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DNA is an ancient and efficient information carrier in living 
organisms. At present, it is thought to have great potential 
as an alternative storage medium because standard stor-

age media can no longer meet the exponentially increasing data 
archiving demands. Compared with common information carriers, 
the DNA molecule exhibits multiple advantages, including extremely 
high storage density (estimated physical density of 455 EB per gram 
of DNA1), extraordinary durability (half-life >500 years (refs. 2,3)) 
and the capacity for cost-efficient information amplification.

Many strategies have been proposed for digital information stor-
age using organic molecules, including DNA, oligopeptides and 
metabolomes4–8. Since current DNA sequencing technology has 
advantages in terms of both cost and throughput, storing digital 
information using DNA molecules remains the most well-accepted 
strategy. In this approach, the binary information from each file is 
transcoded directly into DNA sequences, which are synthesized 
and stored in the form of oligonucleotides or double-stranded DNA 
fragments in vitro or in vivo. Then, sequencing technology is used 
to retrieve the stored digital information. In addition, several differ-
ent molecular strategies have been proposed to implement selective 
access to portions of the stored data, to improve the practicality and 
scalability of DNA data storage9–11.

However, the use of basic transcoding rules (that is, converting 
[00, 01, 10, 11] to [A, C, G, T]) generates some specific patterns 
in DNA sequences that result in challenges regarding synthesis and 
sequencing9,12,13. For example, single-nucleotide repeats (homopol-
ymers) longer than 5 nt might introduce a higher error rate dur-
ing synthesis or sequencing14,15. Meanwhile, because of the nature 
of complementary base pairing (with A pairing to T and G to C), 

DNA molecules may form structures such as hairpins or topologi-
cal pseudoknots (i.e., secondary structure), which can be predicted 
by calculating the free energy from its sequence. It is reported that 
DNA sequences with stable secondary structure can be disadvan-
tageous for sequencing or when using PCR for random access to 
and backup of stored information16–19. Additionally, DNA sequences 
with GC content <40% or >60% are often difficult to synthesize. 
Therefore, the length of homopolymers (in nt), the secondary struc-
ture (represented by the calculated free energy in kJ mol−1) and the 
GC content (in %) are three primary parameters for evaluating the 
compatibility of coding schemes.

Previous studies on transcoding algorithm development have 
attempted to improve the compatibility of the generated DNA 
sequences. Early efforts, including those of Church et al. and Grass 
et al., introduced additional restrictions in the transcoding schemes 
to eliminate homopolymers, but this came at the expense of reduced 
information density1,20,21. Later studies pioneered other base con-
version rules without compromising the information density. For 
example, the DNA Fountain algorithm adopted Luby transform 
codes to improve the information fidelity by introducing low redun-
dancy as well as screening constraints on the length of homopoly-
mers and the GC content while maintaining an information density 
of 1.57 bits nt−1 (refs. 6,22). However, the major drawback is the risk 
of unsuccessful decoding when dealing with particular binary fea-
tures due to fundamental issues with Luby transform codes. This 
approach relies on the introduction of sufficient logical redun-
dancy, that is, at the coding level, for error tolerance to ensure suc-
cessful decoding. This is different from physical redundancy, which 
refers to the synthesis of excess DNA molecules, that is, increasing 
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the copy number of DNA molecules for each coding sequence23,24. 
Reducing the logical redundancy could lead to a high probability 
of decoding failure, but excessive logical redundancy will decrease 
the information density and significantly increase the cost of syn-
thesis25. Furthermore, specific binary patterns using these early 
algorithms may also create unsuitable DNA sequences, with either 
extreme GC content or long homopolymers (Supplementary Table 
1). Therefore, developing a coding algorithm that can achieve high 
information density but, more importantly, perform robust and reli-
able transcoding for a wide variety of data types in a cost-effective 
manner is necessary for the development of DNA-based informa-
tion storage in practical applications25–27.

To achieve this goal, we propose herein the yin–yang codec 
(YYC) coding algorithm, inspired from the traditional Chinese con-
cept of yin and yang, representing two different but complementary 
and interdependent rules, and we demonstrate its performance by 
simulation and experimental validation. The advantage of the YYC 
is that the incorporation of the yin and yang rules finally leads to 
1,536 coding schemes that can suit diverse data types. We dem-
onstrate that YYC can effectively eliminate the generation of long 
homopolymer sequences while keeping the GC content of the gen-
erated DNA sequences within acceptable levels. Two representative 
file formats (.jpg and .txt) were chosen for storage as oligo pools in 
vitro and a 54 kbps DNA fragment in vivo in yeast cells to evaluate 
the robustness of data recovery. The results show that YYC exhibits 
good performance for reliable data storage as well as physical den-
sity reaching the scale of EB per gram.

results
The general principle and features of the YYC. In nature, DNA 
usually exists in a double-stranded structure. In some organisms 
such as phages, both strands encode genetic information to make 
the genome more compact. Inspired by this natural phenomenon, 
we used the basic theory of combinatorics and cryptography to 
develop a codec algorithm on the basis of Goldman’s rotating 
encoding strategy28,29. Unlike other coding schemes developed 

using fixed mapping rules, the YYC provides dynamic combinatory 
coding schemes and can thus generate optimal DNA sequences to 
address the DNA synthesis and sequencing difficulties found when 
generating DNA sequences with long homopolymers, extreme GC 
content or complex secondary structure.

The general principle of the YYC algorithm is to incorporate two 
independent encoding rules, called ‘yin’ and ‘yang’, into one DNA 
sequence (called ‘incorporation’), thereby compressing two bits into 
one nucleotide (Fig. 1a). Here, we use N1, N2, N3 and N4 to rep-
resent the four nucleic acids A, T, C and G, respectively. For one 
selected combinatory coding scheme, an output DNA sequence is 
generated by the incorporation of two binary segments of identical 
length. In the first step, the yang rule is applied to generate six dif-
ferent coding combinations. Then, in the yin rule, N1 and N2 are 
mapped to different binary digits, while N3 and N4 are also mapped 
to different binary digits independent of N1 and N2, leading to a 
total of 256 different coding combinations. Application of the yin 
and yang rules at one position will yield one and only one consen-
sus nucleotide (Supplementary Fig. 1 and Supplementary Video 1). 
Meanwhile, according to the four different options for the previous 
nucleotide, the two groups (N1/N2 and N3/N4) also have indepen-
dent options for the mapping to 0 and 1. Therefore, the incorporated 
yin and yang rules provide a total of 1,536 (6 × 256) combinations 
of transcoding schemes to encode the binary sequence. More details 
are described in the Supplementary information.

To demonstrate the compatibility of the YYC algorithm and 
quantify its featured parameters in comparison with other early 
DNA-based data storage coding schemes, the 1 GB data collection 
was transcoded by using the YYC as well as other early coding 
algorithms for comparison1,20–22. As shown in Table 1, the flexible 
screening process introduced after the incorporation of binary 
segments for both the YYC and DNA Fountain algorithms pro-
vides more possibilities for obtaining DNA sequences with desired 
GC content values between 40% and 60%. Like all the other coding 
algorithms, the YYC also introduces constraints to set the maxi-
mum homopolymer length at 4, considering computing resources 

a
Binary information input

Segmentation to identical length

Random pairing of two segments

Coding by yang rule
(choose from six combinations)

Coding by yin rule
(choose from 256 combinations)

Finding consensus coding base
for both paired segments

(x for 1, 2, 3 and 4)

010101011110101110101110 ⋯ 01010110 ⋯ 10110111

1

01010101 01010110+

0 1

N1/N2 N3/N4

C4
2 = 6

N1 N2 N3 N4

N1 X1 Y1 X5 Y5

N2 X2 Y2 X6 Y6

N3 X3 Y3 X7 Y7

N4 X4 Y4 X8 Y8

Current nucleotide

Previous
nucleotide

28 = 256

Nx

C
od

in
g 

fo
r 

ne
xt

 p
os

iti
on

b

2 3 i n

Digital binary file

Binary segment selection
and

bit-to-base transcoding

GC content
40–60%

Homopolymer
<4

Free energy
>–30 kJ mol–1

Output sequence

Yes

Yes

Yes

No

No

No

Segmentation

Screening based
on constraints

Incorporation

Ite
ra

tio
n 

fo
r 

ne
xt

 r
an

do
m

 p
ai

r

Fig. 1 | Principles of the YYC. a, The bit-to-base transcoding process of the YYC. N1, N2, N3 and N4 represent the nucleic acids A, T, C and G, respectively. 
Xj and Yj represent different binary digits 0 and 1. When j is an integer chosen from 1 to 8, Xj + Yj = 1 and Xj × Yj = 0 (that is, eight independent sets of X and Y, 
with Xj/Yj being 1/0 or 0/1). C2

4 means that the calculation for number of 2-combination in a set with 4 elements.b, A flowchart of the YYC encoding pipeline.
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as well as the technical limitations of DNA synthesis and sequenc-
ing. In addition, the YYC considers the secondary structure of 
the generated DNA sequences as part of the compatibility analy-
sis, by rejecting all DNA sequences with free energy lower than 
−30 kcal mol−1. In addition, the statistics of other features were 
analysed using the data collection and several test files in various 
data formats (Supplementary Figs. 2, 3 and 4 and Supplementary 
Tables 2, 3 and 4), suggesting that the YYC has no specific pref-
erence regarding the data structure and maintains a relatively 
high level of information density, ranging from 1.75 to 1.78 bits 
per base (Methods and Supplementary Fig. 2). For some cases, 
our simulation analysis suggests that a few (approximately seven) 
coding schemes from the collection of 1,536 might generate DNA 
sequences with identity between 80% and 91.85% (Supplementary 
Fig. 3), but at very low frequency.

Given these results, YYC offers the opportunity to generate DNA 
sequences that are highly amenable to both the ‘writing’ (synthesis) 
and ‘reading’ (sequencing) processes while maintaining a relatively 
high information density. This is crucially important for improv-
ing the practicality and robustness of DNA data storage. The DNA 
Fountain and YYC algorithms are the only two known coding 
schemes that combine transcoding rules and screening into a single 
process to ensure that the generated DNA sequences meet the bio-
chemical constraints. The comparison hereinafter thus focuses on 
the YYC and DNA Fountain algorithms because of the similarity in 
their coding strategies.

In silico robustness analysis of YYC for stored data recovery. The 
robustness of data storage in DNA is primarily affected by errors 
introduced during ‘writing’ and ‘reading’. There are two main types 
of errors: random and systematic errors. Random errors are often 
introduced by synthesis or sequencing errors in a few DNA mol-
ecules and can be redressed by mutual correction using an increased 
sequencing depth. Systematic errors refer to mutations observed 
in all DNA molecules, including insertions, deletions and substi-
tutions, which are introduced during synthesis and PCR amplifi-
cation (referred to as common errors), or the loss of partial DNA 
molecules. In contrast to substitutions (single-nucleotide variations, 
SNVs), insertions and deletions (indels) change the length of the 
DNA sequence encoding the data and thus introduce challenges 
regarding the decoding process. In general, it is difficult to correct 
systematic errors, and thus they will lead to the loss of stored binary 
information to varying degrees.

To test the robustness baseline of the YYC against systematic 
errors, we randomly introduced the three most commonly seen 
errors into the DNA sequences at a average rate ranging from 0.01% 
to 1% and analysed the corresponding data recovery rate in compar-
ison with the most well-recognized coding scheme (DNA Fountain) 
without introducing an error correction mechanism. The results 
show that, in the presence of either indels (Fig. 2a) or SNVs (Fig. 2b), 
YYC exhibits better data recovery performance in comparison with 
DNA Fountain, with the data recovery rate remaining fairly steady 
at a level above 98%. This difference between the DNA Fountain 
and other algorithms, including YYC, occurs because uncorrectable 
errors can affect the retrieval of other data packets through error 
propagation when using the DNA Fountain algorithm. Although 
the robustness to systematic errors can be improved by introduc-
ing error correction codes, such as the Reed–Solomon (RS) code or 
low-density parity-check code21,30,31, when the error rate exceeds the 
capability of such codes, the error correction will fail to function as 
designed. Furthermore, it is universally acknowledged that no effi-
cient error correction strategies have been experimentally verified 
to be effective for insertions and deletions32, let alone loss of the 
entire segment coding sequence. Therefore, in real applications, tra-
ditional error correction codes might play a limited role for improv-
ing robustness because of their inability to correct indels or the loss 
of the entire sequence.

As the other major factor for data recovery, the loss of partial 
DNA molecules can also affect the success rate of data retrieval33. 
Like early coding schemes (for example, those of Church et al., 
Goldman et al. and Grass et al.), the YYC is also designed like a 
linear block nonerasure code, with a linear relationship between 
data loss and the encoded sequence loss. Nevertheless, because of 
the convolutional binary incorporation of YYC, errors that cannot 
be corrected within one DNA sequence will lead to the loss of infor-
mation for two binary sequences. In contrast, the DNA Fountain 
algorithm uses a different data retrieval strategy based on its grid-
like topology of data segments, and theoretically, its data recovery 
cannot be guaranteed when a certain number of DNA sequences 
are missing22. In this work, in silico simulation of the data recov-
ery rate in the context of a gradient of DNA sequence loss was per-
formed. The results show that the YYC exhibits linear retrieval, as 
predicted. The data recovery percentage remains at 98% when the 
sequence loss rate is <2%. Even with 10% sequence loss, the YYC 
can recover the remaining ~90% of the data. In contrast, when the 
sequence loss rate exceeds 1.7%, the data recovery rate of the DNA 

Table 1 | Comparison of DNA-based data storage schemes

Church et al. Goldman et al. Grass et al. erlich et al. Chen et al. This 
work 
(YYC)

General attributes Error correction strategy No Repetition RS Fountain LDPC RS

Robustness against excessive 
errors

Yes Yes Yes No Yes Yes

Information density (bits nt−1)a 1a 1.58a 1.78a 1.98a 1.24b 1.95

Physical density 
achieved 
(Ebytes g−1)

In vitro 0.001a 0.002a 0.025 0.21a N/Ab 2.25

In vivo N/A N/A N/A N/A 270.7b 432.2b

Biotechnical compatibility GC content (%) of sequences 2.5–100 22.5–82.5 12.5–100 40–60 N/A 40–60

Maximum homopolymer length 
(nt)

3 1 3 4 N/A 4

Ratio (%) of sequences with 
free energy >−30 kJ mol−1

71.72 25.87 90.14 65.25 N/A 100

The schemes are presented chronologically based on publication date. The biotechnical compatibility is obtained according to in silico simulation of 1 GB file collections (Methods). LDPC, low-density parity 
check. aInformation based on data from ref. 22. bCalculated value in the form of data coding in a DNA fragment integrated into the yeast genome. N/A means the data is not available in the corresponding studies.
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Fountain algorithm becomes highly volatile and drops significantly 
(Supplementary Table 5). Fountain codes function well for telecom-
munications and internet communications because the information 
transfer and verification are synchronous, thus giving the informa-
tion source a chance to send more data packets for successful data 
recovery. However, the information writing (synthesis) and reading 
(sequencing) processes for DNA-based data storage are heteroch-
ronic, meaning that multiple, stepwise molecular manipulations 
are involved during the whole process. This makes the immediate 
transmission of additional data packets unrealistic for DNA-based 
data storage. Thus, although rateless codes including Fountain 
codes may improve the performance by adjusting their configura-
tion and parameters, such coding schemes that suffer from the risk 
of uncertain decodability are not ideal for DNA-based data storage 
applications.

Experimental validation of the YYC with in vitro storage. To 
determine the compatibility of the YYC with current biochemi-
cal technologies, including DNA synthesis, PCR amplification and 
sequencing, we encoded three digital files (two text files, one each 
in English and Chinese, and an image) using the YYC and stored 
the encoded file in the form of 10,103 200 nt oligos in vitro. The 
sequence design of the oligos generated by the YYC transcoding is 
illustrated in Fig. 3.

Three oligo pools were synthesized for an experimental valida-
tion of in vitro storage. Pool 1 (P1) includes oligos with 25% logi-
cal redundancy. In comparison, two independent oligo pools (P2 
and P3) of these three files, both transcoded by the DNA Fountain 
algorithm, were also synthesized using previously described settings 
(Fig. 3a):22 Pool 2 (P2) includes 10,976 oligos encoding these three 
files individually, where it has been reported previously that logical 
redundancy is required for successful decoding, while pool 3 (P3) 
encodes the same files in a .tar archiving compressed package. The 
RS error-correction code was used in all three oligo pools.

The average molecule copy (AMC) number of the P1, P2 and P3 
master pools is estimated to be ~107. A ten-fold serial dilution of P1, 
P2 and P3, with estimated AMC number from 106 to 100 for each 
oligo pool, was performed for sequencing to evaluate the minimal 
copy number of oligos required for successful file retrieval, as well 
as the robustness performance against DNA molecule loss (Fig. 3b).  
The sequencing results demonstrate that ~99.9% of the correspond-
ing data from P1 can be recovered at AMC numbers above 103, 
with no preference regarding the specific data format (Fig. 3b and 

Supplementary Fig. 5c). As the AMC number decreases in magni-
tude, the decoding robustness shows an increase of instability. The 
average data recovery rate decreases to 71.2% at an AMC number 
of 102, ranging from 65.69% to 87.53% for each stored file. It drops 
further to below 10% when the AMC number is less than 101. In 
general, the YYC exhibits linear retrieval trend, which is positively 
correlated with the amount of data-encoding DNA molecules 
retained (Fig. 3c). For the DNA Fountain algorithm, the data recov-
ery rate at an AMC number above 104 is comparable to that of the 
YYC, but it drops significantly at lower AMC numbers from 103 to 
the single-copy level (Fig. 3b). Especially for P3, the data was first 
.tar archived and then transcoded for storage. According to our 
experimental results, a maximum of 32.83% of the data package 
can be retrieved at lower levels of AMC number (Supplementary 
Data 1). However, the disruption of the compressed package leads 
to total loss of the original data. In addition, it has been suggested 
previously that most random errors introduced during synthesis or 
sequencing can be corrected by increasing the sequencing depth34. 
However, we found that, although lost sequences could be retrieved 
by such deep sequencing (Supplementary Fig. 6a), these sequences 
are at relatively low depth and contain more errors (Supplementary 
Fig. 6b). Therefore, such retrieved sequences are insufficient for 
valid information recovery. The current results suggest that loss of 
DNA molecules is the major factor affecting the data recovery rate, 
and that even high sequencing depth cannot improve the recovery 
rate if a certain amount of data-encoding DNA molecules are lost. 
In general, the relationship found between the information recovery 
rate and the sequence retention rate of each synthesized oligo pool 
in the in vitro experiment is consistent with that found in the in 
silico simulations, for the YYC and DNA Fountain algorithms.

To further investigate the compatibility of the coding schemes 
for different binary patterns from various files, we examined the 
performance of the YYC and DNA Fountain algorithms on test files 
in various formats. It is reported that information loss and decod-
ing failure in DNA data storage can also result from original defects 
in the transcoding algorithms26,35–38. Therefore, increasing the logi-
cal redundancy could greatly improve the probability of successful 
decoding for all the coding schemes. However, too much logical 
redundancy requires the synthesis of more nucleotides and thus 
reduces the information density. Therefore, it is very important to 
keep the logical redundancy level in a controllable range for mas-
sive file archiving. Based on the transcoding simulations for these 
files, it is suggested that, especially for nonexecutable files, the 
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DNA Fountain algorithm exhibits variable requirements for the 
level of logical redundancy, leading to a varying information den-
sity (Supplementary Table 6). In contrast, the YYC coding scheme 
always requires a relatively low level of logical redundancy, resulting 
in more general compatibility with a broader range of file types and 
demonstrating a more stable information density.

Experimental validation of the YYC with in vivo storage. In vivo 
DNA data storage has attracted attention in recent years because of 
its potential to enable economical write-once encoding with stable 
replication for multiple data retrievals30. However, whether and the 
extent to which the robustness of a coding scheme can be main-
tained against spontaneous mutations or unexpected variations 
accumulated during long-term passaging of living cells has not been 
comprehensively investigated previously. Thus, we encoded a por-
tion of a text file (Shakespeare Sonnet.txt) into a 54,240 bp DNA 
fragment containing 113 data blocks using the YYC and evaluated 
its potential data robustness for in vivo DNA data storage applica-
tions. The sequence design for each data block included a 456 bp 
data payload region and a 24 nt RS code region (Fig. 4a). The gener-
ated DNA fragment was first synthesized de novo into 60 of ~1 kbps 
subfragments and then assembled into 20 of ~2.8 kbps fragments 
(Methods). Taking advantage of the high homologous recombina-
tion efficiency of yeast, these fragments were directly transformed 
into yeast strain BY4741 together with the linearized low-copy 
centromeric vector pRS416 to enable one-step full-length DNA 
assembly in vivo. After ~1,000 generations by batch transfer of cell 
culture, we evaluated the robustness of the YYC scheme by subject-
ing 15 single colonies to whole-genome sequencing (Fig. 4b). First, 
in addition to indels or SNVs that could be introduced during con-
struction or passaging of the cells, we also observed varying degrees 
of partial fragment loss from ~21.1 kbps to ~51.4 kbps among all 15 
selected single colonies, leading to different levels of data recovery 

from 38.9% to 95.0% (Supplementary Table 7 and Fig. 4c,d). Since 
the observed indels or large deletions might lead to frameshifts of 
the data-encoding DNA sequence and subsequent decoding failure, 
a single-winner plurality voting strategy was applied to generate a 
consensus sequence from the reconstruction and alignment of mul-
tiple colonies (Fig. 4c). By doing so, we reconstructed a full sequence 
with 66 SNVs that cannot be corrected by the RS code introduced 
into the data block and fully recovered the stored data. In addition, 
to test the maximum physical density achievable in this study, we 
further integrated the constructed data-encoding DNA fragment 
into chromosome II of the yeast BY4741 genome. Therefore, for 
each resulting yeast cell, the data-encoding DNA is maintained at 
one single-copy level. By doing so, we successfully demonstrated 
that a physical density of ~432.2 EB g−1 can be achieved, suggesting 
a significant increase by three orders of magnitude than that dem-
onstrated in prior work22,39,40 (Table 1).

Discussion
The YYC transcoding algorithm offers several advantages. First, it 
successfully balances high robustness, compatibility and a consider-
able information density for DNA data storage compared with other 
early efforts. With the gradual popularization of DNA data storage, 
it is crucially important that the developed coding algorithms can 
perform robust and reliable transcoding for a wide variety of data 
types, especially for data with specific binary patterns. Before trans-
coding, compression algorithms such as Lempel–Ziv–Welch, Gzip 
or run-length encoding can be used to make the byte frequency41 
more balanced and avoid specific data patterns (Supplementary 
Table 1), thus improving the compatibility of the generated DNA 
sequences. However, because compression will change the original 
information structure, our results show that even partial loss of the 
DNA molecules will result in total failure to recover the compressed 
data. Current compression algorithms are not designed for DNA 
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data storage, and further refinement can be performed to compress 
data appropriately for robust bit-to-base transcoding. Another 
potential advantage of the YYC is the flexibility of the rule incor-
poration from its 1,536 options. Considering broader application 
scenarios, the YYC offers the opportunity to incorporate multiple 
coding schemes for the transcoding of a single file, thus providing 
an alternative strategy for secure data archiving. Furthermore, cod-
ing schemes for DNA storage can be modularized into data trans-
coding, assignment of indices, error correction, redundancy, etc., 
thus providing more options to be combined freely be users. In 
our early work, we also demonstrated an integration system called 
‘Chamaeleo’ in which the YYC could be used compatibly for bit-to-
base encoding together with other modules42. Further optimization 
and functionalities can be incorporated into the system as well.

Our sequencing results show that the error rate of the synthe-
sized oligo pools is ~1%, and in addition, ~1.2% of oligos are lost 
when mapping with the designed oligo sequence collections. There 
are two main steps in which systematic errors could be introduced: 
the synthesis of data-encoded oligos and PCR amplification to 
obtain a sufficient amount of DNA for sequencing. In general, ran-
dom errors introduced during sequencing can be corrected easily by 
using a sufficient sequencing depth, but errors introduced during  

PCR amplification can be problematic. Error-correction codes 
can improve the information retrieval, but logically redundant 
sequences including both inner and outer codes can play a more 
important role in retrieving lost sequences and correcting errors for 
reliable DNA-based data storage. The length of the DNA sequence 
may also limit the pool capacity of a DNA storage system. These 
issues could be addressed in the future by using DNA synthesis tech-
nology with high stepwise efficiency, throughput and fidelity, which 
could yield longer DNA sequences and a high quantity of DNA and 
avoid amplification. For the demonstration of in vivo DNA storage, 
we find that there are random 1 nt indels and deletions of varying 
sizes in different data-coding regions across the selected single colo-
nies, which could cause issues with data stability and recovery after 
long-term storage. Hence, it is critical that the coding strategy used 
should be able to retrieve as much information as possible. In addi-
tion, we also demonstrate herein that applying a voting strategy on a 
population of cells can further increase the possibility of fully recov-
ering the stored information. Nevertheless, future efforts to improve 
the stability of exogenous artificial DNA in host cells is necessary 
to avoid unexpected information loss during passaging. The theo-
retical information density of DNA storage of 2 bits per base can-
not be attained in real applications due to the setting of indices, the 
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error-correction strategy, intrinsic biochemical constraints and the 
technical limitations of the DNA synthesis and sequencing proce-
dures24. The introduction of ‘pseudobinary’ segments in our study 
will also reduce the information density. Nevertheless, compared 
with another recent study on data storage using artificial yeast chro-
mosomes in living yeast cells, the current results indicate better per-
formance in terms of information density30.

Methods
The YYC strategy. Demonstration of the YYC transcoding principle. In the example 
referred to as coding scheme no. 888 in Supplementary Fig. 1a, the yang rule states 
that [A, T] represents the binary digit 0 while [G, C] represents the binary digit 
1. Meanwhile, the yin rule states that the local nucleotide (the current nucleotide 
to be encoded) is represented by the incorporation of the previous nucleotide 
(or ‘supporting nucleotide’) and the corresponding binary digit (Supplementary 
Fig. 1b). During transcoding, these two rules are applied respectively for two 
independent binary segments and transcoded into one unique DNA sequence, 
while decoding occurs in the reverse order. For example, given an input signal 
formed of ‘a’ and ‘b’ of ‘10110011’ and ‘01011101’, respectively, the transcoding 
scheme will start with the first nucleotide in each segment. According to the yang 
rule, ‘1’ in ‘a’ provides two options [C, G]. With the predefined virtual nucleotide 
in position 0 as ‘A’, the yin rule and ‘0’ for ‘b’ also provide two options [A, G] 
(Supplementary Fig. 1a). Therefore, the intersection of these two sets generates the 
unique base [G] transcoding the first binary digit in these two segments. Similarly, 
the rest of the two segments can be converted into a unique nucleotide sequence 
(Supplementary Fig. 1b and Supplementary Video 1). Note that switching the 
binary segments will change the transcoded result, which means that [a: Yang, b: 
Yin] and [b: Yang, a: Yin] will result in the generation of completely different DNA 
sequences. Generally, only one, fixed incorporated coding scheme is selected to 
transcode each dataset. Nevertheless, multiple coding schemes can be used for 
transcoding in encryption applications, where the corresponding information 
describing the coding schemes used would be stored separately.

Incorporation of the YYC transcoding pipeline. Considering the features of the 
incorporation algorithm, binary segments containing excessively imbalanced 0s 
or 1s will tend to produce DNA sequences with extreme GC content or undesired 
repeats. Therefore, binary segments containing a high ratio of 0 or 1 (>80%) will 
be collected into a separate pool and then selected to incorporate with randomly 
selected binary segments with normal 0-to-1 ratios.

Constraint settings of the YYC transcoding screening. In this study, a working scheme 
named ‘YYC-screener’ is established to select valid DNA sequences. By default, 
the generated DNA sequences (normally ~200 nt) with a GC content >60% or 
>40%, carrying >6-mer homopolymer regions or possessing a predicted secondary 
structure of <−30 kcal mol−1 are rejected. Then, a new run of segment pairing will 
be performed to repeat the screening process until the generated DNA sequence 
meets all the screening criteria. Considering that DNA sequencing and synthesis 
technologies continue to evolve rapidly, the constraint settings are designed as 
nonfixed features to allow user customization. In this work, the constraints are set 
as follows: a GC content between 40% and 60%, a maximum homopolymer length 
<5 and a free energy ≥−30 kcal mol−1 (the free energy of the secondary structure is 
calculated using Vienna RNA version 2.4.6).

In silico transcoding simulation. Computing and software. All encoding, decoding 
and error analysis experiments were performed in an Ubuntu 16.04.7 environment 
running on an i7 central processing unit with 16 GB of random-access memory 
using Python 3.7.3.

Input files and parameters for simulation. The test files included 113 journal articles 
(including images and text), 112 .mp3 audio files from Scientific American and the 
supplementary video files from 33 journal articles.

To compare the compatibility of the different coding schemes, all the test 
files were transcoded by using Church’s code, Goldman’s code, Grass’ code, DNA 
Fountain and the YYC in the integrated transcoding platform ‘Chamaeleo’ that we 
developed42. The segment length of the binary information was set as 32 bytes. For 
Church’s code, Goldman’s code and Grass’ code, the original settings as previously 
reported were used in this study. For the DNA Fountain and YYC algorithms, the 
constraints were set as follows: a GC content of 40–60% and a maximum allowed 
homopolymer length of 4. For the free energy constraint in the YYC algorithm, the 
cutoff for probe design was set as −13 kcal mol−1 for a ~20 nt DNA sequence, and 
considering a length of the data-coding DNA of 160 nt, we adjusted the cutoff to 
−30 kcal mol−1 (refs. 43,44).

Additional transcoding simulation tests were performed to evaluate the 
robustness and compatibility of the DNA Fountain and YYC algorithms. The DNA 
Fountain source code was used to perform encoding and decoding tests on nine 
different file formats and ten bitmap images with the default parameter settings 
(c-dist = 0.025, delta = 0.001, header size = 4, homopolymer = 4, GC = 40–60%) 

with minimum decodable redundancy. The oligo length of both strategies was set 
as 152 bases with indices or seeds for data retrieval and without error-correction 
codes. To determine the minimum redundancy required for file decoding, a test 
interval of minimum redundancy was set as 1%, and the maximum redundancy 
allowed was 300%. In some cases, the process terminated with a system error, 
which might be caused by stack overflow.

Experimental validation. File encoding using the YYC and DNA Fountain 
algorithms. The binary forms of three selected files (9.26 × 105 bits, 7.95 × 105 bits 
and 2.95 × 105 bits) were extracted and segmented into three independent 128 bit 
segment pools. A 16 bit RS code was included to allow the correction of up to two 
substitution errors introduced during the experiment. Next, four 144 bit binary 
segments (data payload + RS code) were used to generate a fifth redundant binary 
segment to increase the logical redundancy. Then, another 16 bit index was added 
into each binary segment to infer its address in the digital file and in the oligo 
mixture for decoding. Coding scheme no. 888 from the YYC algorithm was applied 
to convert the binary information into DNA bases. The aforementioned ‘YYC-
screener’ was used to select viable DNA sequences. Eventually, 8,087 of 160 nt DNA 
sequence segments were generated. To allow random access to each file, a pair 
of well-designed 20 nt flanking sequences were added at both ends of each DNA 
sequence. Finally, an oligo pool containing 10,103 single-stranded 200 nt DNA 
sequences was obtained.

For DNA Fountain, the recommended default settings from its original report22 
(c-dist = 0.1, delta = 0.5, header size = 4, homopolymer = 4, GC = 40–60%), with 
the exception of redundancy, were used to generate the DNA oligo libraries. The 
minimum redundancy to ensure successful decoding was determined. Therefore, 
13%, 22%, 73% and 12% logical redundancy was added for a .tar archiving 
compressed file, text1, text2 and image files, respectively. Finally, an oligo library 
encoding a .tar archiving compressed file (9,185 sequences) and an oligo library 
encoding the mixed three individual files (10,976 sequences) were obtained.

A part of one text file (~13 kB), was transcoded into DNA sequences by YYC 
for in vivo storage using a similar procedure, but the binary segment length was set 
as 87 bytes (or 456 bits). As described in the main text, the sequence was divided 
into 113 data blocks of 456 nt each. To increase the fidelity, a 24 nt RS code was 
added. The total data payload region as double-stranded DNA for in vivo storage is 
(456 + 24) × 113 = 54,240 bp.

Synthesis and assembly. The three oligo pools were outsourced for synthesis by 
Twist Biosciences and delivered in the form of DNA powder for sequencing.

For in vivo storage, the 54,240 bp DNA fragment was first segmented into 
20 subfragments (2,500–2,900 bp) with overlapping regions and then further 
segmented into building blocks (800–1,000 bp, hereafter referred to as blocks). 
For each block, 20 of 80-nt oligos were synthesized with a commercial DNA 
synthesizer (Dr. Oligo, Biolytic Lab Performance) and then assembled into 
blocks by applying the polymerase cycling assembly method using Q5 High-
Fidelity DNA Polymerase (M0491L, NEB) and cloned into an accepting vector 
for Sanger sequencing. Then, the sequencing-verified blocks were released from 
their corresponding accepting vector by enzymatic digestion for the assembly 
of subfragments by overlap extension (OE-)PCR. Gel purification (QIAquick 
gel extraction kit, 28706, QIAGEN) was performed to obtain the assembled 
subfragments. By transforming all 20 subfragments (300 ng each) and the low-
copy accepting vector pRS416 into BY4741 yeast using LiOAc transformation45 
and taking advantage of yeast’s native homologous recombination, the full-length 
~54 kb DNA fragment was obtained. After 2 days of incubation on selective media 
(SC-URA, 630314, Clontech) at 30 °C, 16 single colonies were isolated for liquid 
culturing in YPD (Y1500, Sigma) before sequencing. One of the colonies showed 
very low target region coverage and was excluded from further analysis.

For the in vivo storage demonstration via genome integration, the full 
assembled fragment was inserted right after gene YBR150C on chromosome II with 
the LEU2 marker for selection via yeast transformation. The transformants were 
recovered on SC-Leu plates (SC-LEU, 630310, Clontech). Three positive colonies 
were isolated for genomic DNA extraction and sequencing.

Library preparation and sequencing. For library preparation of the synthesized 
oligo pool, the DNA powder was first dissolved in double-distilled water (ddH2O) 
to obtain a standard solution, with an average of 107 molecules μL−1 per oligo for 
each synthesized oligo pool. Then, the standard solution was serially diluted by 
10-fold to create the seven working solutions (WSs) of WS6 to WS0 with average 
concentration of 106 to 100 DNA molecules μL−1, respectively, for each oligo pool. 
Then, each WS was amplified by PCR with three technical replicates to obtain the 
amplified product for P2 and each of the three different files for P1 and P3. PCR 
amplification was performed using 25 μL 2× Q5 High-Fidelity DNA Polymerase 
master mix (M0491L, NEB), 2 μL forward and reverse primer pairs each (10 μM 
each), 1 μL template DNA and 20 μL ddH2O added to a final reaction volume of 
50 µL. To obtain a sufficient amount of product for later sequencing, the PCR 
thermal cycler programme settings for P1 and P3 were as follows: 98 °C for  
5 min; 23, 27, 32, 36, 40, 44 and 48 cycles of 98 °C for 10 s, 62 °C for 15 s and 72 °C 
for 10 s; and final extension at 72 °C for 2 min. The PCR settings for P2 were 
almost the same, but the annealing temperature was 60 °C for DF-F1 (Forward 
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primer 1) and 58 °C for DF-F2 (Forward primer 2) and DF-F3 (Forward primer 3).  
The concentrations of products were measured using gel electrophoresis and 
Qubit fluorometer, and corresponding molecules per microlitre values were 
also calculated (Supplementary Data 1). All amplified DNA libraries were then 
sequenced using DIPSEQ-T7 sequencing46.

For in vivo storage, the methods for genomic DNA extraction and standard 
library preparation of the yeast colonies were described in previous studies47. The 
prepared samples were sequenced using the DNBSEQ-G400 (MGISEQ-2000) and 
DNBelab sequencing platform48.

Data analysis. In total, >3 G PE-150 reads were generated for the in vitro storage 
experimental validation. Sequencing data with an average depth of 100× were 
randomly subsampled for information retrieval. The reads were first clustered  
and assembled to complete sequences for each type of oligo. Flanking primer 
regions were removed, DNA sequences were decoded to binary segments using  
the reverse operation of encoding and substitution errors were corrected using 
the RS code. The binary segments were reordered according to the address region. 
During this process, ‘pseudobinary’ segments were removed based on the address. 
The complete binary information was then converted to a digital file. The data 
recovery rate was calculated using successfully recovered binary segments

total number of binary segments  (Supplementary 
Data 1). For error analysis, sequencing data with average depth of 100×, 300×, 
500×, 700× and 900× were randomly subsampled six times using different  
random seeds.

In total, >50 M PE-100 reads were generated for in vivo storage, in which the 
10% low-quality reads (Phred score <20) by SOAPnuke were filtered49. Reads of 
the host genome were removed using samtools after mapping by BWA50,51. Short 
reads were then assembled into contigs by SOAPdenovo52,53. Blastn was used to 
find the connections between contigs54. A Python script was written to merge the 
contigs and obtain the assembled sequences for each strain. Multiple sequence 
alignment was conducted to align the assembled sequences by clustalW2 for the 
majority voting process to identify structural variations, insertions and deletions55. 
Pre-added RS codes were used for error correction of substitutions. The complete 
DNA sequence was decoded by reversing the operations of encoding to recover the 
binary information.

The physical density was calculated as

Average information carried per nucleotide
Average mass per nucleotide × Average copy number × (1+Redundancy percentage) ,

where

Average mass per nucleotide =

Average molecular weight per nucleotide
Avogadro constant

and

Average information carried per nucleotide

=

2× Number of nucleotides in data payload region
Total length used .

The average molecular weight per nucleotide is 330.95 g mol−1, which is a 
constant.

For the in vitro demonstration in this work, the average copy number for 
effective data recovery is 100, the length of the data payload region is 128 nt, the 
total length is 200 nt and the redundancy is ~30% including the ‘pseudobinary’ 
sequence. Therefore, the physical density is calculated to be 1.79 × 1019 bits per 
gram of DNA, which equals 2.25 × 1018 bytes per gram of DNA.

For the in vivo demonstration in this work, the average copy number is 1 as the 
exogenous sequence is integrated to genome, the length of the data payload region 
is 51,528 bp and the total length is 54,240 bp. Therefore, the physical density is 
calculated to be 3.46 × 1021 bits per gram of DNA, which equals 4.322 × 1020 bytes 
per gram of DNA.

For Chen et al., according to their paper30, the average copy number is 1, the 
average information carried per nucleotide is 1.19 bits nt−1. Therefore, the physical 
density is calculated to be 2.707 × 1020 bytes per gram of DNA.

Reporting Summary. Further information on research design is available in the 
Nature Research Reporting Summary linked to this article.

Data availability
Source data for all figures are provided with this paper. The sequencing raw data 
that support the findings of this study have been deposited in the CNSA (https://
db.cngb.org/cnsa/) of the CNGBdb with accession code CNP0001650.
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The code package for the YYC is available in the GitHub repository (https://github.
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