SCISPACE

formerly Typeset

@ Open access « Book Chapter - DOI:10.1007/978-3-642-35813-5_5
Towards Practical Runtime Verification and Validation of Self-Adaptive Software
Systems — Source link [/

Gabriel Tamura, Gabriel Tamura, Norha M. Villegas, Norha M. Villegas ...+10 more authors

Institutions: ICESI University, university of lille, University of Victoria, George Mason University ...+8 more institutions

Published on: 08 Jan 2013

Topics: Software verification, Software verification and validation, Software construction, Runtime verification and
Software sizing

Related papers:

« The vision of autonomic computing

» Software Engineering for Self-Adaptive Systems : A Second Research Roadmap
« Software Engineering for Self-Adaptive Systems: A Research Roadmap

« Using models at runtime to address assurance for self-adaptive systems

« A survey of formal methods in self-adaptive systems

Share thispaper: @ ¥ M &

View more about this paper here: https:/typeset.io/papers/towards-practical-runtime-verification-and-validation-of-
47w0itao3w

https://typeset.io/
https://www.doi.org/10.1007/978-3-642-35813-5_5
https://typeset.io/papers/towards-practical-runtime-verification-and-validation-of-47w0itao3w
https://typeset.io/authors/gabriel-tamura-3w87ff9tpq
https://typeset.io/authors/gabriel-tamura-3w87ff9tpq
https://typeset.io/authors/norha-m-villegas-5fcf8eat8e
https://typeset.io/authors/norha-m-villegas-5fcf8eat8e
https://typeset.io/institutions/icesi-university-3n8kua7i
https://typeset.io/institutions/university-of-lille-2tmq6ir3
https://typeset.io/institutions/university-of-victoria-7uefcrq9
https://typeset.io/institutions/george-mason-university-2cqsiyzt
https://typeset.io/topics/software-verification-1o24ub5u
https://typeset.io/topics/software-verification-and-validation-2i06f0pp
https://typeset.io/topics/software-construction-3b0bx0uv
https://typeset.io/topics/runtime-verification-3jq1s44v
https://typeset.io/topics/software-sizing-fsosq92i
https://typeset.io/papers/the-vision-of-autonomic-computing-oufkhpilif
https://typeset.io/papers/software-engineering-for-self-adaptive-systems-a-second-vyp99zhddq
https://typeset.io/papers/software-engineering-for-self-adaptive-systems-a-research-3vvz0zex5m
https://typeset.io/papers/using-models-at-runtime-to-address-assurance-for-self-3nt34hc5is
https://typeset.io/papers/a-survey-of-formal-methods-in-self-adaptive-systems-4fvozdq7zn
https://www.facebook.com/sharer/sharer.php?u=https://typeset.io/papers/towards-practical-runtime-verification-and-validation-of-47w0itao3w
https://twitter.com/intent/tweet?text=Towards%20Practical%20Runtime%20Verification%20and%20Validation%20of%20Self-Adaptive%20Software%20Systems&url=https://typeset.io/papers/towards-practical-runtime-verification-and-validation-of-47w0itao3w
https://www.linkedin.com/sharing/share-offsite/?url=https://typeset.io/papers/towards-practical-runtime-verification-and-validation-of-47w0itao3w
mailto:?subject=I%20wanted%20you%20to%20see%20this%20site&body=Check%20out%20this%20site%20https://typeset.io/papers/towards-practical-runtime-verification-and-validation-of-47w0itao3w
https://typeset.io/papers/towards-practical-runtime-verification-and-validation-of-47w0itao3w

Towards Practical Runtime
Verification and Validation of
Self-Adaptive Software Systems

Gabriel Tamura! Norha M. Villegas? Hausi A. Miiller? Jodo Pedro Sousa? Basil
Becker? Gabor Karsai® Serge Mankovskii7 Mauro Pezze? Wilhelm Schéfer?
Ladan Tahvildari'? and Kenny Wong!*

! University of Lille 1-LIFL-INRIA, France, Los Andes University and Icesi
University, Colombia
gabriel.tamura@inria.fr
2 University of Victoria, British Columbia, Canada, and Icesi University, Colombia
nvillega@cs.uvic.ca
3 University of Victoria, British Columbia, Canada
hausi@cs.uvic.ca
1 George Mason University, USA
jpsousa@gmu.dot.edu
5 Hasso Plattner Institute at the University of Potsdam, Germany
basil.becker@hpi.uni-potsdam.de
5 Vanderbilt University, USA
gabor.karsai@vanderbilt.edu
" CA Inc., Canada
serge.mankovskii@ca.com
8 University of Milano Bicocca, Italy and University of Lugano, Switzerland
mauro.pezzeQunisi.ch
9 University of Paderborn, Germany
wilhelm@upb.de
10" University of Waterloo, Canada
ltahvild@uwaterloo.ca
' University of Alberta, Canada
kennywQ@ualberta.ca

Abstract. Software validation and verification (V&V) ensures that soft-
ware products satisfy user requirements and meet their expected quality
attributes throughout their lifecycle. While high levels of adaptation and
autonomy provide new ways for software systems to operate in highly
dynamic environments, developing certifiable V&V methods for guaran-
teeing the achievement of self-adaptive software goals is one of the major
challenges facing the entire research field. In this chapter we (i) analyze
fundamental challenges and concerns for the development of V&V meth-
ods and techniques that provide certifiable trust in self-adaptive and
self-managing systems; and (ii) present a proposal for including V&V
operations explicitly in feedback loops for ensuring the achievement of
software self-adaptation goals. Both of these contributions provide valu-
able starting points for V&V researchers to help advance this field.

1 Introduction

Software validation and verification (V&V) concerns the quality assessment
of software products throughout their lifecycle. Its goal is to ensure that the
software product satisfies its functional requirements and expected quality at-
tributes [1-3]. Over the past decade, many self-adaptive approaches and systems
have been proposed by researchers from the software engineering for adaptive
and self-managing systems (SEAMS) community, with multiple adaptation pur-
poses [4,5]. Certainly, many of the proposed self-adaptive software (SAS) sys-
tems have been designed to operate in highly dynamic socio-technical ecosys-
tems where requirements, models, and contexts change at runtime [6]. This wide
spectrum of system types, adaptation concerns, and dynamic goals has made it
difficult to develop general runtime V&V methods. Unsurprisingly, V&V of SAS
systems running in safety-critical environments is particularly challenging [7].

For inherently non-adaptive systems, that is, systems based on stable and
well-known system execution conditions, many V&V methods, techniques and
tools have been developed to be applied at design time. However, the quality
assessment of SAS systems is challenging, not only because their adaptation ob-
jectives may vary according to environmental conditions at runtime, but also
because the systems evolve to satisfy their evolving dynamic requirements. In
this realm, V&V tasks—traditionally applied at design-time—are required to
certify structural and behavioral aspects in the different phases of the adapta-
tion process. In addition, these tasks must be performed at runtime in the two
essential parts of a SAS system, namely, the adaptation mechanism, and the
target system.

Besides the SEAMS community, there are several other communities dealing
with runtime V&V, although not necessarily for SAS systems. During the past
decade, the real-time verification (RV) community has run a workshop concerned
with the monitoring and analysis of system executions.! The longer term goal of
RV, already stated at RV 2001, is to investigate whether the use of lightweight
formal methods applied during the execution of programs is a viable complement
to the current heavyweight methods proving programs’ correctness always be-
fore their execution, such as model checking and theorem proving, among others.
Dynamic analysis, or the analysis of data gathered from a running program, has
great potential for self-adaptive systems because it relies on direct monitoring
mechanisms that expose the system’s actual behavior [8]. The Models@runtime
workshop, which emerged from the model-driven software development commu-
nity, aims to use model-driven techniques for validating and monitoring runtime
behavior. The Requirements@Qruntime workshop—collocated with the Require-
ments Engineering (RE) conference—aims to explore the potential of runtime
abstractions and models of requirements, to be used as a practical means to ad-
dress the challenges posed by volatile or poorly-understood environmental con-
texts.? In many ways, these workshops and conferences focus on different aspects

! International Conference on Runtime Verification—http://runtime-verification.org/
2 http://www.comp.lancs.ac.uk/bencomo/RRT/

of runtime V&V such as requirements, models, properties, instrumentation, and
dynamic analysis.

Naturally, for the non-adaptive parts of a self-adaptive system, the traditional
V&V methods can be used effectively. For the adaptive parts, runtime V&V
methods are needed to guarantee self-adaptation objectives, independently of
what is adapted. In general, SAS systems feature mechanisms based on the idea
of the feedback loop [9]. We aptly termed the foundational science for runtime
V&V methods control science. Control science can be defined as a systematic way
to study certifiable V&V methods and tools to allow humans to trust decisions
made by self-adaptive systems. In a 2010 report, Dahm identified control science
as a top priority for the US Air Force (USAF) science and technology research
agenda for the next 20 years [10]. Certifiable V&V methods and tools are critical
for the success of autonomous, autonomic, smart, self-adaptive and self-managing
systems.

One systematic approach to control science for adaptive systems is to study
V&V methods for the mechanisms that sense the dynamic environmental con-
ditions and the target system behavior, and act in response to these conditions
by answering the questions what, when and how to adapt. In this paper we use
the answers to these questions as key factors to determine when and where to
perform V&V activities in the context of feedback loops—the common core of
SAS systems.

This roadmap chapter focuses on research challenges concerning runtime
V&V for the adaptive parts of self-adaptive systems in highly dynamic envi-
ronments. In particular, we (i) analyze the cases in which the objectives, the
system, or the monitoring infrastructure of a SAS system must be adapted;
and (ii) propose how to make V&V tasks explicit in the feedback loop model
elements, using results obtained by the aforementioned communities in this re-
search field. Our goal is to provide researchers with a vision of open challenges
in V&V for SAS systems, and discuss opportunities not only for proposing new
runtime V&V techniques, but also for building on top of existing ones. In addi-
tion, our proposal for the explicitness of V&V tasks provides solid starting points
for V&V researchers from other communities to deploy different techniques and
methods for improving the trustworthiness of self-adaptive and self-managing
systems.

The remaining sections of this chapter are organized as follows. Section 2
describes a concrete industrial case study that we use to illustrate the concepts,
concerns and challenges discussed in this chapter. Section 3 outlines several chal-
lenges that arise from the differences in V&V requirements between software
developed with traditional methods and self-adaptive software, and presents se-
lected V&V drivers for self-adaptive software. Section 4 presents a refinement of
the general feedback adaptation loop to propose a model that explicitly involves
V&V tasks to address some of the previously identified challenges. This section
also presents approaches from SEAMS-related research communities that pro-
vide valuable contributions for the assessment of SAS systems. Finally, Section 5
concludes the chapter.

2 Application Example

This section introduces our concrete industrial case study.® In this application
example, self-adaptation is exploited to implement SOA governance mechanisms
to enforce service level agreements (SLAs), such as those on performance, avail-
ability and confidentiality, in a cloud computing infrastructure [11]. In SOA and
cloud-based systems QoS are highly affected by, and dependent on changing
situations. On the one hand, SLAs may be violated at any time during sys-
tem execution due to changes in the situation of relevant context entities such
as computational infrastructure components and users. On the other hand, as
businesses and users’ requirements are evolving continuously, contracted QoS
conditions (i.e., adaptation goals) may be frequently re-negotiated.

In this example, a performance SLA has been negotiated in terms of three
throughput service level objectives (SLOs) to guarantee three different levels of
system capacity in a cloud-based e-commerce platform: normal, medium and
high load. These SLOs are observed on the bottleneck-operation of the system,
ProcessingPurchaseOrders, and measured in terms of number of transactions
per time unit. A normal capacity is required for a regular load of the shopping
platform. A medium capacity is required when special offers are placed on social
networks promoting them. A high capacity must be guaranteed to deal with the
highest peak load of the platform caused by shopping seasons such as “Black
Friday”.

Governing the efficiency of the service-oriented infrastructure to optimize
operational costs is a major concern for the retailers of this example. Hence,
a self-adaptive mechanism based on service component architecture (SCA) re-
configuration was implemented to ensure quality of service (QoS) requirements
in the service-oriented system. The adaptation goal for this dynamic service-
oriented infrastructure is the contracted system capacity, in terms of the perfor-
mance SLA. Short settling time and consistency correspond to the adaptation
properties to be preserved. Adaptation properties in this application example are
borrowed from the catalog proposed by researchers from the SEAMS commu-
nity [5]. Settling time is defined as the time required for the adaptive system to
achieve the desired state. Consistency guarantees the structural and behavioral
integrity of the managed system with respect to the respective SCA integrity
constraints [12], after its adaptation.

Use Case 1: Controlling the Elasticity of the E-Commerce Platform. As efficiency
is a major concern, the capacity of the system must be either increased, or
decreased according to the context situations that determine the expected load
of the system. To accomplish this, context monitors must keep track of the
popularity of special offers placed on social networks, as well as the day of the
year to determine the applicable shopping season.

3 This example is based on the IBM Centre for Advanced Studies (CAS) Canada
project: “Managing Dynamic Context to Optimize Smart Interactions and Smart
Services”—https://www-927.ibm.com/ibm/cas/cassis/viewReport’/REPORT=747.

Use Case 2: Re-negotiating Adaptation Goals at Runtime. After the e-commerce
platform has been in operation, a new set of SLOs is added to the performance
SLA. These new SLOs define different thresholds of response time that must
be guaranteed according to the classification of the e-commerce platform’s cus-
tomers. Customers are classified as regular and premium users. A particular
mazimum response time threshold applies to regular customers. For premium
customers, the maximum response time must correspond to 90% of the thresh-
old defined for regular customers. Response time thresholds can be re-negotiated
at runtime.

This example is used in the following sections to discuss runtime V&V con-
cerns and research challenges in SAS systems, and illustrate the need for applying
V&V tasks at runtime.

3 V&V Drivers for Self-Adaptive Software Systems

In this section we analyze and discuss drivers or key factors to consider when
performing V&V tasks for SAS systems. We identify these drivers by (i) com-
paring how V&V for software that is adaptable at runtime differs from V&V
for software that is immutable at runtime; and (ii) analyzing concerns that arise
when dealing with three types of context changes that have been addressed by
SAS systems, namely, in the objectives, the system, and the monitoring infras-
tructure to be adapted.

The goal of this section is twofold. First, it analyzes the classic V model for
software development, and in particular its V&V activities, from the perspective
of SAS systems. Second, it presents V&V drivers that we identified by analyzing
three foundational questions concerning assurances for SAS systems: when to
perform V&V tasks? what must V&V tasks validate and verify? and where in the
adaptation cycle must these V&V tasks be performed? In light of these drivers,
we identify research avenues in the form of research problems and opportunities
to integrate V&V methods and techniques into the engineering of self-adaptive
software systems.

3.1 The Classic V Model for System Development

Figure 1 illustrates how V&V activities are enacted in traditional software engi-
neering to ensure that, at the different levels of system development, the software
satisfies a given set of requirements.

This set of requirements is usually specified in advance of system develop-
ment, allowing the definition of the corresponding complete problem space. From
these requirements, a solution space is delimited and a solution derived and con-
ceived in the form of a software architecture, which is refined into a software de-
sign. Both, architecture and design, are expressed as models (formal, semi-formal
or informal), which can be verified at design time on their functional properties
(e.g., correctness) with respect to the initial set of requirements. From this de-
sign, the software is materialized as units of code, which are gradually integrated,

Requirements | > Operation and

Specification Maintenance
System
Architecture | — — — — — — — — — = | Verification and
Validation
Integration,
Development Design [— — — — — = > | Testing and V&V Activities
Activities Verification

Coding ey Unit Testing

Software
System

Fig. 1. The classic V model for system development (adapted from [13]). Each de-
velopment phase is subject to a corresponding V&V phase—horizontal layers—as the
software is built and integrated.

verified and tested until the final system is obtained. Finally, this system is ver-
ified and validated as a whole before its deployment in production environments
[14].

In this general lifecycle, the software quality is guaranteed by different V&V
strategies applied in its different phases, even though several variations may pro-
vide additional assurances. For instance, despite the described flow of activities
following the solid arrows in the depicted V-model, the dashed arrows allow V&V
to be performed on the artifacts produced by any of the development activities
(e.g., requirements or design models).

Among the V&V strategies that have been used, the software testing meth-
ods are the ones most commonly used in industry. Software testing methods
can be very effective both in revealing failures and assessing the reliability of
software systems, but cannot provide evidence of the absence of faults [13,15].
More rigorous and effective strategies to reason about the program correctness
employ model checking, graph-based, and other model-based software testing
and verification methods [16-19]. However, these V&V methods have focused
generally on design time. Therefore, the assessment and certification of system
properties after changes occurring during system execution, either for ensuring
the satisfaction of changing requirements, or for re-certifying system properties
after adaptation, require not only traditional V&V methods adjusted to be ap-
plied at runtime, but also the adoption of non-traditional ones to be applied in
the different adaptation phases of SAS systems.

Another important difference between these two types of software systems is
the lifecycle phases in which V&V tasks are performed. In the classic V model,
V&V tasks are performed by software developers before deployment into produc-
tion environments. However, in the adaptation process, the system architecture,
design and implementation are evaluated, reconsidered and reconfigured at run-
time by the system itself, according to relevant context changes. Hence, V&V
tasks must be performed by the adaptation mechanism during the adaptation
process. This has three important consequences. First, after the software initial
release is in execution, the software development lifecycle phases (i.e., architec-
ture, design and implementation) are in fact “absorbed”, at least to some extent,
by the adaptation (i.e., self-reconfiguration) process. Second, the boundaries be-
tween these phases, now amalgamated in the adaptation process, are blurred [20].
Third, the target system may be adapted and reach a state that was unforeseen
at design time, and thus, the system has not been verified for that state. In
simple (“switching”) systems with a few possible adaptation results, this can be
verified at design-time, but for a system with a very large number of resulting
states this is unfeasible. Therefore, for SAS systems, in addition to the V&V
tasks performed at design time, the system itself needs to apply different V&V
methods at runtime. At this point, two questions arise: (i) what V&V meth-
ods are the most adequate to be applied at runtime? and (ii) at which specific
moments in the adaptation process should these methods be applied?

These are certainly challenging questions, given that, additionally, many as-
pects of self-adaptive systems are impossible to assess at design time, due to
their strong dependency on the actual execution environments. A recent US Air
Force research agenda posits that developing certifiable V&V methods for highly
adaptive systems is one of the major challenges facing the entire field. Under-
standing the inherent properties of adaptation mechanisms for software systems,
and the ways in which these properties can be guaranteed may require a large
part of the decade, if not more [10]. In the following sections we address these
questions.

3.2 The Viability Zone of Self-Adaptive Software Systems

We define the viability zone of a SAS system as the set of possible system states
in which the system operation is not compromised [21]. That is, the set of states
where the SAS system’s requirements and desired properties (i.e., adaptation
goals) are satisfied. Viability zones can be characterized in terms of relevant
context attributes and corresponding desired values. These context attributes
correspond to either measurements of internal variables of the target system
or the adaptation mechanism, or environmental variables whose variations can
take the system outside its viability zone. A particular SAS system may have
more than one associated viability zone (e.g., one for each adaptation goal). The
global viability zone of a SAS system thus results from the composition of these
partial viability zones. Moreover, existing viability zones can be added, replaced
or adjusted by adding or removing variables of interest at runtime.

In the case of our application example, the initial viability zone is defined in
terms of the performance SLA, and the three throughput SLOs (normal, medium
and high capacity—cf. Use Case 1 in Sect. 2). These three SLOs constitute three
different levels of system capacity that can been interpreted as three viability
sub-zones. The variables that characterize the e-commerce platform’s viability
zone correspond to the actual throughput of the ProcessingPurchaseOrders op-
eration, the popularity of special offers placed in a social network (including
whether an offer has been placed), and the shopping season, all of them to
be monitored at runtime. Seasons are characterized in three groups: regular,
medium (e.g., Valentine’s Day), and high seasons (e.g., Christmas and Black
Friday). Another associated viability zone in this example is used to control the
short settling-time adaptation property. This zone is defined by a single-variable
that is monitored to keep track of the time the e-commerce platform takes to
reconfigure the system to obtain the desired throughput. Furthermore, after the
re-negotiation of the performance SLA, a new viability zone must be computed
at runtime to control the response time SLOs (cf. Use Case 2).

VEV under Viability Zone Dynamics. It can be argued that our definition of
viability zone coincides with that of the solution space used in traditional (i.e.,
non-adaptive) software systems. However, from the previous examples it is clear
that the viability zone can change with context changes, as opposed to the
solution space concept, which is assumed to be fixed.

In effect, the viability zone of a target system under adaptation constantly
varies along adaptation dimensions. These variations take place every time the
adaptation operation modifies either the target system architecture (e.g., adding
or removing components and connectors) or the controller itself (e.g., modifying
its parameters or replacing the control algorithm), thus introducing new, or
removing existing variables and associated domain types.

Therefore, not only are runtime V&V methods required to cope with the
viability zone dynamics problem, but these V&V methods also need to be au-
tomatically generated according to the modifications that result from dynamic
adaptation. Thus, to extend the V&V coverage of the expanded viability zone,
runtime models are required for the incremental derivation of software artifacts
for V&V monitoring and checking.

In the aforementioned example, understanding its viability zone dynamics
is crucial for the self-adaptive e-commerce platform V&V tasks. In fact, the
adaptation mechanism together with its V&V tasks can be interpreted as an op-
timization problem, where the optimal solution is chosen among those within the
viability zone, based on the system capacity policies, as proposed by Balasubra-
manian et al. [22]. First, transitions between viability sub-zones are associated
to an adaptation policy (adaptation strategy). For instance, when the system
is approaching the threshold between a lower and a higher load—going from
the lower to the higher, the corresponding adaptation task must be triggered to
increase the system processing capacity accordingly (e.g., by deploying new com-
ponents for scalable processing). Similarly, the system capacity must be reduced
when it goes from a higher load to a lower one. In both cases, as the software

component structure is modified as a result of the adaptation, the SCA struc-
tural conformance property must be verified at runtime on the resulting system.
Second, changes in viability zones (e.g., changes in variables’ thresholds, and
addition or replacement of variables in adaptation dimensions) may affect not
only the adaptation strategy, but also the monitoring infrastructure, since these
changes are caused by changes in adaptation goals. Finally, runtime V&V tasks
aim to keep the adaptive system inside its viability zone, even when viability
zones are subject to changes at runtime. The way how V&V tasks contribute to
achieve this goal depends on the nature of the system and its requirements. For
instance, for safety-critical applications, runtime V&V must check if the system
will trespass the boundaries of its viability zone as a result of an adaptation, be-
fore instrumenting it in the running system. In those cases where self-adaptation
is interpreted as an optimization problem, V&V tasks can be used both, before
the adaptation, and after it. Before the adaptation, to restrict the alternatives to
consider, to those within the viability zone. After the adaptation, to ensure that
the solution is satisfying the new requirements under possibly changed context
situations.

3.3 What: Requirements and Adaptation Properties

We identified the underlying V&V questions in the domain of SAS systems as
what, where, and when to validate. This subsection focuses on the what to vali-
date question. The answer to this question relates to the identification of adap-
tation goals (e.g., non-functional requirements of the target system) and adapta-
tion properties (e.g., desired characteristics of the adaptation mechanism). Ex-
plicit adaptation goals and properties are crucial for the specification of suitable
V&V models for SAS systems, and the identification of corresponding metrics.
Moreover, having an explicit mapping between adaptation goals and properties,
and relevant context is required to ensure the coherence between V&V tasks
and the relevant context variables that characterize the system’s viability zone.
In our application example, we address this mapping by defining context-driven
SLAs [11]. As proposed in [11], context-driven SLAs are machine readable spec-
ifications of SLAs, in the form of contextual resource description framework
(RDF)* graphs, that not only state contracted conditions explicitly (e.g., the
throughput and response time SLOs), but also the context variables, and con-
text monitoring strategies required to keep track of the system behavior and
its viability zone (e.g, sensors and monitoring conditions to measure through-
put, response time, settling time, and the popularity of special offers, as well as
identify shopping seasons).

Properties and Metrics. V&V concerns for self-adaptation certification can
be classified according to the two constitutive parts of a SAS system. The first
relates to the certification of the target system, while the second to the certi-
fication of the adaptation mechanism [5]. After the 2010 Dagstuhl Seminar on

* http://www.w3.org/RDF/

Software Engineering for Self-Adaptive Systems, researchers from the SEAMS
community conducted an extensive analysis of self-adaptive approaches and de-
veloped a framework for evaluating self-adaptive systems, where desired proper-
ties of the target system (i.e., adaptation goals) and the adaptation mechanisms
(i.e., adaptation properties) are identified explicitly and defined in terms of qual-
ity attributes [5]. Several of the identified adaptation properties were borrowed
from control theory [9,23] and re-interpreted for self-adaptive software. More-
over, they classified adaptation properties according to how and where these
properties are observed (cf. Table 1). Concerning how they are observed, some
properties can be evaluated using static verification techniques, while others re-
quire dynamic verification and runtime monitoring (i.e., runtime V&V). With
respect to where they are observed, properties can be evaluated on either the
target system, or the adaptation mechanism. However, most properties can only
be observed directly on the target system even when they are used to evaluate
the adaptation mechanism.

Table 1. Classification of adaptation properties according to how and where they are
observed [5].

Property Where the
Adaptation Verification Property is
Property Mechanism Observed
Stability Dynamic Target system
Accuracy Dynamic Target system
Settling Time Dynamic Both
Small Overshoot Dynamic Target system
Robustness Dynamic Adaptation Mechanism
Termination Static ~ Adaptation Mechanism
Consistency Both Target system
Scalability Dynamic Both
Security Dynamic Both

Having no well defined and explicit metrics that can be used to assess prop-
erties, it is impossible to realize the vision of runtime V&V. Nevertheless, even
though the importance of having such explicit metrics seems obvious, an im-
portant barrier for the assessment of dynamic software systems is the lack of
accurate metrics to evaluate adaptive software [4]. Therefore, more research
is required on the definition of applicable domain-specific metrics that effec-
tively provide the means for evaluating relevant properties of dynamic software
systems. Some examples of metrics and corresponding mappings to adaptation
properties used in actual self-adaptive implementations and research initiatives,
where non-functional requirements are a major concern, are summarized in the
evaluation framework for self-adaptive software proposed by Villegas et al. [5].

10

An important challenge for V&V of SAS is to investigate innovative mech-
anisms that enable the application of techniques such as model checking, com-
positional verification, program synthesis, and dynamic analysis and monitoring
to asses these properties at runtime. Another important research concern is
the management of trade-offs that may arise from the need to ensure multiple
properties—trade-offs among multiple viability zones.

Dependency on Runtime Monitoring. Besides using different representa-
tion models for target system behaviour, traditional V&V also uses controlled
simulation environments. However, given the difficulties for building models to
predict self-adaptive system behavior for every possible operational situation,
and the impossibility of characterizing these situations in simulation environ-
ments, V&V of context-dependent properties requires information gathered at
runtime. For instance, in mission-critical systems, only with actual runtime mea-
surements it is possible to determine confidently whether the target system is
within its viability zone [24]. Understanding and characterizing which proper-
ties of self-adaptive software are critically dependent on runtime information is
crucial for realizing V&V in SAS effectively.

Uncertainty in Self-Adaptation. Context dependent requirements usually involve
uncertainty. Uncertainty can be both a challenge and an opportunity. In safety-
critical systems uncertainty is a tough challenge that exacerbates verification
tasks significantly [19,24]. In other scenarios such as e-commerce applications,
uncertainty is an opportunity, since the system can provide better service to
customers by leveraging the context information that arise from the interactions
between the users and the system, as well as from users’ situations [25].

The adaptive nature of the execution environment in SAS systems makes un-
certainty one of the most difficult challenges to be addressed by V&V researchers.
An interesting research opportunity is to tailor feedback loop-based mechanisms
used to manage uncertainty in modern control theory to context-aware SAS
systems [26]. Similarly, the rich literature on engineering adaptive mechanisms
for flight control systems inspires many researchers. In particular, Schumann
and Gupta proposed a V&V method to calculate safety regions for adaptive
systems around the current state of operation based on a Bayesian statistical
approach [27]. With this approach, they can provide a confidence measurement
on the probable accuracy of the system’s model under a particular situation.

We argue for the exploitation of viability zones as useful mechanisms to
manage uncertainty in the assurance of SAS systems. From this perspective, the
management of uncertainty problem focusses on determining explicit boundaries
for the SAS system’s viability zones and controlling the target system accordingly
(cf. Sect. 3.2).

3.4 Where: Separation of Concerns

We distinguish two system levels in SAS systems: the target system to be dy-
namically adapted according to context changes, and the adaptation mechanism.

11

For runtime V&V it is critical to understand the extent of the separation of these
two levels. This separation of concerns allows us to characterize, investigate, and
analyze V&V research problems for self-adaptive software effectively, by focusing
specifically on the respective concerns of each level.

Although the discussion in this chapter is applicable to both feedback and
feedforward control in computing systems [9], we focus on feedback control since
runtime V&V depends on online measurements from the target system and the
adaptation mechanism. That is, measured outputs are important for making
adaptive system quality decisions at runtime. Moreover, as feedforward control
takes also environmental disturbances—external context—into account, subse-
quently we use the terms feedback loop and control loop interchangeably. Follow-
ing the feedback loop abstraction from the V&V perspective, the target system
is an open loop for which the adaptation mechanism provides the elements to
close the loop. In other words, the target software system itself is unaware of
both context conditions and self-performance, with respect to the satisfaction of
its own functional and non-functional (context-dependent) requirements. Thus,
given that the objective of V&V is to guarantee the quality of a system, and this
quality is expressed as the fulfillment of its requirements, in SAS systems V&V
tasks must b