
Towards Practical Taint Tracking

Andrey Ermolinskiy
Sachin Katti
Scott Shenker
Lisa L Fowler
Murphy McCauley

Electrical Engineering and Computer Sciences
University of California at Berkeley

Technical Report No. UCB/EECS-2010-92
http://www.eecs.berkeley.edu/Pubs/TechRpts/2010/EECS-2010-92.html

June 5, 2010



Copyright © 2010, by the author(s).
All rights reserved.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission.



Towards Practical Taint Tracking
Andrey Ermolinskiy Sachin Katti Scott Shenker Lisa Fowler Murphy McCauley

ABSTRACT

This paper proposes several technical measures that
significantly improve performance and largely limit ker-
nel taint explosion in a XEN- and QEMU-based taint
tracking system.

1 INTRODUCTION

Full-system, fine-grained taint tracking is a fundamen-
tal primitive that can be used for a number of purposes,
most notably for tracking the flow of information through
a system. Taint tracking is conceptually simple: memory
containing data is tagged with a “taint”, and the tag is
tracked as contents of the memory are computed upon
and moved. There is a large and growing literature of
various taint-tracking techniques [9, 1, 15, 5, 19], and
there are many cases where taint-tracking has proven both
practical and beneficial. However, if one wants to avoid
rewriting the OS or applications (which is our focus in
this paper), it has proven extremely difficult to implement
practical full-system fine-grained taint tracking systems.

The typical implementation approach in this case is
to instrument hardware emulators such as QEMU with
tracking instructions. Hardware emulation is extremely
slow, so, to improve performance, modern implementa-
tions [5] use emulation only for those regions of code that
interact with tagged data. These efforts have proved quite
useful for binary analysis [9] but the performance is still
not adequate for real-time use. In addition, fine-grained
taint tracking often results in control information such as
kernel data structures being tagged accidentally, which
then amplifies into a taint explosion that leaves signifi-
cant portions of the data unnecessarily tainted.

These two concerns, poor performance and taint explo-
sion, have rendered full-system fine-grained taint-tracking
impractical for deployment outside of a laboratory en-
vironment. This paper presents our progress in address-
ing these two problems and thereby making fine-grained
taint-tracking more practical.

Our approach (which we call PTT for practical taint-
tracking) begins with completely standard building blocks:
PTT uses the Xen hypervisor to run the tracked system
within a virtual machine, and (as in [5]) dynamically switches
execution on to and off of the QEMU hardware emulator
as tracking is required. To improve performance, we track
tags at a higher abstraction level and in an asynchronous
fashion. Specifically, instead of instrumenting the micro-

instructions QEMU generates to track data, we create a
separate stream of tag tracking instructions from the x86
instruction stream itself. This provides two benefits:

• For the tracking instructions, we avoid the amplifica-
tion that occurs when we go from one x86 native in-
struction to multiple QEMU micro-instructions.

• Since this is a separate stream, the tracking can be done
asynchronously without stopping the native emulation.

In essence, this approach is both directly more efficient
(because it generates fewer tracking instructions), and it
also allows us to execute those instructions asynchronously;
it is the combination of these two effects that give PTT
better performance.

However, as we explain later, it was difficult for us to
provide direct comparisons with previous work. In the
two specific cases where we could do so, PTT achieved a
slowdown of roughly 1.4× (compared to native Linux ex-
ecution), as opposed to previous efforts (in [19], based on
[5]) in which the two comparison cases had slowdowns
of roughly one and two orders of magnitude, respectively.
We hasten to note that these two comparison cases were
very optimistic ones, and there are other cases where our
slowdown is much higher (roughly 20×). We discuss our
results in greater detail later in the paper.

For taint explosion, we show that the source is acci-
dental tainting of kernel data structures via a few sys-
tem calls. By interposing at these specific system calls,
and securely scrubbing taint, we prevent accidental taint-
ing of kernel data structures. This prevents incorrect taint
propagation to other data, and effectively eliminates taint
explosion in practice.

The techniques we used to achieve these performance
advances are not, by themselves, particularly deep or novel.
However, the cumulative effect is to make taint-tracking
significantly more practical. In fact, PTT is now usable,
complete with a functioning GUI, and we have edited
portions of this paper with it!

Before proceeding, we note that there is another prob-
lem with taint-tracking: Implicit information flows (such
as copying by branching) do not leave behind a taint trail.
However, here we are focusing on making taint tracking
practical, not augmenting taint-tracking with other infor-
mation flow tracking properties. Thus, while implicit in-
formation flows are an important issue for some appli-
cations of taint-tracking, we do not address this problem
here.

1



This paper starts with a brief overview of our system
(Section 2), then describes our design in greater detail
(Section 3). We then examine the PTT’s performance (Sec-
tion 4) and taint-propagation (Section 5) properties. We
end with a short discussion of related work (Section 6)
and a brief conclusion (Section 7).

2 DESIGN OVERVIEW

This section provides a broad overview of the design
of our data tracking prototype. To provide context for the
material below, we first quickly summarize PTT’s overall
architecture. Applications run in a protected virtual ma-
chine on top of a hypervisor. If the application accesses
tainted data, the hypervisor switches the virtual machine
from native virtual execution to an emulated taint-tracking
processor running as a user-space application in a control
VM. The application then executes in the emulated con-
text, while the taint tracking processor produces a sec-
ond stream of instructions whose sole purpose is to track
taint. Once the application ceases to manipulate tainted
data, the hypervisor can revert the system back to native
virtualized execution.

We now describe our taint model, and then our taint
tracking mechanisms.

2.1 Taint Model

Taints are attached to pieces of data, at its lowest gran-
ularity they can be attached to every byte of data, though
in typical usage we expect large contiguous regions to
have the same taint. PTT intentionally leaves the seman-
tics of the taints opaque (PTT supports general 32-bit tags
rather than single taint bit, and these tags are sometimes
referred to as colored taints or tints). Systems can flexi-
bly use taints to track whatever they wish. For example,
a typical usage is to taint data coming in on an untrusted
connection, and prevent it from being executed as code.
Similarly, administrators can flag sensitive data with a
taint describing the nature of its sensitivity, and block its
exfiltration if appropriate.

Following [10], at a conceptual level the behavior of
our system is dictated by three policies:

• Input Policy: The input policy determines what data
is tainted and what taint to apply. For example, an in-
put policy might be to taint all data from a socket with
a particular label, and track it as it flows through the
system. Of course, users and administrators can always
mark taint on files and data themselves.

• Propagation Policy: A propagation policy determines
how taint is propagated from one location to another.
By default, our propagation policy carries taints from
data sources to data sinks for all data movement (MOV,
MOVS, PUSH, POP, ADD, CMOV, etc.) instructions.

• Assert Policy: An assert policy determines when to

take action and what actions to take, based on the taint.
For example, for data exfiltration, the appropriate assert
policy would be to check taints and prevent exfiltration
only at exit points, such as writing to a network device.
By default, we worked with an exfiltration-style assert
policy.

An alternative taint model is one used by designs such
as Histar [17]—that is to attach taints to higher-level ob-
jects such as files, processes, threads, sockets, etc. While
perfectly suited for the contexts in which these designs
were proposed, this higher-level approach fails our re-
quirements in two ways: To track at this higher seman-
tic level requires rewriting the OS and/or applications,
and it cannot track information at granularities smaller
than these high-level objects (i.e., it cannot distinguish
between the confidential and non-confidential portions of
a file). However, these approaches do track data through
implicit information flows, while our approach does not.

2.2 Taint Tracking

Our goal in designing PTT was to build a comprehen-
sive, deployable, and usable taint tracking substrate. Specif-
ically,

• To be comprehensive, a taint tracking substrate should
track taint persistently across storage, compute, and com-
munication channels. Hence, we need to persistently
track tainted data in the filesystem while it is being
computed upon by applications and when it is either
externalized or received on the network.

• To be widely adopted, a taint tracking substrate should
work with existing applications and operating systems.
While there are other approaches which can build sim-
pler information flow tracking systems by modifying
OSes and applications, their use in deployed systems
is improbable, given the large investment already made
in existing systems.

• To be adopted in everyday use, a taint tracking sub-
strate has to be efficient and not demonstrably impair
user-perceived performance. Second, it has to be par-
simonious in how it propagates taint, yet maintain cor-
rectness. Prior work on taint tracking has been plagued
by taint explosion, i.e., accidental tainting of data that
was not supposed to be tainted.

Figure 1 sketches a high-level picture of our system
architecture. The key components are a hypervisor to iso-
late and securely interpose between the operating system
and the hardware, an emulator to emulate and track in-
structions that operate on tainted data, a taint-aware file
system that persistently stores taint information, and a
network stack that adds taint metadata to packets. We de-
scribe each component below by tracking the lifetime of
tainted data in a file that a user or security application

2



Figure 1—PTT System Architecture. The protected VM is emulated
via QEMU in the control VM when it accesses tainted data. The PTT-
ext3 filesystem is located in the control domain and the protected VM
communicates with it via a shared memory RPC mechanism.

wishes to track. Note that this is only one application—
tainted data could come from any source depending on
the security application implemented (e.g., to prevent pos-
sibly malicious code from being executed, one could track
all data that arrives from an external untrusted network
source).

The system being tracked is called the “protected” vir-
tual machine (VM), and sits on top of the hypervisor. The
control VM is where the emulator and the taint-aware
filesystem resides. For simplicity in this example, we as-
sume that the user taints an entire file with a single taint.
The tainted file is stored in a taint-aware filesystem stored
in the control VM. The filesystem maintains special meta-
data that keeps taint information for each block of the file.
The filesystem serves as the main filesystem for the pro-
tected VM, and is accessed via a remote mechanism like
NFS.

When an application in the protected VM opens the
tainted file, the call is routed via the hypervisor to the
taint-aware filesystem in the control VM. Before return-
ing the file handle, the filesystem makes a call to the
hypervisor, informing it of the file’s taint information.
The hypervisor also marks as dirty the pages in memory
where the file contents are stored.

Shortly later, the protected VM tries to access the file
data, and since the pages have been marked dirty, this
causes a fault which is delivered to the hypervisor. The
hypervisor saves the protected VM’s context and switches
to emulated execution in a user space process within the
control VM. The emulator has direct mapped access to
the VM’s memory and thus continues to execute the ma-
chine in place.

The emulator is instrumented to track the taint of data
being computed upon. Thus, as the emulator proceeds as
normal to emulate the native x86 instruction sequence, it
also executes parallel logic to update data structures that

keep track of taint of data in the system. When the native
instructions are no longer dealing with tainted data, the
hypervisor switches the protected VM to native virtual-
ized execution.

The final step is when the assert policy is invoked. For
example, the policy might specify that an alert should be
raised if tainted data is being externalized, namely, when
the protected VM tries to write to a block output device
such as a network card or a USB stick. The exception
thrown could be an existing processor fault, such as an
invalid opcode, or we can extend the processor with a spe-
cific “tainted” exception. The exception handler gives us
an opportunity to write custom policy filters, which can
either deny the write, modify the content being written,
or just log it for audit.

Conceptually, the above sequence is the same as ear-
lier work on taint tracking [5]. It provides comprehensive
taint tracking end-to-end for existing systems, but fails
to meet the important requirement of high performance
and correct yet parsimonious taint propagation due to the
following reasons:

• Taint tracking by plain instrumented emulation is ex-
tremely expensive. For example, even a simple compu-
tation on tainted data can incur a slowdown on the or-
der of 95× when only 1/64th of the input file is tainted
[19]. Such a slowdown is unacceptable in practice, and
is unlikely to be deployed in everyday use.

• To be comprehensive, taint tracking has to track infor-
mation flow across pointer references, i.e., taint the ref-
erenced data with the same taint as the pointer. How-
ever, prior work [12] has shown that this leads to ac-
cidental tainting of kernel data structures. Soon, any
other application interacting with the kernel also has
its data tainted, eventually propagating taint to all data
in the system. Such taint explosion renders the whole
system ineffective (since the taint ceases to have the
correct significance) and significantly impairs the per-
formance of the system, as running in emulated mode
suffers great performance penalty.

We design three novel techniques to solve the above
two challenges in PTT. Specifically,

• PTT performs taint tracking in the emulator at a higher
abstraction level than prior work. Emulators such as
QEMU break down each emulated guest instruction
into a series of micro-intructions. Prior work performs
taint tracking by changing each micro-instruction to
propagate taint, which immediately incurs a significant
performance hit. PTT instead tracks taint directly at the
native instruction level by producing a parallel stream
of taint-tracking pseudo instructions that are executed
separately (these are a small virtual extension to the
x86 instruction set). The parallel stream size is of the

3



same order as the native instruction sequence, and hence
does not incur a significant performance hit.

• Second, PTT performs taint-tracking asynchronously.
The key insight is that updated taint information is needed
only at the point where assert policies are invoked. Hence,
instead of synchronously tracking taint after the emu-
lation of each native instruction, PTT takes the parallel
stream of taint tracking pseudo-instructions and exe-
cutes them asynchronously on another CPU core, let-
ting the emulation proceed at full speed and returning
it to native virtualized execution as soon as possible.
In Section 4 we show that asynchronous tracking per-
formed at a level of abstraction that directly matches
the architecture of the emulated machine produces a
50× performance improvement over prior work.

• Finally, we identify via empirical evaluation that acci-
dental tainting of kernel data structures happens via a
very narrow interface, typically via a few specific func-
tions in the kernel. We design techniques to interpose
such channels of taint explosion, and securely control
taint flow such that kernel data structures do not unnec-
essarily get tainted. We propose several minor modi-
fications to the Linux kernel that eliminate accidental
tainting and effectively solve the taint explosion prob-
lem.

3 DETAILED DESIGN AND IMPLEMENTATION

PTT uses the Xen hypervisor as its virtualization tech-
nology, and QEMU as the emulation engine to track com-
putation on tainted data. However, these systems must be
modified significantly in order to provide efficient taint
tracking. We start our discussion by reviewing QEMU.

3.1 Overview of full-system emulation using QEMU

QEMU provides a full-system emulation environment
for several widely-used CPU architectures. The emulated
(“guest”) machine executes within the context of a single
user-space process on the host operating system; all of the
components of the guest hardware state (its CPU registers
and physical memory) are represented with correspond-
ing data structures in the address space of the emulator
process.

Like other powerful emulators, QEMU implements dy-
namic code translation mechanisms to achieve reasonably
efficient emulation. This code translation is essentially
a two-stage process. In the first stage, the “front-end”
component disassembles the guest machine code one in-
struction at a time. Each guest instruction is decomposed
into a series of RISC-like abstract micro-instructions. In
the second stage, a dynamic code compiler translates se-
quences of these abstract micro-instructions into blocks
of native code for the host architecture. The results of
code translation are cached in a pre-allocated memory
buffer, which allows QEMU to amortize the significant

overhead of code recompilation.
To support memory accesses from the guest machine,

QEMU implements a software-based version of the mem-
ory management unit for the guest architecture. This soft-
ware MMU provides guest-virtual to guest-physical ad-
dress translation. In addition, a software-based TLB pro-
vides highly-efficient mapping between guest virtual ad-
dresses and the corresponding addresses in the emulator’s
own virtual address space.

QEMU implements some fairly sophisticated optimiza-
tion techniques. However, the overhead imposed by basic
emulation (without taint tracking) is quite significant; as
we discuss in Section 4 the slowdown can be as much as
an order of magnitude relative to native code in our mea-
surements with QEMU v0.10.0.

3.2 Extending QEMU with instruction-level taint track-
ing

To track tainted data in emulated execution, we have
to instrument the emulated instruction sequence with new
instructions to update taint. One possible method that prior
work [5] employs is to augment the micro-instructions
QEMU produces with extra logic to update taint data struc-
tures. This approach is straightforward and convenient.
However, the price we pay is a severe performance hit.

To see why, consider the REP MOV x86 instruction,
which applications can use to copy an arbitrarily-sized
region of memory between a pair of virtually contigu-
ous memory buffers. (The source buffer address is loaded
into register %esi, the destination is loaded into %edi,
and the count is loaded into %ecx). This instruction has
a number of common uses. For instance, the Linux ker-
nel uses this instruction to transfer file data from the page
cache to a user-level buffer when servicing a read() sys-
tem call. To emulate this seemingly simple instruction,
QEMU converts it into a looped sequence of micro-instructions.
Each iteration of the loop decrements the count by 1 and
transfers one word of data using one load and one store
micro-instruction. Extending the load and store micro-
instruction with taint tracking logic means that memory
taint labels are also updated one word at a time. The cost
of traversing the memory taint data structures in each it-
eration of the loop can make this operation tremendously
expensive (up to 2 orders of magnitude relative to the ac-
tual data transfer).

The key limitation is the low level at which taint track-
ing is performed. Instrumenting QEMU micro-instructions
to taint track automatically implies that we also have to
track taint through all the temporary registers defined by
the QEMU micro-architecture. Though this tracks taint
correctly, it also significantly amplifies the number of taint
tracking operations needed. A second important conse-
quence is that taint tracking has to be necessarily sequen-
tial; the taint data structure has to be updated in situ with

4



the emulated instruction sequence. This introduces sub-
stantial user perceived overhead, since users have to wait
for taint tracking to finish before their application returns.

PTT conceptually uses the same approach to taint track-
ing, yet does not experience the performance hit due to
two fundamental operational innovations: First, PTT moves
taint tracking to a higher abstraction level; and second,
PTT leverages the higher abstraction level to perform par-
allelized asynchronous taint tracking. We explain both of
them below.

3.2.1 Taint tracking at a higher abstraction

PTT tracks taint by interposing at the first stage of QEMU
code translation and synthesizing a separate sequence of
taint tracking instructions directly from the guest x86 in-
structions. In abstract terms, we define a new set of in-
structions for a taint processor (a virtual hardware exten-
sion to the x86 architecture). During code translation, we
examine each guest x86 instruction and generate the cor-
responding taint tracking instruction(s). The taint track-
ing instructions are separately executed to update taint
data structures. The main advantage is that we avoid the
overhead of tracking taint through QEMU’s internal data
structures via this approach, resulting in significant per-
formance improvements.

For example, in the REP MOV instruction scenario dis-
cussed above, the PTT translator emits its taint track-
ing equivalent: REP SET(Dest=Mem, Src=Mem). When
handling this instruction, the taint tracker carefully ex-
amines the buffer size and alignment properties and op-
timizes the transfer accordingly. In a common scenario,
this instruction is called with page-sized memory buffers
and the source page holds uniformly-tainted data. In this
case, it suffices to transfer a single page-level taint value,
instead of copying word-level taints one at a time. As-
suming 4KB-sized memory pages and 4-byte words, this
technique reduces the number of accesses to memory taint
data structures by a factor of 1024. Note that this opti-
mization is enabled by the presence of higher-level in-
struction semantics. In this example, they allow the taint
tracker to recognize a transfer between contiguous re-
gions of memory and handle it accordingly—something
that would be difficult to do once REP MOV has been de-
composed into a loop of micro-instructions that performs
word-level transfers.

Granted, our approach has costs. First, the implemen-
tation is more complex than prior approaches. We have
to deal with the rich semantics of the x86 instruction set
while generating the taint tracking instructions (e.g., CMOV
can mean either copy or no-op depending on the run-time
value of a condition code). The richness implies that a
single new taint tracking instruction will be insufficient,
however we find that the taint propagation effects can be
efficiently represented using a small number (16) of well-

chosen taint tracking instructions. Second, creating a spe-
cial taint processor for the x86 instruction set also means
that the extensions will only work for x86 architectures.
To perform taint tracking on a different architecture (e.g.,
PowerPC), we will have to design a new virtual instruc-
tion set and a new code translator. However, given the
dominant deployment of x86 machines, we believe this
loss of generality is a prudent cost to pay for the perfor-
mance improvements.

3.2.2 Parallelized asynchronous taint tracking

The second significant contribution of our system is the
design and implementation of asynchronous parallelized
taint tracking on multiple cores.

The key insight is that emulation and taint tracking are
largely separable, and can be performed essentially in a
parallel asynchronous fashion. Doing this operationally
is made possible by our virtual taint processor: the taint
tracking instructions emitted by the code translator are
executed in parallel on a separate core in an asynchronous
fashion. Decoupling emulation and taint tracking also or-
thogonalizes them. Advances made in emulation now di-
rectly benefit PTT and can be used with minimal changes.

The main complication with this basic scheme is that in
some cases, the information needed to fully specify a taint
tracking operation may not be available at the time of
code translation. Consider mov (%ebx), %ecx, which
loads a word of memory into register %ecx from the
memory address specified in %ebx. While the destina-
tion operand is known at compile time, the taint source is
a memory address given by the content of %ebx. How
does the separately-executing taint tracking instruction
sequence find this memory address? To supply the re-
quired information, we instrument the emulated instruc-
tion sequence with logic that temporarily stores the val-
ues of the operands in a memory-based log. To efficiently
perform log updates, we implemented a new variant of
the load micro-instruction (qemu ld logaddr), which ap-
pends the physical memory address of the source operand
to the log. When the taint tracking instruction sequence
is executing, it consumes operands of this log to correctly
propagate taint.

In operational terms, the emulator and the taint tracker
are in a producer-consumer relationship and use the log
to coordinate their activities. The log resides in a static
pre-allocated memory buffer and is divided into a number
of smaller “log regions” (units of synchronization). Af-
ter executing a basic block of emulated code, the emula-
tor thread (producer) synthesizes the corresponding “taint
block descriptor” and appends it to its current region.
This data structure holds a pointer to the block of taint
tracking instructions (generated by the code translator),
followed by the list of arguments to these instructions
that were resolved at runtime. The emulator thread can

5



Figure 2—Example of QEMU code translation for emulation and taint
tracking.

now schedule the taint tracking thread (consumer) on a
separate core while it moves on to emulate the next basic
block of guest instructions.

Figure 2 illustrates the code generation and logging
mechanisms with a simple example. The first guest in-
struction loads a constant value into register %eax and
the corresponding taint tracking instruction simply clears
out the register taint. The second guest instruction pushes
the value of %ebx onto the stack. For this instruction, we
must propagate the current register taint from%ebx into a
4-byte memory word whose starting address corresponds
to the top of the stack (as given by %esp). Of course,
the exact address is not known at the time of code gen-
eration and to obtain this value, we use our new version
of the QEMU store micro-instruction, which additionally
writes the physical address of the memory location to the
taint tracking log. In this example, the qemu st logaddr
instruction is generated to append the physical address of
the stack pointer (whose virtual address is held in tmp2)
to the log. Accordingly, the taint tracking instruction en-
codes %ebx as the source operand and the destination
operand references the log position, to which the stack
pointer address will be written at runtime. (This log po-
sition is specified relative to the start of the current code
translation block.)

The log size is a crucial parameter. Taint tracking is
more expensive than emulation. Thus, if the log size is
small and the emulator (producer) runs out of space in the
log, the emulator must block until the taint tracker (con-
sumer) catches up and clears up space. At such points, we
effectively return to lock-step synchronous taint tracking.
While this scenario is theoretically possible, we expect
that it will rarely occur in practice. The reason is that in
most forms of interactive computing involving humans
and there are always gaps in computation (e.g., the user
pausing before entering more text). These gaps can be
gainfully exploited by the taint tracker to update taint and
empty the log. We expect these gaps to be sufficiently

large relative to the time taken to perform taint tracking,
thus allowing us to sidestep the full log scenario.

However, note that in certain scenarios we have to ex-
plicitly force synchronization between emulation and taint
tracking. Specifically, at any point where an assert pol-
icy has to be enforced, or the guest system is returning
to native virtualized execution from emulated mode, taint
tracking data structures have to be fully updated. The rea-
son is that both scenarios depend on the correctness of
taint propagation to proceed further. In this case, we ex-
plicitly suspend the producer (emulator), and wait for the
taint tracker (consumer) to complete.

3.2.3 Returning from emulated execution

A final challenge is determining in which situations it
is safe, beneficial, or necessary to exit emulated execu-
tion and resume native execution of the suspended Xen
guest domain. Conceptually, one can exit emulated ex-
ecution as soon as all the CPU registers are untainted.
However, this might not be prudent, since the very next
instruction might again access tainted data necessitating a
switch back to emulation. Frequent context switches be-
tween emulated and virtualized execution will be expen-
sive and contribute to significant slowdown.

PTT handles this problem by introducing some delay
before switching. Specifically, it keeps a counter of the
number of consecutive native instructions in emulation
mode that did not access tainted data. If the counter is
above a certain threshold, it decides it is safe to exit emu-
lated mode and return to virtualized execution. The thresh-
old is empirically determined and is currently set to 50
instructions that do not access tainted data, as in [5] and
[19].

Finally, it becomes necessary to exit the emulated mode
to handle faults and software interrupts (including hyper-
calls) that result in a jump to hypervisor-level code resid-
ing in the highest privilege level (ring-0). The current ar-
chitecture of Xen makes it difficult to emulate the execu-
tion of hypervisor-level code in a user-space process. In-
stead, QEMU temporarily suspends emulated execution,
transfers the guest CPU context back to the hypervisor,
and instructs it to perform a temporary switch to the na-
tive mode at the instruction that causes transition to the
hypervisor. (e.g., int0x82 for hypercalls). Temporary na-
tive execution terminates upon the return from the hyper-
visor context (i.e., a hypercall handler or a fault handler).
Immediately before transferring control to the guest do-
main (typically via the iret instruction), the hypervisor
suspends the guest, transfers its CPU context back to the
emulator, and instructs it to resume emulated execution.

3.3 Taint Storage and Trapping

PTT tracks taints persistently end-to-end. To accom-
plish this, PTT has to design specialized data structures

6



that store taint in the filesystem and memory, and trap
to the emulator when accessed. Below we discuss these
components.

Taint Storage in Filesystem and Memory: PTT uses
an augmented ext3 filesystem to store taints persistently.
Taints are stored in each file’s metadata on a block-by-
block basis. PTT uses a two-level data structure to ex-
ploit spatial locality and store taints efficiently. At the
first level, we maintain a 64-bit field called the Block-
TaintSummary for each block of the file. If the entire block
of data has a single taint associated with it, then the taint
is directly stored in the BlockTaintSummary. Otherwise,
it acts as a pointer to another larger data structure of vari-
able length (the BlockTaintDescriptor), which stores the
taints for each byte in the block. The BlockTaintSummary
data structure is maintained in the metadata of the file,
while the larger BlockTaintDescriptor is kept in a sepa-
rate block. The BlockTaintDescriptor uses run-length en-
coding (RLE) to exploit the expected spatial locality in
byte taints and reduce storage overhead.

A similar two-level data structure is used for taint stor-
age in memory. The corresponding components are called
PageTaintSummary and PageTaintDescriptor.

Trapping Sensitive Data Access An implicit assump-
tion in our earlier description of taint tracking was that
we would automatically switch to emulated execution as
soon as tainted data was accessed. PTT uses a well-known
technique based on shadow page tables to trap such ac-
cesses efficiently and detailed descriptions of this mech-
anism can be found in previous studies [19, 5].

4 EVALUATION

In this section, we evaluate the performance overhead
of our prototype implementation under a variety of work-
loads, which include synthetic microbenchmarks and real-
world applications. We find the following:

• For a system with 10% of the data tainted, the com-
putational overhead over native execution is 40%. In
the worst case (when all data is tainted), the overhead
is 20×. Both of these results appear to be significantly
better than prior work, though we can only make exact
comparisons in two specific senarios.

• The performance improvement is the result of a com-
bination of high-level taint flow instrumentation and
asynchronous parallel execution of taint tracking.

• PTT can support graphical windowing environments,
ensuring a reasonable level of interactivity and application-
level performance. To the best of our knowledge, PTT
is the first online taint tracking system to demonstrate
support for interactive workloads in a graphical desk-
top environment.

4.1 Setup

Our test machine is a Dell Optiplex 755 with a quad-
core Intel 2.4Ghz CPU and 4GB of RAM. The hypervisor-
level component of our implementation is based on Xen
3.3.0. The emulator and taint tracking modules (based
on QEMU v0.10.0) run in the privileged Xen domain
as a multi-threaded user-level process. The guest domain
is configured with 512MB of RAM and one VCPU (as
our current implementation does not yet offer support for
multi-processor guest environments). The guest runs a
paravirtualized Linux kernel v2.6.18-8.

Our experiments evaluate the overhead in the following
configurations:

• NL: Linux on native hardware
• PVL: Paravirtualized Linux on Xen hypervisor
• Emul: Linux in a fully-emulated environment using

unmodified QEMU
• PTT: Our prototype implementation of Practical Taint

Tracking
- PTT-S: Synchronous taint-tracking
- PTT-A(x): Asynchronous parallel taint tracking with
x MB of memory reserved for the log. We explore using
log sizes of 512MB, 1GB, and infinite (∞)

We compare our system primarily with Neon [19] when
possible. Neon builds on top of the on-demand emulation-
based taint tracking system developed by Ho et al. [5],
and hence provides a comparison to both systems most
closely related to us. However, we were unable to get the
code for [5] working on our system since it is based on a
heavily outdated version of QEMU and has fragile depen-
dencies, and as such would not work on our test systems.
Thus, the only way we could provide direct comparisons
was to run the same experiments as reported on in [19]
and use their published results to compare the two sys-
tems.

4.2 Application-level overhead (data processing tools)

In this section, we evaluate the overall performance
penalty of taint tracking in common usage scenarios, as
perceived by potential users of the system. The goal is
to measure if our taint tracking substrate can be used for
everyday computing activities.

4.2.1 Copying and Compressing

We begin by considering two simple but very common
data manipulation activities:

LocalCopy - Copying a partially-tainted file to another
file in the guest filesystem using the cp command.

Compress - Compressing a partially-tainted input file
using thegzip command. Compression represents a
somewhat more stressful scenario as it involves a non-
trivial amount of computation on the input data.

7



This choice of benchmarks also enables us to compare
our results with that in [19]. While the results reported
there focus on the case of sparsely-tainted input files, we
also wish to understand the worst-case performance im-
pact of taint tracking. To this end, we measure the perfor-
mance with varying amounts of tainted data in the input
file.

Similarly to [19], we use a 4-MB input file and measure
the command completion time. Before the start of each
measurement, we pre-stage the input file into the filesys-
tem buffers on the host machine. This allows us to fac-
tor out the overhead of disk I/O (which remains constant
across all configurations) and measure the fundamental
overhead of taint tracking in the most stressful scenario
(a CPU-bound task).

Figure 3 provides the performance results from this ex-
periment, expressed in terms of the slowdown factor rel-
ative to NL. For lightly-tainted input files (10%), PTT-
A(512) increases the running time by a factor of 5.3 for
file copy and a factor of 5.8 for file compression. As the
amount of tainted data grows, our system must spend
more time in the emulated mode and the slowdown be-
comes much more noticeable. In the extreme case of a
fully-tainted input file, our implementation incurs slow-
downs of 15.9× and 21.1× for copying and compression,
respectively. The copy operation involves no computa-
tion on tainted data—it merely transfers file data between
user- and kernel-level memory buffers (typically using
the REP MOV instruction). The page-level taint transfer
optimizations introduced earlier allow the taint tracker to
handle this scenario efficiently.

This experiment exercises the ability of PTT to transi-
tion efficiently between virtualized and emulated execu-
tion modes. Ideally, one would expect the slowdown to
scale linearly with the fraction of taint, since the amount
of taint should dictate the amount of time spent in emu-
lated taint tracking mode. Our system does not show lin-
ear scaling because the heuristics for transitioning are not
perfect. The heuristics err on the conservative side, keep-
ing the system in emulated mode even if one could have
transitioned back to native virtualized mode a bit earlier.
Hence, the overhead at low levels of taint is larger than
the linear scaling would suggest.

Finally, although we do not have enough data to draw
definitive conclusions, we believe that these results yield
a favorable comparison to Neon. In a scenario with f =

1/64, where f is the fraction of tainted data, Neon re-
ports slowdown factors of 10× and 95× for file copy and
compression, respectively. This is the only data point for
this experiment reported in [19] (Table 3). As Table 1 be-
low shows, taint tracking with PTT incurs significantly
less overhead. The overhead for both file copy and com-
pression is only 1.4× over native execution. In Figure 3,
we can see the performance of PTT over the range of

0.0 0.2 0.4 0.6 0.8 1.0

0
10

20
30

40

Fractional amount of tainted data

S
lo

w
do

w
n 

fa
ct

or
 c

om
pa

re
d 

to
 N

L

copy

PTT−A(512)
Neon

0.0 0.2 0.4 0.6 0.8 1.0

0
20

40
60

80
10

0

Fractional amount of tainted data

gzip

Figure 3—Performance overhead in the LocalCopy and Compress ex-
periments.

NL PTT-S PTT-A(512)
LocalCopy 0.011 0.0164 0.0158
Compress 0.062 0.0965 0.0928

Table 1—Command latency measurements (in seconds) for LocalCopy
and Compress with f = 1/64

f , but have no corresponding data from [19] except for
f = 1/64.

4.2.2 Searching

In the next experiment, we consider another common
usage scenario: text search. We use the grep command
to search the input data set for a single-word string and
measure the overall running time. Our input dataset for
this experiment is a 100-MB text corpus spread across
100 equal-sized files. These files reside on disk at the
start of the experiment. We measure the command com-
pletion time in all configurations of interest and compute
the slowdown relative to native execution, i.e., NL. For
PTT, we repeat the experiment multiple times, varying
the number of files f marked as tainted. Unfortunately we
cannot compare with Neon, since they do not report any
measurements for this scenario.

Table 2 reports the results of this experiment for the
most stressful scenario, i.e., when all files are tainted (f =

1). As expected, the performance is significantly worse
compared to native execution for this worst case scenario.
PTT with asynchronous parallelized taint tracking is slowed
down by a factor of 10×. For more modest amounts of
taint, when only 10% of the files are tainted, the overhead
is 46% over native execution.

Table 2 also quantifies the gain over synchronous taint
tracking obtained by performing taint tracking in an asyn-
chronous parallelized fashion. Asynchronous tracking us-

8



NL PVL Emul PTT-S PTT-A(512)
Synch Asynch

Completion
time (s)

2.42 2.87 18.45 58.865 25.57

Slowdown
factor

1.00 1.18 7.62 24.32 10.56

Table 2—Text search performance in the worst-case scenario (f = 1.0).

ing multiple cores roughly provides a 2.5× gain over syn-
chronous sequential tracking on a single core. The best
case gain that can be obtained from parallelization of taint
tracking is if it creates an illusion that there is no taint
tracking at all, i.e., it has the same performance as pure
emulation. PTT with parallelized tracking incurs a 40%
overhead over pure emulation. This nontrivial overhead
is to be expected, especially since the emulated instruc-
tion sequence has to be instrumented to write to the log
operands that are needed by the taint tracking instruction
sequence.

4.3 Benefits and limitations of asynchrony

Asynchronous parallelized taint tracking provides sig-
nificant benefits as noted in the previous section. How-
ever, it comes with a small cost, specifically the log, which
has to be updated by the emulated instruction sequence.
The size of the log has a major impact on the perfor-
mance of asynchronous tracking: a small log could get
frequently filled up and force the producer (the emulator)
to wait for the consumer (the taint tracker) to catch up. In
this section, we evaluate the impact of log size on PTT’s
performance.

We focus on the absolute worst-case scenario—a CPU-
bound workload on a fully-tainted dataset. We consider
two such workloads: Compressing a file (using gzip) and
sorting an array of integers (using the qsort library rou-
tine). We measure the running time for varying input sizes
and repeat the measurements for three different versions
of PTT with different log sizes:

1. PTT-A(512) with a 512MB log.

2. PTT-A(1024) with a 1024MB log.

3. PTT-A(∞) is a special case which is supposed to simu-
late the scenario where log size is not a concern. In this
configuration, the producer never stalls due to lack of
log space and it represents the absolute upper bound the
on the degree of performance improvement attainable
by optimizing the taint tracker. Viewed from a different
angle, the gap between Emul and PTT-A(∞) quantifies
the overhead of logging on the producer side.

Figures 4 and 5 report the slowdown relative to NL
for all configurations of interest. PVL shows the base-
line performance on Xen and Emul isolates the impact

of emulation. As we can see, both compression and sort
suffer an 11× slowdown in emulation. For a 1MB in-
put file, compression runs 22.4× slower on PTT-A(1GB)
and 22.5× slower on PTT-A(512). As we expect, these
numbers start to diverge as input size increases. With a
20MB input file, PTT-A(1GB) still offers sufficient log
space to absorb most of the overhead, and thus the com-
putation proceeds at a rate close to the upper bound given
by PTT-A(∞). An input file of size 20MB appears to be
the point of transition for PTT-A(1GB), beyond which the
producer starts stalling on log space. According to our es-
timates, this transition occurs around the 5MB input size
for PTT-A(512). We can see that for both configurations,
there is an asymptotic penalty as we increase the input
size, plateauing at a 35× slowdown. Viewed collectively,
these results validate our intuition that PTT-A can take
advantage of underutilized memory resources to alleviate
the burden of taint tracking.

Again, there does not exist much data on how previ-
ously proposed taint tracking systems behave at this level
of stress, which makes it difficult to provide a direct com-
parison. We hope that the following data points, which we
were able to collect from the literature, could serve as a
starting point for such a comparison:

• Neon [19] reports overheads ranging from 10× to 95×
for CPU-bound workloads when 1/64th of the input file
is tainted.

• The initial implementation of taint tracking using on-
demand emulation on Xen [5] reports a 155× slow-
down for what appears to be a CPU-bound task operat-
ing continuously on tainted data.

PTT clearly outperforms both these prior approaches,
for systems with much larger levels of taint. Even with
100% taint with a computationally bound workload, the
slowdown is only a factor of 22×.

4.4 Performance in graphical environments

In our last experiment, we study the impact of taint
tracking on user interactivity and application-level per-
formance in a graphical user environment. To this end,
we deploy a full-fledged GUI stack (X Window server
and the GNOME desktop environment) on top of our taint
tracking substrate.

Graphical environments present a non-trivial challenge
for fine-grained taint tracking systems such as PTT. Al-
though such environments rarely impose high computa-
tional demands, the key challenge is dealing with win-
dow rendering systems when tainted data is present on
the screen. A simple screen refresh will involve moving
tainted data around, and hence lead to constant oscillating
switches between native and emulated execution.

A direct application of PTT to a graphical environment
with tainted data on the screen leads to significant per-

9



0 20 40 60 80 100

0
10

20
30

40

Filesize (MB)

S
lo

w
do

w
n 

fa
ct

or
gzip: Slowdown Factor of Each Approach Compared to NL

PVL
Emul
PTT−A(512)
PTT−A(1024)
PTT−∞

Figure 4—Application benchmark: gzip – Relative slowdown to NL
for all configurations of interest. PVL shows the baseline performance
on Xen and Emul isolates the impact of emulation. We can see that the
worst-case performance is asymptotic at 35× slowdown, no matter the
size of the log.

500 1000 1500 2000 2500

0
10

20
30

40

Array size (x10ˆ3)

S
lo

w
do

w
n 

fa
ct

or

sort: Slowdown Factor of Each Approach Compared to NL

PVL
Emul
PTT−A(512)
PTT−A(1024)
PTT−∞

Figure 5—Application benchmark: sort – As with gzip, we can see
that the worst-case performance is asymptotic at 35× slowdown relative
to NL, no matter the size of the log. Unlike with gzip, there is more
benefit to an increased log size.

formance impairment, to the point that the user perceives
serious interactivity problems. The reason is a thrashing
behavior resulting from repeated screen repaint opera-
tions. In typical usage scenarios, basic user actions (such
as mouse movements and keystrokes) trigger application-
level events that cause the window image to be recom-
puted. For instance, if a text window is showing tainted
data and the user is entering text from the keyboard, each
keystroke cause a page fault and transition to emulation.
When the guest system finishes computing the new win-
dow contents (reflecting the keystroke) and relinquishes
the CPU, we switch back to the native mode, but find
ourselves re-entering emulation once again upon the next
keystroke.

We found that the overall performance and usability of
the system can be greatly improved in such situation by

making a simple fix: persistently switching to emulation
mode and remaining in emulation mode for as long as
tainted data remains on screen. Keeping the system per-
sistently in emulation also enables us to leverage signif-
icant benefits from asynchronous parallelized tracking.
In fact, interactive graphical environments seem to be a
fairly compelling use case for asynchronous taint track-
ing. Since the guest workload is interrupt-driven and pro-
ceeds mostly at human timescales, the taint tracker can
easily keep up with the producer and the log helps absorb
the short burst of computation resulting from basic user
activity.

Persistent emulation with asynchronous taint tracking
led us to a fully-operational and usable graphical environ-
ment. In this environment, users observe almost no per-
ceivable degradation of interactivity for simple UI actions
(e.g., moving the mouse, entering text, scrolling).

To measure the performance impact on application-level
operations, we instrumented the gedit text editor applica-
tion and ran a simple user session. This session included
launching the editor, opening a 1.2MB text file, making
some changes, computing document statistics, and saving
the file under a different name. Table 3 reports the results
from this experiment and Figure 6 shows a trace of taint
tracking log usage and CPU utilization in the control do-
main for this user session.

0 1000 2000 3000 4000

0
20

40
60

80
10

0

Timestep (100ms intervals)

%
 U

sa
ge

CPU Usage and Log Usage while using Text Editor

QEMU CPU (top)
Log (512MB)

Figure 6—Time series of log usage and host CPU usage by the QEMU
process. Note that the 100% CPU usage mark represents full utilization
of both processor cores (producer and consumer).

Although the text editor was fully usable and respon-
sive during this user session, the measured performance
degradation was somewhat higher than we expected. No-
tably, the component of the overhead due to taint tracking
does not increase from previous experiments in the text
console environment. At the same time, the costs of basic
system emulation increase to about 20×. Further investi-
gation revealed the likely source of this discrepancy. The
GNOME graphical environment on x86 makes extensive

10



Action NL Emul PTT-A(512)
Launch editor 2403 7472 8741

Open file 302 2087 4634
Compute document stats 307 7309 12491

Save file 420 8300 15086

Table 3—Completion time (in ms) for a range of user actions in the
gedit text editor experiment.

use of the SSE instruction set extensions and QEMU does
not currently optimize the emulation of these processor
features. Current versions of QEMU dynamically recom-
pile arithmetic and memory access instructions into na-
tive code and try to optimize the use of host registers. At
this time, QEMU does not perform JIT recompilation for
SSE instructions and does not take advantage of the SSE
registers available on the host processor. We expect that
the overhead of our system will be reduced further with
orthogonal improvements in emulation technology.

5 TAINT EXPLOSION

All prior taint tracking systems suffer from taint explo-
sion, i.e., the phenomenon where almost the entire mem-
ory content of the tracked system becomes tainted, even
though only a small amount of tainted data is introduced
into the system. Several papers [12, 15] have observed
and measured this phenomenon and have questioned the
usefulness of taint tracking given its profligacy in propa-
gating taint accidentally.

Left unchecked, taint explosion significantly impairs
the performance of our substrate in two important re-
spects. First, it unnecessarily forces our system to spend
more time emulating the guest VM and adds perceptible
overhead. Second, it confuses users and security appli-
cations, since they have no way of telling if a piece of
tainted data has been tainted due to the right reasons, or
accidentally.

Upon further examination, we discovered that taint ex-
plosion starts primarily from one source: kernel data struc-
tures. Specifically we found from an empirical evaluation
over a long-lived taint tracking trace, that in all execu-
tion paths that deposit taint into the kernel, only two code
blocks in the Linux kernel are responsible for the initial
transfer of taint from user space to kernel data structures.

In the first case, the transfer occurs when the system
call entry routine writes the user registers to the kernel-
level stack (some of them holding system call arguments),
and the spread of taint begins when the system call han-
dler routine accesses these arguments from the stack. In
the second case, the transfer happens via the copy from user
routine (and its variants). The kernel calls this function
to transfer additional arbitrary-length system call argu-
ments from an application-level memory buffer and this
can cause taint to be transferred into kernel-level stack
and heap areas.

Close examination of these system calls revealed that
these taint propagation paths were completely accidental
and were not actually propagating any information, i.e.,
the user space data was not influencing the state of the
kernel data structures. Subsequently, any other userspace
process that interacted with the kernel would get tainted
from these data structures and incorrectly propagate taint
further in the control path. Soon, the entire system would
become tainted in this fashion.

While the presence of these channels is not at all sur-
prising, the interesting fact that emerged from our analy-
sis is that no other channels exist. This finding motivates
our solution to the problem of taint explosion: namely,
identifying the system call channels through which acci-
dental kernel tainting was occurring, securely intercept-
ing them at the hypervisor level, and explicitly erasing the
taint from system call arguments in the very first steps of
system call handling for these channels. Our current im-
plementation achieves this by issuing a hypercall, which
the emulator intercepts.

We must, of course, ensure that any solution we adopt
to address kernel taint poisoning does not interfere with
the legitimate and explicit channels of information trans-
fer the kernel is expected to provide. By examining the
system call interface, we identified the following chan-
nels of explicit transfer:

• sys write (and its variations): Taint transfer may oc-
cur because because the kernel temporarily stores ap-
plication data in its filesystem buffers.

• sys send (and its variations): Taint transfer may oc-
cur because the kernel temporarily stores application
data in its socket buffers.

• sys ipc: The kernel provides temporary storage for
application data to support message-based IPC.

We do not intercept or scrub any taint for these channels.
With these modifications, we eliminated taint explo-

sion from PTT for all practical purposes. Specifically, we
ran a control experiment where a userspace application
opens a tainted file, does some computation on it, and
then closes it. Prior to the above solution, the whole guest
VM would become fully tainted, even though no further
computation occurred with tainted data. After the above
solution is implemented, no further propagation of taint
occurs after the tainted file is closed, while correct taint
propagation (per policy) still occurs. We observe the same
pattern in a number of other control experiments. While
this may not cover all possible channels of taint explo-
sion, we believe that our experiments do study the major-
ity of practical usage scenarios and effectively eliminate
taint explosion for these scenarios.

To see if these measures impaired performance, we mea-
sured the overhead of the taint scrubbing actions we per-
form for those specific system call channels. We use the

11



null stat fork
PVL 0.248 0.952 242.21
PTT 0.557 1.593 243.00

Table 4—Latency (in μs) for several system calls in Paravirtual-
ized Linux and PTT, as reported by LMBench.

LMBench benchmark to measure the latencies of three
different system calls (null, stat, fork), and compare these
numbers to the baseline native execution scenario of par-
avirtualized Linux (PVL). Table 4 reports the results of
this experiment. We see that for a no-op (null) system
call, the additional hypercall represents a significant (fac-
tor of 2.2×) penalty, but this overhead is much less no-
ticeable when we consider non-trivial system calls.

Our taint scrubbing modifications to the guest kernel
required modifying three source files in the Linux kernel
source tree and adding 90 lines of new code.

6 RELATED WORK

Our system builds on extensive prior work in infor-
mation flow tracking (IFT) and dynamic taint analysis
(or “taint tracking”) in commodity operating systems and
applications. Information flow tracking was introduced
nearly 30 years ago as a technique for security policy en-
forcement [3, 4]. Early efforts focused on static analysis
(such as the popular work in information flow control by
Myers and Liskov [7]), with later techniques supporting
dynamic information flow labels by combining static and
run-time checking, such as [6] and [8]. Another recent
work in dynamic information flow tracking [16] offers
a language runtime that propagates policy objects along
with data, and applies this policy by filtering objects at
system I/O boundaries. However, each of these language-
based techniques require complete application rewrites
and the static techniques cannot support dynamic changes
to policy without recompilation.

Process-level information flow control mechanisms [14,
17, 18] enable mandatory access control through the use
of coarse-grained labels and operating system support.
Leveraging the earlier works, the most recent effort [18]
adds specialized hardware to gain great reductions in over-
head and size of the trusted code base.

In order to perform information flow tracking in envi-
ronments that do not provide such language, compiler, or
OS support, recent efforts have relied on binary rewriting
at run-time as a way of introducing IFT into commer-
cial applications and operating systems. The most popu-
lar technique is that of “taint tracking,” wherein program
inputs are “tainted” and that taint is dynamically prop-
agated along the control path of the program. As such,
the technique of taint tracking has been used for address-
ing numerous security-related issues. For example, one

body of work [9, 13, 15] applies fine-grained taint track-
ing mechanisms to the problem of malware detection and
analysis. These approaches rely on full-system emulation
and impose significant slowdowns, but performance over-
head is a secondary concern for offline analysis. Other
systems use taint tracking mechanisms to understand the
issues of data lifetime and leakage (e.g., [1], [2], or to en-
force security policies on the flow of sensitive user data
in networked environments [19]).

Byte-level taint tracking faces significant performance
challenges and a number of optimizations have been sug-
gested in earlier work. Demand emulation and shadow
page table trapping were first proposed in [5] and our
system directly leverages these techniques. Neon [19] is
a direct extension of the [5] approach, focusing mostly
on the propagation of data labels across networked sys-
tems and thus does not make an effort to significantly im-
prove performance. Similar in spirit to our work, the Log-
Based Architecture proposed in [11] attempts to improve
the performance of fine-grained infromation flow analy-
sis through asynchrony and parallelism, but depends on
a major hardware extension. Speck [10] proposes a set
of techniques for parallelizing security checks (including
taint tracking) on commodity hardware. Speck focuses on
tracking within one user-level process and assumes OS-
level support for speculative execution, while our work
achieves full-system tracking using a hardware emulator.

7 CONCLUSION

Taint-tracking, and tracking information flow in gen-
eral, have been major themes in recent systems security
research. Several approaches have been proposed, but they
either require redesign of OSes and applications, or are
too inefficient to be deployed on commodity systems used
for daily activities. PTT aims to fill that gap. We have
built a byte-level whole-system taint tracking substrate
using off-the-shelf open-source hypervisors and emula-
tors, thus allowing it to be used in existing OSes and ap-
plications with minimal changes. PTT invents two novel
techniques: Instrumenting tracking in the emulator at a
higher abstraction level, and parallelized asynchronous
taint tracking to leverage the multi-core capabilities of
modern systems. These techniques, together with mea-
sures that prevent taint-explosion, make a previously un-
tenable approach far more feasible in practice.

REFERENCES

[1] J. Chow, B. Pfaff, T. Garfinkel, K. Christopher, and
M. Rosenblum. Understanding data lifetime via whole
system simulation. In SSYM’04: Proceedings of the 13th
conference on USENIX Security Symposium, pages
22–22, Berkeley, CA, USA, 2004. USENIX Association.

[2] M. Dalton, H. Kannan, and C. Kozyrakis. Tainting is not
pointless. SIGOPS Oper. Syst. Rev., 44(2):88–92, 2010.

12



[3] D. E. Denning. A lattice model of secure information
flow. Commun. ACM, 19(5):236–243, 1976.

[4] D. E. Denning and P. J. Denning. Certification of
programs for secure information flow. Commun. ACM,
20(7):504–513, 1977.

[5] A. Ho, M. Fetterman, C. Clark, A. Warfield, and S. Hand.
Practical taint-based protection using demand emulation.
SIGOPS Oper. Syst. Rev., 40(4):29–41, 2006.

[6] A. C. Myers. JFlow: practical mostly-static information
flow control. In POPL, pages 228–241, New York, NY,
USA, 1999. ACM.

[7] A. C. Myers and B. Liskov. A decentralized model for
information flow control. In SOSP, pages 129–142, New
York, NY, USA, 1997.

[8] S. K. Nair, P. N. D. Simpson, B. Crispo, and A. S.
Tanenbaum. A virtual machine based information flow
control system for policy enforcement. Electron. Notes
Theor. Comput. Sci., 197(1):3–16, 2008.

[9] J. Newsome and D. X. Song. Dynamic taint analysis for
automatic detection, analysis, and signature generation of
exploits on commodity software. In NDSS, 2005.

[10] E. B. Nightingale, D. Peek, P. M. Chen, and J. Flinn.
Parallelizing security checks on commodity hardware. In
ASPLOS XIII, pages 308–318, New York, NY, USA,
2008. ACM.

[11] O. Ruwase, P. B. Gibbons, T. C. Mowry,
V. Ramachandran, S. Chen, M. Kozuch, and M. Ryan.
Parallelizing dynamic information flow tracking
lifeguards. In SPAA ’08: Proceedings of the twentieth
annual symposium on Parallelism in algorithms and
architectures, pages 35–45, New York, NY, USA, 2008.
ACM.

[12] A. Slowinska and H. Bos. Pointless tainting?: evaluating
the practicality of pointer tainting. In EuroSys ’09:
Proceedings of the 4th ACM European conference on
Computer systems, pages 61–74, New York, NY, USA,
2009. ACM.

[13] J. Tucek, J. Newsome, S. Lu, C. Huang, S. Xanthos,
D. Brumley, Y. Zhou, and D. Song. Sweeper: a
lightweight end-to-end system for defending against fast
worms. SIGOPS Oper. Syst. Rev., 41(3):115–128, 2007.

[14] S. Vandebogart, P. Efstathopoulos, E. Kohler, M. N.
Krohn, C. Frey, D. Ziegler, M. F. Kaashoek, R. Morris,
and D. Mazières. Labels and event processes in the
asbestos operating system. ACM Trans. Comput. Syst.,
25(4), 2007.

[15] H. Yin, D. Song, M. Egele, C. Kruegel, and E. Kirda.
Panorama: capturing system-wide information flow for
malware detection and analysis. In CCS ’07, pages
116–127, New York, NY, USA, 2007. ACM.

[16] A. Yip, X. Wang, N. Zeldovich, and M. F. Kaashoek.
Improving application security with data flow assertions.
In SOSP, Big Sky, Montana, October 2009.

[17] N. Zeldovich, S. Boyd-Wickizer, E. Kohler, and
D. Mazières. Making information flow explicit in histar.
In OSDI, pages 263–278, Berkeley, CA, USA, 2006.

[18] N. Zeldovich, H. Kannan, M. Dalton, and C. Kozyrakis.
Hardware enforcement of application security policies
using tagged memory. In OSDI, pages 225–240, 2008.

[19] Q. Zhang, J. McCullough, J. Ma, N. Schear, M. Vrable,
A. Vahdat, A. C. Snoeren, G. M. Voelker, and S. Savage.
Neon: system support for derived data management. In
VEE ’10, pages 63–74, New York, NY, USA, 2010. ACM.

13


