and signing processes. Regarding GeMSS, Rain-

bow and SPHINCS, their execution speed is impacted

significantly by the amount of time devoted to key gen-

eration.

VI. POST-QUANTUM BLOCKCHAIN PROPOSALS

Different authors have already proposed post-quantum

blockchains or modifications of current blockchains to tackle

the quantum threat [206]–[208]. For instance, in [209] it is

proposed a framework aimed at sharing sensitive industrial

data in public distributed networks. Such a framework is

able to work with Inter-Planetary File System (IPFS) and

Ethereum, and implements Diffie-Hellman Key Exchange

on SIDH. Ethereum is also modified in [210], but with

the multivariate-based cryptosystem Rainbow, whose per-

formance is compared in the cited article with the current

Ethereum version (based on ECDSA).

In the case of [211], the authors propose to improve Bitcoin

(which uses the Koblitz curve secp256k1 and SHA-256 dur-

ing the ECDSA signature process) with TESLA# [212],

which makes use of BLAKE2 [213] and SHA-3 [214]. It is

also worth mentioning the work in [10], where it is presented

a blockchain-based transparent e-voting protocol that makes

use of Niederreiter’s code-based cryptosystem to proof the

system against quantum attacks.

Other authors have suggested the implementation of

quantum-safe blockchains [39], [215]. For example, in [215]

the researchers present a quantum-safe transaction authenti-

cation scheme based on lattice-based cryptography and pro-

vide a standard transaction model to prevent quantum attacks.

Similarly, in [39] a lattice-based signature scheme is proposed

for developing a post-quantum blockchain that can be used to

implement a cryptocurrency.

Commercial blockchains have also analyzed and addressed

the impact of quantum computers. DLTs like IOTA’s Tan-

gle [40] claim to be more resistant than Bitcoin to quantum

attacks that affect processes like nonce search [216]. In addi-

tion, IOTA has the advantage of being based on one-time

hash-based signatures (Winternitz signatures) instead of on

ECC. Furthermore, IOTA is expected to make use of ternary

hardware (instead of traditional binary hardware) that will

implement a new hash function called CURL-P, which is

currently being audited. Finally, it is worth mentioning that

there are other blockchains that have been devised to replace

Bitcoin in the post-quantum era, like Quantum-Resistant

Ledger [217], which replaces secp256k1 with XMSS.

VII. MAIN CHALLENGES AND FUTURE RESEARCH TOPICS

IN POST-QUANTUM BLOCKCHAIN

A. QUANTUM COMPUTING FAST EVOLUTION

Quantum computing is currently a hot topic that has attracted

a lot of attention from academia and industry. As a con-

sequence, it is possible that new attacks will be developed

against the post-quantum cryptosystems mentioned in this

article, so researchers will have to pay attention to the quan-

tum computing scene and its advances.
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B. TRANSITION FROM PRE-QUANTUM TO

POST-QUANTUM BLOCKCHAIN

The transition from pre-quantum to post-quantum block-

chains requires to think carefully the involved steps. For such

a purpose, different researchers have devised methods. For

instance, in [218] the authors propose a scheme to extend

the validity of past blockchain blocks when the security of

a hash function or of the digital signatures is compromised.

However, the transition scheme may actually imply a hard-

fork of the blockchain, but, to avoid it, a soft-fork mechanism

may be implemented [219]. Another mechanism is proposed

in [220], where it is presented a simple commit-delay-reveal

protocol that enables blockchain users to move in a secure

way funds from pre-quantum Bitcoin to a version that imple-

ments a post-quantum digital signature scheme.

C. LARGE KEY AND SIGNATURE SIZES

In general, post-quantum cryptosystems require to use keys

whose size is much larger than current public-key cryptosys-

tems (usually between 128 and 4,096 bits).

In the case of digital signature cryptosystems, there are

schemes like the ones based on supersingular isogenies that

seem promising in terms of key size, but they produce large

signatures and its performance is poor in comparison to

other cryptosystems. For instance, as it was previously men-

tioned in Section IV-B.4, the scheme detailed in [195], for

a 128-bit quantum security level, makes use of 2,688-bit

public keys and 384-bit private keys, but it produces sig-

natures of 120KB, which is a problem for structures like

blockchains that have to store massive amounts of such

signatures. Similarly, hash-based schemes have a relatively

small public/private key size, but their signatures often exceed

40KB [60]. In contrast, some multivariate-based are able

to provide short signatures, but the keys used for generat-

ing and verifying such signatures can occupy several kilo-

bytes. Regarding lattice-based schemes, there are versions of

DILITHIUM that are really fast, but whose key size is roughly

1,500 bytes and their signature length occupies 2,701 bytes.

With respect to post-quantum public-key encryption cryp-

tosystems, certain optimized versions of schemes like

Round5 seem promising, since their performance is good

enough for most current blockchain node hardware, while

keeping key size low (2,736 bits for the public key and only

128 bits for the private key). Nonetheless, more research

is still needed in post-quantum schemes in order to pro-

vide a good trade-off between key sizes and security for

blockchains.

D. SLOW KEY GENERATION

In order to increase security, some post-quantum schemes

limit the number of messages signed with the same key. As a

consequence, it is necessary to generate new keys contin-

uously, which involves dedicating computational resources

and slowing down certain blockchain processes. Therefore,

blockchain developers will have to determine how to adjust

such key generation mechanisms to optimize the blockchain

efficiency.

E. COMPUTATIONAL AND ENERGY EFFICIENCY

As it can be concluded from the comparisons shown in

Sections IV andV, some post-quantum schemes require a sig-

nificant execution time, storage and computational resources.

Such needs often derive into increased energy consumption,

so future developers will have to look for novel approaches to

optimize cryptosystems in order to maximize their computa-

tional and energy efficiency, and, as a consequence, the effi-

ciency of the overall blockchain.

F. STANDARDIZATION

As it was mentioned in Section III-C, multiple initia-

tives are currently analyzing post-quantum cryptosystems in

order to standardize them. Since this is an ongoing effort,

the researchers that look for guaranteeing blockchain compat-

ibility will have to monitor the post-quantum scene and avoid

the risk of using non-standard, discarded or broken schemes.

G. BLOCKCHAIN HARDWARE UNSUITABILITY

Some computationally intensive post-quantum cryptosys-

tems may not be suitable for certain hardware that is

currently used for implementing blockchain nodes. There-

fore, post-quantum schemes should provide a trade-off

between security and computational complexity so that not

to restrict the potential hardware that may interact with the

blockchain.

H. LARGE CIPHERTEXT OVERHEADS

Certain cryptosystems generate large overheads that may

impact the performance of a blockchain. To tackle this

issue, future post-quantum developers will have to mini-

mize ciphertext overhead and consider potential compression

techniques.

I. QUANTUM BLOCKCHAIN

Besides the use of cryptosystems to transition from

pre-quantum to post-quantum blockchain, several resear-

chers proposed quantum-computing based blockchains

[221]–[223]. For instance, in [224] and [225], the authors pro-

pose to migrate Bitcoin to quantum computers, while others

described how to accelerate mining by modifying Grover’s

algorithm [226]. Moreover, some authors have already sug-

gested using quantum cryptography to implement smart con-

tracts [227]. Furthermore, more research is necessary on key

establishment physics-based methods that are collectively

known as Quantum-Key Distribution (QKD) [61].

VIII. KEY FINDINGS

After the thorough literature analysis carried out in this arti-

cle, the following conclusions can be drawn:

• After revising the literature, it was found no previous

paper that provides a broad view on the importance
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and application of post-quantum blockchain as it is

provided in this article. Although there are other

reviews that addressed the impact of quantum comput-

ing on blockchain, they were essentially focused on

giving generic recommendations for quantum-proofing

blockchain [60] or on specific fields [228]. Moreover,

it was found no other review that included the following

main contributions together:

– A detailed analysis on the impact of quantum

attacks on blockchain public-key cryptosystems

and hash functions.

– A review on the most relevant post-quantum

blockchain projects and standardization initiatives.

– A detailed analysis on the characteristics of the

main types of post-quantum encryption and digital

signature schemes that can potentially be applied to

blockchain.

– Thorough comparisons on the performance of

the most promising post-quantum blockchain

cryptosystems.

– A summary on the main post-quantum blockchain

challenges and future trends that will provide a

guide for future researchers and developers.

• Although there have been large projects on post-

quantum security, it was not found any large academic

initiative on the application of such a kind of security to

blockchain.

• Nowadays, there are no post-quantum blockchain algo-

rithms that provide, at the same time, small key size,

short signature/hash sizes, fast execution, low compu-

tational complexity and low energy consumption. Such

factors are especially critical for resource-constrained

embedded devices like the ones used in the Internet of

Things [228].

• Most of the post-quantum cryptosystems whose per-

formance was compared in this article are currently

being analyzed by the cryptographic community with

the objective of selecting the most appropriate to be

standardized through the NIST public call. Therefore,

future developers should monitor the news and reports

from NIST before selecting a specific post-quantum

algorithm.

• It is not straightforward to choose a blockchain post-

quantum cryptosystem. Future developers will have to

take such a decision based on their blockchain node

hardware, on the available resources (i.e., memory,

speed), on the required blockchain node performance

and on the necessary security level. For such a purpose,

the tables provided throughout this article can be a very

useful guide to estimate which may be the most promis-

ing candidates. Nonetheless, it has to be emphasized

that the results provided in this article are related to

specific hardware platforms, so performance will vary

significantly when implemented and optimized for other

hardware.

• Regarding the specific implementations compared in

this article, the following general assessments can be

stated on their application to blockchain:

– Coded-based cryptosystems make use of large keys

whosemanagement and operation require a relevant

amount of computational resources. More research

is necessary on key compression techniques and

on the use of certain types of codes and coding

techniques.

– Lattice-based cryptosystems also need to be

enhanced in terms of key size, but it can be stated

that they are currently some of the most promis-

ing candidates for implementing schemes for post-

quantum blockchains. In fact, the comparisons per-

formed in this article have shown that lattice-based

algorithms Three Bears and SABER are really fast,

even when executed on low-power microprocessors

for laptops. In addition, a scheme like Round5KEM

IoT seems appropriate for being executed in most

current blockchain node hardware and in many

applications that do not require very high secu-

rity. Furthermore, lattice-based digital signature

cryptosystems have already been suggested and

tested in different practical blockchain implemen-

tations [170], [173], [177] and, according to the

comparisons shown in this article, certain optimized

versions of DILITHIUM and qTESLA are among

the fastest ones.

– Multivariate-based public-key cryptosystems still

need to be improved to increase decryption speed

and to decrease key size. However, it should be

noted that some multivariate-based signature algo-

rithms optimized for the AVX2 instruction set

(i.e., LUOV, MQDSS and Rainbow) are clearly

faster than most of the compared digital signature

cryptosystems.

– Hybrid schemes like the ones tested by Google

(CECPQ1 and CECPQ2) seem to be the next step

prior to the actual implementation of pure post-

quantum blockchains, but they require to make use

of hardware able to handle at the same time two

advanced security mechanisms and large payloads.

– Super-singular elliptic-curve isogenie cryptosys-

tems based on the Unruh transform seem promis-

ing, but still need to be optimized to decrease their

signature size.

– Hash-based digital signature cryptosystems have

in general poor performance, but some researchers

have suggested new faster algorithms that seem to

be practical for blockchain [202], [203].

• It is necessary to study further how to enhance

blockchain security by adding certain features that have

been barely used in non-academic blockchain develop-

ments and validate their security in the post-quantum

era. Some of such features are:
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– Aggregate signatures. They allow for generat-

ing a unique signature from several of them.

This concept is attractive for blockchain, since it

enables faster verification and reduces storage and

bandwidth [229].

– Ring signatures. They allow for specifying a

set of possible signers without revealing who

of them actually produced a signature [230].

Some researchers have already suggested quantum-

resistant lattice-based schemes to secure ring signa-

tures [231]–[233] and applied them in blockchain

developments [234].

– Identity-Base Encryption (IBE). It enables a sender

and a receiver to communicate without exchanging

public or private keys. For such a purpose, a trusted

third-party is used as a middle-man between the

sender and the receiver to generate private keys,

which are sent to the receiver upon request. The

scheme has been also generalized as Identity-based

Broadcast Encryption (IBBE), which is able to

manage multiple receivers instead of only one. IBE

and IBBE are interesting for closed groups of users

like private blockchains [235] and there are already

implementations [236] (even for embedded sys-

tems [237]), but their need for a trusted third-party

seems to be in conflict with the concept of public

blockchain, whose existence is precisely justified

by the lack of trust.

– Secret sharing. It consists in dividing a piece of

sensitive information into multiple parts that are

distributed among diverse participants and which

can be reconstructed by using a minimum number

of parts [238]. For instance, in [8] it is introduced

a private-key distribution method to help recover

lost private keys that is based in secret sharing and

in network protocols that guarantee the security of

secret share transmission. Another example can be

found in [239], where the authors use secret sharing

to distribute transaction data securely among peers

in a blockchain.

– Homomorphic encryption. It enables third-party

services to process a transaction without reveal-

ing unencrypted data to them [240], [241]. This

kind of encryption has been already proposed to

enhance the Bitcoin protocol [242], [243] and for

blockchain-based IoT systems [244].

– Zero-Knowledge Proofs. This kind of proofs vali-

date a statement without revealing any secret related

to it [245]. There is a specific type of these proofs

called Zero-Knowledge Succinct Non-Interactive

Argument of Knowledge (zk-SNARK) that is aimed

at reducing the complexity and the size of the

proof [246]. However, it is necessary to design zk-

SNARKs to make use of post-quantum cryptosys-

tems or to take advantage of new post-quantum

schemes like zk-STARKs [247]. In addition, it is

possible to make use of SNAGS (Succinct Non-

Interactive Arguments), whose quantum-resistivity

is still being studied by the research commu-

nity [248].

– Secure Multi-Party Computation (SMPC). SMPC

allows the parties involved in a blockchain to act

together, but in a way that a single party does not

have access to all the information, thus preventing

secret data leaks. An example of the use of SMPC

on a blockchain is Enigma [249], which first stores

hashes on a blockchain and then the related data on

an SMPC network that divides them into multiple

pieces that are spread among different nodes.

• Although the analyses carried out in this article are

focused on blockchain, since other DLTs work in a sim-

ilar way, it is quite straightforward to apply to them the

provided recommendations and extracted conclusions.

Thus, such recommendations and conclusions could

be extrapolated to DLTs based on Directed Acyclic

Graphs (DAGs) (e.g., IOTA [40], Byteball [250]) or on

Hashgraphs (e.g., Swirlds [251]). However, researchers

still need to evaluate thoroughly DLT implementations

that have already claimed to be better prepared for the

post-quantum era than certain blockchains (e.g., IOTA,

Quantum-Resistant Ledger [217]).

IX. CONCLUSION

The recent progress on quantum computing has sparked

interest in researchers and developers that work with DLTs

like blockchain, where public-key cryptography and hash

functions are essential. This article analyzed the impact of

quantum-computing attacks (based on Grover’s and Shor’s

algorithms) on blockchain and studied how to apply post-

quantum cryptosystems to mitigate such attacks. For such

a purpose, the most relevant post-quantum schemes were

reviewed and their application to blockchain was analyzed,

as well as their main challenges. In addition, extensive

comparisons were provided on the characteristics and per-

formance of the most promising post-quantum public-key

encryption and digital-signature schemes. Thus, this article

gives a broad view and insights on the quantum threat on

blockchain, and provides useful guidelines for the researchers

and developers of the next-generation of quantum-resistant

blockchains.
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