
Towards Practical Semantic Web Service

Discovery

Martin Junghans, Sudhir Agarwal, and Rudi Studer

Karlsruhe Institute of Technology (KIT)
Institute of Applied Informatics and Formal Description Methods (AIFB)

Karlsruhe Service Research Institute (KSRI)
Karlsruhe, Germany

{martin.junghans,sudhir.agarwal,rudi.studer}@kit.edu

Abstract. Service orientation is a promising paradigm for offering and
consuming functionalities within and across organizations. Ever increas-
ing acceptance of service oriented architectures in combination with the
acceptance of the Web as a platform for carrying out electronic business
triggers a need for automated methods to find appropriate Web services.

Various formalisms for discovery of semantically described services
with varying expressivity and complexity have been proposed in the past.
However, they are difficult to use since they apply the same formalisms
to service descriptions and requests. Furthermore, an intersection-based
matchmaking is insufficient to ensure applicability of Web services for
a given request. In this paper we show that, although most of prior
approaches provide a formal semantics, their pragmatics to describe re-
quests is improper since it differs from the user intention. We introduce
distinct formalisms to describe functionalities and service requests. We
also provide the formal underpinning and implementation of a matching
algorithm.

1 Introduction

Service-oriented computing is an interdisciplinary paradigm that revolutionizes
the very fabric of distributed software development Applications that adopt
service-oriented architectures (SOA) can evolve during their lifespan and adapt
to changing or unpredictable environments more easily. When properly imple-
mented, services can be discovered and invoked dynamically, while each service
can still be implemented in a black-box manner. Despite these promises, ser-
vice integrators, developers, and providers need to create techniques and tools
to support cost-effective development, as well as the use of dependable services
and service-oriented applications.

Brief Overview. Service discovery deals with finding appropriate Web services
for the task at hand and is one of the central components needed for developing
a SOA application. Universal Description, Discovery and Integration (UDDI)
based service discovery is rather syntactical and requires a lot of manual effort
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for finding the right services [1]. For example, UDDI is not able to deal with
synonyms or relations between terms that describe services. Since the advent of
the Semantic Web, many semantic Web service discovery approaches have been
proposed to deal with heterogeneity in the terminology used in different services.
Some of them consider the functionality description of services, which allows for
automated tasks like service composition. The common model to describe the
functionality of a service is represented by inputs, outputs, preconditions, and
effects, or shortly denoted by (I,O, φ, ψ). Inputs denote the set of user-provided
message parts at Web service invocation. Outputs describe the set of values
returned to the user after service execution. Preconditions and effects describe
the information states of the world before and after service execution, resp.,
by logical formulas. Semantic Web service discovery approaches compute the
match between a service offer that describes the functionality of the service and
a service request.

OWL-S Matchmaker uses OWL-S profile for describing Web service offers as
well as requests [2,3]. Even though OWL-S Profile has elements for preconditions
and effects, the OWL-S matchmaker uses types of input and output parameters
only. The approach presented in [4] models Web services as well as requests as
description logic (DL) classes and bases the matchmaking on the intersection of
service offer and request, which is computed by a DL reasoner. Such approaches
fail to reason about the dynamics of Web services, since DL reasoners can not
reason about changing knowledge bases. The approach in [5] deals with variables,
but is limited to Web services that do not change the world and, thus, can be
described by a query. Efficient semantic discovery approaches that can deal with
functionality of Web services are presented in [6,7]. Efficiency is achieved by pre-
computing a classification of services in a hierarchy of goal templates. However,
the requirement of such a classification hierarchy hinders the usability of creating
service descriptions and requests since it is not feasible to maintain a global
hierarchy in a decentralized and open environment of the Web. Furthermore,
[6,7] do not support matching of inputs and outputs nor do they deal with the
possible inconsistency between functional description of Web services and their
classification.

Problem of Using One Formalism. Apart from the problems mentioned
above, one common problem of all existing approaches is that they apply the
same formalism for describing service offers and requests. The use of the same
formalism for both descriptions does not correspond with the intuition of the
requester. Such mismatch between the semantics of formalisms and the intuitive
interpretation of the requester makes these approaches hard to use in practice.

If the same formalism is used for offers and requests, then a service request
corresponds to a service offer description from which a set of desired services is
derived. In our view, this is an impractical and unintuitive approach as we will
further justify in the subsequent section. Consequently, we propose to use two
distinct formalisms for service descriptions and request. It is more intuitively that
a service description formalizes the actual functionality of a Web service and a
service request describes the set of services that provide a requested functionality.
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Structure. In this paper we provide a semantic service discovery approach
to overcome the above outlined problems. In Section 2, we elaborate on the
problems of state of the art approaches and the motivation for our approach.
Two different formalisms to describe services offers and requests are introduced
in Sections 3 and 4, resp. Based on the semantics of the formalisms that we
provide, the definition of a match between offers and requests is also presented in
Section 4.4. We further present an implementation of our approach accompanied
with performance tests in Section 5. In Section 6, we discuss the relation of our
discovery approach to other approaches. Finally, we conclude in Section 7 by
summarizing our results and giving an outlook.

2 Motivation

At first sight, a practical semantic service discovery should feature expressive
description languages that are non-ambiguous, easy to use as well as support
heterogeneous descriptions. We do not investigate usability aspects by means of
a simple syntax, query language for expressing formulas or supportive user in-
terfaces. To this extent, our approach distinguishes from goal driven approaches
as in [8] by not focusing on an abstract and non-technical request (goal) de-
scription that a user creates. Such user goals have to be translated into machine
understandable requests. The latter representation of a request is the starting
point of our work.

The formalisms to describe Web service functionalities and requests must
provide sufficient expressivity to allow users to formulate rich functionality de-
scriptions and to precisely formulate constraining requirements in requests, resp.
Users should be rather limited by their willingness to invest effort than by any
technical limitation.

Although using a formal way to express a request, usability can be fostered
by the provision of an unambiguous and thus comprehensible interpretation of
service descriptions and requests. E.g., it should be obvious to users whether
the requested inputs are interpreted as inputs that must or can be accepted by
desired services.

Regarding the openness of the Web, semantic service descriptions are consid-
ered to be highly heterogeneous as different actors may use different vocabularies
and ontologies. Also, a discovery solution must scale against a large number of
available semantic Web service descriptions.

Requirements on Formalisms. A service request describes a class of services,
namely the desired ones. If the description of a service request uses the same
formalism as the one used for service descriptions, then there exists a mismatch
between the interpretation of a service description D = (I,O, φ, ψ) and a request
description R = (IR, OR, φR, ψR). As depicted in the left part of Figure 1, D and
R are both interpreted as a set of execution runs. A match between them is given
if there is an intersection between the two sets of runs. Degrees of matches, for
instance plugin and subsume match, present different types of the intersection
of both sets of runs. We refer to [3] for details on the degrees of matches.
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D = (I,O, φ, ψ)

R = (IR, OR, φR, ψR)

intersection match

R = (I,O, Φ, Ψ)

containment match
D ∈ (I,O, Φ, Ψ)

Fig. 1. On the left, the same formalism is applied to Web service description D and re-
quest R. Using our different formalisms for offers and requests allows for the description
of several run sets in a request R as shown in the right part.

Intersection-based approaches lack the ability to let requests exclude certain
properties because not all requested properties need to be fulfilled by match-
ing services. Furthermore, an intersection-based match cannot guarantee that a
matching service can be successfully invoked as the execution run that the user
wants to invoke may not comply to the requirements specified in the request. This
can be since the desired run might not be member of the intersection between
service offer and request. Thus, in order to guarantee applicability of a matching
service, intersection-based approaches using the same formalism for offers and
requests need to further check for applicability in a further step. Consequently,
the freedom provided by the different matching degrees is not practicable for the
purpose of service invocation. As an example that was already discussed in [9],
a service offers to ship goods from a city in the UK to another city in Germany.
A user requests for a shipping provider that operates between European cities.
Using intersection based matchmaking will identify the mentioned service as a
match. However, if the requester wants to ship an item from Berlin to Hamburg,
then the matched service offer fails.

Another example explains why the service description formalism cannot be
used for requests and vice versa. Consider the functional description of a book
selling Web service that requires the invoker to provide an ISBN book number
of the book to order as input. While inputs of the service descriptions are con-
sentaneously interpreted as required for invocation of an atomic Web service,
the inputs specified in a request can be interpreted differently. From the user
perspective, a request for book selling Web services may contain different inter-
pretations of inputs simultaneously. Either the user provides an ISBN number or
alternatively author name and book title as inputs. This simple example leads
to the observation that a request cannot simply specify a set of inputs. The same
conceptual mismatch between service descriptions and requests occurs in precon-
ditions and effects. Employing the same formalism for the description of a ser-
vice and a set of desired services is not appropriate, because their interpretation
and their intended use are different. Requests conceptually differ from service
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functionality descriptions. We believe that this mismatch makes (I,O, φ, ψ)-
based formalisms difficult to use.

In order to develop a formalism that allows to practically describe requests
that can be matched against (I,O, φ, ψ)-based service descriptions, we identified
the requirements of requests descriptions that also effect the formalism of service
descriptions. First, users should be able to describe required properties of a
set of desired services in a request. As depicted in the right part of Figure 1
and in analogy to database queries, a request rather describes properties of
the result set than a precise desired service functionality. Second, it needs to
be clear to requesters how the request description effects the set of matching
services. In contrast, it is not obvious which requested properties of a matching
service justify the match if discovery approaches consider different degrees of
matches. The reason is that intersection-based matchmaker cannot guarantee
that matching services comply to all requested properties. And third, to provide
a matchmaking algorithm, offers and requests have to be mapped to a common
formal model where matches can be identified.

3 Service Descriptions

In this section we first introduce our formal model of Web services and then
present the formalism to describe service functionality descriptions. The func-
tionality of a Web service is described by a set of inputs I, set of outputs O,
precondition φ, and effect ψ. We consider atomic Web services that may require
user inputs at service invocation time and provide outputs at the end solely.
There are no user interactions in between, which allows us to describe service
functionalities by the states before and after execution without stating anything
about the intermediate states.

3.1 Formal Model of Web Services

In our formal model, we consider a set of actors A identified by a unique identi-
fier, e.g., their public key. For each actor A ∈ A, we consider a knowledge base
KBA. Furthermore, each actor A ∈ A can provide a set of Web services. A Web
service can use other Web services (of the same or different actors). That is, an
execution of a Web service W provided by an actor A ∈ A can cause changes not
only in the knowledge base KBA of actor A, but also in the knowledge bases of
(external) actors whose Web services are used by the Web service W . However,
the execution of a Web service W can not cause any changes in the knowledge
bases of the actors that are not involved in W . We model a state as the set
of knowledge bases of all the actors. Formally, a state is {KBA : A ∈ A}. The
execution of a Web service W is equivalent to a transition between states. The
transition models changes in the knowledge bases within the resp. states.

3.2 Inputs and Outputs

The sets of inputs I and outputs O denote the set of inputs that are compulsory
for service invocation and the set of outputs returned after successful execution,
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respectively. They assign the service’s inputs and outputs to variable names that
can be referenced in preconditions and effects and also allow us to distinguish
inputs and outputs from instances that already exist in the provider’s knowledge
bases. We model a book selling Web service as a running example for illustration.
The types of inputs and outputs are specified in preconditions and effects. The
service with I = {u, p, a, t} requires a user identification u, password p, author
name a, and a title t for successful invocation. Further, O = {b, i} describes that
the service provides a book b and invoice i as outputs after execution to the
invoker.

3.3 Preconditions and Effects

In order to provide a practical discovery approach, we now clearly specify the
intention and the interpretation of preconditions and effects. By this we clarify
the pragmatics and avoid ambiguities about what is modeled by a provider and in
turn which conditions a requester may query in a request. The pragmatics of the
logical formula that represents the precondition is restricted to the description of
(i) requirements on inputs, like their types, relationships among them, conditions
on the values of the inputs, and (ii) conditions that must hold in the resp. state
from the perspective of service providers. A precondition describes the state from
the perspective of the service provider(s) before a service can be successfully
invoked. In contrast to [10], by preconditions and effect we do not intend to
describe global states that model the knowledge bases of the entire world as
perceived by an external observer which certainly causes several problems.

An effect formula is restricted to describe (i) constraints on returned outputs,
(ii) the relation between inputs and outputs, and (iii) changes made by the
service in the knowledge bases of service providers.

Below an example precondition φ and effect ψ description of the book selling
service is partly shown.

φ ≡ UserId(u) ∧ isRegistered(u) ∧ isAuthorized(u, p) ∧ Password(p) ∧ Book(b) ∧
hasAuthor(b, a) ∧ Author(a) ∧ hasTitle(b, t) ∧ Title(t) ∧ isAvailable(b) ∧ ...

ψ ≡ Order(o) ∧ containsProduct(o, b) ∧ containsPrice(o, p) ∧ hasPrice(b, p) ∧
Invoice(i) ∧ containsProduct(o, i) ∧ hasAddress(u, ad) ∧ isShipped(o, ad) ∧ ...

The precondition φ states that the described service requires that the user with
ID u is registered and authorized by its password p. Both, u and p are inputs.
Furthermore, the service requires for a successful execution that the book b with
author a and title t is available.

3.4 Semantics of Service Description

The semantics of service descriptions translates them into a formal model. We use
a labeled transition system (LTS) as formal state-based model for both service
descriptions and requests. This powerful model allows us to enhance description
formalisms in future work. An LTS L = (S,W ,→) comprises a set S of states,
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a labeled transition relation →⊆ S ×W × S, and a set W of transition labels.
A state is described by the knowledge bases of involved service providers.

The description (I,O, φ, ψ) of a service w is translated to an LTS L =
(S,W ,→) such that the execution of w is modeled by two states s ∈ S and
t ∈ S and a transition (s, w, t) ∈→ that is labeled with w ∈ W . The state s
is the one described by the precondition and inputs and the state t is the one
described by the effect, inputs, and outputs. Consequently, s models the state
before and t models the state after service execution. In summary, the LTS L
that models a service description is defined as follows.

L = (S,W ,→)
S = {s, t},W = {w},→= {(s, w, t)}

4 Service Requests and Matchmaking

A service request aims at specifying constraints in order to restrict the set of
available Web services to the set of desired Web services. Within our model,
this can be done by specifying (i) constraints on inputs and outputs and (ii)
constraints on preconditions and effects. In Section 4.1, we show how constraints
on inputs and output can be specified. Then we show in Section 4.2 how desired
preconditions and effects can be expressed. Analogously to the prior section, we
then present the semantics of a service request description. At the end of this
section, we define matches between requests and service descriptions.

Service requests use a formalism that is different from the one of service
descriptions. It allows for the description of a request such that a set of matching
services is characterized. Requests are denoted by (I,O, Φ, Ψ). The right part of
Figure 1 depicts the motivation of a clear distinction between service descriptions
D = (I,O, φ, ψ) and a service request R = (I,O, Φ, Ψ) describing a set of desired
Web services.

4.1 Constraints on Inputs and Outputs

The specification of desired inputs (outputs) of a request describes the set of
desired sets of inputs (outputs). The description of the set of sets is expressed
in a logic that allows us to express conjunctions, alternatives, and exclusions of
inputs and outputs.

As an example, a library system that frequently places book orders requests
for services with the following input specification. Disregarding the remaining
request description, the input specification I corresponds to the set of services
that either only require an ISBN i or at least author a and title t of the book to
order but do not require a date of birth bday. Any coherencies between the inputs
or outputs are expressed in the formulas that model requested preconditions and
effects, resp.
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I ≡ (∃isbn ∈ I ∧ ∀j ∈ I : isbn = j
) ⊕ (∃author ∈ I : ∃title ∈ I :
 ∃bday ∈ I

)

O ≡ ∃book ∈ O

The input set I is the set of inputs provided by the service description, which
is matched against this query. The requested outputs O specify that desired
services return a book book.

4.2 Constraints on Preconditions and Effects

Now we focus on formalizing the specification of requested preconditions Φ and
effects Ψ . Similar to requesting for inputs and outputs, we aim at describing a set
of desired services. Preconditions φ and effects ψ of a service describe the states
before and after service execution, resp., and model the available knowledge. A
knowledge base is described by facts that must hold in it. Preconditions Φ and
effects Ψ of a request are interpreted as queries against a repository of service
descriptions. The queries retrieve the set of services that accept or provide the
requested conditions in the states before and after service execution modeled by
φ and ψ, resp.

A requested precondition description Φ might be modeled as follows. The pre-
condition request Φ is a query against the preconditions φ of service descriptions
and matches those that provide the requested the required facts.

Φ ≡ ∃b : Book(book) ∧ hasAuthor(book, author) ∧ hasTitle(book, title)∧
Author(author) ∧ isAvailable(book) ∧ ¬isRegistered(user) ∧ Birthday(d)...

Using a logic like first-order logic to specify the set of requested preconditions
and effects not only allows for precisely expressing which conditions are provided
by service offers, but also for excluding services with undesired conditions. For
example, the negation of the condition isRegistered(.) prevents matching Web
services that require a user registration for the order of the specified book. Con-
sequently, the example of Φ prevents that it will match the Web service indicated
with the example precondition φ in the previous section since the service required
a registered user. The description of requested effects Ψ is conceptually similar
and omitted due to space limitations.

4.3 Semantics of Service Request

A service request is translated to a set L of labeled transition systems. As a
request describes a set of possible input sets, output sets, preconditions, and
effects, the set L is used to formally model the set of possible service executions
described by a request (I,O, Φ, Ψ). For each state s ∈ S that fulfills the requested
precondition Φ and for each state t ∈ S that fulfills the requested effect Ψ , there
exists one LTS L ∈ L with an unlabeled transition (s, ε, t) ∈→ in L. That is,
there exists an LTS in L for each combination of a start and a end state. A start
state s represents a possible answer of the knowledge base query Φ. Analogously,
each knowledge base that is an answer to the requested effect Ψ introduces one
end state t.
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In summary, an LTS L = (S, {},→) that is member of the set L comprises
one start state s ∈ S, one end state t ∈ S, and one transition (s, ε, t) ∈→. The
transition is labeled with an empty label ε. Since a request potentially describes
many services, several potential service executions modeled by the LTS’ are
modeled in the set L.

For example, considering the example request above, the desired sets of in-
puts specified by I embrace {isbn}, {author, title}, and further supersets of them.
Combined with each desired precondition, a set of start states is constructed and
combined to each end state that represents a combination of desired inputs, out-
puts, and effect.

4.4 Matchmaking

The discovery of semantically described services identifies service descriptions
from a repository that fulfill the requirements specified in a request. After both
formalisms and their translation to a common formal model were introduced, the
task of discovery adds up to the identification of a containment relation between
an LTS Ld, which models the description (I,O, φ, ψ) of a service w, and a set of
LTS’ L, which models a request (I,O, Φ, Ψ). Let the indexes d and r of variables
indicate their belonging to the LTS Ld and Lr ∈ L, respectively.

The description of service w matches a request if and only if Ld ∈ L. That is,
∃Lr ∈ L : Lr ≡ Ld. Latter equivalence holds if and only if there are transitions
(sd, w, td) ∈→d and (sr, w, tr) ∈→r with (i) equivalent states sd ∈ Sd and sr ∈
Sr, and (ii) equivalent states td ∈ Sd and tr ∈ Sr.

We have described a match within the formal model and we further show how
this match corresponds to a match in terms of the descriptions of a service and
a request. Basically, the containment relation Ld ∈ L corresponds to question
answering task of a reasoner to compute the match. Therefore, the reasoner iden-
tifies a model for the query by binding the variables of the request to individuals
modeled in the knowledge base that describes the service description. To show
the equivalence of the match in the formal model and the match identified by a
reasoner, both directions of the implication between them are discussed. For sim-
plicity, we only consider knowledge bases that model the states before execution.

If Ld ∈ L, then sd = sr and td = tr as defined above. Then the knowledge
bases that describe sd and sr are equal and the knowledge bases that describe
td and tr are equal. Then, there obviously exists a variable binding to answer
the query against the knowledge base KBd that models the service description.
In the other direction, if there exists a variable binding to answer the query,
then the knowledge base KBd is a model of the request and contains at least the
information that has to be satisfied to fulfill the request. Due to the definition of
the request semantics, there must be also an LTS with states that are described
by knowledge bases that are equal to KBd, because the model L of a request
contains all the LTS’ with all possible states and respective knowledge bases that
are model of the request.

The same applies to knowledge bases representing the states after service
execution. Consequently, a match with respect to preconditions and effect is
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given if query answering is used as the reasoning task. Matching inputs and
outputs is guaranteed since they are part of the knowledge bases.

It was shown that in our discovery approach it is not necessary to distinguish
different degrees of matches, which correspond to certain degrees of intersection
of the set of service execution runs as depicted in Figure 1. Instead, we pro-
vided formalisms that allow users to clearly specify a query with unambiguous
interpretation. The query is interpreted as the set of conditions that a matching
service must at least provide. This implies, that a matching service may require
further inputs, offer further outputs, require further preconditions, or generate
further effects within the constraints the user could specify in a query using the
expressivity we provide. If a query does not deliver any or the desired results,
then query relaxation or manual query refinement can be applied. The former
method can thus simulate a subsume or intersect match since a less restrictive
query will be able to return services that would match a query by subsume or
intersect match.

5 Implementation and Evaluation

We implemented the presented discovery approach that uses both formalisms
for service descriptions and requests as well as the matching algorithm from
Sections 3 and 4, resp. As we used a WSML reasoner1, the syntax of descriptions
and queries are bound to the syntax of the Web Service Modeling Language
WSML [11]. Of course, our approach is not bound to this choice. It is possible
to use a different syntax to create the query if another reasoner is used. The
implementation is publicly available2. A simple user interface allows to enter a
request. After submission, two reasoners compute the list of matching services
out of a repository of randomly generated Web service descriptions. Services that
were identified as match by both reasoners are results of the entire request and
are thus displayed to the user.

In this section, we explain the creation of knowledge bases from service de-
scriptions, the implementation of the matchmaking algorithm, and at the end
we present some performance results.

Knowledge Base Construction. The description (I,O, φ, ψ) of a service w
describes two states. Two knowledge basesKB0,KBe that model the state before
and after execution, respectively, are constructed. The inputs from I are parsed
and modeled as instances in both knowledge bases. Output variables from O are
also modeled as instances but only in KBe. The precondition φ is added as an
axiom to the KB0 that models the state before service execution and the effect
ψ is added as an axiom to KBe. The same procedure applies for adding further
service descriptions to the knowledge bases.
1 See http://tools.sti-innsbruck.at/wsml2reasoner for details on the reasoning

process.
2 http://www.aifb.uni-karlsruhe.de/WBS/mju/soa4all-discovery subject to

change. Please contact authors if necessary.

http://tools.sti-innsbruck.at/wsml2reasoner
http://www.aifb.uni-karlsruhe.de/WBS/mju/soa4all-discovery
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Matchmaking. The discovery engine receives a request (I,O, Φ, Ψ) from the
user interface and translates it into two queries q0 and qe expressed in the WSML
query language syntax. The query q0 is created from the requested inputs I
and precondition Φ and is sent to the first reasoner instance that models KB0.
The query qe is created from the requested inputs I, outputs O, and effect Ψ
and is sent to the second reasoner instance that models KBe. Both reasoner
instances execute the respective queries on their knowledge bases, which may
model several service descriptions. In order to answer the query q0, the first
reasoner determines for each service w modeled in KB0, whether required inputs
and the precondition φ is a model of the requested precondition Φ. That is, the
reasoner checks whether the precondition Φ of a request is fulfilled by the facts
in the A-Box that were introduced by the precondition φ of the service w. Query
qe is processed analogously by the second reasoner instance on KBe.

Below, a fragment of an example query that is sent to the first reasoner
instance is presented in WSML syntax. The query contains the specification of
requested inputs, their types, and the precondition. sm# denotes the namespace
of the ontology that formalizes the service model. The shown query asks for
services that have two inputs ?a and ?t of type Author and Title of an example
ontology denoted by the namespace ex#, respectively. The inputs describe a
book ?b of type Book. The continuation of the example may specify further
conditions on the book ?b et cetera.

?w memberOf sm#Service and ?w[sm#hasPrecondition hasValue ?p] and

?w[sm#hasInput hasValue ?t] and ?t memberOf ex#Title and

?w[sm#hasInput hasValue ?a] and ?a memberOf ex#Author and

?p[sm#hasVariable hasValue ?b] and ?b memberOf ex#Book and

?b[ex#hasTitle hasValue ?t] and ?b[ex#hasAuthor hasValue ?a] and ...

After sending both queries q0 and qe to the reasoners, the reasoners bind the
variable ?w to references of service annotations that fulfill the queries q0 and
qe, respectively. A service is a match for a given request, if the service is an
answer to both queries q0 and qe, i.e., the service is identified as a match by
both reasoners.

Performance Results. We generated a repository of randomly generated ser-
vice descriptions. We used the Semantic Web for Research Community ontol-
ogy [12] as background knowledge base. It provides classes and properties used
to model types of individuals and to express conditions used in preconditions
and effects. The generated service descriptions are also available at the supple-
mentary Web page. We measured the reasoner’s mean query answering time of
100 repetitive runs. Both queries q0 and qe were sent in parallel to the reasoners,
which computed the answers on an ordinary laptop with dual core 2.4GHz CPU
and 4GB of main memory. Both knowledge bases modeled 1000, 2000, 3000,
4000, and 5000 Web service descriptions. Queries of three different sizes were
sent to each knowledge base. Small (S), medium (M), and large (L) queries with
1, 2, 3 instances and 2, 4, 6 properties on those instances were tested, respec-
tively. Figure 2 shows the mean time in milliseconds for different knowledge base
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Fig. 2. Mean time to answer the two queries q0 and qe

and query size. It is not our intention to claim scalability based on these mea-
surements. We rather want to show feasibility of the presented approach as this
paper was mainly focusing on the underlying description formalisms.

6 Related Work

The description of the functionality of a software by preconditions and effects was
introduced by [13]. In contrast to description and discovery approaches in the
field of software specification, the assumption of a closed world does not hold for
Web services. The ability to model side effects to the world and the consideration
of background knowledge thus were not considered. Zaremski and Wing consider
different match types based on the implication relations between preconditions
and postconditions of software library components and a query [14].

OWL-S Profile introduced in [3] proposes to model Web services semantically
with inputs, outputs, preconditions and effects. However, OWL-S Profile since
being an OWL ontology can not capture the semantics of variables and thus the
dynamics of Web services.

Recently, WSMO-Lite has been proposed for describing Web services semanti-
cally as the next evolutionary step after SAWSDL3, filling SAWSDL annotations
with concrete semantic service descriptions [7]. WSMO-Lite ontology is on one
side lightweight and on the other side provides elements for modeling functional-
ity of Web services. WSMO-Lite does not provide modeling of input and output
parameters explicitly and relies on their derivation from the free variables in the
formulas for precondition and effect. Note that such a derivation is not possible
if a formula does not have any free variables but the Web service has inputs or
outputs.

Description logic (DL) based approaches [15,2,16] for describing Web services
propose to model inputs and outputs as concepts in description logics, while
3 Semantic Annotations for WSDL http://www.w3.org/2002/ws/sawsdl

http://www.w3.org/2002/ws/sawsdl
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discovery, i.e., matchmaking is reduced to checking subsumption of input and
output types.

Li et al. combine in [4] the use of description logics with DAML+OIL and
DAML-S. Service description and request are similarly structured comprising
inputs, outputs, preconditions, and effects. However, they also base their match-
making on different matching degrees. Another problem is that DL based ap-
proaches lack the ability to describe changes in the world that are often caused
by Web service executions. Consequently, more recent research activities concen-
trate on more detailed formalisms, for instance the state-based perspective on
Web services that is discussed below. These models allow to model the dynamics
of Web services.

Martin et al. presents a discovery approach in [17] that is based on OWL-S
and describes services functionalities semantically by inputs, outputs, precon-
ditions, and effects. This approach interprets preconditions as constraints that
need to be satisfied for the service requester only and effects as side effects of
the service execution on the world. In our approach we model conditions that
hold at the service provider side since those conditions can be evaluated during
service invocation and execution time.

The state-based service discovery approach [8,18] developed by Stollberg et
al. uses an abstract state space as the underlying formal model of service de-
scriptions [10]. The functionality of a Web service is formally described by the
set of possible Web service executions while each normal execution of a Web
service is determined by its start and end state. The discovery algorithm relies
on the assumption that the precondition φ logically implies the effect ψ of a Web
service execution. Modeling a transition as a logical implication can be problem-
atic, e.g., in case of a Web service that deletes a certain fact, the existence of
the fact would imply non existence of the fact, e.g., a user subscription would
imply that the user is not subscribed anymore.

Goal-driven approaches like [8,19,20] do not explicitly specify inputs as parts
of the goal. However, a goal needs to be mapped to a request for finding ap-
propriate Web services. In such a request, constraints on inputs can be useful,
in particular if a user wishes to exclude a particular input parameter. In goal
based approaches, goals are mapped to predefined goal templates that are used
to find appropriate Web services. However, the usability of one global hierarchy
of goal templates is hardly feasible in an open environment like the Web. One
major difference between our approach and the goal based approaches is that we
interpret inputs, outputs, preconditions, and effects of descriptions and requests
differently, namely the former as a pair of states the latter as a pair of queries.

In contrast to the state-based approaches, Hull et al. propose a matching
technique for stateless Web services in [5]. They argue that reasoning for state-
ful service descriptions and expressive background ontologies becomes practically
impossible. Thus, this attempt solely considers inputs, outputs, and their rela-
tionships. With the restriction to conjunctive queries, the query containment
problem is decidable. In our approach, we deal with stateful services since our
discovery approach is not based on query subsumption but on query answering.
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7 Conclusion and Outlook

In this paper we presented a discovery approach that is more practical as it
overcomes several problems of other approaches. We thoroughly investigated
the problem of using the same formalism for service descriptions and requests.
A formalism to describe service requests as a set of potentially matching services
was introduced. Also the formalism to describe service functionalities semanti-
cally was renovated by clarifying its interpretation. We defined the matchmaking
between descriptions and requests. Therefore, the semantics of both formalisms
that translates the descriptions to the same formal model was provided. We pre-
sented a prototypical implementation of our semantic discovery technique, which
is a part of the larger system developed under the EU funded project SOA4All.

The focus of the present paper was to provide appropriate formalisms in a first
step. Since scalability and efficiency is crucial to enable semantic Web service
discovery in a large scale on the Web, we will focus on improving the perfor-
mance and scalability in the future. Among other options, by the introduction
of indexing structures, materialization, and more computational resources we
expect to handle larger sets of semantic Web service descriptions.

We furthermore plan to integrate non-functional properties to discovery since
it is also valid to request for services including the specification of desired values
of non-functional properties. In the settings of an open Web with distributed
service providers and consequently decentralized knowledge bases, conditions
specified in preconditions and effects cannot hold generally. The functionality
description of a software artifact is usually described with respect to a local and
closed world of the runtime environment [14]. However, Web service functionali-
ties cannot be described in a closed and local context as service executions may
involve further external services. Preconditions and effects must be capable to
distinguish different actors of the Web. Conditions and changes must therefore
explicitly state where they hold. We will therefore examine techniques to refer to
the respective actor in order to identify the knowledge base in which a condition
holds.
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