
 Open access Book Chapter DOI:10.1007/978-3-642-35813-5_5

Towards Practical Runtime Verification and Validation of Self-Adaptive Software
Systems — Source link

Gabriel Tamura, Gabriel Tamura, Norha M. Villegas, Norha M. Villegas ...+10 more authors

Institutions: ICESI University, university of lille, University of Victoria, George Mason University ...+8 more institutions

Published on: 08 Jan 2013

Topics: Software verification, Software verification and validation, Software construction, Runtime verification and
Software sizing

Related papers:

 The vision of autonomic computing

 Software Engineering for Self-Adaptive Systems : A Second Research Roadmap

 Software Engineering for Self-Adaptive Systems: A Research Roadmap

 Using models at runtime to address assurance for self-adaptive systems

 A survey of formal methods in self-adaptive systems

Share this paper:

View more about this paper here: https://typeset.io/papers/towards-practical-runtime-verification-and-validation-of-
47w0itao3w

https://typeset.io/
https://www.doi.org/10.1007/978-3-642-35813-5_5
https://typeset.io/papers/towards-practical-runtime-verification-and-validation-of-47w0itao3w
https://typeset.io/authors/gabriel-tamura-3w87ff9tpq
https://typeset.io/authors/gabriel-tamura-3w87ff9tpq
https://typeset.io/authors/norha-m-villegas-5fcf8eat8e
https://typeset.io/authors/norha-m-villegas-5fcf8eat8e
https://typeset.io/institutions/icesi-university-3n8kua7i
https://typeset.io/institutions/university-of-lille-2tmq6ir3
https://typeset.io/institutions/university-of-victoria-7uefcrq9
https://typeset.io/institutions/george-mason-university-2cqsiyzt
https://typeset.io/topics/software-verification-1o24ub5u
https://typeset.io/topics/software-verification-and-validation-2i06f0pp
https://typeset.io/topics/software-construction-3b0bx0uv
https://typeset.io/topics/runtime-verification-3jq1s44v
https://typeset.io/topics/software-sizing-fsosq92i
https://typeset.io/papers/the-vision-of-autonomic-computing-oufkhpilif
https://typeset.io/papers/software-engineering-for-self-adaptive-systems-a-second-vyp99zhddq
https://typeset.io/papers/software-engineering-for-self-adaptive-systems-a-research-3vvz0zex5m
https://typeset.io/papers/using-models-at-runtime-to-address-assurance-for-self-3nt34hc5is
https://typeset.io/papers/a-survey-of-formal-methods-in-self-adaptive-systems-4fvozdq7zn
https://www.facebook.com/sharer/sharer.php?u=https://typeset.io/papers/towards-practical-runtime-verification-and-validation-of-47w0itao3w
https://twitter.com/intent/tweet?text=Towards%20Practical%20Runtime%20Verification%20and%20Validation%20of%20Self-Adaptive%20Software%20Systems&url=https://typeset.io/papers/towards-practical-runtime-verification-and-validation-of-47w0itao3w
https://www.linkedin.com/sharing/share-offsite/?url=https://typeset.io/papers/towards-practical-runtime-verification-and-validation-of-47w0itao3w
mailto:?subject=I%20wanted%20you%20to%20see%20this%20site&body=Check%20out%20this%20site%20https://typeset.io/papers/towards-practical-runtime-verification-and-validation-of-47w0itao3w
https://typeset.io/papers/towards-practical-runtime-verification-and-validation-of-47w0itao3w

Towards Practical Runtime

Verification and Validation of

Self-Adaptive Software Systems

Gabriel Tamura1, Norha M. Villegas2, Hausi A. Müller3, João Pedro Sousa4, Basil
Becker5, Gabor Karsai6, Serge Mankovskii7, Mauro Pezzè8, Wilhelm Schäfer9,

Ladan Tahvildari10, and Kenny Wong11

1 University of Lille 1-LIFL-INRIA, France, Los Andes University and Icesi
University, Colombia

gabriel.tamura@inria.fr
2 University of Victoria, British Columbia, Canada, and Icesi University, Colombia

nvillega@cs.uvic.ca
3 University of Victoria, British Columbia, Canada

hausi@cs.uvic.ca
4 George Mason University, USA

jpsousa@gmu.dot.edu
5 Hasso Plattner Institute at the University of Potsdam, Germany

basil.becker@hpi.uni-potsdam.de
6 Vanderbilt University, USA
gabor.karsai@vanderbilt.edu

7 CA Inc., Canada
serge.mankovskii@ca.com

8 University of Milano Bicocca, Italy and University of Lugano, Switzerland
mauro.pezze@unisi.ch

9 University of Paderborn, Germany
wilhelm@upb.de

10 University of Waterloo, Canada
ltahvild@uwaterloo.ca

11 University of Alberta, Canada
kennyw@ualberta.ca

Abstract. Software validation and verification (V&V) ensures that soft-
ware products satisfy user requirements and meet their expected quality
attributes throughout their lifecycle. While high levels of adaptation and
autonomy provide new ways for software systems to operate in highly
dynamic environments, developing certifiable V&V methods for guaran-
teeing the achievement of self-adaptive software goals is one of the major
challenges facing the entire research field. In this chapter we (i) analyze
fundamental challenges and concerns for the development of V&V meth-
ods and techniques that provide certifiable trust in self-adaptive and
self-managing systems; and (ii) present a proposal for including V&V
operations explicitly in feedback loops for ensuring the achievement of
software self-adaptation goals. Both of these contributions provide valu-
able starting points for V&V researchers to help advance this field.

1 Introduction

Software validation and verification (V&V) concerns the quality assessment
of software products throughout their lifecycle. Its goal is to ensure that the
software product satisfies its functional requirements and expected quality at-
tributes [1–3]. Over the past decade, many self-adaptive approaches and systems
have been proposed by researchers from the software engineering for adaptive
and self-managing systems (SEAMS) community, with multiple adaptation pur-
poses [4, 5]. Certainly, many of the proposed self-adaptive software (SAS) sys-
tems have been designed to operate in highly dynamic socio-technical ecosys-
tems where requirements, models, and contexts change at runtime [6]. This wide
spectrum of system types, adaptation concerns, and dynamic goals has made it
difficult to develop general runtime V&V methods. Unsurprisingly, V&V of SAS
systems running in safety-critical environments is particularly challenging [7].

For inherently non-adaptive systems, that is, systems based on stable and
well-known system execution conditions, many V&V methods, techniques and
tools have been developed to be applied at design time. However, the quality
assessment of SAS systems is challenging, not only because their adaptation ob-
jectives may vary according to environmental conditions at runtime, but also
because the systems evolve to satisfy their evolving dynamic requirements. In
this realm, V&V tasks—traditionally applied at design-time—are required to
certify structural and behavioral aspects in the different phases of the adapta-
tion process. In addition, these tasks must be performed at runtime in the two
essential parts of a SAS system, namely, the adaptation mechanism, and the
target system.

Besides the SEAMS community, there are several other communities dealing
with runtime V&V, although not necessarily for SAS systems. During the past
decade, the real-time verification (RV) community has run a workshop concerned
with the monitoring and analysis of system executions.1 The longer term goal of
RV, already stated at RV 2001, is to investigate whether the use of lightweight
formal methods applied during the execution of programs is a viable complement
to the current heavyweight methods proving programs’ correctness always be-
fore their execution, such as model checking and theorem proving, among others.
Dynamic analysis, or the analysis of data gathered from a running program, has
great potential for self-adaptive systems because it relies on direct monitoring
mechanisms that expose the system’s actual behavior [8]. The Models@runtime
workshop, which emerged from the model-driven software development commu-
nity, aims to use model-driven techniques for validating and monitoring runtime
behavior. The Requirements@runtime workshop—collocated with the Require-
ments Engineering (RE) conference—aims to explore the potential of runtime
abstractions and models of requirements, to be used as a practical means to ad-
dress the challenges posed by volatile or poorly-understood environmental con-
texts.2 In many ways, these workshops and conferences focus on different aspects

1 International Conference on Runtime Verification—http://runtime-verification.org/
2 http://www.comp.lancs.ac.uk/b̃encomo/RRT/

2

of runtime V&V such as requirements, models, properties, instrumentation, and
dynamic analysis.

Naturally, for the non-adaptive parts of a self-adaptive system, the traditional
V&V methods can be used effectively. For the adaptive parts, runtime V&V
methods are needed to guarantee self-adaptation objectives, independently of
what is adapted. In general, SAS systems feature mechanisms based on the idea
of the feedback loop [9]. We aptly termed the foundational science for runtime
V&V methods control science. Control science can be defined as a systematic way
to study certifiable V&V methods and tools to allow humans to trust decisions
made by self-adaptive systems. In a 2010 report, Dahm identified control science
as a top priority for the US Air Force (USAF) science and technology research
agenda for the next 20 years [10]. Certifiable V&V methods and tools are critical
for the success of autonomous, autonomic, smart, self-adaptive and self-managing
systems.

One systematic approach to control science for adaptive systems is to study
V&V methods for the mechanisms that sense the dynamic environmental con-
ditions and the target system behavior, and act in response to these conditions
by answering the questions what, when and how to adapt. In this paper we use
the answers to these questions as key factors to determine when and where to
perform V&V activities in the context of feedback loops—the common core of
SAS systems.

This roadmap chapter focuses on research challenges concerning runtime
V&V for the adaptive parts of self-adaptive systems in highly dynamic envi-
ronments. In particular, we (i) analyze the cases in which the objectives, the
system, or the monitoring infrastructure of a SAS system must be adapted;
and (ii) propose how to make V&V tasks explicit in the feedback loop model
elements, using results obtained by the aforementioned communities in this re-
search field. Our goal is to provide researchers with a vision of open challenges
in V&V for SAS systems, and discuss opportunities not only for proposing new
runtime V&V techniques, but also for building on top of existing ones. In addi-
tion, our proposal for the explicitness of V&V tasks provides solid starting points
for V&V researchers from other communities to deploy different techniques and
methods for improving the trustworthiness of self-adaptive and self-managing
systems.

The remaining sections of this chapter are organized as follows. Section 2
describes a concrete industrial case study that we use to illustrate the concepts,
concerns and challenges discussed in this chapter. Section 3 outlines several chal-
lenges that arise from the differences in V&V requirements between software
developed with traditional methods and self-adaptive software, and presents se-
lected V&V drivers for self-adaptive software. Section 4 presents a refinement of
the general feedback adaptation loop to propose a model that explicitly involves
V&V tasks to address some of the previously identified challenges. This section
also presents approaches from SEAMS-related research communities that pro-
vide valuable contributions for the assessment of SAS systems. Finally, Section 5
concludes the chapter.

3

2 Application Example

This section introduces our concrete industrial case study.3 In this application
example, self-adaptation is exploited to implement SOA governance mechanisms
to enforce service level agreements (SLAs), such as those on performance, avail-
ability and confidentiality, in a cloud computing infrastructure [11]. In SOA and
cloud-based systems QoS are highly affected by, and dependent on changing
situations. On the one hand, SLAs may be violated at any time during sys-
tem execution due to changes in the situation of relevant context entities such
as computational infrastructure components and users. On the other hand, as
businesses and users’ requirements are evolving continuously, contracted QoS
conditions (i.e., adaptation goals) may be frequently re-negotiated.

In this example, a performance SLA has been negotiated in terms of three
throughput service level objectives (SLOs) to guarantee three different levels of
system capacity in a cloud-based e-commerce platform: normal, medium and
high load. These SLOs are observed on the bottleneck-operation of the system,
ProcessingPurchaseOrders, and measured in terms of number of transactions
per time unit. A normal capacity is required for a regular load of the shopping
platform. A medium capacity is required when special offers are placed on social
networks promoting them. A high capacity must be guaranteed to deal with the
highest peak load of the platform caused by shopping seasons such as “Black
Friday”.

Governing the efficiency of the service-oriented infrastructure to optimize
operational costs is a major concern for the retailers of this example. Hence,
a self-adaptive mechanism based on service component architecture (SCA) re-
configuration was implemented to ensure quality of service (QoS) requirements
in the service-oriented system. The adaptation goal for this dynamic service-
oriented infrastructure is the contracted system capacity, in terms of the perfor-
mance SLA. Short settling time and consistency correspond to the adaptation

properties to be preserved. Adaptation properties in this application example are
borrowed from the catalog proposed by researchers from the SEAMS commu-
nity [5]. Settling time is defined as the time required for the adaptive system to
achieve the desired state. Consistency guarantees the structural and behavioral
integrity of the managed system with respect to the respective SCA integrity
constraints [12], after its adaptation.

Use Case 1: Controlling the Elasticity of the E-Commerce Platform. As efficiency
is a major concern, the capacity of the system must be either increased, or
decreased according to the context situations that determine the expected load
of the system. To accomplish this, context monitors must keep track of the
popularity of special offers placed on social networks, as well as the day of the
year to determine the applicable shopping season.

3 This example is based on the IBM Centre for Advanced Studies (CAS) Canada
project: “Managing Dynamic Context to Optimize Smart Interactions and Smart
Services”—https://www-927.ibm.com/ibm/cas/cassis/viewReport?REPORT=747.

4

Use Case 2: Re-negotiating Adaptation Goals at Runtime. After the e-commerce
platform has been in operation, a new set of SLOs is added to the performance
SLA. These new SLOs define different thresholds of response time that must
be guaranteed according to the classification of the e-commerce platform’s cus-
tomers. Customers are classified as regular and premium users. A particular
maximum response time threshold applies to regular customers. For premium
customers, the maximum response time must correspond to 90% of the thresh-
old defined for regular customers. Response time thresholds can be re-negotiated
at runtime.

This example is used in the following sections to discuss runtime V&V con-
cerns and research challenges in SAS systems, and illustrate the need for applying
V&V tasks at runtime.

3 V&V Drivers for Self-Adaptive Software Systems

In this section we analyze and discuss drivers or key factors to consider when
performing V&V tasks for SAS systems. We identify these drivers by (i) com-
paring how V&V for software that is adaptable at runtime differs from V&V
for software that is immutable at runtime; and (ii) analyzing concerns that arise
when dealing with three types of context changes that have been addressed by
SAS systems, namely, in the objectives, the system, and the monitoring infras-
tructure to be adapted.

The goal of this section is twofold. First, it analyzes the classic V model for
software development, and in particular its V&V activities, from the perspective
of SAS systems. Second, it presents V&V drivers that we identified by analyzing
three foundational questions concerning assurances for SAS systems: when to
perform V&V tasks? what must V&V tasks validate and verify? and where in the
adaptation cycle must these V&V tasks be performed? In light of these drivers,
we identify research avenues in the form of research problems and opportunities
to integrate V&V methods and techniques into the engineering of self-adaptive
software systems.

3.1 The Classic V Model for System Development

Figure 1 illustrates how V&V activities are enacted in traditional software engi-
neering to ensure that, at the different levels of system development, the software
satisfies a given set of requirements.

This set of requirements is usually specified in advance of system develop-
ment, allowing the definition of the corresponding complete problem space. From
these requirements, a solution space is delimited and a solution derived and con-
ceived in the form of a software architecture, which is refined into a software de-
sign. Both, architecture and design, are expressed as models (formal, semi-formal
or informal), which can be verified at design time on their functional properties
(e.g., correctness) with respect to the initial set of requirements. From this de-
sign, the software is materialized as units of code, which are gradually integrated,

5

Software

System

Requirements

Specification

Architecture

Coding Unit Testing

Integration,

Testing and

Verification

System

Verification and

Validation

Design

Operation and

Maintenance

Development

Activities
V&V Activities

Fig. 1. The classic V model for system development (adapted from [13]). Each de-
velopment phase is subject to a corresponding V&V phase—horizontal layers—as the
software is built and integrated.

verified and tested until the final system is obtained. Finally, this system is ver-
ified and validated as a whole before its deployment in production environments
[14].

In this general lifecycle, the software quality is guaranteed by different V&V
strategies applied in its different phases, even though several variations may pro-
vide additional assurances. For instance, despite the described flow of activities
following the solid arrows in the depicted V-model, the dashed arrows allow V&V
to be performed on the artifacts produced by any of the development activities
(e.g., requirements or design models).

Among the V&V strategies that have been used, the software testing meth-
ods are the ones most commonly used in industry. Software testing methods
can be very effective both in revealing failures and assessing the reliability of
software systems, but cannot provide evidence of the absence of faults [13, 15].
More rigorous and effective strategies to reason about the program correctness
employ model checking, graph-based, and other model-based software testing
and verification methods [16–19]. However, these V&V methods have focused
generally on design time. Therefore, the assessment and certification of system
properties after changes occurring during system execution, either for ensuring
the satisfaction of changing requirements, or for re-certifying system properties
after adaptation, require not only traditional V&V methods adjusted to be ap-
plied at runtime, but also the adoption of non-traditional ones to be applied in
the different adaptation phases of SAS systems.

6

Another important difference between these two types of software systems is
the lifecycle phases in which V&V tasks are performed. In the classic V model,
V&V tasks are performed by software developers before deployment into produc-
tion environments. However, in the adaptation process, the system architecture,
design and implementation are evaluated, reconsidered and reconfigured at run-
time by the system itself, according to relevant context changes. Hence, V&V
tasks must be performed by the adaptation mechanism during the adaptation
process. This has three important consequences. First, after the software initial
release is in execution, the software development lifecycle phases (i.e., architec-
ture, design and implementation) are in fact “absorbed”, at least to some extent,
by the adaptation (i.e., self-reconfiguration) process. Second, the boundaries be-
tween these phases, now amalgamated in the adaptation process, are blurred [20].
Third, the target system may be adapted and reach a state that was unforeseen
at design time, and thus, the system has not been verified for that state. In
simple (“switching”) systems with a few possible adaptation results, this can be
verified at design-time, but for a system with a very large number of resulting
states this is unfeasible. Therefore, for SAS systems, in addition to the V&V
tasks performed at design time, the system itself needs to apply different V&V
methods at runtime. At this point, two questions arise: (i) what V&V meth-
ods are the most adequate to be applied at runtime? and (ii) at which specific
moments in the adaptation process should these methods be applied?

These are certainly challenging questions, given that, additionally, many as-
pects of self-adaptive systems are impossible to assess at design time, due to
their strong dependency on the actual execution environments. A recent US Air
Force research agenda posits that developing certifiable V&V methods for highly
adaptive systems is one of the major challenges facing the entire field. Under-
standing the inherent properties of adaptation mechanisms for software systems,
and the ways in which these properties can be guaranteed may require a large
part of the decade, if not more [10]. In the following sections we address these
questions.

3.2 The Viability Zone of Self-Adaptive Software Systems

We define the viability zone of a SAS system as the set of possible system states
in which the system operation is not compromised [21]. That is, the set of states
where the SAS system’s requirements and desired properties (i.e., adaptation
goals) are satisfied. Viability zones can be characterized in terms of relevant
context attributes and corresponding desired values. These context attributes
correspond to either measurements of internal variables of the target system
or the adaptation mechanism, or environmental variables whose variations can
take the system outside its viability zone. A particular SAS system may have
more than one associated viability zone (e.g., one for each adaptation goal). The
global viability zone of a SAS system thus results from the composition of these
partial viability zones. Moreover, existing viability zones can be added, replaced
or adjusted by adding or removing variables of interest at runtime.

7

In the case of our application example, the initial viability zone is defined in
terms of the performance SLA, and the three throughput SLOs (normal, medium
and high capacity—cf. Use Case 1 in Sect. 2). These three SLOs constitute three
different levels of system capacity that can been interpreted as three viability
sub-zones. The variables that characterize the e-commerce platform’s viability
zone correspond to the actual throughput of the ProcessingPurchaseOrders op-
eration, the popularity of special offers placed in a social network (including
whether an offer has been placed), and the shopping season, all of them to
be monitored at runtime. Seasons are characterized in three groups: regular,
medium (e.g., Valentine’s Day), and high seasons (e.g., Christmas and Black
Friday). Another associated viability zone in this example is used to control the
short settling-time adaptation property. This zone is defined by a single-variable
that is monitored to keep track of the time the e-commerce platform takes to
reconfigure the system to obtain the desired throughput. Furthermore, after the
re-negotiation of the performance SLA, a new viability zone must be computed
at runtime to control the response time SLOs (cf. Use Case 2).

V&V under Viability Zone Dynamics. It can be argued that our definition of
viability zone coincides with that of the solution space used in traditional (i.e.,
non-adaptive) software systems. However, from the previous examples it is clear
that the viability zone can change with context changes, as opposed to the
solution space concept, which is assumed to be fixed.

In effect, the viability zone of a target system under adaptation constantly
varies along adaptation dimensions. These variations take place every time the
adaptation operation modifies either the target system architecture (e.g., adding
or removing components and connectors) or the controller itself (e.g., modifying
its parameters or replacing the control algorithm), thus introducing new, or
removing existing variables and associated domain types.

Therefore, not only are runtime V&V methods required to cope with the
viability zone dynamics problem, but these V&V methods also need to be au-
tomatically generated according to the modifications that result from dynamic
adaptation. Thus, to extend the V&V coverage of the expanded viability zone,
runtime models are required for the incremental derivation of software artifacts
for V&V monitoring and checking.

In the aforementioned example, understanding its viability zone dynamics
is crucial for the self-adaptive e-commerce platform V&V tasks. In fact, the
adaptation mechanism together with its V&V tasks can be interpreted as an op-
timization problem, where the optimal solution is chosen among those within the
viability zone, based on the system capacity policies, as proposed by Balasubra-
manian et al. [22]. First, transitions between viability sub-zones are associated
to an adaptation policy (adaptation strategy). For instance, when the system
is approaching the threshold between a lower and a higher load—going from
the lower to the higher, the corresponding adaptation task must be triggered to
increase the system processing capacity accordingly (e.g., by deploying new com-
ponents for scalable processing). Similarly, the system capacity must be reduced
when it goes from a higher load to a lower one. In both cases, as the software

8

component structure is modified as a result of the adaptation, the SCA struc-
tural conformance property must be verified at runtime on the resulting system.
Second, changes in viability zones (e.g., changes in variables’ thresholds, and
addition or replacement of variables in adaptation dimensions) may affect not
only the adaptation strategy, but also the monitoring infrastructure, since these
changes are caused by changes in adaptation goals. Finally, runtime V&V tasks
aim to keep the adaptive system inside its viability zone, even when viability
zones are subject to changes at runtime. The way how V&V tasks contribute to
achieve this goal depends on the nature of the system and its requirements. For
instance, for safety-critical applications, runtime V&V must check if the system
will trespass the boundaries of its viability zone as a result of an adaptation, be-
fore instrumenting it in the running system. In those cases where self-adaptation
is interpreted as an optimization problem, V&V tasks can be used both, before
the adaptation, and after it. Before the adaptation, to restrict the alternatives to
consider, to those within the viability zone. After the adaptation, to ensure that
the solution is satisfying the new requirements under possibly changed context
situations.

3.3 What: Requirements and Adaptation Properties

We identified the underlying V&V questions in the domain of SAS systems as
what, where, and when to validate. This subsection focuses on the what to vali-
date question. The answer to this question relates to the identification of adap-
tation goals (e.g., non-functional requirements of the target system) and adapta-
tion properties (e.g., desired characteristics of the adaptation mechanism). Ex-
plicit adaptation goals and properties are crucial for the specification of suitable
V&V models for SAS systems, and the identification of corresponding metrics.
Moreover, having an explicit mapping between adaptation goals and properties,
and relevant context is required to ensure the coherence between V&V tasks
and the relevant context variables that characterize the system’s viability zone.
In our application example, we address this mapping by defining context-driven

SLAs [11]. As proposed in [11], context-driven SLAs are machine readable spec-
ifications of SLAs, in the form of contextual resource description framework
(RDF)4 graphs, that not only state contracted conditions explicitly (e.g., the
throughput and response time SLOs), but also the context variables, and con-
text monitoring strategies required to keep track of the system behavior and
its viability zone (e.g, sensors and monitoring conditions to measure through-
put, response time, settling time, and the popularity of special offers, as well as
identify shopping seasons).

Properties and Metrics. V&V concerns for self-adaptation certification can
be classified according to the two constitutive parts of a SAS system. The first
relates to the certification of the target system, while the second to the certi-
fication of the adaptation mechanism [5]. After the 2010 Dagstuhl Seminar on

4 http://www.w3.org/RDF/

9

Software Engineering for Self-Adaptive Systems, researchers from the SEAMS
community conducted an extensive analysis of self-adaptive approaches and de-
veloped a framework for evaluating self-adaptive systems, where desired proper-
ties of the target system (i.e., adaptation goals) and the adaptation mechanisms
(i.e., adaptation properties) are identified explicitly and defined in terms of qual-
ity attributes [5]. Several of the identified adaptation properties were borrowed
from control theory [9, 23] and re-interpreted for self-adaptive software. More-
over, they classified adaptation properties according to how and where these
properties are observed (cf. Table 1). Concerning how they are observed, some
properties can be evaluated using static verification techniques, while others re-
quire dynamic verification and runtime monitoring (i.e., runtime V&V). With
respect to where they are observed, properties can be evaluated on either the
target system, or the adaptation mechanism. However, most properties can only
be observed directly on the target system even when they are used to evaluate
the adaptation mechanism.

Table 1. Classification of adaptation properties according to how and where they are
observed [5].

Property Where the
Adaptation Verification Property is
Property Mechanism Observed

Stability Dynamic Target system
Accuracy Dynamic Target system

Settling Time Dynamic Both
Small Overshoot Dynamic Target system

Robustness Dynamic Adaptation Mechanism
Termination Static Adaptation Mechanism
Consistency Both Target system
Scalability Dynamic Both
Security Dynamic Both

Having no well defined and explicit metrics that can be used to assess prop-
erties, it is impossible to realize the vision of runtime V&V. Nevertheless, even
though the importance of having such explicit metrics seems obvious, an im-
portant barrier for the assessment of dynamic software systems is the lack of
accurate metrics to evaluate adaptive software [4]. Therefore, more research
is required on the definition of applicable domain-specific metrics that effec-
tively provide the means for evaluating relevant properties of dynamic software
systems. Some examples of metrics and corresponding mappings to adaptation
properties used in actual self-adaptive implementations and research initiatives,
where non-functional requirements are a major concern, are summarized in the
evaluation framework for self-adaptive software proposed by Villegas et al. [5].

10

An important challenge for V&V of SAS is to investigate innovative mech-
anisms that enable the application of techniques such as model checking, com-
positional verification, program synthesis, and dynamic analysis and monitoring
to asses these properties at runtime. Another important research concern is
the management of trade-offs that may arise from the need to ensure multiple
properties—trade-offs among multiple viability zones.

Dependency on Runtime Monitoring. Besides using different representa-
tion models for target system behaviour, traditional V&V also uses controlled
simulation environments. However, given the difficulties for building models to
predict self-adaptive system behavior for every possible operational situation,
and the impossibility of characterizing these situations in simulation environ-
ments, V&V of context-dependent properties requires information gathered at
runtime. For instance, in mission-critical systems, only with actual runtime mea-
surements it is possible to determine confidently whether the target system is
within its viability zone [24]. Understanding and characterizing which proper-
ties of self-adaptive software are critically dependent on runtime information is
crucial for realizing V&V in SAS effectively.

Uncertainty in Self-Adaptation. Context dependent requirements usually involve
uncertainty. Uncertainty can be both a challenge and an opportunity. In safety-
critical systems uncertainty is a tough challenge that exacerbates verification
tasks significantly [19, 24]. In other scenarios such as e-commerce applications,
uncertainty is an opportunity, since the system can provide better service to
customers by leveraging the context information that arise from the interactions
between the users and the system, as well as from users’ situations [25].

The adaptive nature of the execution environment in SAS systems makes un-
certainty one of the most difficult challenges to be addressed by V&V researchers.
An interesting research opportunity is to tailor feedback loop-based mechanisms
used to manage uncertainty in modern control theory to context-aware SAS
systems [26]. Similarly, the rich literature on engineering adaptive mechanisms
for flight control systems inspires many researchers. In particular, Schumann
and Gupta proposed a V&V method to calculate safety regions for adaptive
systems around the current state of operation based on a Bayesian statistical
approach [27]. With this approach, they can provide a confidence measurement
on the probable accuracy of the system’s model under a particular situation.

We argue for the exploitation of viability zones as useful mechanisms to
manage uncertainty in the assurance of SAS systems. From this perspective, the
management of uncertainty problem focusses on determining explicit boundaries
for the SAS system’s viability zones and controlling the target system accordingly
(cf. Sect. 3.2).

3.4 Where: Separation of Concerns

We distinguish two system levels in SAS systems: the target system to be dy-
namically adapted according to context changes, and the adaptation mechanism.

11

For runtime V&V it is critical to understand the extent of the separation of these
two levels. This separation of concerns allows us to characterize, investigate, and
analyze V&V research problems for self-adaptive software effectively, by focusing
specifically on the respective concerns of each level.

Although the discussion in this chapter is applicable to both feedback and
feedforward control in computing systems [9], we focus on feedback control since
runtime V&V depends on online measurements from the target system and the
adaptation mechanism. That is, measured outputs are important for making
adaptive system quality decisions at runtime. Moreover, as feedforward control
takes also environmental disturbances—external context—into account, subse-
quently we use the terms feedback loop and control loop interchangeably. Follow-
ing the feedback loop abstraction from the V&V perspective, the target system
is an open loop for which the adaptation mechanism provides the elements to
close the loop. In other words, the target software system itself is unaware of
both context conditions and self-performance, with respect to the satisfaction of
its own functional and non-functional (context-dependent) requirements. Thus,
given that the objective of V&V is to guarantee the quality of a system, and this
quality is expressed as the fulfillment of its requirements, in SAS systems V&V
tasks must be incorporated as part of the adaptation loop. This implies that,
in addition to the common context monitoring elements considered in feedback
adaptation loops, additional components dedicated to verification and testing
of the target system itself are required. At runtime, these components could,
for instance, perform partial and incremental model checking on the next most
probable states with respect to the current system state. Referred to our appli-
cation example, the property to be verified could be the structural conformance
of the reconfigured software application, with respect to the SCA structural
constraints.

In addition, the separation of concerns between the target system and the
adaptation mechanism implies different possible V&V interactions among these
two system levels. Each of these interactions affects, in different ways, the ulti-
mate goal of self-adaptation: the continued and effective operation of the target
system services under varying context conditions. Of course, a general require-
ment is that the adaptation mechanism executes as unobtrusively and indepen-
dently as possible from the target system. This observation has two implications.
First, the target system functionalities must execute uninterruptedly for as long
as possible while the adaptation mechanism performs the required adaptations
on these functionalities. Moreover, the target system is expected to remain func-
tional even if the V&V fails (i.e., if it indicates that the new system state is
invalid). This implies that the adaptation mechanism must also run without
interruptions. Second, unavailability of the adaptation mechanism should not
cause unavailability of the target system. However, at some point, it is reason-
able to expect that the adaptation mechanism, and even the target system itself,
will require a shut down for maintenance or correcting system failures.

12

3.5 When: V&V in the Adaptation Process

Traditional V&V strategies involve checking and testing before system deploy-
ment under presumably well-defined conditions of system operation. This process
of checking and testing is often automated using model checking, theorem prov-
ing, and testing tools. For context-dependent requirements, traditional V&V
activities and certification techniques, designed to be applied before system de-
ployment on fully specified requirements, are neither sufficient nor applicable.
On the one hand, these formal V&V methods are often too expensive to be exe-
cuted regularly at runtime when the system adapts due to their time and space
complexity. On the other hand, context-dependent variables are unbound at de-
sign time, but bound at runtime. Thus, performing V&V on these variables at
runtime is valuable to reduce the verification space significantly, even when the
SAS system viability zone varies with context changes. From this perspective,
it is crucial to determine precisely when in the adaptation process these V&V
operations are to be performed to guarantee the system properties and prevent
unsafe operation. As previously mentioned, the lack of effective runtime V&V
methods is considered one of the biggest obstacles and major challenges for the
wide adoption of self-adaptive software applications in industry [10].

In addition, the considerations discussed in the previous section (i.e., the
where) require the analysis of at least the following questions with respect to
when to perform V&V tasks:

i. What properties can be exclusively verified at design time (executing
neither the target system nor the adaptation mechanism)?

ii. What properties can be exclusively verified or tested at system configu-
ration time?

iii. What properties can be exclusively verified or tested at runtime?
iv. What properties can be verified or tested either at design time, configu-

ration time, or at runtime?

For instance, a machine-learning-based adaptive mechanism, such as the one
proposed by Elkhodary et al. [28], could be checked for training coverage with
respect to pre-defined adaptation cases at configuration time, before its deploy-
ment in production. However, the effectiveness of learned adaptations should
be verified at runtime, based on information gathered from the actual adapted
system behavior.

The answers to these questions are highly interdependent. For example, an
approach aimed at verifying stability (what)—a behavioral adaptation property
of the adaptation mechanism—may require the assessment of performance qual-
ity factors such as latency, throughput and capacity [5]. These factors assume
runtime (when) monitoring on the target system (where). Stability is defined as
the convergence of the subject system behavior toward a desired state. Moreover,
many of the design concerns, such as availability, performance, survivability, fault
tolerance and security, are highly interdependent and evolve at discrete points
in time. It is critical to separate these concerns at design as well as at runtime.

13

In our application example, the performance SLA and its SLOs (through-
put and response time—cf. Use Case 1 and Use Case 2 in Sect. 2), as well
as the settling time and SCA structural conformance properties constitute the
what to validate. Regarding the where question, throughput and response time
must be observed on the target system, settling time must be observed on both
the adaptation mechanism and the target system, whereas the SCA structural
conformance, on the target system. Finally, concerning the when question, V&V
tasks to ensure these requirements and properties must be performed at runtime.

In the following section we give some answers to the when and where ques-
tions by extending the feedback-loop elements with V&V responsibilities.

4 Making V&V Explicit in the Self-Adaptation Loop

So far, we have analyzed four key V&V drivers for SAS systems that pose major
research challenges for SEAMS-related communities: (i) the viability zone and
its dynamics; (ii) what to validate and verify, and its dependency on context
information; (iii) where to validate—closely related to the separation of concerns
between the target system and the adaptation mechanism; and (iv) when to
perform V&V in SAS with respect to the adaptation loop.

To advance SAS goal assurance, we argue for the integration of runtime V&V
tasks in the adaptation process. Accordingly, this section presents our proposal
for making V&V tasks explicit in the elements of feedback adaptation loops,
as for example in the MAPE-K loop [29]. Moreover, we discuss runtime V&V
enablers (i.e., requirements at runtime, models at runtime, and dynamic con-
text monitoring), which provide effective support to materialize V&V assurances
for self-adaptation. Our proposal, depicted in Fig. 2, clearly answers when and
where concrete V&V tasks can be implemented in the adaptation loop, using
these enablers. The V&V enablers—dashed boxes in this figure—also provide
a guide for other SEAMS-related research communities to contribute with run-
time V&V methods for SAS systems. With this proposal we contribute to the
convergence of these research communities towards the realization of suitable
assurance mechanisms for SAS systems.

Applying this proposal to our application example, we use requirements at
runtime to represent machine-readable specifications of the performance SLA,
and its throughput and response-time SLOs. In this way, runtime validators and
verifiers can have access to the requirements and properties defined as adaptation
goals that must be ensured by the adaptation process. Then, we use models at
runtime to represent the software architecture of the e-commerce platform to
be adapted, the adaptation strategies, and the context monitoring strategies.
Throughout the adaptation process, planners, runtime validators and verifiers,
and executors use service component architecture (SCA) models to manipulate
and adapt the system’s software architecture, as well as to verify properties
such as the SCA structural conformance, as realized in [30]. Similarly, we use
models at runtime to represent the information gathered by context monitors as
contextual RDF graphs. We exploit this form of representing context information

14

Requirements

@runtime

Target

Software

System

Context Monitors

Adaptation

Monitors

V&V

Monitors

Analyzer

Runtime

Validator

&Verifier
Planner Executor

Dynamic Context

Monitoring

External Context

Models and

Requirements@runtime

Models

@runtime

V&V Tasks

V&V Enablers

Legend

Adaptation

Goals

Internal ContextContext Facts

Adaptation

Request

Verified

Adaptation

Plan

Adaptation

Actions

Fig. 2. Runtime V&V tasks made explicit as common elements in the engineering of
self-adaptive software systems. Dashed boxes represent runtime V&V enablers.

to characterize the e-commerce platform state with respect to its viability zone,
and perform inferences on this information to ensure SLAs at runtime [11].

4.1 Runtime V&V Tasks

We identify two particular elements in the adaptation loop that initiate runtime
V&V tasks: runtime validators & verifiers (associated to the Planner element),
and V&V monitors (associated to Context Monitors elements).

The Runtime Validator & Verifier. The responsibility of the runtime val-

idator & verifier elements is to verify each of the outputs (i.e., adaptation plans)
produced by the adaptation planner with respect to the properties of interest.
The instrumentation of an adaptation plan on a given system execution state
implies a change of the system state. Thus, the verification of these properties
can be performed before or after instrumenting the plan.

In the case of our application example, concerning the SCA structural confor-
mance property, the produced reconfiguration plans modify the target system’s
software architecture to obtain a new software structure to satisfy the agreed
SLOs. To prevent execution failures, these plans must be verified, before instru-
menting them, in such a way that the resulting structures satisfy the SCA in-
tegrity constraints (e.g., components, connectors, wires, and bindings). However,
if the adaptation plan is for affecting the performance SLO, the corresponding
verification should be performed after its instrumentation, with the new system’s

15

performance measurements. Moreover, on the new target system structure, par-
tial and incremental verification could be performed also in advance on the most
probable states that are immediately adjacent to the one generated by the adap-
tation plan. These states could be computed with statistical approaches such as
the proposed in [27]. In addition, similar verification could be performed on the
controller algorithm, if this is object of adaptation, such as in self-tuning control
approaches [31, 32].

Nonetheless, different performance and synchronization issues between the
executor and the runtime validator & verifier elements may appear. An example
of this occurs when considering the previously introduced in advance partial and
incremental V&V of the structural conformance property. In this case, the idea is
to perform V&V not only on the state produced by the adaptation plan, but also
on the most probable states that can immediately follow it, as a result of further
adaptation processes. Thus, runtime V&V elements could verify the property of
interest on these states either at the same time, or after instrumenting the plan to
reach the produced state. In other words, if the function computing the next most
probable states is correct, the system structure to be obtained with the produced
adaptation plan had to be verified in the previous adaptation. Alternatively,
the execution of this “advance” runtime verification can be delayed, and even
scheduled for later execution, for instance if this verification is highly time-
consuming and can compromise the performance SLO of the target system.

Finally, in those cases in which the system state is represented and maintained
explicitly (i.e., having a stateful representation via, for example, reflection or
models at runtime), and the system is modified by an adaptation, this explicit
state has to be transformed or updated accordingly. This is especially critical if
the state is maintained in a volatile data structure, whose layout changes when
the system is reconfigured. That is, if system information is represented in one
form in its state variables, and then the system is reconfigured such that this
information is represented in a different form, then the old values from the old
structure must be mapped into new values in the new structure. Moreover, for
the system operation to continue safely and uninterruptedly, it is crucial to (i)
make the new state (information and structure) persistent (e.g., for recovery
purposes); and (ii) be able to initialize the new system with the old information
mapped into the new state. Hence, in these cases V&V must be performed not
only on the adaptation process, but also on the state-mapping from the old
structure to the new one.

The V&V Monitors. V&V monitors are responsible for monitoring and en-
forcing the V&V tasks performed by the runtime validator & verifier elements.
Referring to the V&V tasks assigned to the runtime validator & verifier elements
in the example of the previous subsection, we could use the V&V monitors to
perform the aforementioned “advance” runtime verification. As outlined in the
previous subsection, this is a verification task that can be scheduled by the run-

time validator & verifier elements for later execution, to be performed on the
most probable states to the current one in execution.

16

Assurance of Runtime V&V Tasks. Derived from the previous discussion,
we identify the following questions, which pose additional challenges for ensuring
the effectiveness of V&V tasks.

What if V&V fails or provides a negative answer? To prevent the target system
from reaching inconsistent states and avoid catastrophic situations, one first
strategy is to guarantee the atomicity property in the adaptation process, as
defined in [33, 5]. That is, to guarantee that the adaptation process is an atomic
operation that finishes and successfully modifies the target system, or it fails and
the target system is left unmodified in its previous safe state. The verification
of the atomicity and termination properties is a challenging problem, given that
they should be guaranteed internally by the planner, and possibly requiring
interactions with the executor. The use of models at runtime for modeling the
target system is crucial for guaranteeing these properties, for instance as realized
by Tamura et al. [30].

How to validate “snapshots” and transitions between states without affecting the

target system? V&V tasks must not affect the desired behaviour of the adaptive
system. Therefore, we identify another kind of properties—properties of runtime
V&V methods, intended to support the safe integration of traditional V&V
techniques and mechanisms into the adaptation loop. These properties include
sensitivity, isolation, incrementality, and composability.

As stated by González et al., sensitivity and isolation refer to the level of
runtime validation that a particular SAS system can support [34]. On the one
hand, sensibility defines the degree to which V&V tasks (e.g., runtime testing
operations) interfere with the running target system. That is, the degree to which
runtime V&V may affect the satisfaction of system requirements and adapta-
tion goals. Instances of factors that can affect runtime test sensitivity are (i)
component state—not only because runtime validation tasks are influenced by
the actual state of the system, but also because the state of the system can
be altered as a result of V&V operations; (ii) component interactions—as the
runtime testability of a component may depend on the testability of the com-
ponents it interacts with; (iii) resource limitations—because runtime V&V may
affect non-functional requirements on the target system, such as performance at
undesirable levels; and (iv) availability—as runtime validation can be performed
depending on whether testing tasks require exclusive usage of components with
high availability requirements.

On the other hand, they also define isolation as the means to counteract
runtime test sensitivity. Techniques for implementing test isolation include (i)
state separation (e.g., blocking the component operation while testing takes place
or performing testing on cloned components); (ii) interaction separation (e.g.,
blocking component interactions that may be propagated due to results of test
invocations); (iii) resource monitoring (e.g., indicating that testing must be post-
poned due to resource unavailability); and (iv) scheduling (e.g., planning V&V
executions when the target system and involved components are less used).

17

4.2 Runtime V&V Enablers

Runtime V&V techniques for SAS systems require special support to deal with
the dynamic nature of this kind of systems in the assurance of adaptation goals.
We classify this support in three main categories, as follows:

i. Enablers for the management of adaptation properties and requirements
at runtime;

ii. Enablers for the exploitation of models at runtime; and
iii. Enablers for dynamic context monitoring.

Clearly, these categories correspond to challenges of the Models@runtime [35]
and Requirements@runtime [36] communities, rather than research challenges of
V&V communities. Nevertheless, given that runtime V&V tasks for SAS rely on
this support, with this categorization we aim to provide valuable guidance, not
only for V&V researchers to understand the support that runtime V&V for SAS
requires, but also for SEAMS-related researchers to visualize how could they
attack runtime V&V challenges.

Requirements and Adaptation Properties at Runtime. The first category
of support required for runtime V&V concerns the specification of what must
be validated and verified. That is, the specification of the adaptation properties
and system requirements the adaptation process must guarantee. In either case,
V&V methods and techniques must determine whether the software product sat-
isfies its requirements, especially after performing adaptation operations. These
requirements and properties, expressed using different notations and formalisms,
constitute the actual reference specifications for V&V tasks to accomplish their
mission. Thus, requirements and adaptation goals must be available as machine-
processable specifications (cf. Requirements@runtime in Fig. 2) to be used by
adaptation analyzers, monitors, validators and verifiers. Furthermore, to min-
imize the impact of runtime V&V tasks on the adaptive system, support for
tracing changes on requirements and properties is also required to identify what
to validate and verify incrementally. Manipulating requirements and adaptation
properties during the adaptive system execution poses interesting research ques-
tions such as the ones being addressed by the Requirements@run.time research
community [36].

Models at Runtime. Having machine-processable models at runtime of the
target system provides adaptation controllers, monitors, validators and verifiers
with up-to-date structural and behavioral representations of the target system,
and their relationships with adaptation properties and goals. Recalling our ap-
plication example, after the renegotiation of the performance SLA (cf. Use Case
2 in Sect. 2), the runtime representations of the system and its requirements
must change accordingly. That is, a new requirement is added to the context-
driven SLA specification, as well as the corresponding monitoring strategy, using
a contextual RDF graph. As a result, not only adaptation components, but also

18

V&V tasks and monitors will have up-to-date representations of the new goals
that must be ensured, and the corresponding context entities to be monitored.

Classifications of models at runtime vary from coarse-grained to fine-grained
models, from structural to behavioural models, from dynamic to static mod-
els [35]. In this endeavor, researchers from the Models@run.time community are
tackling important challenges [37, 38]. An instance of these challenges is model
evolution, which concerns with the management of changes in models over time.

Model Evolution. Having an explicit representation of the target system, the
properties to be preserved, and the relationships between these properties and
adaptation mechanisms is critical for the assessment of SAS systems at runtime.
At design time, models provide a meta-level representation of these concerns. At
execution time, instances of these design time models, models at runtime, pro-
vide up-to-date representations of the system to V&V operations. These online
representations support decision making on the preservation of desired proper-
ties. Since SAS systems are continuously changing, the effectiveness of runtime
V&V tasks depends on the timely coherence between the actual system state and
its runtime models. Model evolution support is therefore required to preserve the
coherence of runtime models with respect to the system and its environment.

Model evolution for SAS systems can borrow relevant ideas from control-
based approaches. These approaches include model reference adaptive control
(MRAC) and model identification adaptive control (MIAC) [31, 39]. MRAC and
MIAC not only separate adaptation models from adaptation controllers, but
also V&V models from V&V tasks. As illustrated in Fig. 3, MRAC and MIAC
enable a basic level of model evolution by modifying the adaptation and V&V
models at runtime. The main difference between MRAC and MIAC, from the
perspective of runtime V&V, is that in MRAC changes in models are controlled
by users, whereas in MIAC changes in models are managed by executors as
defined by runtime validators and verifiers. Changes in models (cf. label ChM:
Change model) may cause changes not only in adaptation controllers, but also in
V&V tasks (cf. labels SCh: Send changes, and AC: Adapt controllers). Therefore,
runtime support is required to adapt runtime validators and verifiers accordingly
(cf. label AC-VV). Changes in V&V models could be triggered by adaptation
mechanisms. In any case, these changes must be subject to V&V operations.
From a software engineering perspective, the probabilistic approach to model
synchronization proposed by Epifani et al. constitutes a good MIAC approach
to model evolution [32].

Different model evolution mechanisms can be applied depending on the mod-
eling technique used. For example, to synchronize UML models with correspond-
ing systems, the model-driven engineering community provides model transfor-
mation techniques applicable at runtime [40]. In systems relying on probabilistic
models, synchronization of models is realized by changing the model’s parame-
ters at runtime. One key challenge in probabilistic models is to synchronize the
measured probabilities with the probabilities used in the model [32].

19

Requirements

@runtime

Target

Software

System

Context Monitors

Adaptation

Monitors

V&V

Monitors

Analyzer

Runtime

Validator

&Verifier
Planner Executor

Models and

Requirements@runtime

Dynamic Context

Monitoring

External Context

SCh: Send changes

Adaptation

Model
V&V ModelController

Adaptation

V&V Tasks

Adaptation

Realizing Model Evolution

with MRAC and MIAC

ChM: Change

model

AC: Adapt controllers

Models

@runtime

AC-P AC-VV AC-E

Adaptation

Goals

ChM: Change

model

Fig. 3. MRAC and MIAC [31, 39] reinterpreted to realize model evolution in self-
adaptation with explicit V&V tasks

Dynamic Context Monitoring. The third category of V&V support corre-
sponds to runtime context monitoring. Context monitoring is crucial to optimize
the assessment of dynamic software systems as the effectiveness of V&V meth-
ods is highly dependent on the information provided by context sources [41].
These context information sources must be consistent with the actual system
adaptation properties and requirements. Thus, for V&V tasks to succeed in the
assessment of a SAS system, it must understand the situations of relevant con-
text entities and their implications for the preservation of system properties and
requirements, even when these requirements and properties vary over time.

Context is any information useful to characterize the state of individual en-
tities and the relationships among them. An entity is any subject that can affect
the behaviour of the system and/or its interaction with the user. Context in-
formation must be modeled in such a way that it can be pre-processed after
its acquisition from the environment, classified according to the corresponding
domain, handled to be provisioned based on the system’s requirements, and
maintained to support its dynamic evolution [42]. Based on this definition, and
from the perspective of runtime V&V, runtime monitoring must support context
representation and monitoring to characterize the system’s state with respect to
its viability zone, taking into account the dynamic nature of viability zones. Re-

20

garding context representation, operational specifications of context information
must be able to represent semantic dependencies among properties and require-
ments to be satisfied, V&V strategies, and the environmental situations that
have impact on the system behaviour and the assessment tasks. Hence, an im-
portant challenge refers to context representation such that these specifications
can adapt dynamically, according to changes in V&V concerns. With respect to
context management, several challenges arise from the perspective of the con-
text information lifecycle, that is context acquisition, handling, provisioning,
maintenance, and disposal [42]. One of these challenges is the instrumentation
of monitoring infrastructures with dynamic capabilities to deploy new monitor-
ing strategies at runtime according to changes in V&V concerns (e.g., to deploy
new sensors or reasoning strategies based on changes in adaptation goals and
properties dynamically [43, 11, 25]). In our application example, the monitoring
infrastructure must be adapted at runtime to deploy new context sensors and
monitoring conditions provided with the new response time SLO that resulted
from contract re-negotiation (cf. Use Case 2 in Sect. 2).

Runtime monitoring could help alleviate issues concerning the application of
traditional V&V techniques at runtime. An instance of such issues is the state
explosion problem inherent in model checking techniques. In adaptive software
systems, the uncertainty of the execution environment, the dynamic nature of
system requirements, and the continuous adaptation of systems exacerbate the
problem. From this perspective, we hypothesize that if we are able to charac-
terize the current state of a system at a specific time during its execution, the
number of system states to be checked could be significantly smaller. At design
time many variables are free or not bounded, thus all of their possible significant
values must be checked. In contrast, at runtime, variables are bound using the
actual system state and the situation of relevant environmental (internal and
external) entities. In other words, the number of possible states for the system
to maintain within its viability zone is considerably reduced by the current and
next most probable context situations. This is precisely where context moni-

toring plays a crucial role in the assessment of self-adaptive software systems.
Nevertheless, due to the uncertainty inherent in dynamic software systems, it
is infeasible to specify context requirements in advance exhaustively. Moreover,
since context is evolving over time, monitoring requirements—entities to be mon-
itored and monitoring conditions—are also continuously evolving. Therefore, the
application of traditional V&V techniques to the assessment of self-adaptive sys-
tems at runtime depends on the dynamic capabilities of the runtime monitoring
instrumentation.

5 Conclusions

In this roadmap chapter we (i) discussed key challenges for the development
of certifiable runtime V&V methods that can certify adaptation mechanisms
in the achievement of their adaptation goals; and (ii) presented how to make
explicit and integrate runtime V&V methods as concrete tasks to be performed

21

by elements of the adaptation process. Certifiable V&V methods and tools are
critical for the success of autonomous, autonomic, smart, self-adaptive and self-
managing systems.

We defined control science as a systematic way to study certifiable runtime
V&V methods and tools to allow humans to trust decisions made by self-adaptive
systems. For the first contribution, we analyzed critical differences between SAS
systems and non-adaptive ones. From these differences, we identified and dis-
cussed key factors and challenges to consider when tailoring existing V&V meth-
ods, or developing new ones, to be applied at runtime in SAS systems. For the
second, we discussed and illustrated different possibilities to integrate these V&V
methods as responsibilities for the adaptation process elements. To enable this
integration, we analyzed how to exploit some of the foundational ideas devel-
oped by SEAMS-related research communities to support the application of
V&V methods at runtime.

While self-adaptation confers obvious benefits to systems with high levels of
adaptability and autonomy, its wide adoption by industry is still limited due
to a lack of self-applicable validation and verification methods at runtime. The
positive impact that self-adaptive software can have on our society is potentially
huge. Nevertheless, without the necessary and sufficient trustworthy certification
methods the negative impact can be potentially huge too. Consequently, research
and development in runtime assurance techniques is critical to guarantee that
adaptation mechanisms will not cause the target system to produce undesired,
nor catastrophic results.

Therefore, our motivation for this chapter was to provide researchers with
a vision of open challenges in V&V for SAS systems, and discuss opportuni-
ties not only for proposing new runtime V&V techniques, but also for building
on top of existing ones. In addition, our proposal for making V&V tasks ex-
plicit in the adaptation loop provides solid starting points for V&V researchers
from other communities to deploy different techniques and methods for improv-
ing the trustworthiness of self-adaptive and self-managing systems. For this, we
analyzed runtime assessment concerns from the perspective of when in the adap-
tation process, and in which of the two parts of an adaptive system (i.e., the
where)—the target system or the adaptation mechanism—the V&V tasks must
be implemented and performed.

The questions discussed in this chapter have uncovered key research problems
that require collaborative efforts among different software engineering research
communities. In particular, models at runtime, requirements at runtime, valida-
tion and verification, and context monitoring have in the assessment of adaptive
software a unique opportunity to advance the state-of-the-art software engineer-
ing for self-adaptive systems. With our contributions in this chapter we aim
to provide researchers from various runtime V&V communities with research
avenues that can shape the development of certifiable assurance techniques, as
required for the engineering of trustworthy SAS systems.

22

Acknowledgments

This chapter was motivated by stimulating discussions during Dagstuhl Seminar
10431 on Software Engineering for Self-Adaptive Systems at Schloss Dagstuhl in
October 2010. This work was funded in part by the National Sciences and En-
gineering Research Council (NSERC) of Canada under the Strategic Networks
Grants Program (NETGP 397724-10) and Collaborative Research and Develop-
ment program (CRDPJ 320529-04 and CRDPJ 356154-07), IBM Corporation,
CA Inc., Icesi University (Cali, Colombia), and Ministry of Higher Education
and Research of Nord-Pas de Calais Regional Council and FEDER under Con-
trat de Projets Etat Region (CPER) 2007-2013.

References

1. IEEE: 1012-1998: IEEE Standard for Software Verification and Validation. Tech-
nical report, Institute of Electrical and Electronics Engineers (2005)

2. IEEE: Industry Implementation of International Standard ISO/IEC 12207:95,
Standard for Information Technology-Software Life Cycle Processes. Technical
report, IEEE (1996)

3. Bourque, P., Dupuis, R.: Guide to the Software Engineering Body of Knowledge
(SWEBOK). IEEE Computer Society (2005)

4. Salehie, M., Tahvildari, L.: Self-Adaptive Software: Landscape and Research Chal-
lenges. ACM Transactions on Autonomous and Adaptive Systems 4 (2009) 14:1–
14:42

5. Villegas, N.M., Müller, H.A., Tamura, G., Duchien, L., Casallas, R.: A Frame-
work for Evaluating Quality-Driven Self-Adaptive Software Systems. In: 6th In-
ternational Symposium on Software Engineering for Adaptive and Self-Managing
Systems (SEAMS 2011), New York, NY, USA, ACM (2011) 80–89

6. Cheng, B.H., Lemos, R., Giese, H., Inverardi, P., Magee, J., Andersson, J., Becker,
B., Bencomo, N., Brun, Y., Cukic, B., Marzo Serugendo, G., Dustdar, S., Finkel-
stein, A., Gacek, C., Geihs, K., Grassi, V., Karsai, G., Kienle, H.M., Kramer, J.,
Litoiu, M., Malek, S., Mirandola, R., Müller, H.A., Park, S., Shaw, M., Tichy, M.,
Tivoli, M., Weyns, D., Whittle, J.: Software engineering for self-adaptive systems:
A research roadmap. In: Software Engineering for Self-Adaptive Systems, Springer,
Heidelberg (2009) 1–26

7. Schafer, W., Wehrheim, H.: The Challenges of Building Advanced Mechatronic
Systems. In: 2007 Future of Software Engineering (FOSE 2007), Washington, DC,
USA, IEEE Computer Society (2007) 72–84

8. Cornelissen, B., Zaidman, A., van Deursen, A., Moonen, L., Koschke, R.: A Sys-
tematic Survey of Program Comprehension through Dynamic Analysis. IEEE
Transactions on Software Engineering (TSE) 35 (2009) 684–702

9. Hellerstein, J.L., Diao, Y., Parekh, S., Tilbury, D.M.: Feedback Control of Com-
puting Systems. John Wiley & Sons (2004)

10. W.J.A. Dahm: Technology Horizons a Vision for Air Force Science & Technology
During 2010-2030. Technical report, U.S. Air Force (2010)

11. Villegas, N.M., Müller, H.A., Tamura, G.: Optimizing Run-Time SOA Gover-
nance through Context-Driven SLAs and Dynamic Monitoring. In: 2011 IEEE
International Workshop on the Maintenance and Evolution of Service-Oriented
and Cloud-Based Systems (MESOCA 2011), IEEE (2011) 1–10

23

12. Beisiegel, M., Blohm, H., Booz, D., Edwards, M., Hurley, O., et al.: Service Compo-
nent Architecture, Assembly Model Specification. Specification Version 1.0, Open
Service Oriented Architecture (OSOA) Collaboration (2007)

13. Thayer, R.H., Bailin, S.C., Dorfman, M.: Software Requirements Engineering. 2nd
edn. IEEE Computer Society Press, Los Alamitos, CA, USA (1997)

14. Dorfman, M.: System and Software Requirements Engineering. In: IEEE Computer
Society Press Tutorial, IEEE Computer Society Press (1990) 7–22

15. Pezzè, M., Young, M.: Software Test and Analysis: Process, Principles and Tech-
niques. John Wiley and Sons, Hoboken, New Jersey (2008)

16. Gat, E.: Autonomy Software Verification and Validation might not be as Hard as
it Seems (AeroConf 2004). In: 2004 IEEE Aerospace Conference. (2004) 3123–3128

17. Bucchiarone, A., Pelliccione, P., Vattani, C., Runge, O.: Self-Repairing Systems
Modeling and Verification Using AGG. In: 8th IEEE/IFIP Joint Working Inter-
national Conference on Software Architecture (WICSA) and 3rd European Con-
ference on Software Engineering (ECSA), IEEE (2009) 181–190

18. Bose, P., Quilling, M.: Model-Based Analysis of Autonomous Self-Adaptive Co-
operating Robots. In: 2nd IEEE International Conference on Self-Adaptive and
Self-Organizing Systems (SASO 2008), Washington, DC, USA, IEEE Computer
Society (2008) 57–63

19. Murray, R.M., ed.: Control in an Information Rich World: Report of the Panel on
Future Directions in Control, Dynamics, and Systems. Society for Industrial and
Applied Mathematics, Philadelphia, PA, USA (2003)

20. Baresi, L., Ghezzi, C.: The Disappearing Boundary between Development-time
and Run-time. In: FSE/SDP Workshop on Future of software engineering research
(FoSER 2010), New York, NY, USA, ACM (2010) 17–22

21. Aubin, J., Bayen, A., Saint-Pierre, P.: Viability Theory: New Directions. Springer,
Heidelberg (2011)

22. Balasubramanian, S., Desmarais, R., Müller, H.A., Stege, U., Venkatesh, S.: Char-
acterizing Problems for Realizing Policies in Self-Adaptive and Self-Managing Sys-
tems. In: 6th International Symposium on Software Engineering for Adaptive and
Self-Managing Systems (SEAMS 2011), New York, NY, USA, ACM (2011) 70–79

23. Jacklin, S.A., Lowry, M.R., Schumann, J.M., Gupta, P.P., Bosworth, J.T., Zavala,
E., Kelly, J.W.: Verification, Validation, and Certification Challenges for Adaptive
Flight-Critical Control System Software. In: American Institute of Aeronautics
and Astronautics AIAA Guidance Navigation and Control Conference and Exhibit,
American Institute of Aeronautics and Astronautics (2004) 1–10

24. Crum, V.W., Buffington, J.M., Tallant, G.S., Krogh, B., Plaisted, C., Prasanth, R.,
Bose, P., Johnson, T.: Verification & Validation of Intelligent and Adaptive Con-
trol Systems. In: IEEE Aerospace Conference (AeroConf 2004), IEEE Computer
Society (2004) 68–77

25. Villegas, N.M., Müller, H.A., Muñoz, J.C., Lau, A., Ng, J., Brealey, C.: A Dynamic
Context Management Infrastructure for Supporting User-driven Web Integration
in the Personal Web. In: 2011 Conference of the Center for Advanced Studies
on Collaborative Research (CASCON 2011), Markham, ON, Canada, IBM Corp.
(2011) 200–214

26. Murray, R.M., Ȧström, K.J., Boyd, S.P., Brockett, R.W., Stein, G.: Future Direc-
tions in Control in an Information Rich World. IEEE Control Systems 23 (2003)
20–33

27. Schumann, J., Gupta, P.: Bayesian Verification & Validation Tools for Adaptive
Systems: Report on Principle of Operation and Prototypical Implementation of

24

Bayesian Envelope Tool for Neural Networks. Technical report, National Aeronau-
tics and Space Administration (NASA) (2006)

28. Elkhodary, A., Esfahani, N., Malek, S.: FUSION: A Framework for Engineering
Self-Tuning Self-Adaptive Software Systems. In: 18th ACM International Sympo-
sium on Foundations of Software Engineering (FSE 2010), ACM (2010) 7–16

29. Kephart, J.O., Chess, D.M.: The Vision of Autonomic Computing. IEEE Computer
36(1) (2003) 41–50

30. Tamura, G., Casallas, R., Cleve, A., Duchien, L.: QoS Contract-Aware Recon-
figuration of Component Architectures Using E-Graphs. In: Formal Aspects of
Component Software. (FACS 2010). Volume 6921 of LNCS., Springer, Heidelberg
(2012) 34–52

31. Dumont, G., Huzmezan, M.: Concepts, Methods and Techniques in Adaptive Con-
trol. In: 2002 IEEE American Control Conference (ACC 2002). Volume 2., An-
chorage, AK, USA (2002) 1137–1150

32. Epifani, I., Ghezzi, C., Mirandola, R., Tamburrelli, G.: Model Evolution by Run-
Time Parameter Adaptation. In: 31st International Conference on Software Engi-
neering (ICSE 2009), IEEE (2009) 111–121

33. Léger, M., Ledoux, T., Coupaye, T.: Reliable Dynamic Reconfigurations in a Re-
flective Component Model. In: 13th International Symposium of Component-Based
Software Engineering (CBSE 2010). Volume 6092 of LNCS., Springer, Heidelberg
(2010) 74–92

34. González, A., Piel, E., Gross, H.G.: A Model for the Measurement of the Runtime
Testability of Component-Based Systems. In: 2009 International Conference on
Software Testing Verification and Validation Workshops (ICSTW), IEEE (2009)
19–28

35. Bencomo, N., Blair, G., France, R., Munoz, F., Jeanneret, C.: 4th interna-
tional workshop on models@run.time. In: 4th International Workshop on Mod-
els@run.time (MODELS 2009)). Volume 6002 of LNCS., Springer, Heidelberg
(2010) 173–188

36. Sawyer, P., Bencomo, N., Whittle, J., Letier, E., Finkelstein, A.: Requirements-
Aware Systems. A Research Agenda for RE For Self-Adaptive Systems. In: 18th
International Requirements Engineering Conference (RE 2010), IEEE (2010) 95–
103

37. Blair, G., Bencomo, N., France, R.: Models@run.time. IEEE Computer 42 (2009)
22–27

38. France, R., Rumpe, B.: Model-driven Development of Complex Software: A Re-
search Roadmap. In: 2007 Future of Software Engineering (FOSE 2007), IEEE
Computer Society (2007)

39. Müller, H.A., Kienle, H.M., Stege, U.: Autonomic computing: Now you see it, now
you don’t. In Lucia, A.D., Ferrucci, F., eds.: Software Engineering: International
Summer Schools, ISSSE 2006-2008, Salerno, Italy, Revised Tutorial Lectures. Vol-
ume 5413 of Lecture Notes in Computer Science. Springer, Heidelberg (2009)
32–54

40. Vogel, T., Neumann, S., Hildebrandt, S., Giese, H., Becker, B.: Incremental Model
Synchronization for Efficient Run-Time Monitoring. In: Models in Software En-
gineering, Workshops and Symposia at MODELS 2009. Volume 6002 of LNCS.
Springer, Heidelberg (2010) 124–139

41. Goldsby, H., Cheng, B., Zhang, J.: AMOEBA-RT: Run-Time Verification of Adap-
tive Software. In Giese, H., ed.: Models in Software Engineering. Volume 5002 of
LNCS. Springer, Heidelberg (2008) 212–224

25

42. Villegas, N.M., Müller, H.A.: Managing Dynamic Context to Optimize Smart
Interactions and Services. In Chignell, M., Cordy, J., Ng, J., Yesha, Y., eds.: The
Smart Internet: Current Research and Future Applications. Volume 6400 of LNCS.,
Springer, Heidelberg (2010) 289–318

43. Villegas, N.M., Müller, H.A.: Context-driven Adaptive Monitoring for Supporting
SOA Governance. In: 4th International Workshop on a Research Agenda for Main-
tenance and Evolution of Service-Oriented Systems (MESOA 2010), CMU/SEI-
2011-SR-008, Pittsburgh: Carnegie Mellon University (2011)

26

