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This dissertation investigates the question: How do we precisely access and

control time in a network of computer systems? Time is fundamental for net-

work measurements. It is fundamental in measuring one-way delay and round

trip times, which are important for network research, monitoring, and applica-

tions. Further, measuring such metrics requires precise timestamps, control of

time gaps between messages and synchronized clocks. However, as the speed

of computer networks increase and processing delays of network devices de-

crease, it is challenging to perform network measurements precisely.

The key approach that this dissertation explores to controlling time and

achieving precise network measurements is to use the physical layer of the net-

work stack. It allows the exploitation of two observations: First, when two

physical layers are connected via a cable, each physical layer always generates

either data or special characters to maintain the link connectivity. Second, such

continuous generation allows two physical layers to be synchronized for clock

and bit recovery. As a result, the precision of timestamping can be improved

by counting the number of special characters between messages in the physical

layer. Further, the precision of pacing can be improved by controlling the num-

ber of special characters between messages in the physical layer. Moreover, the

precision of synchronized clocks can be improved by running a protocol inside

the physical layer by extending bit-level synchronization.

Subsequently, we make three contributions embodied in the design, imple-



mentation and evaluation of our approaches. First, we present how to improve

the precision of timestamping and pacing via access to the physical layer at sub-

nanosecond scale. SoNIC implements the physical layer in software and allows

users to control and access every bit in the physical layer. Second, we demon-

strate that precise timestamping and pacing can improve the performance of

network applications with two examples: Covert timing channels and available

bandwidth estimation. A covert timing channel, Chupja, is high-bandwidth and

robust and can deliver hidden messages while avoiding detection. An available

bandwidth estimation algorithm, MinProbe, can accurately estimate the avail-

able bandwidth in a high-speed network. Finally, we present how to improve

the precision of synchronized clocks via access to the physical layer. DTP, Dat-

acenter Time Protocol, extends the physical layer’s link-level synchronization

and implements a peer-to-peer clock synchronization protocol with bounded

nanosecond precision. Together, these systems and approaches represent im-

portant steps towards precise network measurements.
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CHAPTER 1

INTRODUCTION

Time is “a finite extent or stretch of continued existence, as the interval sepa-

rating two successive events or actions, or the period during which an action,

condition, or state continues” [35]. In other words, we use the term, time, to

specify the moment or duration of a particular event. We also use time to serial-

ize the ordering of events. Time is inseparable from our daily lives and has been

an interesting research topic in many different areas including physics and phi-

losophy. For example, in physics, Einstein defined time as what a clock at a par-

ticular location reads to explore the concept of relativity [56]. When one wants

to compare the time of two events from two different locations, the clocks from

two locations must be synchronized to provide a common time. There are many

commonly used standard times including Coordinated Universal Time (UTC).

In computer systems, system time is used to specify a moment of creation, up-

date, or removal of an object, to measure the duration of an event, and to order

a series of events. System time is measured by a system clock, which normally

keeps track of the number of seconds since the Epoch (00:00:00 UTC, January

1, 1970) [33]. The synchronization between a system clock and the reference

time (UTC) can be achieved via a time protocol such as Network Time Proto-

col (NTP) [98] or Precise Time Protocol (PTP) [18]. The time difference between

a system clock and a reference time can vary from tens of nanoseconds to any

number of seconds.

Time is also essential for many network applications and network manage-

ment. For example, many network applications use timestamps of messages, i.e.

marking the time at which the message is sent or received. A timestamp can be
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generated by reading the system clock or the hardware clock of the network in-

terface card (NIC) that sends or receives the particular message. Then, a process

can measure a round trip time (RTT) to another process in a network by compar-

ing two timestamps: One is generated before sending a request message and the

other is generated upon receiving a response message. Similarly, a process can

measure a one-way delay (OWD) to another process by sending a probe mes-

sage with its current time. Then, the receiving process can compute the OWD

by subtracting the received time from its own time. Note that measuring OWD

requires the clocks of two processes to be synchronized.

In this dissertation, we focus on three fundamental research problems that

are important for network measurements with respect to time: Timestamping

messages, controlling timing of messages (pacing), and clock synchronization.

Precisely timestamping and pacing messages and synchronizing clocks in a net-

work is challenging, especially as the speed of the network continues to increase

while at the same time processing delay of network devices continues to de-

crease over time. For instance, a packet can arrive every 64 nanoseconds in 10

Gigabit Ethernet (GbE), and even more frequently in faster networks such as in

40 or 100 GbE. On the other hand, it takes nearly a microsecond for a network

switch to process a message. As a result, it is necessary to have a capability

of timestamping and pacing messages at nanosecond scale and to synchronize

clocks at similar granularity. Therefore, we seek to investigate the following re-

search question in this dissertation: How do we precisely access and control time in

a network of computer systems?

In the course of exploring the above research question, we devised an aug-

mented physical layer of the network protocol stack that provides timing infor-

2



mation for network measurements. The augmented physical layer allows users

to control and access every single bit over the medium for precise timestamp-

ing and pacing. Further, the augmented physical layers in a network provide

tightly synchronized clocks with bounded precision. In this dissertation, we in-

vestigate how the physical layer can provide precise time and how it improves

the performance of network applications.

1.1 Background

1.1.1 Terminology

A clock c of a process p1 is a function that returns a local clock counter given a

real time t, i.e. cp(t) = local clock counter. Note that a clock is a discrete function

that returns an integer, which we call clock counter throughout the dissertation.

A clock changes its counter at every clock cycle (or tick). If clocks ci for all i are

synchronized, they will satisfy

∀i, j, t |ci(t) − c j(t)| ≤ ǫ (1.1)

where ǫ is the level of precision to which clocks are synchronized [116].

Each clock is usually driven by a quartz oscillator, which oscillates at a given

frequency. Oscillators with the same nominal frequency may run at different

rates due to frequency variations caused by external factors such as temper-

ature. As a result, clocks that have been previously synchronized will have

clock counters that differ more and more as time progresses. The difference

1We will use the term process to denote not only a program that is being executed on a pro-
cessor but also a program running inside a network interface card.
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between two clock counters is called the offset or skew, which tends to increase

over time, if not resynchronized. Therefore, clock synchronization protocols

periodically adjust offsets between clocks (offset synchronization) and/or fre-

quencies of clocks (frequency synchronization) so that they remain close to each

other [116].

If a process attempts to synchronize its clock to true time by accessing an

external clock source such as an atomic clock or a satellite, it is called exter-

nal synchronization. If a process attempts to synchronize with another (peer)

process with or without regard to true time, it is called internal synchronization.

Thus, externally synchronized clocks are also internally synchronized, but not

vice versa [50]. In many cases, monotonically increasing and internally syn-

chronized clocks are sufficient. For example, measuring one-way delay and

processing time or ordering global events do not need true time.

1.1.2 Example: Estimating Available Bandwidth

In order to illustrate the challenges of precisely accessing and controlling time,

we will use an example of estimating available bandwidth, the maximum data

rate that a process can send to another process without going over the network

capacity between the two. Many algorithms for estimating available bandwidth

use OWD [68, 111, 120].

Suppose a process p wants to estimate available bandwidth between itself

and a process q. The process p uses a train of probe messages (m1, · · · ,mn) to

estimate available bandwidth. The process p controls the time gap between

messages to be a pre-computed interval: Let d
p

i
be the time gap between mi
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and mi+1. Each message mi carries the timestamp t
p

i
which is the time when the

message was sent by p. The process q then timestamps incoming messages (tq

i
)

and computes OWD of each message (=t
q

i
− t

p

i
). Available bandwidth estimation

algorithms then examine and detect any changes in measured OWDs, which are

good indicators of buffering, queuing or congestion in the network. Then the

algorithms infer the available bandwidth.

There are a few potential places which can contribute to inaccuracy in the

estimated available bandwidth. Accuracy means the closeness of an estimated

bandwidth to an actual bandwidth available. First, the timestamp t
p

i
of the probe

messages could be imprecise mainly due to the time gap between the moment

p timestamps a message2 and the moment the message is transmitted over the

wire. The timestamp of a message is precise when the timestamp is close to the

actual time when the message was sent or received by hardware. Similarly the

timestamp t
q

i
could also be imprecise. Second, the time gap d

p

i
might not be the

actual time gap between mi and mi+1. The sender normally controls the time gap

by sleeping for d
p

i
seconds after sending mi. However, sleeping, waking up and

sending a message can introduce random delays, and thus can make the actual

gap d
′p

i
to be larger than d

p

i
. Pacing, or controlling time gap, is precise when an

intended time gap between two packets d
p

i
is close to the actual gap d

′p

i
between

them after they are transmitted by hardware. Lastly, there is an uncertainty in

the degree of synchronization of the clocks of p and q, which could vary from

nanoseconds to any number of seconds. We explore each contributor in the

following section.

Note that OWD is often estimated to be RTT / 2 as synchronizing clocks is

2We will assume that reading a clock and embedding time to a message can happen almost
at the same time or with very small time gap for simplicity.
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Figure 1.1: Collected interpacket delays between two servers.

a difficult problem. However, such estimation is prone to errors mainly due to

path asymmetry: The path that a request message takes might be different from

the path that a response message takes and the time that a request message takes

might also be different from the time that a response message takes.

Also note that time gaps between messages could be very small when the

rate of probe messages is high. For example, time gaps of probe messages at 9

Gigabits per second (Gbps) are smaller than 1.5 microsecond in 10 Gigabit net-

works. As a result, accurate available bandwidth estimation requires at least

microsecond level of precision of pacing and timestamping messages and syn-

chronized clocks in a 10 Gigabit network. Without fine-grained control of time

gaps and precise timestamping, the accuracy of available bandwidth estimation

algorithms could dramatically decrease [125].
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1.2 Challenges for Precisely Accessing Time

1.2.1 Lack of Precise Pacing

Pacing messages is to insert arbitrary delays between messages, i.e. pacing con-

trols time gap between packets. Pacing is often used to improve the perfor-

mance of network protocols [126, 135]. There are mainly three places where

time gaps can be controlled: Userspace, Kernel-space, and hardware (NIC).

Userspace applications can control the time gap between two packets by waiting

or sleeping for a certain amount of time after sending the first packet. However,

controlling the time gap with fine granularity at microseconds or nanoseconds

scale is challenging because the scheduler of the system can introduce random

delays into the time gap when the process waits or sleeps. In kernel space, con-

trolling time gaps at microsecond granularity is possible with a high-resolution

timer [121]. Pacing in kernel space is often limited to support transport proto-

cols [121, 110], and other network applications not implemented in the kernel

cannot normally use the high-resolution timer to control time gaps. Commod-

ity network interface cards normally do not provide an interface for controlling

time gaps, and hardware that supports pacing only supports Transmission Con-

trol Protocol [129].

In order to demonstrate how hard it is to precisely pace messages, we con-

ducted a simple experiment. We used two servers each with a NIC with hard-

ware timestamping (Discussed below in Section 1.2.2) capability on both trans-

mit and receive paths. The NICs were identical and directly connected via a

three-meter cable. The sender periodically sent a message and waited for one

microsecond before sending the next. The sender recorded timestamps of out-
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going messages reported by the hardware. Then, we computed time gaps be-

tween two successive messages and plotted them in Figure 1.1(a). Figure 1.1(a)

shows that the actual time gap between messages is around 65 microseconds

which is much larger than the intended time gap, one microsecond. This simple

experiment demonstrates the challenge of precisely controlling time gaps. As

a result, we investigate the following research question in this thesis: What is

required to precisely pace messages?

In this dissertation, we explore an alternative way of packet pacing. Instead

of waiting / sleeping, or relying on a high-resolution timer, we attempt to di-

rectly control the number of bits between messages in the physical layer. We

mainly exploit the fact that Ethernet uses one bit per symbol over the medium

for data communication. For example, it takes about 100 picoseconds to deliver

one symbol over the wire in 10 Gigabit Ethernet (GbE). As a result, controlling

bits in the physical layer allows precise pacing on the transmit path, which is not

readily available in commodity NICs. We present SoNIC in Chapter 3 which

achieves the precise pacing by implementing the physical layer of a network

stack in software.

1.2.2 Lack of Precise Timestamping

Messages can also be timestamped at three places: Kernel-space, userspace, and

hardware. On the receive (RX) path, kernel records arrival times of packets

upon receiving them from hardware. Since so many factors are involved during

the delivery of a packet to kernel space, such as DMA transaction, interrupt

routines, and scheduler, kernel timestamping can be imprecise in a high-speed

8



network. As a result, userspace timestamping will also be imprecise because of

delays added due to interaction between kernel and userspace.

Modern commodity NICs provide hardware timestamping. A NIC uses an

additional quartz oscillator inside the hardware to timestamp incoming and

outgoing packets at a very early (late) stage for the receive (transmit) path to

achieve better precision normally between the Media Access Control (MAC)

layer and the physical layer. The oscillator can be synchronized to an exter-

nal clock or be free-running. As a result, the precision of timestamping can be

significantly improved.

Unfortunately, hardware timestamping is still not precise. With the same ex-

periment setup discussed in Section 1.2.1, we also captured timestamps of mes-

sages from the receiver and computed interpacket delays. Then, we compared

computed delays from the sender and the receiver. Figure 1.1(b) illustrates the

difference between corresponding interpacket delays in nanoseconds. As there

is nothing in the middle between two identical NICs except a cable, we would

expect that corresponding interpacket delays from the sender and the receiver

would match or close to each other assuming that timestamps are precise. How-

ever, Figure 1.1(b) shows that the interpacket delays from the sender and the

receiver could differ by four or five hundred nanoseconds for the most of time

and at worst case could differ by ten microseconds (which is not shown in the

graph).

Therefore, we investigate the following research question: What is required to

improve the precision of timestamping?

In this dissertation, we explore an alternative way of hardware timestamp-
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ing. Instead of timestamping messages between the Media Access Control

(MAC) layer and the physical layer (PHY), we attempt to timestamp messages

inside the PHY. In particular, rather than using an extra clock to timestamp mes-

sages outside the physical layer, we use the clock that generates bits over the

wire for timestamping. By doing so, we can use the number of bits between any

two messages inside the physical layer as a base for precise timestamping. As

noted in Section 1.2.1, it takes about 100 picoseconds to deliver one symbol over

the wire in 10 GbE. As a result, the precision of timestamping can significantly

improve. We discuss in Chapter 3 how SoNIC which implements the physical

layer in software can also improve the precision of timestamping.

1.2.3 Lack of Precise Clock Synchronization

Synchronizing clocks is a challenging problem. It is challenging due to the prob-

lem of measuring round trip times (RTT) accurately. RTT is used by many clock

synchronization protocols to compute clock offset (skew), the time difference be-

tween two system clocks. RTTs are prone to variation due to characteristics of

packet switching networks: Network jitter, packet buffering and scheduling,

asymmetric paths, and network stack overhead. As a result, any protocol that

relies on RTTs must carefully handle measurement errors.

There are many time synchronization protocols that provide different levels

of precision including NTP [98] and PTP [18]. NTP normally provides millisec-

ond to microsecond precision in a Local Area Network (LAN), and PTP pro-

vides microsecond to tens of nanosecond precision in a LAN when properly

configured. PTP employs many techniques to remove uncertainties in mea-

10
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Figure 1.2: PTP precision

sured RTTs. For example, hardware timestamping is commonly used and PTP-

enabled switches are deployed to minimize network jitter.

Nonetheless, it is not possible to completely remove the network jitter and

non-deterministic delays. Figure 1.2 illustrates the problem. Figure 1.2(a) shows

the performance of PTP when the network is idle, and Figure 1.2(b) shows the

performance of PTP when the network is loaded with network traffic. The de-

tailed test environment is described in Section 2.2. The takeaway is that the per-

formance of PTP can be as good as hundreds of nanoseconds, and can degrade

to tens of microseconds depending on network conditions. Therefore, we in-

vestigate the following research question: How can we minimize non-deterministic

delays from the network to improve the precision of time synchronization protocols?

In this dissertation, we developed a new time synchronization protocol

called DTP, Datacenter Time Protocol (DTP), that can provide tens of nanosec-

ond precision in a datacenter environment. The protocol runs inside the phys-

ical layer in order to eliminate many non-deterministic delay errors from the

network. In particular, by running the protocol in the physical layer in a peer-

to-peer fashion, it can minimize the network jitter and easily scale up to a larger

network. Chapter 4 discusses the design and evaluation of the system.
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1.3 Contributions

Traditionally, the physical layer of a network stack in a wired network has been

considered as a black box and excluded from network research opportunities.

However, we demonstrate that an augmented physical layer with timing in-

formation can improve many fundamental capabilities that are important for

network measurements including packet pacing, packet capturing, and clock

synchronization.

Our research is based on a fact that the physical layer of a network device

is already synchronized with the physical layer of its directly connected device.

Further, they send a continuous stream of symbols to each other in order to

maintain the link between them. Our systems extend and utilize such symbol-

level synchronization to achieve fine-grained timestamping, pacing and highly

precise clock synchronization. In particular, we present the following three con-

tributions in this dissertation.

Precise timestamping and pacing Accessing individual symbols on the wire

requires complete access to the very bottom of the network protocol stack, the

physical layer where symbols are transmitted over or received from the wire.

Unfortunately, accessing the inside of the physical layer is not easy: The physi-

cal layer is often implemented as a physical chip with a limited or no interface.

As a result, complete access to the physical layer requires a different approach:

We demonstrate a new approach via SoNIC, a Software-defined Network Inter-

face Card, where the entire physical layer is accessible from software in a way

that a user application can control and capture the timing of physical layer bits

and achieve bit level precision.
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Covert timing channel and Estimating available bandwidth In order to

demonstrate how precise timestamping and pacing offered by SoNIC can im-

prove network applications, we implemented a covert timing channel, Chupja,

and an available bandwidth estimation algorithm, MinProbe. Chupja is created

by modulating timings of messages precisely and can deliver hundreds of thou-

sands of bits covertly without being detected. MinProbe generates a train of

probe messages with pre-defined intervals, measures received intervals, and

can accurately estimate the available bandwidth.

Precise clock synchronization Achieving high precision in a clock synchro-

nization protocol is not easy due to uncertainties from the network stack and

network itself. We present a clock synchronization protocol that runs in the

physical layer. DTP, Datacenter Time Protocol, is a decentralized protocol that

eliminates many non-deterministic elements from the network. As a result, it

provides tens of nanosecond bounded precision in a datacenter network. We

demonstrate that DTP advances the state-of-the-art protocol.

1.4 Organization

The rest of this dissertation is organized as follows. Chapter 2 describes the

scope of the problem and methodology including the details of how the phys-

ical layer works. We present SoNIC which provides precise timestamping and

pacing in Chapter 3. Chapter 3 also covers two network applications that bene-

fit from precise timestamping and pacing: Chupja in Section 3.4 and MinProbe

in Section 3.5. Then, we describe DTP that provides precise clock synchroniza-

tion in Chapter 4. We survey related work in Chapter 5, which is followed by
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future work in Chapter 6 and conclusion in Chapter 7.
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CHAPTER 2

SCOPE AND METHODOLOGY

In this chapter, we discuss the scope of the problem and the methodology we

used for investigation. Our research focuses on how to improve the precision

of timestamping, pacing and clock synchronization for network measurements.

We use the physical layer to advance the state-of-the-art systems. As a result,

we describe how the physical layer of 10 GbE performs first and then describe

the scope and methodology.

2.1 Scope

The physical layer of the network stack can provide timing information neces-

sary for precise timestamping, pacing and clock synchronization. In particular,

when two physical layers are connected via a cable (we call them peers), each

physical layer always generates a continuous bitstream that consists of either

special characters or Ethernet frames to maintain the link connectivity. Further,

each physical layer recovers the clock from the received bitstream generated by

the peer’s physical layer. In other words, two physical layers are already syn-

chronized for reliable and robust communication. As a result, if we can control

and access every single bit in the physical layer, we can achieve precise times-

tamping and pacing. Similarly, if we can extend the synchronization between

two physical layers, we can achieve precise clock synchronization. Therefore,

understanding how the physical layer operates is important for addressing re-

search questions we investigate in this dissertation.
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In this section, we first discuss how the physical layer operates in Sec-

tion 2.1.1. We mainly focus on 10 Gigabit Ethernet (GbE) which our systems

are based on. Other standards such as 40 and 100 GbE share many details and

same techniques we use in 10 GbE can also be applied to them. In Section 2.1.2,

we discuss how accessing the physical layer allows precise timestamping and

pacing, and what are the challenges to do so in software in realtime. In Sec-

tion 2.1.3, we describe why it is hard to precisely synchronize clocks and why

implementing a protocol in the physical layer can improve the precision.

2.1.1 IEEE 802.3 standard

According to the IEEE 802.3 standard [19], the physical layer (PHY) of 10 GbE

consists of three sublayers: the Physical Coding Sublayer (PCS), the Physical

Medium Attachment (PMA) sublayer, and the Physical Medium Dependent

(PMD) sublayer (See Figure 2.1). The PMD sublayer is responsible for trans-

mitting the outgoing symbolstream over the physical medium and receiving

the incoming symbolstream from the medium. The PMA sublayer is respon-

sible for clock recovery and (de-)serializing the bitstream. The PCS performs

the blocksync and gearbox (we call this PCS1), scramble/descramble (PCS2),

and encode/decode (PCS3) operations on every Ethernet frame. The IEEE 802.3

Clause 49 explains the PCS sublayer in further detail, but we will summarize

below.

When Ethernet frames are passed from the data link layer to the PHY, they

are reformatted before being sent across the physical medium. On the trans-

mit (TX) path, the PCS performs 64b/66b encoding and encodes every 64-bit
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Figure 2.1: IEEE 802.3 10 Gigabit Ethernet Network stack.

of an Ethernet frame into a 66-bit block (PCS3), which consists of a two-bit syn-

chronization header (syncheader) and a 64-bit payload. As a result, a 10 GbE link

actually operates at 10.3125 Gbaud (10G × 66

64
). Syncheaders are used for block

synchronization by the remote RX path.

There are two types of blocks: Data blocks and control blocks. Both are 66

bits in length. The data block (/D/) is shown in the first row of Figure 2.2 and

represents data characters from Ethernet frames. All other blocks in Figure 2.2

are control blocks, which contain a combination of data and control characters.

Each rectangle labeled by Di represents a 8-bit data character, and Ci represents

a 7-bit control character. An idle character (/I/) is a control character that is

used to fill the gap between two Ethernet frames. Given an Ethernet frame,

the PCS first encodes a Start control block (S 0 and S 4 in Figure 2.2), followed

by multiple data blocks. At the end of the frame, the PCS encodes a Terminate

control block (T0 to T7) to indicate the end of the Ethernet frame. Note that one
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of Start control blocks (S 4) and most of Terminate control blocks (T0 to T7) have

one to seven control characters. These control characters are normally filled

with idle characters (zeros).

There is a 66-bit Control block (/E/), which encodes eight 7-bit idle charac-

ters (/I/). As the standard requires at least twelve /I/s in an interpacket gap,

it is guaranteed to have at least one /E/ block preceding any Ethernet frame.1

Moreover, when there is no Ethernet frame, there are always /E/ blocks: 10

GbE is always sending at 10 Gbps and sends /E/ blocks continuously if there

are no Ethernet frames to send.

The PCS scrambles each encoded 66-bit block (PCS2) to maintain Direct Cur-

rent (DC) balance2 and adapts the 66-bit width of the block to the 16-bit width

of the PMA interface (PCS1; the gearbox converts the bit width from 66- to 16-

bit width.) before passing it down the network stack. The entire 66-bit block is

transmitted as a continuous stream of symbols which a 10 GbE network trans-

mits over a physical medium (PMA & PMD). On the receive (RX) path, the PCS

performs block synchronization based on two-bit syncheaders (PCS1) and de-

scrambles each 66-bit block (PCS2) before decoding it (PCS3).

Above the PHY is the Media Access Control (MAC) sublayer and Reconcili-

ation Sublayer (RS). The 10 GbE MAC operates in full duplex mode; it does not

handle collisions. Consequently, it only performs data encapsulation/decapsu-

lation and media access management. Data encapsulation includes framing as

well as error detection. A Cyclic Redundancy Check (CRC) is used to detect

bit corruption. Media access management inserts at least 96 bits (twelve /I/

1Full-duplex Ethernet standards such as 1, 10, 40, 100 GbE send at least twelve /I/s (at least
one /E/) between every Ethernet frame.

2DC balance ensures a mix of 1’s and 0’s is sent.
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Figure 2.2: IEEE 802.3 64b/66b block format

characters) between two Ethernet frames. The RS is responsible for additionally

inserting or removing idle characters (/I/s) between Ethernet frames to main-

tain the link speed. The channel between the RS and the PHY is called the 10

gigabit media independent interface (XGMII) and is four bytes wide. Data is

transferred at every rising and falling edge. As a result, the channel operates at

156.25 MHz (= 10Gb/32bit/2).

On the transmit path, upon receiving a layer 3 packet, the MAC prepends a

preamble, start frame delimiter (SFD), and an Ethernet header to the beginning

of the frame. It also pads the Ethernet payload to satisfy a minimum frame-

size requirement (64 bytes), computes a CRC value, and places the value in the

Frame Check Sequence (FCS) field. On the receive path, the MAC checks the

CRC value and passes the Ethernet header and payload to higher layers while

discarding the preamble and SFD.
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2.1.2 Precise Timestamping and Pacing Need Access to PHY

Accessing the PHY provides the ability to study networks and the network stack

at a heretofore inaccessible level: It can help improve the precision of network

measurements by orders of magnitude [58]. A 10 GbE network uses one bit per

symbol. Since a 10 GbE link operates at 10.3125 Gbaud, each and every symbol

length is 97 pico-seconds wide (= 1/(10.3125 ∗ 109)). Knowing the number of bits

can then translate into having a precise measure of time at the sub-nanosecond

granularity. In particular, depending on the combination of data and control

characters in the PCS block (Figure 2.2), the number of bits between data frames

is not necessarily a multiple of eight. Therefore, on the RX path, we can tell

the exact distance between Ethernet frames in bits by counting every bit. On

the TX path, we can control time gaps by controlling the number of bits (idle

characters) between frames.

Unfortunately, current commodity network interface cards do not provide

any Application Program Interfaces (API) for accessing and controlling every bit

in the PHY. One way of doing it is to use physics equipment such as an oscillator

for capturing signals and a laser modulator for transmitting signals as shown in

BiFocals [58]. However, BiFocals is not a realtime tool: It can only transmit pre-

generated symbols and must perform extensive offline computation to recover

symbols from captured signals by the oscillator. As a result, we take a different

approach to access and control bits in the PHY: Implement the PHY in software.

The fundamental challenge to perform the PHY functionality in software is

maintaining synchronization with hardware while efficiently using system re-

sources. Some important areas of consideration when addressing this challenge

include hardware support, realtime capability, scalability and efficiency, and a usable
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interface.

Hardware support

The hardware must be able to transfer raw symbols from the wire to software at

high speeds. This requirement can be broken down into four parts: a) Convert-

ing optical signals to digital signals (PMD), b) Clock recovery for bit detection

(PMA), and c) Transferring large amounts of bits to software through a high-

bandwidth interface. Additionally, d) the hardware should leave recovered bits

(both control and data characters in the PHY) intact until they are transferred

and consumed by the software. Commercial optical transceivers are available

for a). However, hardware that simultaneously satisfies b), c) and d) is not com-

mon since it is difficult to handle 10.3125 Giga symbols in transit every second.

NetFPGA 10G [91] does not provide software access to the PHY. In particu-

lar, NetFPGA pushes not only layers 1-2 (the physical and data link layer) into

hardware, but potentially layer 3 as well. Furthermore, it is not possible to eas-

ily undo this design since it uses an on-board chip to implement the PHY which

prevents direct access to the PCS sublayer. As a result, we need a new hardware

platform to support software access to the PHY.

Realtime Capability

Both hardware and software must be able to process 10.3125 Gigabits per sec-

ond (Gbps) continuously. The IEEE 802.3 standard [19] requires the 10 GbE PHY

to generate a continuous bitstream. However, synchronization between hard-

ware and software and between multiple pipelined cores is non-trivial. The
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overheads of interrupt handlers and OS schedulers can cause a discontinuous

bitstream which can subsequently incur packet loss and broken links. More-

over, it is difficult to parallelize the PCS sublayer onto multiple cores. This

is because the (de-)scrambler relies on state to recover bits. In particular, the

(de-)scrambling of one bit relies upon the 59 bits preceding it. This fine-grained

dependency makes it hard to parallelize the PCS sublayer. The key takeaway

here is that everything must be efficiently pipelined and well-optimized in or-

der to implement the PHY in software while minimizing synchronization over-

heads.

Scalability and Efficiency

The software must scale to process multiple 10 GbE bitstreams while efficiently

utilizing resources. Intense computation is required to implement the PHY

and MAC layers in software. (De-)Scrambling every bit and computing the

CRC value of an Ethernet frame is especially intensive. A functional solution

would require multiple duplex channels that independently perform the CRC,

encode/decode, and scramble/descramble computations at 10.3125 Gbps. The

building blocks for the PCS and MAC layers will therefore consume many CPU

cores. In order to achieve a scalable system that can handle multiple 10 GbE

bitstreams, resources such as the PCIe, memory bus, Quick Path Interconnect

(QPI), cache, CPU cores, and memory must be efficiently utilized.
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User Interface

Users must be able to easily access and control the PHY. Many resources from

software to hardware must be tightly coupled to allow realtime access to the

PHY. Thus, an interface that allows fine-grained control over them is necessary.

The interface must also implement an I/O channel through which users can

retrieve data such as the count of bits for precise timing information.

2.1.3 Precise Clock Synchronization Needs Access to PHY

The common mechanism of synchronizing two clocks is similar across different

algorithms and protocols: A process reads a different process’s current clock

counter and computes an offset, adjusting its own clock frequency or clock

counter by the offset.

In more detail, a process p sends a time request message with its current local

clock counter (ta in Figure 2.3) to a process q (q reads p’s clock). Then, process

q responds with a time response message with its local clock counter and p’s

original clock counter (p reads q’s clock). Next, process p computes the offset

between its local clock counter and the remote clock counter (q) and round trip

time (RTT) of the messages upon receiving the response at time td. Finally, p

adjusts its clock counter or the rate of its clock to remain close to q’s clock.

In order to improve precision, q can respond with two clock counters to re-

move the internal delay of processing the time request message: One upon re-

ceiving the time request (tb) and the other before sending the time response (tc).

See Figure 2.3. For example, in NTP, the process p computes RTT δ and offset θ,
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Figure 2.3: Common approach to measure offset and RTT.

as follows [98]:

δ = (td − ta) − (tc − tb)

θ =
(tb + tc)

2
−

(ta + td)

2

Then, p applies these values to adjust its local clock.

Problems of Clock synchronization

Precision of a clock synchronization protocol is a function of clock skew, errors

in reading remote clocks, and the interval between resynchronizations [50, 63,

75]. We discuss these factors in turn below and how they contribute to (reduced)

precision in clock synchronization protocols.

Problems with Oscillator skew Many factors such as temperature and qual-

ity of an oscillator can affect oscillator skew. Unfortunately, we often do not

have control over these factors to the degree necessary to prevent reduced pre-

cision. As a result, even though oscillators may have been designed with the

same nominal frequency, they may actually run at slightly different rates caus-

ing clock counters to diverge over time, requiring synchronization.

Problems with Reading Remote Clocks There are many opportunities where
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reading clocks can be inaccurate and lead to reduced precision. In particular,

reading remote clocks can be broken down into multiple steps (enumerated

below) where each step can introduce random delay errors that can affect the

precision of clock synchronization.

1. Preparing a time request (reply) message

2. Transmitting a time request (reply) message

3. Packet traversing through a network

4. Receiving a time request (reply) message

5. Processing a time request (reply) message

Specifically, there are three points where precision is adversely affected: (a)

Precision of timestamping affects steps 1 and 5, (b) the software network stack

can introduce errors in steps 2 and 4, and (c) network jitter can contribute errors

in step 3. We discuss each one further.

First, precise timestamping is not trivial. Before transmitting a message, a

process timestamps the message to embed its own local counter value. Sim-

ilarly, after receiving a message, a process timestamps it for further process-

ing (i.e. computing RTT). Timestamping is often imprecise in commodity sys-

tems [81], which is a problem. It can add random delay errors which can pre-

vent the nanosecond-level timestamping required for 10 Gigabit Ethernet (10

GbE) where minimum sized packets (64-byte) arriving at line speed can arrive

every 68 nanoseconds. Improved timestamping with nanosecond resolution via

new NICs are becoming more accessible [24]. However, random jitter can still

be introduced due to the issues discussed below.
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Second, transmitting and receiving messages involve a software network

stack (e.g., between ta and t′a in Figure 2.3). Most clock synchronization proto-

cols (e.g., NTP and PTP) run in a time daemon, which periodically sends and re-

ceives UDP packets between a remote process (or a time server). Unfortunately,

the overhead of system calls, buffering in kernel and network interfaces, and di-

rect memory access transactions can all contribute to errors in delay [53, 58, 81].

To minimize the impact of measurement errors, a daemon can run in kernel

space or kernel bypassing can be employed. Nonetheless, non-deterministic de-

lay errors cannot be completely removed when a protocol involves a network

stack.

Third, packet propagation time can vary since it is prone to network jitter

(e.g., between t′a and t′
b

or between t′c and t′
d

in Figure 2.3). Two processes are

typically multiple hops away from each other and the delay between them can

vary over time depending on network conditions and external traffic. Further,

time requests and responses can be routed through asymmetric paths, or they

may suffer different network conditions even when they are routed through

symmetric paths. As a result, measured delay, which is often computed by di-

viding RTT by two, can be inaccurate.

Problems with Resynchronization Frequency

The more frequent resynchronizations, the more precise clocks can be syn-

chronized to each other. However, frequent resynchronizations require in-

creased message communication, which adds overhead to the network, espe-

cially in a datacenter network where hundreds of thousands of servers exist.

The interval between resynchronizations can be configured. It is typically con-

figured to resynchronize over a period of once per second [18], which will keep
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Figure 2.4: Clock domains of two peers. The same color represents the
same clock domain.

network overhead low, but on the flip side, will also adversely affect precision

of clock synchronization.

Why clock synchronization in the PHY?

Our goal is to achieve synchronizing clocks with nanosecond-level precision

and with scalability in a datacenter network, and without any network over-

head. We achieve this goal by running a decentralized protocol in the PHY.

We exploit the fact that two peers3 are already synchronized in the PHY in

order to transmit and receive bitstreams reliably and robustly. In particular, the

receive path (RX) of a peer physical layer recovers the clock from the physical

medium signal generated by the transmit path (TX) of the sending peer’s PHY.

As a result, although there are two physical clocks in two network devices, they

are virtually in the same circuit (Figure 2.4).

Further, a commodity switch often uses one clock oscillator to feed the sole

switching chip in a switch [7], i.e. all TX paths of a switch use the same clock

source. Given a switch and N network devices connected to it, there are N + 1

physical oscillators to synchronize, and all of them are virtually in the same

3two peers are two physically connected ports via a cable.
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circuit.

As delay errors from network jitter and a software network stack can be

minimized by running the protocol in the lowest level of a system [116], the

PHY is the best place to reduce those sources of errors. In particular, we give

three reasons why clock synchronization in the PHY addresses the problems

discussed previously.

First, the PHY allows precise timestamping at sub-nanosecond scale, which

can provide enough fidelity for nanosecond-level precision. Timestamping [58,

81] in the PHY achieves high precision by counting the number of bits between

and within packets. Timestamping in the PHY relies on the clock oscillator that

generates bits in the PHY, and, as a result, it is possible to read and embed clock

counters with a deterministic number of clock cycles in the PHY.

Second, a software network stack is not involved in the protocol. As the PHY

is the lowest layer of a network protocol stack, there is always a deterministic

delay between timestamping a packet and transmitting it. In addition, it is al-

ways possible to avoid buffering in a network device because protocol messages

can always be transmitted when there is no other packet to send.

Lastly, there is little to no variation in delay between two peers in the PHY.

The only element in the middle of two physically communicating devices is the

wire that connects them. As a result, when there is no packet in transit, the delay

in the PHY measured between two physically connected devices will be the time

to transmit bits over the wire, a few clock cycles required to process bits in the

PHY (which can be deterministic), and a clock domain crossing (CDC) which

can add additional random delay. A CDC is necessary for passing data between
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two clock domains, namely between the transmit and receive paths. Synchro-

nization First-In-First-Out (FIFO) queues are commonly used for a CDC. In a

synchronization FIFO, a signal from one clock domain goes through multiple

flip-flops in order to avoid meta-stability from the other clock domain. As a

result, one random delay could be added until the signal is stable to read.

Operating a clock synchronization protocol in the PHY layer not only pro-

vides the benefits of zero to little delay errors, but also zero overhead to a net-

work: There is no need for injection of packets to implement a clock synchro-

nization protocol. As mentioned in Section 2.1.1 a network interface continu-

ously generates either Ethernet frames or special characters (idle characters) to

maintain a link connection to its peer. If we use these idle characters to de-

liver protocol messages (and revert them back to idle characters), no additional

packets will be required. Further, we can send protocol messages between every

Ethernet frame without degrading the bandwidth of Ethernet and for different

Ethernet speeds.

2.2 Methodology: Experimental Environments

We used various types of hardware and network topologies throughout this

dissertation to evaluate our approach. We illustrate them in the following sub-

sections.
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(a) HiTech Global FPGA board (b) Terasaic DE5-Net board

Figure 2.5: FPGA development boards used for our research.

Name CPU # of cores L3 Cache Memory NIC
SoNIC Two Xeon X5670, 2.93GHz 6 12 MB 12 GB HiTech with SoNIC
ALT10G Two Xeon X5670, 2.93GHz 6 12 MB 12 GB HiTech with 10 GbE
Client Two Xeon X5670, 2.93GHz 6 12 MB 12 GB Myricom dual 10G port

Adversary Two Xeon X5670, 2.93GHz 6 12 MB 12 GB Myricom dual 10G port
Fractus Two Xeon E5-2690, 2.90GHz 8 20 MB 96 GB Terasic DE5 with DTP

Mellanox dual 10G port

Table 2.1: List of servers used for development and experiments

2.2.1 Hardware

For developing and evaluating SoNIC, Chupja and MinProbe, Dell Precision

T7500 workstations and Dell T710 servers were used. Each machine was a dual

socket, 2.93 GHz six core Xeon X5670 (Westmere [21]) with 12 MB of shared

Level 3 (L3) cache and 12 GB of RAM, 6 GB connected to each of the two CPU

sockets. We differentiated hardware configurations of the T7500 workstations

for various purposes; a machine with an HiTech Global FPGA board [15] (Fig-

ure 2.5(a)) with SoNIC firmware (we call this SoNIC server), a machine with an

FPGA board with an Altera 10G Ethernet design [1] (we call this ALT10G), and

a machine with a Myricom 10G-PCIE2-8B2-2S dual 10G port NIC (we call this

Client). Similarly, we also differentiated hardware configurations of the T710

servers for various purposes: We used one 10 GbE Dual-port NIC for receiving
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Name # of 10 GbE ports Note
HiTech 2 Stratix IV FPGA

DE5-NET 4 Stratix V FPGA
Myricom 10G-PCIE2-8B2-2S 2 HW timestamping

Mellanox ConnectX-3 2 HW timestamping, PTP-enabled

Table 2.2: List of FPGA boards and NICs used for development and exper-
iments

Type 40G 10G 1G Full bandwidth Forwarding Note
SW1 Core 0 8 0 160 Gbps SF
SW2 ToR 4 48 0 1280 Gbps CT
SW3 ToR 0 2 48 136 Gbps SF
SW4 ToR 0 2 24 105.6 Gbps SF

Cisco 6900 Core 0 8 0 160 Gbps SF
Cisco 4948 ToR 0 2 48 136 Gbps SF
IBM G8264 ToR 4 48 0 1280 Gbps CT PTP-enabled

Dell Force10 ToR 4 48 0 1280 Gbps CT

Table 2.3: List of evaluated network switches. “SF” is store-and-forward
and “CT” is cut-through.

packets for evaluating Chupja (we call this the adversary) and used an HiTech

Global FPGA board with SoNIC firmware for evaluating MinProbe (we also call

this SoNIC server).

For evaluating DTP, a cluster of twelve Dell R720 servers were used (we call

them Fractus nodes). Each server was a dual socket, 2.90 GHz eight core Xeon

E5-2690 with 20 MB of shared L3 cache and 96 GB of RAM, 48 GB connected to

each of the two CPU sockets. The machines had seven PCIe Gen 3.0 slots, where

DTP hardware was plugged in: We used DE5-Net boards from Terasaic [9] (Fig-

ure 2.5(b). A DE5-Net board is an FPGA development board with an Altera

Stratix V FPGA [5] and four Small Form-factor Pluggable (SFP+) modules. Each

server also had a Mellanox ConnectX-3 MCX312A 10G NIC, which supports

hardware timestamping for incoming and outgoing packets.
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Table 2.3 summarizes the commercial switches that we used for evaluating

our systems. SW1 was a core / aggregate router with multiple 10 GbE ports, and

we installed two modules with four 10 GbE ports. SW2 was a high-bandwidth

10 GbE top-of-rack (ToR) switch which was able to support forty eight 10 GbE

ports at line speed. Moreover, it was a cut-through switch whose latency of for-

warding a packet was only a few microseconds. SW3 and SW4 were 1 GbE ToR

switches with two 10 GbE uplinks. Other than SW2, all switches were store-and-

forward switches. Further, we used Cisco 6500, 4948, IBM G8264, Dell Force10

switches for the evaluation of SoNIC, DTP, and MinProbe. IBM G8264 switch is

a PTP-enabled cut-through switch.

2.2.2 Network Topologies

Simple Setup

In order to evaluate pacing and timestamping capabilities of SoNIC, we

used two FPGA boards. In particular, we connected the SoNIC board and the

ALT10G board directly via optic fibers (Figure 2.6(a)). For evaluating SoNIC’s

pacing capability, we used SoNIC to generate packets to ALT10G. ALT10G pro-

vided detailed statistics such as the number of valid/invalid Ethernet frames,

and frames with CRC errors. We compared these numbers from ALT10G with

statistics from SoNIC to verify the correctness of SoNIC. Similarly, for evaluat-

ing SoNIC’s timestamping capability, we used ALT10G for packet generation.

ALT10G allowed us to generate random packets of any length and with the min-

imum interpacket gap. We verified if SoNIC was able to correctly receive and

timestamp all packets from ALT10G.
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Figure 2.6: Simple evaluation setup

Further, we created a simple topology to evaluate SoNIC: We used port 0 of

SoNIC server to generate packets to the Client server via an arbitrary network,

and split the signal with a fiber optic splitter so that the same stream can be

directed to both the Client and port 1 of the SoNIC server capturing packets

(Figure 2.6(b)). We used various network topologies composed of Cisco 4948 [8]

and IBM BNT G8264 [17] switches for the network between the SoNIC server

and the Client.

For experiments of covert channels called Chupja in Chapter 3.4, we de-

ployed two SoNIC servers each equipped with two 10 GbE ports to connect

fiber optic cables. We used one SoNIC server (SoNIC1) to generate packets of

the sender destined to a server (the adversary) via a network. We placed a fiber

optic splitter at the adversary which mirrored packets to SoNIC1 for capture
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Figure 2.7: A small network. Thick solid lines are 10G connections while
dotted lines are 1G connections.

(i.e. SoNIC1 was both the sender and receiver). SoNIC2 was used to generate

cross traffic flows when necessary (Figure 2.6(c)). We placed none or multiple

commercial switches between the sender and the adversary (the cloud within

Figure 2.6(c)). A similar topology was used to evaluate available bandwidth

estimation called MinProbe in Chapter 3.5. We placed two network switches

between the sender and the receiver.

Small Network in a Lab

We created our own network for evaluating Chupja by connecting six

switches, and four servers (See Figure 2.7). The topology resembled a typical

network where core routers (SW1) were in the middle and 1 GbE ToR switches

(SW3 and SW4) were leaf nodes. Then, SoNIC1 (the sender) generated packets

to SW3 via one 10 GbE uplink, which forwarded packets to the receiver which

was connected to SW4 via one 10 GbE uplink. Therefore, it was a seven-hop

network with 0.154 ms round trip time delay on average. Then, we used four

servers (Server1 to 4) to generate cross traffic. Each server had four 1 GbE and

two 10 GbE ports. Server1 (Server4) was connected to SW3 (SW4) via three 1
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Figure 2.8: Our path on the National Lambda Rail

GbE links, and Server2 (Server3) was connected to SW3 via two 10 GbE links.

These servers generated traffic across the network with Linux pktgen [106].

The bandwidth of cross traffic over each link between switches is illustrated in

Figure 2.7: 1 GbE links were utilized with flows at α Gbps and 10 GbE links at β

Gbps.

National Lambda Rail

National Lambda Rail (NLR) was a wide-area network designed for research

and had significant cross traffic [26]. We set up a path from Cornell university to

NLR over nine routing hops and 2500 miles one-way (Figure 2.8). All the routers

in NLR were Cisco 6500 routers. The average round trip time of the path was

67.6 ms and there was always cross traffic. In particular, many links on our

path were utilized with 1∼4 Gbps cross traffic during the experiment. Cross

traffic was not under our control, however we received regular measurements

of traffic on external interfaces of all routers.

Fractus Cluster
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Figure 2.9: Evaluation Setup for DTP

We created a DTP network as shown in Figure 2.9: A tree topology with

the height of two, i.e. the maximum number of hops between any two leaf

servers was four. DE5-Net boards of the root node, S 0, and intermediate nodes,

S 1 ∼ S 3, were configured as DTP switches, and those of the leaves (S 4 ∼ S 11)

were configured as DTP NICs. We used 10-meter Cisco copper twinax cables to

a DE5-Net board’s SFP+ modules.

We also created a PTP network with the same servers as shown in Figure 2.9

(PTP used Mellanox NICs). A VelaSync timeserver from Spectracom was de-

ployed as a PTP grandmaster clock. An IBM G8264 cut-through switch was

used to connect the servers including the timeserver. As a result, the number

of hops between any two servers in the PTP network was always two. Cut-

through switches are known to work well in PTP networks [132]. We deployed

a commercial PTP solution (Timekeeper [31]) in order to achieve the best preci-

sion in 10 GbE.

The timeserver multicasted PTP timing information every second (sync

message), i.e. the synchronization rate was once per second, which was the

recommended sync rate by the provider. Further, we enabled PTP UNICAST

capability, which allowed the server to send unicast sync messages to individ-

ual PTP clients once per second in addition to multicast sync messages. In our
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configuration, a client sent two Delay Req messages per 1.5 seconds.

The PTP network was mostly idle except when we introduced network con-

gestion. Since PTP used UDP datagrams for time synchronization, the precision

of PTP could vary relying on network workloads. As a result, we introduced

network workloads between servers using iperf [22]. Each server occasion-

ally generated MTU-sized UDP packets destined for other servers so that PTP

messages could be dropped or arbitrarily delayed.

2.3 Summary

In this chapter, we discussed the challenges of accessing the PHY for precise

timestamping and pacing and the challenges of precisely synchronizing clocks.

Accessing the PHY in software requires transmitting raw bits from the wire to

software (and vice versa) in realtime. Careful design of hardware and software

is essential in achieving the goal. Precisely synchronizing clocks is generally

difficult due to errors from measuring round trip time. RTTs can be inaccurate

because of imprecise timestamping, network stack overhead, and network jitter.

Implementing the protocol in the PHY can eliminate non-deterministic errors

from measuring round trip time. We also described the servers and switches we

used for evaluating our systems and network topologies we created for evalua-

tions in this chapter.
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CHAPTER 3

TOWARDS PRECISE TIMESTAMPING AND PACING: SONIC

Precise timestamping and pacing are fundamental for network measurements

and many network applications, such as available bandwidth estimation algo-

rithms [87, 88, 120], network traffic characterization [69, 82, 127], and creation

and detection of covert timing channels [44, 89, 90]. As a result, in order to im-

prove the performance of network applications, it is important to improve the

precision of timestamping and pacing messages. In this chapter, we demon-

strate that the precision of timestamping and pacing can significantly improve

via access to the physical layer (PHY). We also demonstrate that the precision

provided by access to the PHY can improve the performance of network appli-

cations such as covert timinig channels and available bandwidth estimation.

Accessing the PHY is not easy, mainly because NICs do not provide any

APIs. As a result, we present a new approach for accessing the PHY from

software. In particular, we present SoNIC, Software-defined Network Interface

Card which implemented the PHY in software and as a result improved the

precision of timestamping and pacing messages. In essence, in SoNIC, all of

the functionality in the PHY that manipulate bits were implemented in soft-

ware. SoNIC consisted of commodity off-the-shelf multi-core processors and

a field-programmable gate array (FPGA) development board with peripheral

component interconnect express (PCIe) Gen 2.0 bus. High-bandwidth PCIe

interfaces and powerful FPGAs could support full bidirectional data transfer

for two 10 GbE ports. Further, we created and implemented optimized tech-

niques to achieve not only high-performance packet processing, but also high-

performance 10 GbE bitstream control in software. Parallelism and optimiza-

38



tions allowed SoNIC to process multiple 10 GbE bitstreams at line-speed.

With software access to the PHY, SoNIC provided two important capabili-

ties for network research applications: Precise packet pacing and precise packet

timestamps. First, as a powerful network measurement tool, SoNIC could gen-

erate packets at full data rate with minimal interpacket delay. It also provided

fine-grained control over interpacket delays; it could inject packets with no

variance in interpacket delays. Second, SoNIC accurately captured incoming

packets at any data rate including the maximum, while simultaneously times-

tamping each packet with sub-nanosecond granularity. In other words, SoNIC

could capture exactly what was sent. Further, this precise timestamping and

pacing could improve the accuracy of research based on interpacket delay. For

example, SoNIC could be used to profile network components. It created tim-

ing channels that were undetectable from software application and accurately

estimated available bandwidth between two endhosts.

In this chapter, we make four contributions:

• We provide precise timestamping and pacing via a new approach enabling

software access to the PHY.

• We designed SoNIC with commodity components such as multi-core pro-

cessors and a PCIe pluggable board and present a prototype of SoNIC.

• We demonstrate that SoNIC could enable flexible, precise, and realtime

network research applications. SoNIC increased the flexibility of packet

pacing and the precision of packet timestamping.

• We also demonstrate that network research studies based on interpacket

delay such as covert timing channels and estimating available bandwidth
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could be significantly improved via precise pacing and timestamping of-

fered by SoNIC.

3.1 Design

The design goals of SoNIC were to provide 1) access to the PHY in software,

2) realtime capability, 3) scalability and efficiency, 4) precision, and 5) user in-

terface. As a result, SoNIC must allow users realtime access to the PHY in

software, provide an interface to applications, process incoming packets at line-

speed, and be scalable. Our ultimate goal was to achieve the same flexibility and

control of the entire network stack for a wired network, as a software-defined

radio [122] did for a wireless network, while maintaining the same level of pre-

cision as BiFocals [58]. Access to the PHY could then enhance the accuracy of

timestamping and pacing in network research based on interpacket delay. In

this section, we discuss the design of SoNIC and how it addressed the chal-

lenges presented in Section 2.1.2.

3.1.1 Access to the PHY in software

An application must be able to access the PHY in software. Thus, our solution

must implement the bit generation and manipulation functionality of the PHY

in software. The transmission and reception of bits could be handled by hard-

ware. We carefully examined the PHY to determine an optimal partitioning of

functionality between hardware and software.

As discussed in Section 2.1.1 and shown in 2.1, the PMD and PMA sublay-
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ers of the PHY do not modify any bits or change the clock rate. They simply

forward the symbolstream/bitstream to other layers. Similarly, PCS1 only con-

verts the bit width (gearbox) or identifies the beginning of a new 64/66 bit block

(blocksync). Therefore, the PMD, PMA, and PCS1 were all implemented in

hardware as a forwarding module between the physical medium and SoNIC’s

software component (See Figure 2.1). Conversely, PCS2 (scramble/descram-

ble) and PCS3 (encode/decode) actually manipulate bits in the bitstream and

so they were implemented in SoNIC’s software component. SoNIC provided

full access to the PHY in software; as a result, all of the functionality in the PHY

that manipulate bits (PCS2 and PCS3) were implemented in software.

For this partitioning between hardware and software, we chose an Altera

Stratix IV FPGA [4] development board from HiTechGlobal [15] as our hard-

ware platform. The board included a PCIe Gen 2 interface (=32 Gbps) to the

host PC and was equipped with two SFP+ (Small Form-factor Pluggable) ports

(Figure 2.5(a)). The FPGA was equipped with 11.3 Gbps transceivers which

could perform the 10 GbE PMA at line-speed. Once symbols were delivered to

a transceiver on the FPGA they were converted to bits (PMA) and then trans-

mitted to the host via PCIe by direct memory access (DMA). This board satisfied

all the requirements discussed in the previous Section 2.1.2.

3.1.2 Realtime Capability

To achieve realtime, it was important to reduce any synchronization overheads

between hardware and software, and between multiple pipelined cores. In

SoNIC, the hardware did not generate interrupts when receiving or transmit-
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ting. Instead, the software decided when to initiate a DMA transaction by polling

a value from a shared data memory structure where only the hardware wrote.

This approach was called pointer polling and was better than interrupts because

there was always data to transfer due to the nature of continuous bitstreams in

10 GbE.

In order to synchronize multiple pipelined cores, a chasing-pointer FIFO from

Sora [122] was used which supported low-latency pipelining. The chasing-

pointer FIFO removed the need for a shared synchronization variable and in-

stead used an additional flag for each entry to indicate whether a FIFO entry

was available to reduce the synchronization overheads. In our implementation,

we improved the FIFO by avoiding memory operations as well. Memory allo-

cation and page faults were expensive and must have been avoided to meet the

realtime capability. Therefore, each FIFO entry in SoNIC was pre-allocated dur-

ing initialization. In addition, the number of entries in a FIFO was kept small

so that the amount of memory required for a port could fit into the shared L3

cache.

We used the Intel Westmere processor to achieve high performance. Intel

Westmere is a Non-Uniform Memory Access (NUMA) architecture that was ef-

ficient for implementing packet processing applications [54, 65, 95, 112]. It was

further enhanced by a instruction PCLMULQDQ that performs carry-less multipli-

cation. We used the instruction to implement a fast Cyclic Redundancy Check

(CRC) algorithm [61] that the Media Access Control (MAC) requires, making it

possible to implement a CRC engine that could process 10 GbE bits at line-speed

on a single core.
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Figure 3.1: Example usages of SoNIC

3.1.3 Scalability and Efficiency

The FPGA board we used was equipped with two physical 10 GbE ports and

a PCIe interface that could support up to 32 Gbps. Our design goal was to

support two physical ports per board. Consequently, the number of CPU cores

and the amount of memory required for one port must be bounded. Further,

considering the intense computation required for the PCS and MAC and that

processors came with four to six or even eight cores per socket, our goal was to

limit the number of CPU cores required per port to the number of cores available

in a socket. As a result, for one port we implemented four dedicated kernel

threads each running on different CPU cores. We used a PCS thread and a MAC

thread on both the transmit and receive paths. We called our threads: TX PCS,

RX PCS, TX MAC and RX MAC. Interrupt requests (IRQ) were re-routed to

unused cores so that SoNIC threads did not give up the CPU and could meet

the realtime requirements.

Additionally, we were careful to use memory efficiently: DMA buffers were

preallocated and reused and data structures were kept small to fit in the shared

L3 cache. Further, by utilizing memory efficiently, dedicating threads to cores,

and using multi-processor QPI support, we could linearly increase the number

43



of ports with the number of processors. QPI provides enough bandwidth to

transfer data between sockets at a very fast data rate (> 100 Gbps).

A significant design issue still remained: Communication and CPU core uti-

lization. The way we pipelined CPUs, i.e. sharing FIFOs depended on the appli-

cation. In particular, we pipelined CPUs differently depending on the applica-

tion to reduce the number of active CPUs; unnecessary CPUs were returned to

OS. Further, we enhanced communication with a general rule of thumb: Taking

advantage of the NUMA architecture and L3 cache and placing closely related

threads on the same CPU socket.

Figure 3.1 illustrates examples of how to share FIFOs among CPUs. An ar-

row was a shared FIFO. For example, a packet generator only required TX ele-

ments (Figure 3.1(a)); RX PCS simply received and discarded bitstreams, which

was required to keep a link active. On the contrary, a packet capturer required

RX elements (Figure 3.1(b)) to receive and capture packets. TX PCS was required

to establish and maintain a link to the other end by sending /I/s. To create a

network profiling application, both the packet generator and packet capturer

could run on different sockets simultaneously.

3.1.4 Precision

As discussed in Section 3.1.1, the PCS2 and PCS3 shown in Figure 2.1 were

implemented in software. Consequently, the software received the entire raw

bitstream from the hardware. While performing PCS2 and PCS3 functionalities,

a PCS thread recorded the number of bits in between and within each Ethernet

frame. This information could later be retrieved by a user application. More-
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1: #include "sonic.h"

2:

3: struct sonic_pkt_gen_info info = {

4: .pkt_num = 1000000000UL,

5: .pkt_len = 1518,

6: .mac_src = "00:11:22:33:44:55",

7: .mac_dst = "aa:bb:cc:dd:ee:ff",

8: .ip_src = "192.168.0.1",

9: .ip_dst = "192.168.0.2",

10: .port_src = 5000,

11: .port_dst = 5000,

12: .idle = 12, };

13:

14: fd1 = open(SONIC_CONTROL_PATH, O_RDWR);

15: fd2 = open(SONIC_PORT1_PATH, O_RDONLY);

16:

17: ioctl(fd1, SONIC_IOC_RESET)

18: ioctl(fd1, SONIC_IOC_SET_MODE, SONIC_PKT_GEN_CAP)

19: ioctl(fd1, SONIC_IOC_PORT0_INFO_SET, &info)

20: ioctl(fd1, SONIC_IOC_RUN, 10)

21:

22: while ((ret = read(fd2, buf, 65536)) > 0) {

23: // process data }

24:

25: close(fd1);

26: close(fd2);

Figure 3.2: Example C code of SoNIC Packet Generator and Capturer

over, SoNIC allowed users to precisely control the number of bits in between

frames when transmitting packets, and could even change the value of any bits.

For example, we used this capability to give users fine-grained control over

packet generators and could create virtually undetectable covert channels.

3.1.5 User Interface

SoNIC exposed fine-grained control over the path that a bitstream travels in

software. SoNIC used the ioctl system call for control and the character de-
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vice interface to transfer information when a user application needed to retrieve

data. Moreover, users could assign which CPU cores or socket each thread run

on to optimize the path.

To allow further flexibility, SoNIC allowed additional application-specific

threads, called APP threads, to be pipelined with other threads. A character

device was used to communicate with these APP threads from userspace. For

instance, users could implement a logging thread pipelined with receive path

threads (RX PCS and/or RX MAC). Then the APP thread delivered packet in-

formation along with precise timing information to userspace via a character

device interface. There were two constraints that an APP thread must always

meet: Performance and pipelining. First, whatever functionality was imple-

mented in an APP thread, it must be able to perform it faster than 10.3125 Gbps

for any given packet stream in order to meet the realtime capability. Second, an

APP thread must be properly pipelined with other threads, i.e. input/output

FIFO must be properly set. SoNIC supported one APP thread per port.

Figure 3.2 illustrates the source code of an example use of SoNIC as a packet

generator and capturer that exhibit precise pacing and timestamping capabili-

ties. After SONIC IOC SET MODE was called (line 18), threads were pipelined

as illustrated in Figure 3.1(a) and 3.1(b). After SONIC IOC RUN command (line

20), port 0 started generating packets given the information from info (line

3-12) for 10 seconds (line 20) while port 1 started capturing packets with very

precise timing information. Captured information was retrieved with read sys-

tem calls (line 22-23) via a character device. As a packet generator, users could

set the desired number of /I/s between packets (line 12) for precise pacing. For

example, twelve /I/ characters achieved the maximum data rate. Increasing
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the number of /I/ characters decreased the data rate.

3.1.6 Discussion

We have implemented SoNIC to achieve the design goals described above,

namely, software access to the PHY, realtime capability, scalability, high pre-

cision, and an interactive user interface that enable precise timestamping and

pacing. Figure 3.3 shows the major components of our implementation. From

top to bottom, user applications, software as a loadable Linux kernel module,

hardware as a firmware in FPGA, and a SFP+ optical transceiver. Although Fig-

ure 3.3 only illustrates one physical port, there were two physical ports avail-

able in SoNIC. SoNIC software consisted of about 6k lines of kernel module

code, and SoNIC hardware consisted of 6k lines of Verilog code excluding auto-
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generated source code by Altera Quartus [3] with which we developed SoNIC’s

hardware modules.

The idea of accessing the PHY in software can be applied to other physical

layers with different speeds. The 1 GbE and 40 GbE PHYs are similar to the

10 GbE PHY in that they run in full duplex mode and maintain continuous

bitstreams. Especially, the 40 GbE PCS employs four PCS lanes that implements

64B/66B encoding as in the 10 GbE PHY. Therefore, it is possible to access the

PHYs of them with appropriate clock cycles and hardware supports. However,

it might not be possible to implement four times faster scrambler with current

CPUs.

3.2 Implementation

Performance was paramount for SoNIC to achieve its goals and to allow soft-

ware access to the entire network stack. In this section we discuss the software

(Section 3.2.1) and hardware (Section 3.2.2) optimizations that we employed to

enable SoNIC. Further, we evaluate each optimization (Sections 3.2.1 and 3.2.2)

and demonstrate that they helped to enable SoNIC and network research appli-

cations (Section 3.3) with high performance.

3.2.1 Software Optimizations

MAC Thread Optimizations As stated in Section 3.1.2, we used PCLMULQDQ in-

struction which performs carry-less multiplication of two 64-bit quadwords [62]

to implement the fast CRC algorithm [61]. The algorithm folds a large chunk of
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data into a smaller chunk using the PCLMULQDQ instruction to efficiently reduce

the size of data. We adapted this algorithm and implemented it using inline

assembly with optimizations for small packets. See Appendix B for an imple-

mentation of the fast CRC algorithm using the PCLMULQDQ instruction.

PCS Thread Optimizations Considering there are 156 million 66-bit blocks a

second, the PCS must process each block in less than 6.4 nanoseconds. Our

optimized (de-)scrambler processed each block in 3.06 nanoseconds which even

gave enough time to implement decode/encode and DMA transactions within

a single thread.

In particular, the PCS thread needed to implement the (de-)scrambler func-

tion, G(x) = 1+ x39
+ x58, to ensure that a mix of 1’s and 0’s were always sent (DC

balance). The (de-)scrambler function could be implemented with Algorithm 1,

which was very computationally expensive [58] taking 320 shift and 128 xor

operations (5 shift operations and 2 xors per iteration times 64 iterations). In

fact, our original implementation of Algorithm 1 performed at 436 Mbps, which

was not sufficient and became the bottleneck for the PCS thread. We optimized

and reduced the scrambler algorithm to a total of 4 shift and 4 xor operations

(Algorithm 2) by carefully examining how hardware implements the scrambler

function [124]. Both Algorithm 1 and 2 are equivalent, but Algorithm 2 ran 50

times faster (around 21 Gbps). See Appendix C for a more detailed explanation

of Algorithm 2.

Memory Optimizations We used packing to further improve performance. In-

stead of maintaining an array of data structures that each contained metadata

and a pointer to the packet payload, we packed as much data as possible into a

preallocated memory space: Each packet structure contained metadata, packet
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Algorithm 1: Scrambler

s← state

d ← data

for i = 0→ 63 do

in← (d >> i) & 1

out ← (in ⊕ (s >> 38) ⊕ (s >> 57)) & 1

s← (s << 1) | out

r ← r | (out << i)

state← s

end for

Algorithm 2: Parallel Scrambler

s← state

d ← data

r ← (s >> 6) ⊕ (s >> 25) ⊕ d

r ← r ⊕ (r << 39) ⊕ (r << 58)

state← r

payload, and an offset to the next packet structure in the buffer. This packing

helped to reduce the number of page faults, and allowed SoNIC to process small

packets faster. Further, to reap the benefits of the PCLMULQDQ instruction, the

first byte of each packet was always 16-byte aligned.

Evaluation We evaluated the performance of the TX MAC thread when com-

puting CRC values to assess the performance of the fast CRC algorithm and

packing packets we implemented relative to batching an array of packets. For

comparison, we computed the theoretical maximum throughput (Reference

throughput) in packets per second (pps) for any given packet length (i.e. the
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pps necessary to achieve the maximum throughput of 10 Gbps less any proto-

col overhead).

If only one packet was packed in the buffer, packing would perform the same

as batching since the two were essentially the same in this case. We doubled

the factor of packing from 1 to 32 and assessed the performance of packing each

time, i.e. we doubled the number of packets written to a single buffer. Figure 3.4

shows that packing by a factor of 2 or more always outperformed the Reference

throughput and was able to achieve the max throughput for small packets while

batching did not.

Next, we compared our fast CRC algorithm against two CRC algorithms that
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the Linux Kernel provided. One of the Linux CRC algorithms was a naive bit

computation and the other was a table lookup algorithm. Figure 3.5 illustrates

the results of our comparisons. The x-axis is the length of packets tested while

the y-axis is the throughput. The Reference line represents the maximum possi-

ble throughput given the 10 GbE standard. Packet lengths range the spectrum

of sizes allowed by 10 GbE standard from 64 bytes to 1518 bytes. For this eval-

uations, we allocated 16 pages packed with packets of the same length and com-

puted CRC values with different algorithms for 1 second. As we can see from

Figure 3.5, the throughput of the table lookup closely followed the Reference

line; however, for several packet lengths, it underperformed the Reference line

and was unable to achieve the maximum throughput. The fast CRC algorithm,

on the other hand, outperformed the Reference line and target throughput for

all packet sizes.

Lastly, we evaluated the performance of pipelining and using multiple

threads on the TX and RX paths. We tested a full path of SoNIC to assess the

performance as packets travel from the TX MAC to the TX PCS for transmission

and up the reverse path for receiving from the RX PCS to the RX MAC and to

the APP (as a logging thread). All threads performed better than the Reference

target throughput. The overhead of FIFO was negligible when we compared

the throughputs of individual threads to the throughput when all threads were

pipelined together. Moreover, when using two ports simultaneously (two full

instances of receive and transmit SoNIC paths), the throughput for both ports

achieved the Reference target maximum throughput.
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3.2.2 Hardware Optimizations

DMA Controller Optimizations Given our desire to transfer large amounts of

data (more than 20 Gbps) over the PCIe, we implemented a high performance

DMA controller. There were two key factors that influenced our design of the

DMA controller. First, because the incoming bitstream was a continuous 10.3125

Gbps, there must be enough buffering inside the FPGA to compensate for a

transfer latency. Our implementation allocated four rings in the FPGA for two

ports (Figure 3.3 shows two of the rings for one port). The maximum size of each

ring was 256 KB with the size being limited by the amount of SRAM available

on hardware.

The second key factor we needed to consider was the efficient utilization of

bus bandwidth. The DMA controller operated at a data width of 128 bits. If

we send a 66-bit data block over the 128-bit bus every clock cycle, we would

waste 49% of the bandwidth, which was not acceptable. To achieve more ef-

ficient use of the bus, we created a sonic dma page data structure and sep-

arated the syncheader from the packet payload before storing a 66-bit block

in the data structure. Sixteen two-bit syncheaders were concatenated together

to create a 32-bit integer and stored in the syncheaders field of the data

structure. The 64-bit packet payloads associated with these syncheaders were

stored in the payloads field of the data structure. For example, the i-th 66-

bit PCS block from a DMA page consisted of the two-bit sync header from

syncheaders[i/16] and the 64-bit payload from payloads[i]. With this data

structure there was a 32-bit overhead for every page, however it did not impact

the overall performance.

PCI Express Engine Optimizations When SoNIC was first designed, it only
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supported a single port. As we scaled SoNIC to support multiple ports simulta-

neously, the need for multiplexing traffic among ports over the single PCIe link

became a significant issue. To solve this issue, we employed a two-level arbitra-

tion scheme to provide fair arbitration among ports. A lower level arbiter was

a fixed-priority arbiter that worked within a single port and arbitrated between

four basic Transaction Level Packet (TLP) types: Memory, I/O, configuration,

and message. The TLPs were assigned with fixed priority in favor of the write

transaction towards the host. The second level arbiter implemented a virtual

channel, where the Traffic Class (TC) field of TLP’s were used as demultiplexing

keys. We implemented our own virtual channel mechanism in SoNIC instead

of using the one available in the PCIe stack since virtual channel support was

an optional feature for vendors to comply with. In fact, most chipsets on the

market at the time of this dissertation did not support the virtual channel mech-

anism. By implementing the virtual channel support in SoNIC, we achieved

better portability since we did not rely on chip vendors that enabled PCI arbi-

tration.

Evaluation

We examined the maximum throughput for DMA between SoNIC hardware

and SoNIC software to evaluate our hardware optimizations. It was important

that the bidirectional data rate of each port of SoNIC was greater than 10.3125

Gbps. For this evaluation, we created a DMA descriptor table with one entry,

and changed the size of memory for each DMA transaction from one page (4K)

to sixteen pages (64KB), doubling the number of pages each time. We evaluated

the throughput of a single RX or TX transaction, dual RX or TX transactions,

and full bidirectional RX and TX transactions with both one and two ports (see
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Configuration Same Socket? # pages
Throughput (RX)

# pages
Throughput (TX)

Realtime?
Port 0 Port 1 Port 0 Port 1

Single RX 16 25.7851

Dual RX
Yes 16 13.9339 13.899

No 8 14.2215 13.134

Single TX 16 23.7437

Dual TX
Yes 16 14.0082 14.048

No 16 13.8211 13.8389

Single RX/TX 16 21.0448 16 22.8166

Dual RX/TX

Yes

4 10.7486 10.8011 8 10.6344 10.7171 No

4 11.2392 11.2381 16 12.384 12.408 Yes

8 13.9144 13.9483 8 9.1895 9.1439 Yes

8 14.1109 14.1107 16 10.6715 10.6731 Yes

No

4 10.5976 10.183 8 10.3703 10.1866 No

4 10.9155 10.231 16 12.1131 11.7583 Yes

8 13.4345 13.1123 8 8.3939 8.8432 Yes

8 13.4781 13.3387 16 9.6137 10.952 Yes

Table 3.1: DMA throughput. The numbers are average over eight runs.
The delta in measurements was within 1% or less.

the rows of Table 3.1). We also measured the throughput when traffic was sent

to one or two CPU sockets.

Table 3.1 shows the DMA throughputs of the transactions described above.

We first measured the DMA without using pointer polling (see Section 3.1.2) to

obtain the maximum throughputs of the DMA module. For single RX and TX

transactions, the maximum throughput was close to 25 Gbps. This was less than

the theoretical maximum throughput of 29.6 Gbps for the x8 PCIe interface, but

closely matched the reported maximum throughput of 27.5 Gbps [2] from Altera

design. Dual RX or TX transactions also resulted in throughputs similar to the

reference throughputs of Altera design.

Next, we measured the full bidirectional DMA transactions for both ports

varying the number of pages again. As shown in the bottom half of Table 3.1, we

had multiple configurations that supported throughputs greater than 10.3125

Gbps for full bidirections. However, there were a few configurations in which

the TX throughput was less than 10.3125 Gbps. That was because the TX di-
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rection required a small fraction of RX bandwidth to fetch the DMA descriptor.

If RX ran at maximum throughput, there was little room for the TX descriptor

request to get through. However, as the last column on the right indicates these

configurations were still able to support the realtime capability, i.e. consistently

running at 10.3125 Gbps, when pointer polling was enabled. This was because

the RX direction only needed to run at 10.3125 Gbps, less than the theoretical

maximum throughput (14.8 Gbps), and thus gave more room to TX. On the

other hand, two configurations where both RX and TX ran faster than 10.3125

Gbps for full bidirection were not able to support the realtime capability. For

the rest of the chapter, we used 8 pages for RX DMA and 16 pages for TX DMA.

3.3 Evaluation

How can SoNIC enable flexible, precise and novel network research applica-

tions? Specifically, what unique value does software access to the PHY buy?

SoNIC can literally count the number of bits between and within packets, which

can be used for timestamping at the sub-nanosecond granularity (again each bit

is 97 ps wide, or about ∼0.1 ns). At the same time, access to the PHY allows

users control over the number of idles (/I/s) between packets when gener-

ating packets. This fine-grained control over the /I/s means we can precisely

control the data rate and the distribution of interpacket gaps. For example, the

data rate of a 64B packet stream with uniform 168 /I/s is 3 Gbps. When this

precise packet generation is combined with exact packet capture, also enabled

by SoNIC, we can improve the accuracy of any research based on interpacket

delays [44, 69, 82, 87, 88, 89, 90, 120, 127, 129].
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In this section, we demonstrate SoNIC’s accurate packet generation (packet

pacing) capability in Section 3.3.1 and packet capture capability in Section 3.3.2,

which were unique contributions and could enable unique network research in

and of themselves given both the flexibility, control, and precision. Further, we

demonstrate that SoNIC could precisely and flexibly characterize and profile

commodity network components like routers, switches, and NICs. Section 3.3.3

discusses the profiling capability enabled by SoNIC.

We define interpacket delay (IPD) as the time difference between the first bits

of two successive packets, and interpacket gap (IPG) as the time difference be-

tween the last bit of the first packet and the first bit of the next packet. Thus,

an interpacket delay between two packets is equal to the sum of transmission

time of the first packet and the interpacket gap between the two (i.e. IPD =

IPG + packet size). A homogeneous packet stream consists of packets that have

the same destination, the same size and the same IPGs (IPDs) between them.

Furthermore, the variance of IPGs and IPDs of a homogeneous packet stream is

always zero.
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Figure 3.7: Comparison of packet generation at 9 Gbps

3.3.1 Packet Generator (Packet Pacing)

Packet generation is important for network research. It can stress test end-hosts,

switches/routers, or a network itself. Moreover, packet generation can be used

for replaying a trace, studying distributed denial of service (DDoS) attacks, or

probing firewalls.

In order to claim that a packet generator is accurate, packets need to be

crafted with fine-grained precision (minimum deviations in IPD) at the maxi-

mum data rate. However, this fine-grained control was not usually exposed to

users. Further, commodity servers equipped with a commodity NIC often did

not handle small packets efficiently and require batching [54, 65, 95, 112]. Thus,

the sending capability of servers/software-routers were determined by the net-

work interface devices. Myricom Sniffer 10G [25] provided line-rate packet in-

jection capability, but did not provide fine-grained control of interpacket gaps

(IPG). Hardware based packet generators such as ALT10G did not provide any

interface for users to flexibly control IPGs.

We evaluated SoNIC as a packet generator (Figure 2.6(a) and 3.1(a)). Fig-

ure 3.7 compares the performance of SoNIC to that of Sniffer 10G. Note, we did
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not include ALT10G in this evaluation since we could not generate packets at 9

Gbps. We used two servers with Sniffer 10G enabled devices to generate 1518B

packets at 9 Gbps between them. We split the stream so that SoNIC could cap-

ture the packet stream in the middle (we describe this capture capability in the

following section). As the graph shows, Sniffer 10G allowed users to generate

packets at desired data rate, however, it did not give the control over the IPD;

that is, 85.65% packets were sent in a burst (instantaneous 9.8 Gbps and mini-

mum IPG (14 /I/s)). SoNIC, on the other hand, could generate packets with

uniform distribution. In particular, SoNIC generated packets with no variance

for the IPD (i.e. a single point on the CDF, represented as a triangle). More-

over, the maximum throughput perfectly matched the Reference throughput

(Figure 3.6) while the TX PCS consistently ran at 10.3125 Gbps (which is not

shown). In addition, we observed no packet loss, bit errors, or CRC errors dur-

ing our experiments.

SoNIC packet generator could easily achieve the maximum data rate, and

allowed users to precisely control the number of /I/s to set the data rate of a

packet stream. Moreover, with SoNIC, it was possible to inject less /I/s than the

standard. For example, we could achieve 9 Gbps with 64B packets by inserting

only eight /I/s between packets. This capability was not possible with any

other (software) platform. In addition, if the APP thread was carefully designed,

users could flexibly inject a random number of /I/s between packets, or the

number of /I/s from captured data.
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Figure 3.8: Comparison of timestamping

3.3.2 Packet Capturer (Packet Timestamping)

A packet capturer (a.k.a. packet sniffer, or packet analyzer) plays an important

role in network research; it is the opposite side of the same coin as a packet gen-

erator. It can record and log traffic over a network which can later be analyzed to

improve the performance and security of networks. In addition, capturing pack-

ets with precise timestamping is important for High Frequency Trading [74, 115]

or latency sensitive applications.

Similar to the sending capability, the receiving capability of servers and soft-

ware routers is inherently limited by the network adapters they use; it has been

shown that some NICs are not able to receive packets at line speed for certain

packet sizes [112]. Furthermore, if batching was used, timestamping was signif-

icantly perturbed if done in kernel or userspace [58]. High-performance devices

such as Myricom Sniffer10G [25, 72] provided the ability of sustained capture

of 10 GbE by bypassing kernel network stack. It also provided timestamping at

500 ns resolution for captured packets. SoNIC, on the other hand, could receive

packets of any length at line-speed with precise timestamping.

Putting it all together, when we used SoNIC as a packet capturer (Fig-
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ure 2.6(a) and 3.1(b)), we were able to receive at the full Reference data rate

(Figure 3.6). For the APP thread, we implemented a simple logging application

which captured the first 48 bytes of each packet along with the number of /I/s

and bits between packets. Because of the relatively slow speed of disk writes,

we stored the captured information in memory. This required about 900MB

to capture a stream of 64 byte packets for 1 second, and 50 MB for 1518 byte

packets. We used ALT10G to generate packets for 1 second and compared the

number of packets received by SoNIC to the number of packets generated.

SoNIC had perfect packet capture capabilities with flexible control in soft-

ware. In particular, Figure 3.8 shows that given a 9 Gbps generated traffic

with uniform IPD (average IPD=1357.224ns, stdev=0), SoNIC captured what

was sent; this is shown as a single triangle at (1357.224, 1). All the other packet

capture methods within userspace, kernel or a mixture of hardware timestamp-

ing in userspace (Sniffer 10G) failed to accurately capture what was sent. We

received similar results at lower bandwidths as well.
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3.3.3 Profiler

Interpacket delays are a common metric for network research. It can be used

to estimate available bandwidth [87, 88, 120], increase TCP throughput [129],

characterize network traffic [69, 82, 127], and detect and prevent covert timing

channels [44, 89, 90]. There are a lot of metrics based on IPD for these areas.

SoNIC increased the accuracy of those applications because of its precise con-

trol and capture of IPDs. In particular, when the SoNIC packet generator and

capturer were combined, i.e. one port transmitted packets while the other port

captured, SoNIC became a flexible platform for various studies. As an example,

we demonstrate how SoNIC was used to profile network switches.

Switches can be generally divided into two categories: store-and-forward

and cut-through switches. Store-and-forward switches decode incoming pack-

ets and buffers them before making a routing decision. On the other hand, cut-

through switches route incoming packets before entire packets are decoded to

reduce the routing latency. We generated 1518B packets with uniform 1357.19

ns IPD (=9 Gbps) to a Cisco 4948 (store-and-forward) switch and a IBM BNT

G8264 (cut-through) switch. These switches showed different characteristics as

shown in Figure 3.9. The x-axis is the interpacket delay; the y-axis is the cu-

mulative distribution function. The long dashed vertical line on the left is the

original IPD injected to the packet stream.

There are several takeaways from this experiment. First, the IPD for gener-

ated packets had no variance; none. The generated IPD produced by SoNIC

was always the same. Second, the cut-through switch introduced IPD vari-

ance (stdev=31.6413), but less than the IPD on the store-and-forward switch

(stdev=161.669). Finally, the average IPD was the same for both switches
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since the data rate was the same: 1356.82 (cut-through) and 1356.83 (store-and-

forward). This style of experiment can be used to profile and fingerprint net-

work components as different models show different packet distributions.

3.4 Application 1: Covert Timing Channel

In this chapter, we demonstrated that access to the PHY enabled significantly

improved precision for timestamping and pacing messages. In this section, we

demonstrate that the improved precision of timestamping and pacing could also

improve the performance of network applications such as covert channels. We

designed and implemented a covert timing channel which relied on the preci-

sion of timestamping and pacing of the PHY and advances the state of the art.

Covert channels are defined as channels that are not intended for informa-

tion transfer, but can leak sensitive information [79]. In essence, covert channels

provide the ability to hide the transmission of data within established network

protocols [130], thus hiding their existence. Covert channels are typically clas-

sified into two categories: Storage and timing channels. In storage channels, a

sender modulates the value of a storage location to send a message. In timing

channels, on the other hand, a sender modulates system resources over time to

send a message [32].

Network covert channels send hidden messages over legitimate packets by

modifying packet headers (storage channels) or by modulating interpacket de-

lays (timing channels). Because network covert channels can deliver sensitive

messages across a network to a receiver multiple-hops away, they impose seri-

ous threats to the security of systems.
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In a network covert channel, the sender has secret information that she tries to

send to a receiver over the Internet. The sender has control of some part of a net-

work stack including a network interface (L1∼2), kernel network stack (L3∼4)

and/or user application (L5 and above). Thus, the sender can modify protocol

headers, checksum values, or control the timing of transmission of packets. The

sender can either use packets from other applications of the system or gener-

ate its own packets. Although it is also possible that the sender can use packet

payloads to directly embed or encrypt messages, we do not consider this case

because it is against the purpose of a covert channel: hiding the existence of the

channel. The adversary (or warden), on the other hand, wants to detect and pre-

vent covert channels. A passive adversary monitors packet information to detect

covert channels while an active adversary employs network appliances such as

network jammers to reduce the possibility of covert channels.

In network storage channels, the sender changes the values of packets to

secretly encode messages, which is examined by the receiver to decode the

message. This can be easily achieved by using unused bits or fields of pro-

tocol headers. The IP Identification field, the IP Fragment Offset, the TCP

Sequence Number field, and TCP timestamps are good places to embed mes-

sages [76, 102, 113, 114]. As with the easiness of embedding messages in packet

headers, it is just as easy to detect and prevent such storage channels. The adver-

sary can easily monitor specific fields of packet headers for detection, or sanitize

those fields for prevention [57, 66, 93].

In network timing channels, the sender controls the timing of transmission of

packets to deliver hidden messages. The simplest form of this channel is to send

or not send packets in a pre-arranged interval [44, 107]. Because interpacket de-
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lays are perturbed with noise from a network, synchronizing the sender and

receiver is a major challenge in these on/off timing channels. However, syn-

chronization can be avoided when each interpacket delay conveys information,

i.e. a long delay is zero, and a short delay is one [41]. JitterBugs encodes bits

in a similar fashion, and uses the remainder of modulo operation of interpacket

delays for encoding and decoding [117]. These timing channels naturally create

patterns of interpacket delays which can be analyzed with statistical tests for de-

tection. For example, regularity tests [41, 44], shape tests [109], or entropy tests [60]

are widely used for covert timing channel detection. On the other hand, to avoid

detection from such statistical tests, timing channels can mimic patterns of le-

gitimate traffic, or use random interpacket delays. Liu et al., demonstrated that

with spreading codes and a shared key, a timing channel can be robust against

known statistical tests [89]. They further developed a method to use indepen-

dent and identically distributed (i.i.d) random interpacket delays to make the

channel less detectable [90].

In this section, we demonstrate that a sophisticated covert timing channel

can be created via precise pacing and timestamping and that such a channel

is high-bandwidth, robust against cross traffic, and undetectable by software end-

hosts. The channel effectively delivers 81 kilobits per second with less than

10% errors over nine routing hops, and thousands of miles over the National

Lambda Rail (NLR). Chupja advances the state-of-the-art covert timing chan-

nels which can only deliver thousands of bits per second while avoiding detec-

tion. We empirically demonstrate that we could create such a timing channel

by modulating interpacket gaps at sub-microsecond scale: A scale at which sent

information was preserved through multiple routing hops, but statistical tests

could not differentiate the channel from legitimate traffic. The idea was to con-

65



trol (count) the number of /I/s to encode (decode) messages exhibiting packet

pacing capabilities, i.e. to modulate interpacket gaps in nanosecond resolution.

3.4.1 Design

Design Goal

The design goal of our timing channel, called Chupja, was to achieve high-

bandwidth, robustness and undetectability by precisely pacing and timestamping

packets. By high-bandwidth, we mean a covert rate of many tens or hundreds of

thousands of bits per second. Robustness is how to deliver messages with min-

imum errors. In particular, we set as our goal for robustness to a bit error rate

(BER) of less than 10%, an error rate that was small enough to be compensated

with forward error correction such as Hamming code, or spreading code [89].

We define BER as the ratio of the number of bits incorrectly delivered from the

number of bits transmitted. Undetectability is how to hide the existence of it.

In order to achieve these goals, we precisely paced packets by modulating

the number of /I/s between packets in the PHY. If the modulation of /I/s was

large, the channel could effectively send messages in spite of noise or perturba-

tions from a network (robustness). At the same time, if the modulation of /I/s

was small, an adversary would not be able to detect regularities (undetectabil-

ity). Further, Chupja embedded one timing channel bit per interpacket gap to

achieve high-bandwidth. Thus, higher overt packet rates would achieve higher

covert timing channel rates. We focused on finding an optimal modulation of

interpacket gaps to achieve high-bandwidth, robustness, and undetectability

(Section 3.4.2).
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Model

In our model, the sender of Chupja had control over a network interface card or

a switch1 with access to and control of the PHY. In other words, the sender could

easily control the number of /I/ characters of outgoing packets. The receiver

was in a network multiple hops away, and tapped/sniffed on its network with

access to the PHY. Then, the sender modulated the number of /I/s between

packets destined to the receiver’s network to embed secret messages.

Our model included an adversary who ran a network monitoring applica-

tion and was in the same network with the sender and receiver. We assumed

that the adversary was built from a commodity server and commodity NIC. As

a result, the adversary did not have direct access to the PHY. Since a commodity

NIC discards /I/s before delivering packets to the host, the adversary could not

monitor the number of /I/s to detect the possibility of covert timing channels.

Instead, it ran statistical tests with captured interpacket delays.

Encoding and Decoding

Chupja embedded covert bits into interpacket gaps of a homogeneous packet

stream of an overt channel. In order to create Chupja, the sender and receiver

must share two parameters: G and W. G was the number of /I/s in the IPG that

was used to encode and decode hidden messages, and W (Wait time) helped the

sender and receiver synchronize (Note that interpacket delay D = G + packet

size). Figure 3.10 illustrates our design. Recall that IPGs of a homogeneous

packet stream are all the same (=G, Figure 3.10(a)). For example, the IPG of a

1We use the term switch to denote both bridge and router.
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Figure 3.10: Chupja encoding and decoding.

homogeneous stream with 1518 byte packets at 1 Gbps is always 13738 /I/s;

the variance is zero. To embed a secret bit sequence {bi, bi+1, · · · }, the sender

encoded ‘one’ (‘zero’) by increasing (decreasing) the IPG (G) by ǫ /I/s (Fig-

ure 3.10(b)):

Gi = G − ǫ if bi = 0

Gi = G + ǫ if bi = 1

where Gi was the i-th interpacket gap between packet i and i + 1. When Gi

was less than the minimum interpacket gap (or 12 /I/ characters), it was set to

twelve to meet the standard requirement.

Interpacket gaps (and delays) are perturbed as packets go through a number

of switches. However, as we will see in Section 3.4.2, many switches did not

significantly change interpacket gaps. Thus, we could expect that if ǫ was large

enough, encoded messages would be preserved along the path. At the same
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Figure 3.11: Maximum capacity of PHY timing channel

time, ǫ must be small enough to avoid detection by an adversary. We evaluated

how big ǫ must be with and without cross traffic and over multiple hops of

switches over thousands of miles in a network path (Section 3.4.2).

Upon receiving packet pairs, the receiver decoded bit information as fol-

lows:

b′i = 1 if Gi ≥ G

b′i = 0 if Gi < G

b′i might not be equal to bi because of network noise. We used BER to evaluate

the performance of Chupja (Section 3.4.2).

Because each IPG corresponded to a signal, there was no need for synchro-

nization between the sender and the receiver [41]. However, the sender occa-

sionally needed to pause until the next covert packet was available. W was used

when there was a pause between signals. The receiver considered an IPG that

was larger than W as a pause, and used the next IPG to decode the next signal.

The capacity of this PHY timing channel was equal to the number of packets

being transmitted from the sender when there was no pause. Given a packet
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size, the maximum capacity of the channel is illustrated in Figure 3.11. For ex-

ample, if an overt channel sent at 1 Gbps with 1518 byte packets, the maximum

capacity of the covert channel was 81, 913 bits per second (bps). We demon-

strate in Section 3.4.2 that Chupja delivered 81 kilobits per second (kbps) with

less than 10% BER over nine routing hops and thousands of miles over National

Lambda Rail (NLR) where many links on our path were utilized with 1∼4 Gbps

cross traffic.

Discussion

Chupja used homogeneous packet streams to encode messages, which created

a regular pattern of IPGs. Fortunately, as we discuss in the following section,

the adversary was not able to accurately timestamp incoming packets when the

data rate was high. This means that it did not matter what patterns of IPGs were

used for encoding at above a certain data rate. Therefore, we chose the simplest

form of encoding for Chupja. The fact that the PHY timing channel worked over

multiple hops means that a non-homogeneous timing channel would work as

well. For instance, consider the output after one routing hop as the sender,

then the PHY timing channel worked with a non-homogeneous packet stream.

If, on the other hand, the sender wanted to use other patterns for encoding

and decoding, other approaches could easily be applied [44, 89, 90, 117]. For

example, if the sender wanted to create a pattern that looked more random, we

could also use a shared secret key and generate random IPGs for encoding and

decoding [90]. However, the focus of this chapter is to demonstrate that even

this simplest form of timing channel can be a serious threat to a system and not

easily be detected.
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3.4.2 Evaluation

In this section, we evaluated Chupja over real networks. We investigated to

answer following questions.

• How robust was Chupja? How effectively could it send secret messages

over the Internet?

• Why was Chupja robust? What properties of a network did it exploit?

• How undetectable was Chupja? Why was it hard to detect it and what was

required to do so?

Evaluation Setup

Packet size Data Rate Packet Rate IPD IPG
[Bytes] [Gbps] [pps] [ns] [/I/ ]

1518 9 737028 1356.8 170
1518 6 491352 2035.2 1018
1518 3 245676 4070.4 3562
1518 1 81913 12211.2 13738
64 6 10416666 96.0 48
64 3 5208333 192.0 168
64 1 1736111 576.0 648

Table 3.2: IPD and IPG of homogeneous packet streams.

ǫ (/I/s) 16 32 64 128 256 512 1024 2048 4096
ns 12.8 25.6 51.2 102.4 204.8 409.6 819.2 1638.4 3276.8

Table 3.3: Evaluated ǫ values in the number of /I/s and their correspond-
ing time values in nanosecond.

For most of the evaluation, we used 1518 byte and 64 byte packets for sim-

plicity. We define packet size as the number of bytes from the first byte of the
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Ethernet header to the last byte of the Ethernet frame check sequence (FCS)

field (i.e. we exclude seven preamble bytes and start frame delimiter byte from

packet size). Then, the largest packet allowed by Ethernet is 1518 bytes (14 byte

header, 1500 payload, and 4 byte FCS), and the smallest is 64 bytes. In this sec-

tion, the data rate refers to the data rate of the overt channel that Chupja was

embedded. Interpacket delays (IPDs) and interpacket gaps (IPGs) of homoge-

neous packet streams at different data rates and with different packet sizes are

summarized in Table 3.2. Table 3.3 shows the number of /I/s (ǫ) we modulated

to create Chupja and their corresponding time values in nanosecond. We set ǫ

starting from 16 /I/s (= 12.8 ns), doubling the number of /I/s up to 4096 /I/s

(= 3276.8 ns). We use a tuple (s, r) to denote a packet stream with s byte packets

running at r Gbps. For example, a homogeneous stream with (1518B, 1Gbps) is

a packet stream with 1518 byte packets at 1 Gbps.

Efficiency of Chupja

The goal of a covert timing channel is to send secret messages to the receiver

with minimum errors (robustness). As a result, Bit Error Rate (BER) and the

achieved covert bandwidth are the most important metrics to evaluate a tim-

ing channel. Our goal was to achieve BER less than 10% over a network with

high bandwidth. As a result, we evaluated Chupja over two networks, a small

network and the Internet (NLR), focusing on the relation between BER and the

number of /I/s being modulated (ǫ).

A small network Before considering cross traffic, we first measured BER with

no cross traffic in our small network (Figure 2.7). Figure 3.12(a) illustrates the
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Figure 3.12: BER of Chupja over a small network and NLR. X-Y-Z means
that workload of cross traffic is X (H-heavy, M-medium, or L-
light), and the size of packet and data rate of overt channel is
Y (B-big=1518B or S-small=64B) and Z (1, 3, or 6G).

result. The x-axis is ǫ modulated in the number of idle (/I/) characters (see

Table 3.3 to relate /I/s to time), and the y-axis is BER. Figure 3.12(a) clearly

illustrates that the larger ǫ, the smaller BER. In particular, modulating 128 /I/s

(=102.4 ns) was enough to achieve BER=7.7% with (1518B, 1Gbps) (filled in

round dots). All the other cases also achieved the goal BER except (64B, 6Gbps)

and (64B, 3Gbps). Recall that Table 3.2 gives the capacity of the covert channel.

The takeaway is that when there was no cross traffic, modulating small num-

ber of /I/s (128 /I/s, 102.4 ns) was sufficient to create a timing channel. In

addition, it was more efficient with large packets.
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We also evaluated Chupja with cross traffic. We created three workloads

where (α, β) = (0.333, 0.333), (0.9, 0.9), and (0.9, 3.7) (Figure 2.7), and we call

them Light, Medium and Heavy workloads. Packets of cross traffic were al-

ways maximum transmission unit (MTU) sized. Then SoNIC1 generated timing

channel packets at 1, 3, and 6 Gbps with 1518 and 64 byte packets. Figure 3.12(b)

illustrates the result. At a glance, because of the existence of cross traffic, ǫ must

be larger to transmit bits correctly compared to the case without cross traffic.

There are a few takeaways. First, regardless of the size of workloads, timing

channels with (1518B, 1Gbps) and (1518B, 3Gbps) worked quite well, achieving

the goal BER of less than 10% with ǫ ≥ 1024 . On the other hand, channels at a

data rate higher than 6 Gbps were not efficient. In particular, ǫ = 4096 was not

sufficient to achieve the goal BER with (1518B, 6Gbps). Second, creating timing

channels with small packets was more difficult. Generally, BER was quite high

even with ǫ = 4096 except H-S-1G case (BER=9%).

National Lambda Rail Figure 3.12(c) illustrates the results from NLR. Again,

we changed the size and the data rate of overt packets. In NLR, it was more

difficult to create a timing channel. In particular, only (1518B, 1Gbps) achieved

BER less than 10% when ǫ was larger than 2048 (8.9%). All the other cases had

higher BERs than our desired goal, although BERs were less than 30% when ǫ

is 4096. Creating a channel with 64 byte packet was no longer possible in NLR.

This was because more than 98% of IPGs were minimum interpacket gaps, i.e.

most of bit information was discarded because of packet train effects [58].
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Sensitivity Analysis

Network devices change interpacket gaps while forwarding packets; switches

add randomness to interpacket gaps. We discuss how Chupja could deliver

secret messages via a PHY timing channel in spite of the randomness added

from a network. In particular, we discuss the following observations.

• A single switch did not add significant perturbations to IPDs when there

was no cross traffic.

• A single switch treated IPDs of a timing channel’s encoded ‘zero’ bit and

those of an encoded ‘one’ bit as uncorrelated distributions; ultimately, al-

lowing a PHY timing channel receiver to distinguish an encoded ‘zero’

from an encoded ‘one’.

• The first and second observations above held for multiple switches and

cross traffic.

In other words, we demonstrate that timing channels could encode bits by

modulating IPGs by a small number of /I/ characters (hundreds of nanosec-

onds) and these small modulations could be effectively delivered to a receiver

over multiple routing hops with cross traffic.

In order to understand and appreciate these observations, we must first de-

fine a few terms. We denote the interpacket delay between packet i and i + 1

with the random variable Di. We use superscript on the variables to denote the

number of routers. For example, D1
i is the interpacket delay between packet

i and i + 1 after processed by one router, and D0
i

is the interpacket delay be-

fore packet i and i + 1 are processed by any routers. Given a distribution of D,
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and the average interpacket delay µ, we define I90 as the smallest ǫ that satisfies

P(µ − ǫ ≤ D ≤ µ + ǫ) ≥ 0.90. In other words, I90 is the interval from the average

interpacket delay, µ, which contains 90% of D (i.e. at least 90% of distribution D

is within µ ± I90). For example, I90 of a homogeneous stream (a delta function,

which has no variance) that leaves the sender and enters the first router is zero;

i.e. D0 has I90 = 0 and P(µ − 0 ≤ D ≤ µ + 0) = 1 since there is no variance in IPD

of a homogeneous stream. We use I90 in this section to quantify perturbations

added by a network device or a network itself. Recall that the goal of Chupja

was to achieve a BER less than 10%, and, as a result, we were interested in the

range where 90% of D observed by a timing channel receiver was contained.

First, switches did not add significant perturbations to IPDs when there was no

cross traffic. In particular, when a homogeneous packet stream was processed by

a switch, I90 was always less than a few hundreds of nanoseconds, i.e. 90% of the

received IPDs were within a few hundreds of nanoseconds from the IPD orig-

inally sent. Figure 3.13 displays the received IPD distribution measured after

packets were processed and forwarded by one switch: The x-axis is the received
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IPD and the y-axis is the cumulative distribution function (CDF). Further, differ-

ent lines represent different switches from Table 2.3. The characteristics of the

original sender’s homogeneous packet stream was a data rate of 1 Gbps with

1518B size packets, or (1518B, 1Gbps) for short, which resulted in an average

IPD of 12.2 us (i.e. µ = 12.2 us). We can see in Figure 3.13 that when µ was 12.2

us and ǫ was 0.1 us, P(12.2− 0.1 < D < 12.2+ 0.1) ≥ 0.9 was true for all switches.

In general, the range of received IPDs was always bounded by a few hundreds

of nanoseconds from the original IPD, regardless of the type of switch.

Moreover, when a packet stream was processed by the same switch type,

but for multiple hops, I90 increased linearly. Each packet suffered some pertur-

bation, but the range of perturbation was roughly constant at every hop over

different packet sizes [85] resulting in a linear increase in I90. In Figure 3.14, we

illustrate I90 for different switches, at different data rates (1, 3, and 9G), and as

we increased the number of hops: The x-axis is the number of routing hops,

y-axis is measured I90, and each line is a different type of switch with a differ-

ent packet stream data rate. Packet size was 1518B for all test configurations.

One important takeaway from the graph is that I90 for the same switch showed
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similar patterns regardless of data rates, except SW3 9 Gbps. In particular, the

degree of perturbation added by a switch was not related to the data rate (or the

average interpacket delay). Instead, IPD perturbation was related to the num-

ber of hops, and the size of packet. Further, a second takeaway is that I90 values

after one hop were all less than 100 ns, except SW3 9 Gbps, and still less than

300 ns after fifteen hops. 300 ns is slightly greater than 256 /I/s (Table 3.3). Un-

fortunately, we did not have a definitive explanation on why I90 of SW3 9 Gbps

was larger than any other case, but it was likely related to how SW3 handled

high data rates.

Second, switches treated IPDs of an encoded ‘zero’ bit and those of an encoded

‘one’ bit as uncorrelated distributions. After encoding bits in a timing channel,

there will be only two distinctive IPD values leaving the sender: µ + ǫ for ‘one’,

and µ − ǫ for ‘zero’. Let a random variable D+ be the IPDs of signal ‘one’, and

D− be those of signal ‘zero’. We observed that the encoded distributions after

one routing hop, D1
+ and D1−, looked similar to the unencoded distribution

after one routing hop, D1. The similarity was likely due to the fact that at the

sender the encoded distributions, D0
+ and D0−, were each homogeneous packet

streams (i.e. D0, D0
+, and D0− are all delta functions, which have no variance).

For instance, using switch SW1 from Table 2.3, Figure 3.15(a) illustrates D1 (the

unencoded distribution of IPDs after one routing hop) and Figure 3.15(b) illus-

trates D1
+ and D1− (the encoded distribution after one routing hop). The data

rate and packet size was 1Gbps and 1518B, respectively, with ǫ = 256 /I/s for

the encoded packet stream. We encoded the same number of ‘zeros’ and ‘ones’

randomly into the packet stream. Note the similarity in distributions between

D1 in Figure 3.15(a) and D1
+ and D1− in Figure 3.15(b). We observed a simi-

larity in distributions among D1, D1
+, and D1− throughout different data rates
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and switches. We conjectured that D+ and D− were uncorrelated because the

computed correlation coefficient between D+ and D− was always very close to

zero.

Because the distributions of D1
+ and D1−were uncorrelated, we could effec-

tively deliver bit information with appropriate ǫ values for one hop. If ǫ was

greater than I90 of D1, then 90% of IPDs of D1
+ and D1− will not overlap. For

example, when I90 is 64 ns, and ǫ is 256 /I/s (=204.8 ns), two distributions of

D1
+ and D1− were clearly separated from the original IPD (Figure 3.15(b)). On

the other hand, if ǫ was less than I90 of D1, then many IPDs overlapped, and thus

the BER increased. For instance, Table 3.4 summarizes how BER of the timing

channel varied with different ǫ values. From Table 3.4, we can see that when ǫ

was greater than 64 /I/s, BER was always less than 10%. The key takeaway is

that BER was not related with the data rate of the overt channel, rather it was

related to I90.

ǫ (/I/s) 16 32 64 128 256 512 1024

BER

1G 0.35 0.24 0.08 0.003 10−6 0 0
3G 0.37 0.25 0.10 0.005 10−5 0 0
6G 0.35 0.24 0.08 0.005 0.8 × 10−6 0 0
9G 0.34 0.24 0.07 0.005 0.0005 0.0004 0.0005

Table 3.4: ǫ and associated BER with (1518B, 1Gbps)

Third, switches treated IPDs of an encoded ‘zero’ bit and those of an encoded ‘one’

bit as uncorrelated distributions over multiple switches and with cross traffic. In par-

ticular, distributions Dn
+ and Dn− were uncorrelated regardless of the number

of hops and the existence of cross traffic. However, I90 became larger as pack-

ets went through multiple routers with cross traffic. Figures 3.15(c) and 3.15(d)

show the distributions of D15, D15
+, and D15− without cross traffic (Note that

the y-axis is log-scale). The data rate and packet size was 1 Gbps and 1518B,
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respectively, with ǫ = 256 /I/s for the encoded packet stream. We conjectured

that the distributions were still uncorrelated without cross traffic and after mul-

tiple hops of routers: The computed correlation coefficient was close to zero.

Further, the same observation was true with the other switches from Table 2.3.

Figure 3.16 shows BER over multiple hops of SW1. When ǫ was greater than 256

/I/s (=204.8 ns), BER was always less than 10% after fifteen hops. Recall that

I90 of D after 15 hops of SW1 was 236 ns (Figure 3.14).

Figures 3.15(e) and 3.15(f) show the distributions after one routing hop when
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Data Rate Packet Rate I90 BER
[Gbps] [pps] [ns] ǫ = 512 ǫ = 1024

CAIDA1 2.11 418k 736.0 0.10 0.041
CAIDA2 3.29 724k 848.1 0.148 0.055
CAIDA3 4.27 723k 912.1 0.184 0.071
CAIDA4 5.12 798k 934.4 0.21 0.08

Table 3.5: Characteristics of CAIDA traces, and measured I90 and BER

there was cross traffic: Distributions D1, D1
+, and D1− using overt data rate and

packet size 1 Gbps and 1518B, respectively. The cross traffic was (64B, 1Gbps).

We can see in the figures that there was still a similarity in D1
+ and D1− even

with cross traffic. However, I90 became larger due to cross traffic when com-

pared to without cross traffic. Table 3.6 summarizes how I90 changed with cross

traffic. We used five different patterns of cross traffic for this evaluation: 10-

clustered (10C), 100-clustered (100C), one homogeneous stream (HOM), two

homogeneous streams (HOM2), and random IPD stream (RND). A N-clustered

packet stream consisted of multiple clusters of N packets with the minimum in-

terpacket gap (96 bits, which is 12 /I/ characters) allowed by the standard [19]

and a large gap between clusters. Note that a larger N meant the cross traffic

was bursty. For the RND stream, we used a geometric distribution for IPDs to

create bursty traffic. In addition, in order to understand how the distribution of

packet sizes affected I90, we used four CAIDA traces [30] at different data rates

to generate cross traffic (Table 3.5). With packet size and timestamp information

from the traces, we reconstructed a packet stream for cross traffic with SoNIC. In

the CAIDA traces, the distribution of packet sizes was normally a bimodal dis-

tribution with a peak at the lowest packet size and a peak at the highest packet

size (Figure 3.17).

We observe that I90 increased with cross traffic (Table 3.6). In particular,
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bursty cross traffic at higher data rates significantly impacted I90, although they

were still less than one microsecond except 100C case. The same observation

was also true using the CAIDA traces with different data rates (Table 3.5). As a

result, in order to send encoded timing channel bits effectively, ǫ must increase

as well. Figure 3.15(g) and 3.15(h) show the distributions of IPDs over the NLR.

It demonstrates that with external traffic and over multiple routing hops, suffi-

ciently large ǫ could create a timing channel.

Data Rate Packet Size I90

[Gbps] [Byte ] 10C 100C HOM HOM2 RND

0.5

64 79.9 76.8 166.45 185.6 76.8
512 79.9 79.9 83.2 121.6 86.3

1024 76.8 76.8 80.1 115.2 76.8
1518 111.9 76.8 128.0 604.7 83.2

1

64 111.9 108.8 236.8 211.2 99.3
512 115.2 934.4 140.8 172.8 188.9

1024 111.9 713.5 124.9 207.9 329.5
1518 688.1 1321.5 64.0 67.1 963.3

Table 3.6: I90 values in nanosecond with cross traffic.

Summarizing our sensitivity analysis results, I90 was determined by the char-

acteristics of switches, cross traffic, and the number of routing hops. Further, I90

could be used to create a PHY timing channel like Chupja. In particular, we can

refine the relation between I90 and ǫ∗ (the minimum ǫ measured to achieve a

BER of less than 10%). Let I+
90

be the minimum ǫ that satisfies P(D > µ− ǫ) ≥ 0.90

and let I−
90

be the minimum ǫ that satisfies P(D < µ + ǫ) ≥ 0.90 given the average

interpacket delay µ. Table 3.7 summarizes this relationship between ǫ∗, I90 and

max(I+
90
, I−

90
) over the NLR (Figure 2.8) and our small network (Figure 2.7).

In our small network, BER was always less than 10% when ǫ is greater than

max(I+
90
, I−

90
). On the other hand, we were able to achieve our goal BER over

the NLR when ǫ∗ was slightly less than max(I+
90
, I−

90
). Because we did not have
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Network Workload I90 max(I+
90
, I−

90
) ǫ∗ (ns)

Small network Light 1065.7 755.2 819.2
Small network Medium 1241.6 1046.3 1638.4
Small network Heavy 1824.0 1443.1 1638.4

NLR 2240.0 1843.2 1638.4

Table 3.7: Relation between ǫ, I90, and max(I+
90
, I−

90
) over different networks

with (1518B, 1Gbps). Values are in nanosecond.

control over cross traffic in the NLR, I90 varied across our experiments.

Detection

In order to detect timing channels, applying statistical tests to captured IPDs

is widely used. For example, the adversary can use regularity, similarity,

shape test, and entropy test of IPDs in order to detect potential timing chan-

nels [41, 44, 60, 109]. The same strategies could be applied to Chupja. Since

our traffic was very regular, those algorithms could be easily applied to detect

Chupja. However, we argue that none of these algorithms will work if the IPG

modulations cannot be observed at all. In particular, endhost timestamping was

too inaccurate to observe fine-grained IPG modulations whereas Chupja mod-

ulated IPGs in hundreds of nanoseconds to create a timing channel. In fact, the

accuracy of endhost timestamping was at most microsecond resolution. Special-

ized NICs can provide a few hundreds of nanosecond resolution. In this section,

we demonstrate that endhost or hardware timestamping was not sufficient to

detect Chupja timing channels. We focused on measuring and comparing an

endhost’s ability to accurately timestamp arrival times (i.e. accurately measure

IPDs) since the ability to detect a PHY timing channel was dependent upon the

ability to accurately timestamp the arrival time of packets. As a result, we do

not discuss statistical approaches further.
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(a) Kernel timestamping.
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(b) Zero-copy timestamping.
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(c) Hardware timestamping.

Figure 3.18: Comparison of various timestamping methods. Each line is
a covert channel stream of (1518B, 1Gbps) with a different ǫ
value.

As discussed in Section 1.2.2, timestamping messages in kernel or userspace

is inaccurate mainly due to the overhead from a network stack. To reduce the
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overhead of a network stack between kernel and userspace and between hard-

ware and kernel, a technique called zero-copy could be employed to improve

the performance of userspace network applications. An example of a zero-copy

implementation was Netmap [112]. In Netmap, packets were delivered from a

NIC directly to a memory region which was shared by a userspace application.

This zero-copy removed expensive memory operations and bypassed the ker-

nel network stack. As a result, Netmap was able to inject and capture packets

at line speed in a 10 GbE network with a single CPU. Therefore, detection algo-

rithms could exploit a platform similar to Netmap to improve the performance

of network monitoring applications. We call this zero-copy timestamping. We

also included in our evaluation a specialized NIC with hardware timestamping

capability, the Sniffer 10G [25], which provided 500 ns resolution for timestamp-

ing.

In order to compare kernel, zero-copy, and hardware timestamping, we con-

nected a SoNIC server and a network monitor directly via an optical fiber ca-

ble, generated and transmitted timing channel packets to a NIC installed in the

network monitor, and collected IPDs using different timestamping methods.

The network monitor was a passive adversary built from a commodity server.

Further, we installed Netmap in the network monitor. Netmap originally used

the do gettimeofday for timestamping packets in kernel space, which pro-

vided only microsecond resolution. We modified the Netmap driver to support

nanosecond resolution instead. For this evaluation, we always generated ten

thousand packets for comparison because some of the approaches discarded

packets when more than ten thousand packets were delivered at high data rates.

Figure 3.18 illustrates the results. Figure 3.18(a) demonstrates the effective-
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Figure 3.19: Kernel timestamping with (1518B, 1Gbps).

ness of kernel timestamping of a timing channel with various IPG modulation (ǫ)

values. The data rate of the overt channel was 1 Gbps and the packet size was

1518 bytes. The x-axis is interpacket delays (IPDs) in microsecond and y-axis

is a cumulative distribution function (CDF). The vertical line in the middle is

the original IPD (=12.2 us) of Chupja. In order to detect Chupja, the timestamp-

ing CDF would be centered around the vertical line at ≈12.2 us. Instead, as can

be seen from the graph, all measured kernel timestamps were nowhere near

the vertical line regardless of ǫ values (ǫ varied between ǫ=0 [HOM] to ǫ=4096

/I/s). As a result, kernel timestamping could not distinguish a PHY covert

channel like Chupja. In fact, even an i.i.d random packet stream was insepara-

ble from other streams (Figure 3.19). Unfortunately, zero-copy timestamping did

not help the situation either (Figure 3.18(b)). Netmap did not timestamp every

packet, but assigned the same timestamp value to packets that were delivered

in one DMA transaction (or polling). This is why there were packets with zero

IPD. Nonetheless, Netmap still depended on underlying system’s timestamping

capability, which was not capable.

On the other hand, hardware timestamping using the Sniffer 10G demon-

strated enough fidelity to detect Chupja when modulation (ǫ) values were larger
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Figure 3.20: Hardware timestamping with (64B, 1Gbps)

than 128 /I/s (Figure 3.18(c)). However, hardware timestamping still could

not detect smaller changes in IPDs (i.e. modulation, ǫ, values smaller than 128

/I/s), which was clear with a timing channel with smaller packets. A tim-

ing channel with 64 byte packets at 1 Gbps was not detectable by hardware

timestamping (Figure 3.20). This was because packets arrived much faster with

smaller packets making IPGs too small for the resolution of hardware to accu-

rately detect small IPG modulations.

The takeaway is that to improve the possibility of detecting Chupja, which

modulated IPGs in a few hundreds of nanoseconds, a network monitor (passive

adversary) must employ hardware timestamping for analysis. However, using

better hardware (more expensive and sophisticated NICs) still might not be suf-

ficient; i.e. for much finer timing channels. Therefore, we concluded that a PHY

timing channel such as Chupja was invisible to a software endhost. However,

a hardware based solutions with fine-grained capability [10] might be able to

detect Chupja.
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3.4.3 Summary

In this section, we demonstrated how precise pacing and timestamping could

create a covert timing channel that was high-bandwidth, robust and unde-

tectable. The covert timing channel embedded secret messages into interpacket

gaps in the physical layer by pacing packets at sub-microsecond scale. We em-

pirically demonstrated that our channel could effectively deliver 81 kilobits per

second over nine routing hops and thousands miles over the Internet, with a

BER less than 10%. As a result, a Chupja timing channel worked in practice and

was undetectable by software endhosts since they were not capable of precise

timestamping to detect such small modulations in interpacket gaps employed

by Chupja.

3.5 Application 2: Estimating Available Bandwidth

Another network application that relies on the precision of timestamping and

pacing is available bandwidth estimation: The sender must carefully control the

time gaps of probe packets. Similarly, the receiver must carefully examine the

time gaps of probe packets to infer the available bandwidth between two pro-

cesses. As a result, the accuracy of available bandwidth estimation algorithms

depends on the precision of timestamping and pacing. In this section, we dis-

cuss how precise pacing and timestamping via access to the PHY can improve

the performance of available bandwidth estimation algorithms.

Available bandwidth estimation is motivated by a simple problem: What

is the maximum data rate that a user could send down a given network path

89



without going over the available capacity? This data rate is equal to the avail-

able bandwidth on the bottlenecked link, which has the minimum available band-

width among all links on the network path.

An available bandwidth estimation algorithm typically sends probe packets

with a predefined interval along the path under measurement (pacing), and ob-

serve change in certain packet characteristics at the receiver to infer the amount

of cross traffic in the network by timestamping probe packets. For instance,

when the probing rate exceeds the available bandwidth, the observed packet

characteristics undergo a significant change. Estimation algorithms infer the

available bandwidth at the receiving end by examining timestamps of probe

packets [68, 111, 120, 97]. As a result, the precision of pacing and timestamping

is the key to accurately estimating the available bandwidth.

In this section, we present MinProbe that performed available bandwidth

estimation with high-fidelity for high-speed networks, while maintaining the

flexibility of userspace control and compatibility with existing bandwidth esti-

mation algorithms. MinProbe greatly increased measurement fidelity via pre-

cise timestamping and pacing provided by SoNIC. We evaluated MinProbe on a

testbed that consisted of multiple 10 GbE switches and on the National Lambda

Rail (NLR). It achieved high accuracy: Results illustrated that the difference be-

tween the estimated available bandwidth and the actual available bandwidth

was typically no more than 0.4 Gbps in a 10 Gbps network. MinProbe advances

the state-of-the-art algorithms which do not perform well in high speed net-

works such as 10 Gbps networks.
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3.5.1 Design

The key insight and capability of how MinProbe achieved high-fidelity is from

precise pacing and timestamping via its direct access to the /I/ characters in

the physical layer. In particular, MinProbe measured (counted) and generated

(inserted or removed) an exact number of /I/ characters between each sub-

sequent probe packet to measure the relative time elapsed between packets or

generate a desired interpacket gap.

N R

G

D

Probes

Figure 3.21: Generalized probe train model

Figure 3.21 shows a generalized probe train model we developed to emulate

a number of existing bandwidth estimation algorithms and used for the rest of

the section. The horizontal dimension is time. The vertical dimension is the

corresponding (instantaneous) probe rate. Each pulse contains multiple probe

packets sent at a particular rate, as depicted by the height. In particular, the

parameter N represents the number of packets in each train and parameter R

represents the (instantaneous) probe rate of the train (i.e. we are able to change

the interpacket gap between N packets to match a target probe rate R). Packet

sizes are considered in computing the probe rate. For a mixed-size packet train,

MinProbe was able to adjust the space between all adjacent packets within the

train to achieve the desired probe rate R. The gaps between successive probe

trains are specified with parameter G (gap). Finally, each measurement sample

consists of a set of probe trains with increasing probe rate. The distance in time
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Algorithm N R G D
Pathload 20 [0.1:0.1:9.6] Gbps Variable Variable
Pathchirp 1 [0.1:0.1:9.6] Gbps Exponential decrease Variable

Spruce 2 500Mbps 1.2ns 48us
IGI 60 [0.1:0.1:9.6] Gbps 30s 30s

Table 3.8: Parameter setting for existing algorithms. G is the gap between packet
trains. R is the rate of probe. N is the number of probe packets in each
sub-train. D is the gap between each sub-train.

between each measurement sample is identified with parameter D (distance).

With these four parameters, we could emulate most probe traffic used in prior

work, as shown in Table 3.8. For example, to emulate Spruce probes, we set

the parameters (N,R,G,D) to the values (2, 500Mbps, 1.2ns, 48us), which would

generate a pair of probe packets every 48 us with minimal inter-packet gap (12

/I/ characters or 1.2ns) at 500Mbps (5% of the capacity of a 10Gbps link), as

intended by the original Spruce Algorithm [120]. Similarly, to reproduce the

IGI experiment results [67], we set the parameters (N,R,G,D) to the values (60,

[0.1:0.1:9.6]Gbps, 30s, 30s) where [a : b : c] is a range of numbers from a to

c and the difference between each number increment is b. In summary, most

types of existing probe trains can be emulated with the generalized model we

developed for MinProbe, where different points in the parameterization space

can represent different points in the entire design space covering prior art and

possibly new algorithms.

3.5.2 Evaluation

We evaluated MinProbe over our simple network topology and the National

Lambda Rail (NLR). For our experiments, we generated probe packets using

parameter (N,R,G,D) = (20, [0.1 : 0.1 : 9.6] Gbps, 10 us, 4 ms). We used 792-
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(b) After moving average

Figure 3.22: Bandwidth estimation of CAIDA trace, the figure on the top
is the raw data trace, the figure on the bottom is the moving
average data.

bytes as the packet size which was close to the average packet size observed in

the Internet [30]. We adjusted the traffic data rate by varying interpacket gaps

(IPG). In particular, we inserted a specific number of /I/s between packets to

generate a specific data rate.

CAIDA Trace First, we evaluated MinProbe with traces extracted from

CAIDA anonymized OC192 dataset [30] recorded using a DAG card [10] with

nanosecond scale timestamps, and replayed by SoNIC as a traffic generator. Fig-

ure 3.22(a) shows an example of the raw data captured by MinProbe. The x-axis
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Figure 3.23: Measurement result in NLR.

is the rate (R) at which the probe trains were sent. The y-axis is the variance of

the queuing delay, which was computed from the one-way delay (OWD) expe-

rienced by the packets within the same probe train. The available bandwidth

was estimated to be the turning point where the delay variance showed a sig-

nificant trend of increasing. We observed that the traffic traces were bursty. To

compensate, we used standard exponential moving average (EMA) method to

smooth out the data in Figure 3.22(a). For each data points in Figure 3.22(a), the

value was replaced by the weighted average of the five data points preceding

the current data point. Figure 3.22(b) shows the result. The difference between

the estimated available bandwidth and the actual available bandwidth was typ-

ically within 0.4 Gbps of the true available bandwidth.

NLR Second, we evaluated MinProbe over NLR. The traffic was routed

through the path shown in Figure 2.8. Since it was difficult to obtain accurate

readings of cross traffic at each hop, we relied on the router port statistics to

obtain a 30-second average of cross traffic. We observed that the link between
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Cleveland and NYC experienced the most cross traffic compared to other links,

and was therefore the bottleneck (tight) link of the path. The amount of cross

traffic was 1.87 Gbps on average, with a maximum of 3.58 Gbps during our

experiments.

Figure 3.23 shows the result of MinProbe in NLR. We highlight two impor-

tant takeaways: First, the average of our estimation was close to 2 Gbps, which

was consistent with the router port statistics collected every 30 seconds. Sec-

ond, we observed that the readings were very bursty, which means the actual

cross traffic on NLR exhibited a good deal of burstiness. The available band-

width estimation by MinProbe agreed with the link utilization computed from

switch port statistical counters: The mean of the MinProbe estimation was 1.7

Gbps, which was close to the 30-second average 1.8 Gbps computed from switch

port statistical counters. Moreover, MinProbe estimated available bandwidth at

higher sample rate and with finer resolution.

3.5.3 Summary

In this section, we presented MinProbe which accurately estimated available

bandwidth in 10 Gbps networks via precise pacing and timestamping. Min-

Probe performed well under bursty traffic, and the estimation was typically

within 0.4 Gbps of the true value in a 10 Gbps network.
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3.6 Summary

Precise pacing and timestamping is important for many network research appli-

cations. In this chapter, we demonstrated that access to the physical layer could

improve the precision of pacing and timestamping. In particular, SoNIC im-

plements the physical layer in software and allows users to precisely pace and

timestamp packets. At its heart, SoNIC utilizes commodity-off-the-shelf multi-

core processors to implement part of the physical layer in software and employs

an FPGA board to transmit optical signal over the wire. As a result, SoNIC al-

lows cross-network-layer research explorations by systems programmers.

We also presented Chupja and MinProbe as examples of a covert channel

and an available bandwidth estimation algorithm that benefit from precise pac-

ing and timestamping. Chupja is a PHY covert timing channel that is high-

bandwidth, robust, undetectable. Chupja was created by precisely pacing pack-

ets to control interpacket gaps at sub-microsecond scale in the physical layer.

MinProbe was an available bandwidth estimation algorithm that accurately

measure available bandwidth by precisely pacing and examining timestamps of

probe packets. As a result, the approach discussed in this chapter demonstrates

an advance in the state-of-the-art in network measurements via improved pre-

cision of pacing and timestamps.
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CHAPTER 4

TOWARDS PRECISE CLOCK SYNCHRONIZATION: DTP

Precisely synchronized clocks are essential for many network and distributed

applications. Importantly, an order of magnitude improvement in synchro-

nized precision can improve performance. Synchronized clocks with 100 ns

precision allow packet level scheduling of minimum sized packets at a finer

granularity, which can minimize congestion in rack-scale systems [49] and in

datacenter networks [110]. Moreover, taking a snapshot of forwarding tables

in a network requires synchronized clocks [134]. In software-defined networks

(SDN), synchronized clocks with microsecond level of precision can be used

for coordinated network updates with less packet loss [100] and for real-time

synchronous data streams [55]. In distributed systems, consensus protocols like

Spanner can increase throughput with tighter synchronization precision bounds

on TrueTime [48]. In this chapter, we demonstrate that the precision of synchro-

nized clocks can significantly improve via access to the physical layer.

Synchronizing clocks with nanosecond level precision is a difficult problem.

It is challenging due to the problem of measuring round trip times (RTT) ac-

curately, which many clock synchronization protocols use to compute the time

difference between a timeserver and a client. RTTs are prone to variation due

to characteristics of packet switching networks: Network jitter, packet buffering

and scheduling, asymmetric paths, and network stack overhead. As a result,

any protocol that relies on RTTs must carefully handle measurement errors.

In this chapter, we present the DTP, Datacenter Time Protocol, which im-

proves the precision of synchronized clocks by running the protocol in the phys-

ical layer. In particular, DTP provides nanosecond precision in hardware and
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tens of nanosecond precision in software, and at virtually no cost to the data-

center network (i.e. no protocol message overhead). DTP achieved better preci-

sion than other protocols and provided strong bounds on precision: By running

in the physical layer of a network stack, it eliminated non-determinism from

measuring RTTs and it introduced zero Ethernet packets on the network. It was

decentralized and synchronized clocks of every network device in a network

including network interfaces and switches.

In practice, in a 10 Gbps network, DTP achieved a bounded precision of

25.6 nanoseconds between any directly connected nodes, and 153.6 nanosec-

onds within an entire datacenter network with six hops at most between any two

nodes, which is the longest distance in a Fat-tree [36] (i.e. no two nodes [clocks]

would differ by more than 153.6 nanoseconds). In software, a DTP daemon

could access its DTP clock with usually better than 4T nanosecond precision

resulting in an end-to-end precision better than 4T D + 8T nanoseconds where

D was the longest distance between any two servers in a network in terms of

number of hops and T was the period of the fastest clock (≈ 6.4ns). DTP’s ap-

proach applies to full-duplex Ethernet standards such as 1, 10, 40, 100 Gigabit

Ethernet. It did require replacing network devices to support DTP running in

the physical layer of the network. But, it could be incrementally deployed via

DTP-enabled racks and switches. Further, incrementally deployed DTP-enabled

racks and switches could work together and enhance other synchronization pro-

tocols such as Precise Time Protocol (PTP) [18] and Global Positioning System

(GPS) by distributing time with bounded nanosecond precision within a rack or

set of racks without any load on the network.

In this chapter, we make three contributions:

98



• We provide precise clock synchronization at nanosecond resolution with

bounded precision in hardware and tens of nanosecond precision in soft-

ware via access to the PHY.

• We demonstrate that DTP works in practice. DTP can synchronize all de-

vices in a datacenter network.

• We evaluated PTP as a comparison. PTP did not provide bounded pre-

cision and was affected by configuration, implementation, and network

characteristics such as load and congestion.

4.1 Design

In this section, we present the DTP, Datacenter Time Protocol: Assumptions,

protocol, and analysis. The design goals for the protocol were the following:

• Internal synchronization with nanosecond precision.

• No network overhead: No packets are required for the synchronization

protocol.

4.1.1 Assumptions

We assume, in a 10 Gigabit Ethernet (10 GbE) network, all network devices are

driven by oscillators that run at slightly different rates due to oscillator skew,

but operate within a range defined by the IEEE 802.3 standard. The standard

requires that the clock frequency fp be in the range of [ f − 0.0001 f , f + 0.0001 f ]1

1This is ±100 parts per million (ppm).

99



where f is 156.25 MHz in 10 GbE (See Section 2.1.1).

We assume that there are no “two-faced” clocks [77] or Byzantine failures

which can report different clock counters to different peers.

We further assume that the length of Ethernet cables is bounded and, thus,

network propagation delay is bounded. The propagation delay of optic fiber is

about 5 nanoseconds per meter (2/3 × the speed of light, which is 3.3 nanosec-

onds per meter in a vacuum) [71]. In particular, we assume the longest optic

fiber inside a datacenter is 1000 meters, and as a result the maximum propaga-

tion delay is at most 5 us. Most cables inside a datacenter are 1 to 10 meters as

they are typically used to connect rack servers to a Top-of-Rack (ToR) switch; 5

to 50 nanoseconds would be the more common delay.

4.1.2 Protocol

In DTP, every network port (of a network interface or a switch) has a local

counter in the physical layer that increments at every clock tick. DTP oper-

ates via protocol messages between peer network ports: A network port sends

a DTP message timestamped with its current local counter to its peer and adjusts

its local clock upon receiving a remote counter value from its peer. We show that

given the bounded delay and frequent resynchronizations, local counters of two

peers can be precisely synchronized in Section 4.1.3.

Since DTP operates and maintains local counters in the physical layer,

switches play an important role in scaling up the number of network devices

synchronized by the protocol. As a result, synchronizing across all the network
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Algorithm 3: DTP inside a network port

STATE:

gc : global counter, from Algorithm 4

lc← 0 : local counter, increments at every clock tick

d ← 0 : measured one-way delay to peer p

TRANSITION:

T0: After the link is established with p

lc← gc

Send (Init, lc)

T1: After receiving (Init, c) from p

Send (Init-Ack, c)

T2: After receiving (Init-Ack, c) from p

d ← (lc − c − α)/2

T3: After a timeout

Send (Beacon, gc)

T4: After receiving (Beacon, c) from p

lc← max(lc, c + d)

ports of a switch (or a network device with a multi-port network interface) re-

quires an extra step: DTP needs to synchronize the local counters of all local

ports. Specifically, DTP maintains a global counter that increments every clock

tick, but also always picks the maximum counter value between it and all of the

local counters.

DTP follows Algorithm 3 to synchronize the local counters between two

peers. The protocol runs in two phases: INIT and BEACON phases.

INIT phase The purpose of the INIT phase is to measure the one-way delay
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between two peers. The phase begins when two ports are physically connected

and start communicating, i.e. when the link between them is established. Each

peer measures the one-way delay by measuring the time between sending an

INIT message and receiving an associated INIT-ACK message, i.e. measure

RTT, then divide the measured RTT by two (T0, T1, and T2 in Algorithm 3).

As the delay measurement is processed in the physical layer, the RTT con-

sists of a few clock cycles to send / receive the message, the propagation delays

of the wire, and the clock domain crossing (CDC) delays between the receive

and transmit paths. Given the clock frequency assumption, and the length of

the wire, the only non-deterministic part is the CDC. We analyze how they af-

fect the accuracy of the measured delay in Section 4.1.3. Note that α in Transition

2 in Algorithm 3 is there to control the non-deterministic variance added by the

CDC (See Section 4.1.3).

BEACON phase During the BEACON phase, two ports periodically exchange

their local counters for resynchronization (T3 and T4 in Algorithm 3). Due to

oscillator skew, the offset between two local counters will increase over time. A

port adjusts its local counter by selecting the maximum of the local and remote

counters upon receiving a BEACON message from its peer. Since BEACON mes-

sages are exchanged frequently, hundreds of thousands of times a second (every

few microseconds), the offset can be kept to a minimum.

Scalability and multi hops Switches and multi-port network interfaces have

two to ninety-six ports in a single device that need to be synchronized within

the device2. As a result, DTP always picks the maximum of all local counters

{lci} as the value for a global counter gc (T5 in Algorithm 4). Then, each port

2Local counters of a multi-port device will not always be the same because remote clocks run
at different rates. As a result, a multi-port device must synchronize local counters.
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Algorithm 4: DTP inside a network device / switch

STATE:

gc: global counter

{lci}: local counters

TRANSITION:

T5: at every clock tick

gc←max(gc + 1, {lci})

transmits the global counter gc in a BEACON message (T3 in Algorithm 3).

Choosing the maximum allows any counter to increase monotonically at the

same rate and allows DTP to scale: The maximum counter value propagates to

all network devices via BEACON messages, and frequent BEACON messages keep

global counters closely synchronized (Section 4.1.3).

Network dynamics When a device is turned on, the local and global counters of

a network device are set to zero. The global counter starts incrementing when

one of the local counters starts incrementing (i.e., a peer is connected), and con-

tinuously increments as long as one of the local counters is incrementing. How-

ever, the global counter is set to zero when all ports become inactive. Thus, the

local and global counters of a newly joining device are always less than those

of other network devices in a DTP network. We use a special BEACON JOIN

message in order to make large adjustments to a local counter. This message

is communicated after INIT ACK message in order for peers to agree on the

maximum counter value between two local counters. When a network device

with multiple ports receives a BEACON JOIN message from one of its ports, it

adjusts its global clock and propagates BEACON JOIN messages with its new
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global counter to other ports. Similarly, if a network is partitioned and later re-

stored, two subnets will have different global counters. When the link between

them is re-established, BEACON JOIN messages allow the two subnets to agree

on the same (maximum) clock counter.

Handling failures There are mainly two types of failures that need to be han-

dled appropriately: Bit errors and faulty devices. IEEE 802.3 standard supports

a Bit Error Rate (BER) objective of 10−12 [19], which means one bit error could

happen every 100 seconds in 10 GbE. However, it is possible that a corrupted

bit coincides with a DTP message and could result in a big difference between

local and remote counters. As a result, DTP ignores messages that contain re-

mote counters off by more than eight (See Section 4.1.3), or bit errors not in the

three least significant bits (LSB). Further, in order to prevent bit errors in LSBs,

each message could include a parity bit that is computed using three LSBs. As

BEACON messages are communicated very frequently, ignoring messages with

bit errors does not affect the precision.

Similarly, if one node makes too many jumps (i.e. adjusting local counters

upon receiving BEACON messages) in a short period of time, it assumes the con-

nected peer is faulty. Given the latency, the interval of BEACON messages, and

maximum oscillator skew between two peers, one can estimate the maximum

offset between two clocks and the maximum number of jumps. If a port receives

a remote counter outside the estimated offset too often, it considers the peer to

be faulty and stops synchronizing with the faulty device.
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4.1.3 Analysis

The precision of clock synchronization is determined by oscillator skew, interval

between resynchronizations, and errors in reading remote clocks [50, 63, 75]. In

this section, we analyze DTP to understand its precision in regards to the above

factors. In particular, we analyze the bounds on precision (clock offsets) and

show the following:

• Bound of two tick errors due to measuring the one-way delay (OWD) dur-

ing the INIT phase.

• Bound of two tick errors due to the BEACON interval. The offset of two

synchronized peers can be up to two clock ticks if the interval of BEACON

messages is less than 5000 ticks.

• As a result, the offset of two peers is bound by four clock ticks or 4T where

T is 6.4ns. In 10 GbE the offset of two peers is bound by 25.6ns.

• Multi hop precision. As each link can add up to four tick errors, the preci-

sion is bounded by 4T D where 4 is the bound for the clock offset between

directly connected peers, T is the clock period and D is the longest distance

in terms of the number of hops.

For simplicity, we use two peers p and q, and use Tp ( fp) and Tq ( fq) to de-

note the period (frequency) of p and q’s oscillator. We assume for analysis p’s

oscillator runs faster than q’s oscillator, i.e. Tp < Tq (or fp > fq).

Two tick errors due to OWD. In DTP, the one-way delay (OWD) between two

peers, measured during the INIT phase, is assumed to be stable, constant, and

symmetric in both directions. In practice, however, the delay can be measured

105



differently depending on when it is measured due to oscillator skew and how the

synchronization FIFO between the receive and transmit paths interact. Further,

the OWD of one path (from p to q) and that of the other (from q to p) might not

be symmetric due to the same reasons. We show that DTP still works with good

precision despite any errors introduced by measuring the OWD.

Suppose p sends an INITmessage to q at time t, and the delay between p and

q is d clock cycles. Given the assumption that the length of cables is bounded,

and that oscillator skew is bounded, the delay is d cycles for both directions. The

message arrives at q at t + Tpd (i.e. the elapsed time is Tpd). Since the message

can arrive in the middle of a clock cycle of q’s clock, it can wait up to Tq before

q processes it. Further, passing data from the receipt path to the transmit path

requires a synchronization FIFO between two clock domains, which can add

one more cycle randomly, i.e. the message could spend an additional Tq before

it is received. Then, the INIT-ACK message from q takes Tqd time to arrive at p,

and it could wait up to 2Tp before p processes it. As a result, it takes up to a total

of Tpd + 2Tq + Tqd + 2Tp time to receive the INIT-ACK message after sending an

INIT message. Thus, the measured OWD, dp, at p is,

dp ≤ ⌊
Tpd + 2Tq + Tqd + 2Tp

Tp

⌋/2 = d + 2

In other words, dp could be one of d, d + 1, or d + 2 clock cycles depending on

when it is measured. As q’s clock is slower than p, the clock counter of q cannot

be larger than p. However, if the measured OWD, dp, is larger than the actual

OWD, d, then p will think q is faster and adjust its offset more frequently than

necessary (See Transition T4 in Algorithm 3). This, in consequence, causes the

global counter of the network to go faster than necessary. As a result, α in T2 of

Algorithm 3 is introduced.
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Setting α to be 3 allows dp to be always less than d. In particular, dp will be

d − 1 or d; however, dq will be d − 2 or d − 1. Fortunately, a measured delay of

d−2 at q does not make the global counter go faster, but it can increase the offset

between p and q to be two clock ticks most of the time, which will result in q

adjusting its counter by one only when the actual offset is two.

Two tick errors due to the BEACON interval. The BEACON interval, period of

resynchronization, plays a significant role in bounding the precision. We show

that a BEACON interval of less than 5000 clock ticks can bound the clock offset to

two ticks between peers.

Let Cp(X) be a clock that returns a real time t at which cp(t) changes to X.

Note that the clock is a discrete function. Then, cp(t) = X means, the value of the

clock is stably X at least after t − Tp, i.e. t − Tp < Cp(X) ≤ t.

Suppose p and q are synchronized at time t1, i.e. cp(t1) = cq(t1) = X . Also

suppose cp(t2) = X+∆P, and cq(t2) = X+∆Q at time t2, where ∆P is the difference

between two counter values of clock p at time t1 and t2. Then,

t2 − Tp < Cp(X + ∆P) = Cp(X) + ∆PTp ≤ t2

t2 − Tq < Cq(X + ∆Q) = Cq(X) + ∆QTq ≤ t2

Then, the offset between two clocks at t2 is,

∆t( fp − fq) − 2 < ∆P − ∆Q < ∆t( fp − fq) + 2

where ∆t = t2 − t1.

Since the maximum frequency of a NIC clock oscillator is 1.0001 f , and the

minimum frequency is 0.9999 f , ∆t( fp − fq) is always smaller than 1 if ∆t is less

than 32 us. As a result, ∆P − ∆Q can be always less than or equal to 2, if the
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interval of resynchronization (∆t) is less than 32 us (≈ 5000 ticks). Considering

the maximum latency of the cable is less than 5 us (≈ 800 ticks), a beacon interval

less than 25 us (≈ 4000 ticks) is sufficient for any two peers to synchronize with

12.8 ns (= 2 ticks) precision.

Multi hop Precision. Note that DTP always picks the maximum clock counter

of all nodes as the global counter. All clocks will always be synchronized to the

fastest clock in the network, and the global counter always increases monoton-

ically. Then, the maximum offset between any two clocks in a network is be-

tween the fastest and the slowest. As discussed above, any link between them

can add at most two offset errors from the measured delay and two offset errors

from BEACON interval. Therefore, the maximum offset within a DTP-enabled

network is bounded by 4T D where D is the longest distance between any two

nodes in a network in terms of number of hops, and T is the period of the clock

as defined in the IEEE 802.3 standard (≈ 6.4ns).

4.2 Implementation

4.2.1 DTP-enabled PHY

The control logic of DTP in a network port consists of Algorithm 3 from Sec-

tion 4.1 and a local counter. The local counter is a 106-bit integer (2 × 53 bits)

that increments at every clock tick (6.4 ns = 1/156.25 MHz), or is adjusted based

on received BEACON messages. Note that the same oscillator drives all modules

in the PCS sublayer on the transmit path and the control logic that increments

the local counter. i.e. they are in the same clock domain. As a result, the DTP
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Media Access Control (MAC)

Reconciliation Sublayer (RS)

TX 32bit RX 32bitXGMII 156.25 MHz

Physical Coding Sublayer (PCS)

Physical Medium Attachment (PMA)

Physical Medium Dependent (PMD)

TX 16bit RX 16bitXSBI 644.53125MHz

Figure 4.1: Low layers of a 10 GbE network stack. Grayed rectangles
are DTP sublayers, and the circle represents a synchronization
FIFO.

sublayer can easily insert the local clock counter into a protocol message with

no delay.

The DTP-enabled PHY is illustrated in Figure 4.1. Figure 4.1 is exactly the

same as the PCS from the standard, except that Figure 4.1 has DTP control, TX

DTP, and RX DTP sublayers shaded in gray. Specifically, on the transmit path,

the TX DTP sublayer inserts protocol messages, while, on the receive path, the

RX DTP sublayer processes incoming protocol messages and forwards them to

the control logic through a synchronization FIFO. After the RX DTP sublayer

receives and uses a DTP protocol message from the Control block (/E/), it re-

places the DTP message with idle characters (/I/s, all 0’s) as required by the

standard such that higher network layers do not know about the existence of
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Global Counter = Max(LC0, LC1, LC2, LC3)

Port 0 Port 1 Port 2 Port 3

Local 

Counter

Remote 

Counter

Global Counter

Figure 4.2: DTP enabled four-port device.

the DTP sublayer. Lastly, when an Ethernet frame is being processed in the PCS

sublayer in general, DTP simply forwards blocks of the Ethernet frame unal-

tered between the PCS sublayers.

4.2.2 DTP-enabled network device

A DTP-enabled device (Figure 4.2) can be implemented with additional logic on

top of the DTP-enabled ports. The logic maintains the 106-bit global counter as

shown in Algorithm 4, which computes the maximum of the local counters of all

ports in the device. The computation can be optimized with a tree-structured

circuit to reduce latency, and can be performed in a deterministic number of

cycles. When a switch port tries to send a BEACON message, it inserts the global

counter into the message, instead of the local counter. Consequently, all switch

ports are synchronized to the same global counter value.
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4.2.3 Protocol messages

DTP uses /I/s in the /E/ control block to deliver protocol messages. There

are eight seven-bit /I/s in an /E/ control block, and, as a result, 56 bits total

are available for a DTP protocol message per /E/ control block. Modifying

control blocks to deliver DTP messages does not affect the physics of a network

interface since the bits are scrambled to maintain DC balance before sending on

the wire (See the scrambler/descrambler in Figure 4.1). Moreover, using /E/

blocks do not affect higher layers since DTP replaces /E/ blocks with required

/I/s (zeros) upon processing them.

A DTP message consists of a three-bit message type, and a 53-bit pay-

load. There are five different message types in DTP: INIT, INIT-ACK, BEACON,

BEACON-JOIN, and BEACON-MSB. As a result, three bits are sufficient to encode

all possible message types. The payload of a DTP message contains the local

(global) counter of the sender. Since the local counter is a 106-bit integer and

there are only 53 bits available in the payload, each DTP message carries the 53

least significant bits of the counter. In 10 GbE, a clock counter increments at ev-

ery 6.4 ns (=1/156.25MHz), and it takes about 667 days to overflow 53 bits. DTP

occasionally transmits the 53 most significant bits in a BEACON-MSB message in

order to prevent overflow.

As mentioned in Section 2.1.1, it is always possible to transmit one protocol

message after/before an Ethernet frame is transmitted. This means that when

the link is fully saturated with Ethernet frames DTP can send a BEACON mes-

sage every 200 clock cycles (≈ 1280 ns) for MTU-sized (1522B) frames3 and 1200

clock cycles (≈ 7680 ns) at worst for jumbo-sized (≈9kB) frames. The PHY re-

3It includes 8-byte preambles, an Ethernet header, 1500-byte payload and a checksum value.
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quires about 191 66-bit blocks and 1,129 66-bit blocks to transmit a MTU-sized

or jumbo-sized frame, respectively. This is more than sufficient to precisely syn-

chronize clocks as analyzed in Section 4.1.3 and evaluated in Section 4.3. Fur-

ther, DTP communicates frequently when there are no Ethernet frames, e.g ev-

ery 200 clock cycles, or 1280 ns: The PHY continuously sends /E/ when there

are no Ethernet frames to send.

4.2.4 DTP Software Clock

The DTP daemon implements a software clock where applications can access the

DTP counter. The value of a software clock should not change dramatically

(discontinue) or go back in time. As a result, a DTP daemon adjusts the rate of

the DTP software clock carefully in order not to introduce discontinuity. A DTP

daemon regularly (e.g., once per second) reads the DTP counter of a network

interface card via a memory-mapped IO in order to minimize errors in reading

the counter. Further, Time Stamp Counters (TSC counters) are employed to es-

timate the frequency of the DTP counter. A TSC counter is a reliable and stable

source to implement software clocks [108, 123, 53]. Modern systems support

invariant TSC counters that are not affected by CPU power states [20].

The top part of Algorithm 5 illustrates the polling. In order to read both

the TSC counter and DTP counter reliably, the daemon attempts to read coun-

ters with interrupts disabled. Then, the daemon computes the frequency ratio

between two counters (tmp in Algorithm 5). Note that although the latency of

reading TSC counter is small and does not vary much [16], the latency of reading

DTP counter could vary a lot mainly because of data communication over PCIe.
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Algorithm 5: DTP Daemon

procedure POLLING

disable interrupts

tsc←READ TS C

dtpc←READ DT P

tmp←
tsc−ptsc

dtpc−pdtpc

r ← tmp ∗ β + r ∗ (1 − β)

ptsc← tsc

pdtpc← dtpc

enable interrupts

end procedure

function get DTP counter

t ←READ TS C

return pdtpc + (t − ptsc) ∗ r + delay

end function

As a result, the actual ratio the daemon uses for interpolation is smoothed. It

is a weighted sum of the previously computed ratio and the newly computed

ratio (r in Algorithm 5).

Then, applications can read the DTP clock via a get DTP counter API that

interpolates the DTP counter at any moment using TSC counters and the esti-

mated ratio r (The bottom part of Algorithm 5). Similar techniques are used

to implement gettimeofday(). Note that the latency of reading the DTP

counter is not negligible; it can be hundreds of nanoseconds to a few microsec-

onds [43]. As a result, the read counter (dtpc) is actually some number of cy-

cles behind the counter from hardware. The latency between the daemon and

hardware must be taken into account when get DTP counter returns an in-
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terpolated value, which is shown as delay in Algorithm 5. A DTP daemon ap-

proximates delay by a special send instruction that DTP hardware provides. In

particular, a DTP daemon sends its estimated DTP time, t1, to hardware peri-

odically, which is then timestamped (t2) and sent to its peer by DTP hardware

via a DTP protocol message in the physical layer. Upon receiving the message,

the receiver daemon computes the offset between t2 − t1, computes a weighted

sum of previous computed offset and newly computed offset, applies moving

average to smooth large changes, and reports it back to the original sender. By

doing so, the reported delay from the receiver does not change much and allows

a DTP daemon to precisely estimate the offset between software and hardware.

We demonstrate in the following section that a moving average over 10 samples

is sufficient to prevent certain change of delay. Although delay was stable and

did not change often in our deployment, it could still introduce a discontinuity.

One approach to prevent a discontinuity from happening is to take delay into

account when computing the rate of the DTP clock.

Note that DTP counters of each NIC are running at the same rate on every

server in a DTP-enabled network and, as a result, software clocks that DTP dae-

mons implement are also tightly synchronized.

4.3 Evaluation

In this section, we attempt to answer following questions:

• Precision: In Section 4.1.3, we showed that the precision of DTP is bounded

by 4T D where D is the longest distance between any two nodes in terms
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of number of hops. In this section, we demonstrate and measure that pre-

cision was indeed within the 4T D bound via a prototype and deployed

system.

• Scalability: We demonstrate that DTP scaled as the number of hops of a

network increases.

Further, we measured the precision of accessing DTP from software and

compared DTP against PTP. The DTP sublayer and the 10 GbE PHY were im-

plemented using the Bluespec language [6] and Connectal framework [73].

4.3.1 Methodology

Measuring offsets at nanosecond scale is a very challenging problem. One ap-

proach is to let hardware generate pulse per second (PPS) signals and compare

them using an oscilloscope. Another approach, which we used, is to measure

the precision directly in the PHY. Since we were mainly interested in the clock

counters of network devices, we developed a logging mechanism in the PHY.

Each leaf node generated and sent a 106-bit log message twice per second to

its peer, a DTP switch. DTP switches also generated log messages between each

other twice per second. A log message contained a 53-bit estimate of the DTP

counter generated by the DTP daemon, t0, which was then timestamped in the

DTP layer with the lower 53-bits of the global counter (or the local counter if it

is a NIC). The 53-bit timestamp, t1, was appended to the original message gen-

erated by the DTP daemon, and, as a result, a 106-bit message was generated

by the sender. Upon arriving at an intermediate DTP switch, the log message

was timestamped again, t2, in the DTP layer with the receiver’s global counter.
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Then, the original 53-bit log message (t0) and two timestamps (t1 from the sender

and t2 from the receiver) were delivered to a DTP daemon running on the re-

ceiver. By computing offsethw = t2 − t1 − OWD where OWD was the one-way

delay measured in the INIT phase, we could estimate the precision between

two peers. Similarly, by computing offsetsw = t1 − t0, we could estimate the pre-

cision of a DTP daemon. Note that offsethw included the non-deterministic vari-

ance from the synchronization FIFO and offsetsw included the non-deterministic

variance from the PCIe bus. We could accurately approximate both the offsethw

and offsetsw with this method.

For PTP, the Timekeeper provided a tool that reported measured offsets be-

tween the timeserver and all PTP clients. Note that our Mellanox NICs had

PTP hardware clocks (PHC). For a fair comparison against DTP that synchro-

nized clocks of NICs, we used the precision numbers measured from a PHC.

Also, note that a Mellanox NIC timestamped PTP packets in the NIC for both

incoming and outgoing packets.

To measure how DTP responded to varying network conditions, we changed

the BEACON interval during experiments from 200 to 1200 cycles, which changed

the Ethernet frame size from 1.5kB to 9kB. Recall that when a link is fully satu-

rated with MTU-sized (Jumbo) packets, the minimum BEACON interval possible

is 200 (1200) cycles.

4.3.2 Results

Figure 4.3 and 4.4 show the results: We measured precision of DTP in Fig-

ure 4.3a-c, PTP in Figure 4.3d-f, and the DTP daemon in Figure 4.4. For all
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(b) PTP: Idle network
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(c) DTP: BEACON interval = 1200. Heavily
loaded with Jumbo packets.
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Figure 4.3: Precision of DTP and PTP. A tick is 6.4 nanoseconds.

results, we continuously synchronized clocks and measured the precision (clock

offsets) over at least a two-day period in Figure 4.3 and at least a few-hour pe-

riod in Figure 4.4.

Figures 4.3a-b demonstrate that the clock offsets between any two directly

connected nodes in DTP never differed by more than four clock ticks; i.e. offsets

never differed by more than 25.6 nanoseconds (4T D = 4 × 6.4 × 1 = 25.6): Fig-

ures 4.3a and b show three minutes out of a two-day measurement period and

Figure 4.3(e) shows the distribution of the measured offsets with node S3 for
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Figure 4.4: Precision of DTP daemon.

the entire two-day period. The network was always under heavy load and

we varied the Ethernet frame size by varying the BEACON interval between 200

cycles in Figure 4.3(a) and 1200 cycles in Figure 4.3(c). DTP performed similarly

under idle and medium load. Since we measured all pairs of nodes and no

offset was ever greater than four, the results support that precision was bounded

by 4T D for nodes D hops away from each other. Figure 4.4 shows the precision

of accessing a DTP counter via a DTP daemon: Figure 4.4(a) shows the raw

offsetsw and Figure 4.4(b) shows the offsetsw after applying a moving average

algorithm with a window size of 10. We applied the moving average algorithm

to smooth the effect of the non-determinism from the PCIe bus, which is shown

as occasional spikes. The offset between a DTP daemon in software and the

DTP counter in hardware was usually no more than 16 clock ticks (≈ 102.4ns)

before smoothing, and was usually no more than 4 clock ticks (≈ 25.6ns) after

smoothing.

Figures 4.3d-f show the measured clock offsets between each node and the

grandmaster timeserver using PTP. Each figure shows minutes to hours of a

multi-day measurement period, enough to illustrate the precision trends. We

varied the load of the network from idle (Figure 4.3(b)), to medium load

where five nodes transmitted and received at 4 Gbps (Figure 4.3(d)), to heavy
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load where the receive and transmit paths of all links except S11 were fully

saturated at 9 Gbps (Figure 4.3(f)). When the network was idle, Figure 4.3(b)

shows that PTP often provided hundreds of nanoseconds of precision, which

matched literature [14, 34]. When the network was under medium load, Fig-

ure 4.3(d) shows the offsets of S 4 ∼ S 8 became unstable and reached up to 50

microseconds. Finally, when the network was under heavy load, Figure 4.3(f)

shows that the maximum offset degraded to hundreds of microseconds. Note

that we measured, but do not report the numbers from the PTP daemon, ptpd,

because the precision with the daemon was the same as the precision with the

hardware clock, PHC. Also, note that all reported PTP measurements included

smoothing and filtering algorithms.

There are multiple takeaways from these results.

1. DTP synchronized clocks more tightly than PTP.

2. The precision of DTP was not affected by network workloads. The max-

imum offset observed in DTP did not change either when load or Ether-

net frame size (the BEACON interval) changed. PTP, on the other hand,

was greatly affected by network workloads and the precision varied from

hundreds of nanoseconds to hundreds of microseconds depending on the

network load.

3. DTP scales. The precision of DTP only depended on the number of hops

between any two nodes in the network. The results show that precision

(clock offsets) were always bounded by 4T D nanoseconds.

4. DTP daemons could access DTP counters with tens of nanosecond preci-

sion.
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5. DTP synchronized clocks in a short period of time, within two BEACON

intervals. PTP, however, took about 10 minutes for a client to have an

offset below one microsecond. This was likely because PTP needed history

to apply filtering and smoothing effectively.

6. PTP’s performance was dependent upon network conditions, configura-

tion such as transparent clocks, and implementation.

4.4 Discussion

4.4.1 External Synchronization

We discuss one simple approach that extends DTP to support external synchro-

nization, although there could be many other approaches. One server (either a

timeserver or a commodity server that uses PTP or NTP) periodically (e.g., once

per second) broadcasts a pair, DTP counter and universal time (UTC), to other

servers. Upon receiving consecutive broadcast messages, each DTP daemon es-

timates the frequency ratio between the received DTP counters and UTC values.

Next, applications can read UTC by interpolating the current DTP counter with

the frequency ratio in a similar fashion as the method discussed in Section 4.2.4.

Again, DTP counters of each NIC are running at the same rate, and as a result,

UTC at each server can also be tightly synchronized with some loss of preci-

sion due to errors in reading system clocks. It is also possible to combine DTP

and PTP to improve the precision of external synchronization further: A time-

server timestamps sync messages with DTP counters, and delays between the

timeserver and clients are measured using DTP counters.

120



4.4.2 Incremental Deployment

DTP requires the physical layer to be modified. As a result, in order to deploy

DTP, network devices must be modified. As there is usually a single switching

chip inside a network device [7], the best strategy to deploy DTP is to implement

it inside the switching chip. Then network devices with DTP-enabled switch-

ing chips can create a DTP-enabled network. This would require updating the

firmware, or possibly replacing the switching chip. PTP uses a similar approach

in order to improve precision: PTP-enabled switches have a dedicated logic in-

side the switching chip for processing PTP packets and PTP-enabled NICs have

hardware timestamping capabilities and PTP hardware clocks (PHC). There-

fore, the cost of achieving the best configuration of PTP is essentially the same

as the cost of deploying DTP, as both require replacing NICs and switches.

An alternative way to deploy DTP is to use FPGA-based devices. FPGA-

based NICs and switches [11, 101] have more flexibility of updating firmware.

Further, customized PHYs can be easily implemented and deployed with mod-

ern FPGAs that are equipped with high-speed transceivers.

One of the limitations of DTP is that it is not possible to deploy DTP on

routers or network devices with multiple line cards without sacrificing preci-

sion. Network ports on separate line cards typically communicate via a bus

interface. As a result, it is not possible to maintain a single global counter with

high precision over a shared bus, although each line card can have its own sep-

arate global counter. Fortunately, as long as all switches and line cards form a

connected graph, synchronization can be maintained.

Replacing or updating switches and NICs in a datacenter at once is not pos-
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sible due to both cost and availability. Importantly, DTP can be incrementally

deployed: NICs and a ToR switch within the same rack are updated at the

same time, and aggregate and core switches are updated incrementally from the

lower levels of a network topology. Each DTP-enabled rack elects one server to

work as a master for PTP / NTP. Then, servers within the same rack will be

tightly synchronized, but servers from different racks are less tightly synchro-

nized depending on the performance of PTP / NTP. When two independently

DTP-enabled racks start communicating via a DTP-enabled switch, servers from

two racks will be tightly synchronized both internally and externally after com-

municating BEACON JOIN messages.

4.4.3 Following The Fastest Clock

DTP assumes that oscillators of DTP-enabled devices operate within a range

defined by IEEE 802.3 standard (Section 4.1.1). However, in practice, this as-

sumption can be broken, and an oscillator in a network could run at a frequency

outside the range specified in the standard. This could lead to many jumps from

devices with slower oscillators. More importantly, the maximum offset between

two devices could be larger than 4TD. One approach to address the problem

is to choose a network device with a reliable and stable oscillator as a master

node. Then, through DTP daemons, it is possible to construct a DTP spanning

tree using the master node as a root. This is similar to PTP’s best master clock

algorithm. Next, at each level of the tree, a node uses the remote counter of its

parent node as the global counter. If an oscillator of a child node runs faster

than its parent node, the local counter of a child should stall occasionally in or-

der to keep the local counter monotonically increasing. We leave this design as
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Data Rate Encoding Data Width Frequency Period ∆

1G 8b/10b 8 bit 125 MHz 8 ns 25
10G 64b/66b 32 bit 156.25 MHz 6.4 ns 20
40G 64b/66b 64 bit 625 MHz 1.6 ns 5

100G 64b/66b 64 bit 1562.5 MHz 0.64 ns 2

Table 4.1: Specifications of the PHY at different speeds

a future work.

4.4.4 What about 1G, 40G or 100G?

In this chapter we discussed and demonstrated how we can implement and de-

ploy DTP over a datacenter focusing on 10 GbE links. However, the capacity of

links in a datacenter is not homogeneous. Servers can be connected to Top-of-

Rack switches via 1 Gbps links, and uplinks between switches and routers can

be 40 or 100 Gbps. Nonetheless, DTP is still applicable to these cases because the

fundamental fact still holds: Two physically connected devices in high-speed

Ethernet (1G and beyond) are already synchronized to transmit and receive bit-

streams. The question is how to modify DTP to support thousands of thousands

of devices with different link capacities.

DTP can be extended to support 40 GbE and 100 GbE in a straight forward

manner. The clock frequency required to operate 40 or 100 Gbps is multiple of

that of 10 Gbps (Table 4.1). In fact, switches that support 10 Gbps and beyond

normally use a clock oscillator running at 156.25 MHz to support all ports [27].

As a result, incrementing clock counters by different values depending on the

link speed is sufficient. In particular, see the last column of Table 4.1, if a counter

tick represents 0.32 nanoseconds, then DTP will work at 10, 40, and 10GbE by
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adjusting a counter value to match the corresponding clock period (i.e. 20 ×

0.32 = 6.4 ns, 5 × 0.32 = 1.6 ns, and 2 × 0.32 = 0.64 ns, respectively).

Similarly, DTP can be made to work with 1 GbE by incrementing the counter

of a 1 GbE port by 25 at every tick (see the last column of Table 4.1). However,

the PHY of 1 Gbps is different, it uses a 8b/10b encoding instead of a 64b/66b

encoding, and we need to adapt DTP to send clock counter values with the

different encoding.

4.5 Summary

Precisely synchronizing clocks is not trivial. In this chapter, we demonstrated

that access to the physical layer can improve the precision of synchronized

clocks. In particular, DTP exploited the fundamental fact that two physically

connected devices are already synchronized to transmit and receive bitstreams.

DTP synchronized clocks of network components at tens of nanoseconds of pre-

cision, scaled up to synchronize an entire datacenter network, and was accessed

from software with usually better than twenty five nanosecond precision. As

a result, the end-to-end precision was the precision from DTP in the network

(i.e. 25.6 nanoseconds for directly connected nodes and 153.6 nanoseconds for

a datacenter with six hops) plus fifty nanosecond precision from software. The

approach demonstrated in this chapter for precise synchronized clocks repre-

sents an advance in the state-of-the-art.
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CHAPTER 5

RELATED WORK

In this dissertation, we first investigated how to improve the precision of times-

tamping and pacing via an augmented physical layer that provides timing in-

formation. Related work that used physics equipment and FPGA boards for

network measurements inspired precise timestamping and pacing. Although

there are other efforts to provide network programmability or precise times-

tamping, their approaches do not allow the physical layer to be programmable

or provide reliable packet timestamps and pacing. We also researched how to

precisely synchronize clocks in a network. Existing clock synchronization proto-

cols do not provide the same level of precision as DTP which provides bounded

precision regardless of network conditions. In this chapter, we discuss work

related to our contributions.

5.1 Programmable Network Hardware

Programmable network hardware allows for the experimentation of novel net-

work system architectures. Previous studies on reconfigurable NICs [128]

showed that programmable network hardware is useful for exploring new I/O

virtualization technique in VMMs. NetFPGA [91, 136] allows users to experi-

ment with FPGA-based routers and switches for research in new network pro-

tocols and intrusion detection [39, 45, 103, 133]. Further, there are specialized

NICs that are programmable and support P4 language [28] which is a data-

plane programming language. In P4, forwarding elements such as switches or

NICs perform user-defined actions such as modifying headers, discarding, or
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forwarding on packets whose header fields match to flow tables. Netronome’s

FlowNIC [13] and Xilinx’s SDNet [29] support P4. While programmable NICs

allow users to access the layer 2 and above, SoNIC allows users to access the

PHY. This means that users can access the entire network stack in software us-

ing SoNIC.

5.2 Hardware Timestamping

The importance of timestamping has long been established in the network mea-

surement community. Prior work either does not provide precise enough times-

tamping, or requires special devices. Packet stamping in user-space or kernel

suffers from the imprecision introduced by the OS layer [52]. Many commodity

NICs support hardware timestamping with various levels of accuracy ranging

from nanoseconds [10, 24, 11] to hundreds of nanoseconds [25]. Further, NICs

can be combined with GPS receiver or PTP-capability to use reference time for

timestamping. However, as we discussed in Section 2.1.2, hardware timestamp-

ing could still be imprecise.

Although BiFocals [58] is able to provide an exact timestamping, it has lim-

itations that prevented it from being a portable and realtime tool. BiFocals can

store and analyze only a few milliseconds worth of a bitstream at a time due

to the small memory of an oscilloscope. Furthermore, it requires thousands of

CPU hours for converting raw optic waveforms to packets. Lastly, the physics

equipment used by BiFocals is expensive and not easily portable. Its limitations

motivated us to design SoNIC to achieve the realtime exact precision times-

tamping. Note that both BiFocals and SoNIC only support delta timestamping.
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However, combining SoNIC and DTP can achieve fine-grained timestamping

that is synchronized with other network devices.

5.3 Software Defined Radio

The Software Defined Radio (SDR) allows easy and rapid prototyping of wire-

less network in software. Open-access platforms such as the Rice University’s

WARP [37] allow researchers to program both the physical and network layer

on a single platform. Sora [122] presented the first SDR platform that fully im-

plements IEEE 802.11b/g on a commodity PC. AirFPGA [133] implemented a

SDR platform on NetFPGA, focusing on building a chain of signal processing

engines using commodity machines. SoNIC is similar to Sora in that it allows

users to access and modify the PHY and MAC layers. The difference is that

SoNIC must process multiple 10 Gbps channels which is much more computa-

tionally intensive than the data rate of wireless channels. Moreover, it is harder

to synchronize hardware and software because a 10 GbE link runs in a full du-

plex mode, unlike a wireless network.

5.4 Software Router

Although SoNIC is orthogonal to software routers, it is worth mentioning soft-

ware routers because they share common techniques. SoNIC pre-allocates

buffers to reduce memory overhead [65, 112], polls huge chunks of data from

hardware to minimize interrupt overhead [54, 65], packs packets in a similar

fashion to batching to improve performance [54, 65, 95, 112]. Software routers
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Precision Scalability Overhead (pckts) Extra hardware
NTP us Good Moderate None
PTP sub-us Good Moderate PTP-enabled devices
GPS ns Bad None Timing signal receivers, cables
DTP ns Good None DTP-enabled devices

Table 5.1: Comparison between NTP, PTP, GPS, and DTP

normally focus on scalability and hence exploit multi-core processors and multi-

queue supports from NICs to distribute packets to different cores for packet

processing. On the other hand, SoNIC pipelines multiple CPUs to handle con-

tinuous bitstreams.

5.5 Clock Synchronization

In this section, we describe widely-used clock synchronization protocols, NTP,

PTP, GPS, and some other protocols.

Network Time Protocol (NTP)

The most commonly used time synchronization protocol is the Network Time

Protocol (NTP) [98]. NTP provides millisecond precision in a wide area net-

work (WAN) and microsecond precision in a local area network (LAN). In NTP,

time servers construct a tree, and top-level servers (or stratum 1) are connected

to a reliable external time source (stratum 0) such as satellites through a GPS

receiver, or atomic clocks. A client communicates with one of the time servers

via UDP packets. As mentioned in Section 2.1.3, four timestamps are used to

account for processing time in the time server.
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NTP is not adequate for a datacenter. It is prone to errors that reduce preci-

sion in clock synchronization: Inaccurate timestamping, software network stack

(UDP daemon), and network jitter. Furthermore, NTP assumes symmetric paths

for time request and response messages, which is often not true in reality. NTP

attempts to reduce precision errors via statistical approaches applied to network

jitter and asymmetric paths. Nonetheless, the precision in NTP is still low.

Precise Time Protocol (PTP)

The IEEE 1588 Precise Time Protocol (PTP) [18]1 is an emerging time synchro-

nization protocol that can provide tens to hundreds of nanosecond precision in a

LAN when properly configured. PTP picks the most accurate clock in a network

to be the grandmaster via the best master clock algorithm and others synchronize

to it. The grandmaster could be connected to an external clock source such as

a GPS receiver or an atomic clock. Network devices including PTP-enabled

switches form a tree with the grandmaster as the root. Then, at each level of

the tree, a server or switch behaves as a slave to its parent and a master to its

children. When PTP is combined with Synchronous Ethernet, which syntonizes

frequency of clocks (SyncE, See below), PTP can achieve sub-nanosecond pre-

cision in a carefully configured environment [86], or hundreds of nanoseconds

with tens of hops in back-haul networks [84].

The protocol normally runs as follows: The grandmaster periodically sends

timing information (Sync) with IP multicast packets. Upon receiving a Sync

message which contains time t0, each client sends a Delay Req message to the

timeserver, which replies with a Delay Res message. The mechanism of com-

1We use PTPv2 in this discussion.
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municating Delay Req and Delay Res messages is similar to NTP and Fig-

ure 2.3. Then, a client computes the offset and adjusts its clock or frequency. If

the timeserver is not able to accurately embed t0 in the Sync message, it emits a

Follow Up message with t0, after the Sync message, to everyone.

To improve the precision, PTP employs a few techniques. First, PTP-enabled

network switches can participate in the protocol as Transparent clocks or Bound-

ary clocks in order to eliminate switching delays. Transparent clocks timestamp

incoming and outgoing packets, and correct the time in Sync or Follow Up

to reflect switching delay. Boundary clocks are synchronized to the timeserver

and work as masters to other PTP clients, and thus provide scalability to PTP

networks. Second, PTP uses hardware timestamping in order to eliminate the

overhead of network stack. Modern PTP-enabled NICs timestamp both incom-

ing and outgoing PTP messages [24]. Third, a PTP-enabled NIC has a PTP hard-

ware clock (PHC) in the NIC, which is synchronized to the timeserver. Then, a

PTP-daemon is synchronized to the PHC [47, 105] to minimize network delays

and jitter. Lastly, PTP uses smoothing and filtering algorithms to carefully mea-

sure one way delays.

As we demonstrate in Section 4.3, the precision provided by PTP is about few

hundreds of nanoseconds at best in a 10 GbE environment, and it can change

(decrease) over time even if the network is in an idle state. Moreover, the preci-

sion could be affected by the network condition, i.e. variable and/or asymmet-

ric latency can significantly impact the precision of PTP, even when cut-through

switches with priority flow control are employed [131, 132]. Lastly, it is not

easy to scale the number of PTP clients. This is mainly due to the fact that a

timeserver can only process a limited number of Delay Req messages per sec-
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ond [18]. Boundary and Transparent clocks can potentially solve this scalability

problem. However, precision errors from Boundary clocks can be cascaded to

low-level components of the timing hierarchy tree, and can significantly impact

the precision overall [70]. Further, it is shown that Transparent clocks often are

not able to perform well under network congestion [132], although a correct im-

plementation of Transparent clocks should not degrade the performance under

network congestion.

Global Positioning System (GPS)

In order to achieve nanosecond-level precision, GPS can be employed [10, 48].

GPS provides about 100 nanosecond precision in practice [83]. Each server can

have a dedicated GPS receiver or can be connected to a time signal distribu-

tion server through a dedicated link. As each device is directly synchronized

to satellites (or atomic clocks) or is connected via a dedicated timing network,

network jitter and software network stack is not an issue.

Unfortunately, GPS based solutions are not realistic for an entire datacenter.

It is not cost effective and scalable because of extra cables and GPS receivers

required for time signals. Further, GPS signals are not always available in a

datacenter as GPS antennas must be installed on a roof with a clear view to the

sky. However, GPS is often used in concert with other protocols such as NTP

and PTP and also DTP.
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Other Clock Synchronization Protocols

Because NTP normally does not provide precise clock synchronization in a local

area network (LAN), much of the literature has focused improving NTP without

extra hardware. One line of work was to use TSC instructions to implement pre-

cise software clocks called TSCclock, and later called RADclock [53, 108, 123]. It

was designed to replace ntpd and ptpd (daemons that run NTP or PTP) and

provide sub-microsecond precision without any extra hardware support. Other

software clocks include Server Time Protocol (STP) [104], Coordinated Cluster

Time (CCT) [59], AP2P [118], and skewless clock synchronization [94], which

provide microsecond precision.

Implementing clock synchronization in hardware has been demonstrated by

Fiber Channel (FC) [12] and discussed by Kopetz and Ochsenreiter [75]. FC em-

beds protocol messages into interpacket gaps similar to DTP. However, it is not

a decentralized protocol and the network fabric simply forwards protocol mes-

sages between a server and a client using physical layer encodings. As a result,

it does not eliminate non-deterministic delays in delivering protocol messages.

Frequency Synchronization

Synchronous optical networks (SONET/SDH) is a standard that transmits mul-

tiple bitstreams (such as Voice, Ethernet, TCP/IP) over an optical fiber. In order

to reduce buffering of data between network elements, SONET requires precise

frequency synchronization (i.e., syntonization). An atomic clock is commonly

deployed as a Primary Reference Clock (PRC), and other network elements are

synchronized to it either by external timing signals or by recovering clock sig-
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nals from incoming data. DTP does not synchronize frequency of clocks, but

values of clock counters.

Synchronous Ethernet (SyncE) [23] was introduced for reliable data trans-

fer between synchronous networks (e.g. SONET/SDH) and asynchronous net-

works (e.g. Ethernet). Like SONET, it synchronizes the frequency of nodes in a

network, not clocks (i.e. syntonization). It aims to provide a synchronization sig-

nal to all Ethernet network devices. The idea is to use the recovered clock from

the receive (RX) path to drive the transmit (TX) path such that both the RX and

TX paths run at the same clock frequency. As a result, each Ethernet device uses

a phase locked loop to regenerate the synchronous signal. As SyncE itself does

not synchronize clocks in a network, PTP is often employed along with SyncE to

provide tight clock synchronization. One such example is White Rabbit which

we discuss below.

Frequency and Clock Synchronization

White Rabbit [101, 80, 86] has by far the best precision in packet-based networks.

The goal of White Rabbit (WR) [101] was to synchronize up to 1000 nodes with

sub-nanosecond precision. It uses SyncE to syntonize the frequency of clocks of

network devices and WR-enabled PTP [80] to embed the phase difference be-

tween a master and a slave into PTP packets. WR demonstrated that the preci-

sion of a non-disturbed system was 0.517ns [86]. WR also requires WR-enabled

switches and synchronizes slaves that are up to four-hops apart from the time-

server. WR works on a network with a tree topology and with a limited number

of levels and servers. Furthermore, it supports 1 Gigabit Ethernet only and it is

not clear how WR behaves under heavy network loads as it uses PTP packets.
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DTP does not rely on any specific network topology, and can be extended to

protocols with higher speeds.

Similarly, BroadSync [42] and ChinaMobile [84] also combine SyncE and PTP

to provide hundreds of nanosecond precision. The Data Over Cable Service In-

terface Specification (DOCSIS) is a frequency synchronized network designed

to time divide data transfers between multiple cable modems (CM) and a cable

modem termination system (CMTS). The DOCSIS time protocol [46] extends

DOCSIS to synchronize time by approximating the internal delay from the PHY

and asymmetrical path delays between a reference CM and the CMTS. We ex-

pect that combining DTP with frequency synchronization, SyncE, will also im-

prove the precision of DTP to sub-nanosecond precision as it becomes possible

to minimize or remove the variance of the synchronization FIFO between the

DTP TX and RX paths.

Fault Tolerant Clock Synchronization

Synchronizing clocks in the presence of failures has also been studied in dis-

tributed systems [51, 64, 77, 78, 92, 116, 119] where processes could fail or show

Byzantine behaviors including reporting different clock values to different pro-

cesses (“two-faced” clocks). These protocols can tolerate some number of faulty

processes when there are enough number of non-faulty processes by periodi-

cally communicating their time with each other and, as a result, converging to a

common time. These protocols assume upper limit on message transmission de-

lays when reading other processes’ clock to converge, use different convergence

functions and thus provide different levels of precision. There are also some

other protocols without upper bounds on message delivery that use timeouts
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to detect failures [63, 96]. Cristian [50] discussed an external synchronization

between a time server and multiple clients and used the characteristics of the

distribution of delays to deal with network jitter.
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CHAPTER 6

FUTURE WORK

In this dissertation, we described two systems that provide three fundamen-

tal capabilities for network measurements: Precise timestamping, pacing, and

clock synchronization. Further, we illustrated how they can improve network

applications such as creating and detecting covert timing channels and estimat-

ing available bandwidth. In the future, we plan to perform network measure-

ments to understand the behavior of NICs, switches, routers and distributed

systems and improve the performance of network applications that can benefit

from precise timestamping, pacing and clock synchronization.

Further, there are many interesting research directions. First, it is possible

to combine DTP with Synchronous Ethernet (SyncE) to achieve better precision.

Second, DTP can be used to implement a packet scheduler that achieves high-

throughput and low-latency packet flows. Lastly, by combining SoNIC, DTP

and programmable dataplane (P4), we can build a network measurement tool

with customizable packet processing algorithms. We explore each idea in this

chapter.

6.1 Synchronous DTP

As briefly discussed in Chapter 5, the goal of SyncE is to synchronize the fre-

quency of clocks, and the goal of DTP and PTP is to synchronize the time of

clocks. WhiteRabbit combines SyncE and PTP and achieves sub-nanosecond

precision in a carefully configured environment. Similarly, it is possible to com-
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bine DTP with SyncE. Using SyncE essentially means that the synchronization

FIFO between the DTP RX path and the DTP TX path is no longer necessary,

and it will allow clocks to be synchronized precisely at sub-nanosecond scale

as in WhiteRabbit. Implementing SyncE on an FPGA board requires a high-

performance Phase Locked Loop (PLL) for jitter attenuation, which is not read-

ily available in current FPGA development boards. As a result, it is required to

carefully design a new FPGA board to combine SyncE and DTP.

6.2 Packet Scheduler

DTP provides a globally synchronized time among network devices including

NICs and switches and SoNIC provides precise timestamping and pacing. Fur-

ther, DTP can also provide precise RTT and lower bound on OWD between two

nodes in a network. The properties that DTP and SoNIC provide can be used

to implement various types of packet schedulers in a network. First, a central-

ized controller can control when an end-host can send a packet through the

network. Fastpass [110] showed that this approach could improve the through-

put of TCP streams and reduce the switch queue size in a datacenter network.

Fastpass relies on PTP and software-based pacing algorithm [121], which pro-

vides microsecond-scale precision while pacing packets. We expect that using

DTP and SoNIC can potentially allow more fine-grained control and achieve a

better throughput. Second, coordination-free time-division scheduling can be

implemented where each physical layer of participating nodes can transmit one

packet to one destination per time slot. This type of scheduling could be useful

for rack-scale systems where thousands of micro-servers are connected via sim-

ple switches without buffers. Lastly, precise RTT could lead to high throughput
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and low latency in transport layer protocols (TCP) in a datacenter network [99].

TIMELY uses RTT as an indicator of congestion in a network and it exploits

hardware support from NICs to achieve it. Similarly, TCP can use OWD offered

by DTP and pacing offered by SoNIC for congestion control.

6.3 SoNIC, DTP, and P4

Testing network devices or network protocols is not easy. For example, mea-

suring packet processing latency of a switch under stress requires a multi-port

packet generator that is able to send traffic at line speed with arbitrary packet

size, and a multi-port packet capturer that is able to capture traffic at line speed.

The generator and capturer could be a single machine or multiple machines

that are synchronized. Further, generating protocol specific packets requires

programmability in the packet generator. Unfortunately, commercial network

testers are expensive and are not readily available for network researchers.

Open Source Network Tester (OSNT) [38] is an effort to provide an open-source

packet generator and capturer for testing various network components using

NetFPGA 10G cards. Multiple OSNT devices could also be synchronized via

GPS signal or PTP.

Similarly, we can implement a network tester that combines DTP, SoNIC and

P4 [28]. In particular, the physical layer of the tester combines DTP and SoNIC.

Note that SoNIC is a software implementation of the physical layer with com-

plete control over every bit. However, achieving the same level of control and

access in a hardware implementation of the physical layer is not trivial. It is

necessary to define a new set of APIs that will allow users to control interpacket
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gaps by specifying the number of /I/s and capture interpacket gaps / delays.

By doing so, arbitrary traffic pattern could be generated and captured. Further,

P4 provides programmability in dataplane. Many protocols that current net-

work switches provide can be expressed using P4 language. As a result, inte-

grating P4 into the network tester can also provide flexibility for testing various

protocols.
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CHAPTER 7

CONCLUSION

Precise network measurements are fundamental for network research, monitor-

ing, and applications. For instance, if no clock differs by more than 100 nanosec-

onds compared to 1 microsecond, one-way delay can be measured precisely

due to the tight synchronization. Unfortunately, it is challenging to precisely

perform network measurements because it is difficult to precisely access and

control time in a network of computer systems.

In this dissertation, we investigated how to improve the precision of times-

tamping, pacing and clock synchronization. In particular, we discussed how to

augment the physical layer of a network stack to provide precise timing infor-

mation. The principle observation was that when two physical layers are con-

nected, each physical layer continuously generates a sequence of bits for clock

and bit recovery and for maintaining the link connectivity. Then, controlling

and accessing every single bit in the physical layer allows precise timestamping

and pacing. Further, precise timestamping and pacing can improve the perfor-

mance of network applications. Similarly, exploiting the bit-level synchroniza-

tion in the physical layer allows precisely synchronized clocks with bounded

precision. Our approach is an advance in the state-of-the-art in network mea-

surements.

In order to validate the idea of the augmented physical layer, we presented

the design and implementation of multiple systems that provide and exploit

precise time. SoNIC provides precise timestamping and pacing by implement-

ing the physical layer in software. A covert timing channel, Chupja, and an

available bandwidth estimation algorithm, MinProbe, are two network applica-
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tions that demonstrate how precise timestamping and pacing can improve the

performance of network applications. Chupja can deliver hundreds of thou-

sands of bits per second while avoiding detection, and MinProbe can accurately

estimate available bandwidth in a high-speed network. DTP, Datacenter Time

Protocol, provides precise clock synchronization by running a clock synchro-

nization protocol in the physical layer. DTP can synchronize clocks in a datacen-

ter network with bounded precision at hundreds of nanosecond scale. Precise

access and control of time via approaches exemplified in this dissertation marks

an important step towards precise network measurements.
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APPENDIX A

PHY TUTORIAL

In this dissertation, we demonstrated that access to the physical layer of a net-

work stack could improve the performance of network measurements. Yet, the

physical layer is often considered as a black box and how it works is generally

unknown. The tutorial below was designed to help undergraduate students in

computer science to understand how the physical layer works by implementing

the physical layer in software.

A.1 Physical layer: Encoder and Scrambler

A.1.1 Introduction

According to the IEEE 802.3 standard, the PHY layer of 10 GbE consists of three

sublayers: the Physical Coding Sublayer (PCS), the Physical Medium Attach-

ment (PMA) sublayer, and the Physical Medium Dependent (PMD) sublayer

(See Figure A.1). The PMD sublayer is responsible for transmitting the outgoing

symbolstream over the physical medium and receiving the incoming symbol-

stream from the medium. The PMA sublayer is responsible for clock recovery

and (de-)serializing the bitstream. The PCS performs the blocksync and gearbox

(we call this PCS1), scramble/descramble (PCS2), and encode/decode (PCS3)

operations on every Ethernet frame.

When Ethernet frames are passed to the PHY layer, they are reformatted be-

fore being sent across the physical medium. On the transmit (TX) path, the PCS
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encodes every 64-bit of an Ethernet frame into a 66-bit block (PCS3), which con-

sists of a two bit synchronization header (syncheader) and a 64-bit payload. As a

result, a 10 GbE link actually operates at 10.3125 Gbaud (10G × 66

64
). The PCS

also scrambles each block (PCS2) and adapts the 66-bit width of the block to the

16-bit width of the PMA interface (PCS1) before passing it down the network

stack to be transmitted. The entire 66-bit block is transmitted as a continuous

stream of symbols which a 10 GbE network transmits over a physical medium

(PMA & PMD). On the receive (RX) path, the PCS performs block synchroniza-

tion based on two-bit syncheaders (PCS1), descrambles each 66-bit block (PCS2)

before decoding it (PCS3).

We will implement the TX path of the PCS, especially the encoder and scram-

bler today and the RX path of the PCS (the decoder and descrambler) tomorrow.

Let us illustrate how the PCS sublayer works in detail.

Figure A.1: 10G Network Stack

A.1.2 Encoding

In this section, for better understanding of how 64/66b Encoding works, we

will use two sample packets: “Welcome to Ithaca!!!” (P1) and “SoNIC Work-
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shop” (P2). For simplicity, we will not discuss preambles, Ethernet headers and

checksums.

Once the PCS receives a packet from higher network layers, the packet is re-

formatted to a sequence of one /S/ block (Start of an Ethernet frame), multiple

data blocks, and one /T/ block (End of an Ethernet frame). The PCS inserts

/E/ blocks (Idle frame) between packets if necessary. /S/, /T/, and /E/ blocks

are called control blocks and their syncheaders are always ‘0x01’, while the sync-

header of data blocks are always ‘0x2’. A control block includes a 8-bit block

type field which indicates the type of the block such as /S/, /T/ and /E/. /E/

consists of eight Idle characters, /I/, which are used to fill the inter-packet gaps.

The standard requires that there must be at least twelve /I/s between any pack-

ets. Figure A.2 illustrates all possible blocktypes.

Let’s assume we picked the fifth row of the table for our /S/ of P1, i.e. /S/

with the blocktype 0x78. Then, the control block will be constructed as the first

row of Figure A.3. Notice that byte-ordering is reversed to follow the little-

endian format of x86 processors. A data block solely consists of eight data bytes

(64bit) with a 0x01 syncheader. Therefore, a data block of “ to Itha” will be

constructed as the second row of Figure A.3. Finally, as we now have five data

bytes left, we can use the eleventh row from Figure A.2 for our /T/ block, i.e.

/T/ with the blocktype 0xd2. The rest of the block is filled with /I/s which is

a 7-bit long control character (its value is zero). In our case, we can insert two

/I/s in the /T/ block (the third row of Figure A.3).

Now, we have to insert at least twelve /I/s between two packets to conform

to the IEEE 802.3 standard. Interestingly, the blocktype field of a /T/ block is

also considered as one /I/ character. Therefore, as we have inserted three /I/s
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so far, we just need to insert nine more /I/s. A special control block /E/ can

be used to insert eight /I/s (the third row of Figure A.2 and the fourth row of

Figure A.3). Since we now have to insert at least one more /I/, we can pick /S/

with 0x33 (the fourth row of Figure A.2) to encode the next packet P2, since this

/S/ block contains four /I/s. The final sequence of 66-bit blocks will look like

Figure A.3.

Figure A.2: 66b block format

Figure A.3: Example

A.1.3 Scrambler

The scrambler runs continuously on all block payload while the syncheader

bypasses the scrambler. The payload of each block (i.e. 64 bit data) is scrambled
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with the following equation:

G(x) = 1 + x39
+ x58

Figure A.4: Scrambler

while xn is the (n)th least significant bit (LSB) of the internal state of the

scrambler, ‘1’ is the input bit, and + is an XOR operation.

To understand what this equation means, let’s assume that the initial state

of the scrambler is 0x03ff ffff ffff ffff and the input block is 0xdead

beef dead beed. Notice both x58 and x39 of the scrambler are ‘1’. Now, start-

ing from the LSB of the input block, the scrambler takes one bit at a time to

calculate the corresponding output bit. For example, the LSB of the input block,

‘1’, is XORed with x58
= 1 and x39

= 1 to generate ‘1’, the LSB of the output block.

Then, all bits of the scrambler shift to the left by one bit (0x07ff ffff ffff

fffe), and is XORed with the output of the previous computation ‘1’ (0x07ff

ffff ffff ffff). x58 and x39 are again ‘1’ and XORed with the second LSB

of the input block, ‘0’, to produce the second LSB of the output block, ‘0’. The

scrambler continues this process until the entire input block is scrambled.
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A.1.4 Task

You will implement a black box that functions as a PCS encoder/scrambler to-

day; the black box encodes a sequence of packets given as an input and gener-

ates an array of scrambled 66-bit blocks. By default, the black box inserts 12 Idle

characters between packets which you can change with ”-g” option.

For example,

$> ./encode -i packets

10, 0x0123456789abcdef

...

We will provide a skeleton source code and you are required to fill at least

two functions scrambler and encode with your partner. In addition, a de-

coder and sample packets are provided to check the correctness of your imple-

mentation.

Scrambler

First, you will need to implement the scrambler. You can check the correctness

of your scrambler by running:

$> ./encode -d

01, a1fe788405060708

01, 60a77dbee226551e

state = 78aa64477dbee506
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If your output matches the above, your scrambler is working correctly.

Encoder

Now, you need to implement the Encoder. For each packet, generate /S/, Data

blocks, /T/ and /E/ if necessary in sequence. Make sure to insert the correct

number of /I/s between packets (If you can not meet the exact number of /I/s,

try to minimize the number of them). After implementing the Encoder, try to

run the following:

$> make fun

which will display something to your screen. If you can recognize it, you cor-

rectly implemented the encoder.

Note Think carefully about the byte / bit ordering.

A.2 Physical Layer: Decoder and Descrambler

A.2.1 Introduction

Today, we will implement the Decoder and the Descrambler.
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A.2.2 Task

Descrambler

First, you will need to implement the descrambler. The descrambler is imple-

mented as illustrated in Figure A.5.

Figure A.5: Descrambler

How does it differ from the scrambler?

To check the correctness of your descrambler, run the following:

$> ./decode -d

0102030405060708

090a0b0c0d0e0f00

state = 78aa64477dbee506

If your output matches with the above, your descrambler is correct.

Decoder

The decoder does two things: recovers original Ethernet frames and counts

the number of /I/s between frames. After descrambling a block, the decoder
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should check the syncheader first to distinguish data blocks and control blocks.

For control blocks, your decoder must perform appropriate actions based on

the block type. As a reminder, an Ethernet frame starts at /S/ block and ends at

/T/ block. In addition, the decoder must count the number of /I/s preceding

an Ethernet frame. (i.e. start counting it when you see /T/ until /S/ appears)

Call print decoded once the Ethernet frame is recovered.

After implementing the Decoder, try to run the following:

$> make fun

Discussion

Try to run the following:

$> make fun IDLE=100

What happened? The command above changes the number of /I/s between

packets to 100. You can actually see the /I/s by running the following which

changes idle characters to ‘x’.

$> make fun IDLE=100 IDLEC="x"

Run the above command again changing 100 to different values (larger or

smaller). What does this imply in terms of throughput?
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A.3 Pseudo C code for 64/66b Encoder and Decoder

1 struct Frame {

2 uint32_t idles; // # of idles preceding this frame

3 uint8_t data;

4 uint32_t len;

5 };

6

7 uint64_t scrambler (uint64_t *state, uint8_t sh, uint64_t payload)

8 {

9 for ( i = 0 ; i < 64 ; i ++) {

10 in_bit = (payload >> i) & 0x1;

11 out_bit = (in_bit ˆ (*state >> 38) ˆ (*state >> 57)) & 0x1;

12 *state = (*state << 1) | out_bit;

13 scrambled |= (out_bit << i);

14 }

15

16 // pass syncheader and scrambled to pma

17 return scrambled;

18 }

19

20 uint64_t scrambler_opt (uint64_t *state, uint8_t sh, uint64_t payload)

21 {

22 scrambled = (*state >> 6) ˆ (*state >> 25) ˆ payload;

23 *state = scrambled ˆ (scrambled << 39) ˆ (scrambled << 58);

24

25 //pass syncheader and scrambled to pma

26 return scrambled;

27 }

28

29 // Encode a Ethernet Frame

30 void encode (struct Frame *frame, uint64_t *state)
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31 {

32 terminal[8] = {0x87, 0x99, 0xaa, 0xb4, 0xcc, 0xd2, 0xe1, 0xff};

33 data = frame->data;

34 len = frame->len;

35 idles = frame->idles;

36

37 /* /E/ */

38 while (idles >= 8) {

39 scrambler(state, 0x1e);

40 idles -= 8;

41 }

42

43 /* /S/ */

44 tmp = 0;

45 if (idles > 0 && idles <= 4) {

46 block_type = 0x33;

47 tmp = *(uint64_t *) data;

48 tmp <<= 40;

49 tmp |= block_type;

50 data += 3;

51 len -= 3;

52 } else {

53 if (idles != 0)

54 scrambler(state, 0x1, e_frame);

55

56 block_type = 0x78;

57 tmp = *(uint64_t *) data;

58 tmp <<= 8;

59 tmp |= block_type;

60 data += 7;

61 len -= 7;

62 }
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63 state = scrambler(state, 0x1, tmp);

64

65 /* /D/ */

66 while ( len >= 8) {

67 tmp = *(uint64_t *) data ;

68 state = scrambler(state, 0x2, tmp);

69 data += 8;

70 len -= 8;

71 }

72

73 /* /T/ */

74 block_type = terminal[len];

75 tmp = 0;

76 if (len != 0) {

77 tmp = *(uint64_t *) data;

78 tmp <<= (8-len) * 8;

79 tmp >>= (7-len) * 8;

80 }

81 tmp |= block_type;

82

83 state = scrambler(state, 0x1, tmp);

84 }

85

86 struct block66b {

87 uint8_t syncheader;

88 uint64_t payload;

89 };

90

91 uint64_t descrambler (uint64_t *state, uint64_t payload)

92 {

93 for ( i = 0 ; i < 64 ; i ++ ) {

94 in_bit = (payload >> i) & 0x1;
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95 out_bit = (in_bit ˆ (*state >> 38) ˆ (*state >> 57)) & 0x1;

96 *state = (*state << 1) | in_bit;

97 descrambled |= (out_bit << i);

98 }

99

100 return descrambled;

101 }

102

103 uint64_t descrambler_opt (uint64_t *state, uint64_t payload)

104 {

105 descrambled = (*state >> 6) ˆ (*state >> 25) ˆ payload;

106 *state = descrambled ˆ (payload << 39) ˆ (payload << 58);

107

108 return descrambled;

109 }

110

111 void decode(struct block66b block, struct Frame *frame, uint64_t *state)

112 {

113 descrambled = descrambler(state, block.payload);

114

115 p = frame->data;

116 tail = 0;

117

118 /* /D/ */

119 if (block.sync_header != 1) {

120 * (uint64_t *) p = descrambled;

121 p += 8;

122 frame->len += 8;

123 /* control block */

124 } else {

125 switch(descrambled & 0xff) {

126 /* /S/ */
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127 case 0x33:

128 frame->idles += 4;

129 descrambled >>= 40;

130 * (uint64_t *) p = descrambled;

131 p += 3;

132 frame->len += 3;

133 break;

134 case 0x78:

135 descrambled >>= 8;

136 * (uint64_t *) p = descrambled;

137 p += 7;

138 frame->len += 7;

139 break;

140 /* /T/ */

141 case 0xff:

142 tail ++;

143 case 0xe1:

144 tail ++;

145 case 0xd2:

146 tail ++;

147 case 0xcc:

148 tail ++;

149 case 0xb4:

150 tail ++;

151 case 0xaa:

152 tail ++;

153 case 0x99:

154 tail ++;

155 case 0x87:

156 descrambled >>= 8;

157 * (uint64_t *) p = descrambled;

158 frame->len += tail;
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159 /* /E/ */

160 case 0x1e:

161 frame->idles += 8;

162 break;

163 }

164 }

165 }
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APPENDIX B

FAST CRC ALGORITHM

A cyclic redundancy check (CRC) is widely used for detecting bit errors. For

example, the Media Access Control (MAC) layer of the network stack computes

a CRC value of each Ethernet frame and appends it to the end of each frame

so that the receiver can detect any bit errors by re-computing the CRC value

of the received frame. In this section, we discuss how to improve the perfor-

mance of CRC computation in order to meet the performance requirements for

implementing SoNIC.

Mathematically, the CRC value of an Ethernet frame is the remainder of the

binary polynomial of the frame divided by a CRC polynomial. A polynomial

here is defined over the Galois field, GF(2)1, where the first bit of a frame corre-

sponds to the xn−1 term and the last bit to the x0 term. The IEEE 802.3 standard

defines the 32-bit CRC value of an Ethernet frame MS G as follows:

CRC = MSG · x32 % P

where ‘·’ is carry-less multiplication, % is the modulo operator, and P is

0x104C11DB7 [19]. A CRC engine is simple to implement in hardware, but

difficult to make efficient if implemented in software. Table lookup algorithms

and parallel updates for 8-bits are commonly used to compute a CRC value in

software. The Linux Kernel implements both of these algorithms but neither of

them are fast enough for 10 GbE as we showed in Section 3.2.1 especially for

small packets.

In order to improve the performance of software-based CRC implementa-

tion, the Fast CRC algorithm [61] from Intel uses the PCLMULQDQ instruction

1A Galois field is a field with a finite number of elements
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which performs carry-less multiplication of two 64-bit quadwords [62]. The al-

gorithm folds a large chunk of data into a smaller chunk using the PCLMULQDQ

instruction to efficiently reduce the size of data. Here we only discuss the basic

idea of how the algorithm works.

Let H(x), L(X) and G(x) be the most significant 64-bit, second most significant

64-bit and remaining T-bit (T ≥ 128) chunks of MS G :

MSG = H(x) · xT+64
+ L(x) · xT

+G(x)

where + is XOR operation. Then, 128 bits can be folded while maintaining the

same CRC value because of the following fact:

MSG%P ={H(x) · (xT+64 % P)}+

{L(x) · (xT % P)} +G(x) % P

If T is known, 32-bit c1 = xT+64 % P and c2 = xT % P can be pre-computed. Then,

the results of H(x) · c1 and L(x) · c2 become both 96-bit numbers. With this idea,

the algorithm iteratively folds the message by 512 bits or 128 bits into a small

64-bit chunk which is then passed to Barrett Reduction algorithm [40] for final

CRC computation. We adapted this algorithm and implemented it using inline

C assembly with a few optimizations for smaller packets. We present the pseu-

docode implementation of the algorithm below. The details of the algorithm is

discussed in [61].

B.1 Psuedo assembly code for Fast CRC algorirthm

1 static uint64_t k[] = {

2 0x653d9822, 0x111a288ce, // k1, k2

3 0x65673b46, 0x140d44a2e, // k3, k4

4 0xccaa009e, 0x163cd6124, // k5, k6
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5 0x1f7011641, 0x1db710641, // u, p

6 };

7

8 // len must be >= 64

9 uint32_t fast_crc(uint8_t *data,int len)

10 {

11 uint64_t tmp[6];

12

13 __asm__ (

14 movdqa xmm15, k[0]; // k1 | k2;

15 movdqa xmm14, k[2]; // k3 | k4;

16 movdqa xmm13, k[4]; // k5 | k6;

17 movdqa xmm12, k[6]; // u | p

18 movq rcx, data;

19 movl ebx, len;

20

21 // first 32bit needs to be complemented

22 movl ecx, $0xffffffff;

23 movq xmm4, rcx4;

24 movdqa xmm2, [rcx];

25 pxor xmm4, xmm2;

26

27 movdqa xmm5, [rcx+16];

28 movdqa xmm6, [rcx+32];

29 movdqa xmm7, [rcx+48];

30

31 add rcx, 64;

32 sub rbx, 64;

33 cmp rbx, 64;

34 jl fold_by_4_done;

35

36 // while (len >= 128) folding by 4

37 fold_by_4_begin:

38 movdqa xmm0, xmm4;

39 movdqa xmm8, [rcx];

40 pclmulqdq xmm4, xmm15, 0x00;

41 pclmulqdq xmm0, xmm15, 0x11;

42 pxor xmm4, xmm0;

43 pslldq xmm4, 4;

44 pxor xmm4, xmm8;

45 movdqa xmm1, xmm5;

46 movdqa xmm9, [rcx+16];

47 pclmulqdq xmm5, xmm15, 0x00;

48 pclmulqdq xmm1, xmm15, 0x11;

49 pxor xmm5, xmm1;

50 pslldq xmm5, 4;

51 pxor xmm5, xmm9;

52 movdqa xmm2, xmm6;

53 movdqa xmm10, [rcx+32];

54 pclmulqdq xmm6, xmm15, 0x00;

55 pclmulqdq xmm2, xmm15, 0x11;

56 pxor xmm7, xmm2;

57 pslldq xmm6, 4;

58 pxor xmm6, xmm10;

59 movdqa xmm3, xmm7;

60 movdqa xmm11, [rcx+48];

61 pclmulqdq xmm7, xmm15, 0x00;

62 pclmulqdq xmm3, xmm15, 0x11;

63 pxor xmm8, xmm3;

64 pslldq xmm7, 4;

65 pxor xmm7, xmm11;

66

67 sub rbx, 64;

68 add rcx, 64;

69 cmp rbx, 64;

70 jge fold_by_4_begin;
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71

72 fold_by_4_done:

73 movdqa xmm2, xmm4;

74 pclmulqdq xmm4, xmm14, 0x00;

75 pclmulqdq xmm2, xmm14, 0x11;

76 pxor xmm4, xmm2;

77 pslldq xmm4, 4;

78 pxor xmm4, xmm5;

79 movdqa xmm2, xmm4;

80 pclmulqdq xmm4, xmm14, 0x00;

81 pclmulqdq xmm2, xmm14, 0x11;

82 pxor xmm4, xmm2;

83 pslldq xmm4, 4;

84 pxor xmm4, xmm6;

85 movdqa xmm2, xmm4;

86 pclmulqdq xmm4, xmm14, 0x00;

87 pclmulqdq xmm2, xmm14, 0x11;

88 pxor xmm4, xmm2;

89 pslldq xmm4, 4;

90 pxor xmm4, xmm7;

91

92 cmp rbx, 16;

93 jl fold_by_1_done;

94

95 fold_by_1_begin:

96 movdqa xmm2, xmm4;

97 movdqa xmm1, [rcx];

98 pclmulqdq xmm4, xmm14, 0x00;

99 pclmulqdq xmm2, xmm14, 0x11;

100 pxor xmm4, xmm2;

101 pslldq xmm4, 4;

102 pxor xmm4, xmm1;

103

104 sub rbx, 16;

105 add rcx, 16;

106 cmp rbx, 16;

107 jge fold_by_1_begin;

108

109 fold_by_1_done:

110 cmp rbx, 0;

111 je final_reduction;

112

113 movdqa xmm1, [rcx];

114 pxor xmm3, xmm3;

115 movdqu [tmp], xmm3;

116 movdqu [tmp+16], xmm3;

117 movdqu [tmp+32], xmm3;

118 movdqu [tmp+32], xmm1;

119 movdqu [tmp+16], xmm4;

120

121 movdqu xmm1, [tmp+rbx];

122 movdqu xmm2, [tmp+rbx + 16];

123

124 movaps xmm4, xmm1;

125 pclmulqdq xmm1, xmm14, 0x00;

126 pclmulqdq xmm4, xmm14, 0x11;

127 pxor xmm4, xmm1;

128 pslldq xmm4, 4;

129 pxor xmm4, xmm2;

130

131 final_reduction:

132 movdqa xmm2, xmm4;

133 pxor xmm3, xmm3;

134 punpckldq xmm4, xmm3;

135 movdqa xmm1, xmm4;

136 pclmulqdq xmm4, xmm13, 0x00;
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137 pclmulqdq xmm1, xmm13, 0x11;

138 psrldq xmm2, 8;

139 pxor xmm4, xmm2;

140 pxor xmm4, xmm1;

141

142 // Barrett Reduction algorithm

143 movdqa xmm2, xmm4;

144 pslldq xmm4, 4;

145 pclmulqdq xmm4, xmm12, 0x00;

146 pclmulqdq xmm4, xmm12, 0x10;

147 psrldq xmm4, 4;

148 pxor xmm4, xmm2;

149 pextrd crc, xmm4, 1;

150 );

151 }
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APPENDIX C

OPTIMIZING SCRAMBLER

The scrambler is used in the physical coding sublayer of the physical layer of the

network stack. It randomizes bits to eliminate a long sequence of the same sym-

bol before they are transmitted. In this section, we discuss how we optimized

the scrambler in order to meet the performance requirements for implementing

SoNIC.

64b/66b encoder implements a self-synchronous scrambler in which the

prior 59 bits of the transmitted data is the state of the scrambler. The follow-

ing binary polynomial1 implements the scrambler of 64b/66b encoder:

G(x) = 1 + x39
+ x58 (C.1)

where the polynomial is defined over the Galois field, GF(2), and + is XOR

operation. Considering that x39 is equal to the 39th output bit preceding the

current one, and x58 to the 58th output bit, we can rewrite the equation as

yn = xn + yn−39 + yn−58

where yi is the i-th output bit of an 64-bit payload, and xi is the i-th input bit.

Both x and y are 64-bit data. Let si denote yi−64, then the equation can be rewritten

generally as,

yn = xn + sn+25 + sn+6

For an input block x where 0 ≤ n < 64, the output block y can be divided into

1The most recent bit is the lowest order term following the convention
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three small blocks,

y0···38 = x0···38 + s25···63 + s6···44 (C.2)

y39···57 = x39···57 + s64···82 + s45···63

= x39···57 + y0···18 + s45···63

y58···63 = x58···63 + s83···88 + s64···69

= x58···63 + y19···24 + y0···5

Let s′i be si+6 (6-bit shift to right), s′′i be si+25 (20-bit shift to right), y′i be yi−39 (39-bit

shift to left), and y′′i be yi−58 (58-bit shift to left). Note that y′ and y′′ can be known

after Equation C.2 is computed. Then above equations become

y0···38 = x0···38 + s′′0···38 + s′0···38

y39···57 = x39···57 + y′39···57 + s′39···57

y58···63 = x58···63 + y′58···63 + y′′58···63

Finally, considering shift operations pad zeros, s′
58···63

, s′′
39···63

, y′
0···38

, and y′′
0···57

are

all zeros. This fact leads to following equations:

y0···38 = x0···38 + s′′0···38 + s′0···38

y39···57 = x39···57 + (s′′39···57) + s′39···57 + y′39···57 + (y′′39···57)

y58···63 = x58···63 + (s′′58···63 + s′58···63) + y′58···63 + y′′58···63

where values in () are zeros . The first three terms on the right hand side of each

equation (x, s′, and s′′) can be computed all together, and then y′ and y′′ can be
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XORed to produce the final result. In other words,

t = x + s′′ + s′

= x + (s >> 25) + (s >> 6)

y = t + y′ + y′′

= t + (t << 39) + (t << 58)

The result y is the final output block and becomes s for the next block computa-

tion. Actual implementation in C is shown in Line 20∼27 in Appendix A.3
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APPENDIX D

GLOSSARY OF TERMS

accuracy: Closeness of a measured value to a standard or known value. In clock

synchronization, it is the closeness of a local time to a reference time. In

available bandwidth estimation, it is the closeness of an estimated band-

width to the actual bandwidth available. See also clock synchronization and

available bandwidth.

available bandwidth: The maximum data rate that a system can send down a

network path to another system without going over the capacity between

the two.

bit error rate (BER): The ratio of the number of bits incorrectly delivered from

the number of bits transmitted.

bitstream: A sequence of bits.

clock domain crossing (CDC): delivering a signal from one clock domain into

another in a digital circuit.

clock skew: The time difference between two clocks. See also offset.

clock synchronization: Synchronizing clocks of multiple systems to a common

time.

clock recovery: In high-speed data communications such as Ethernet, bit-

streams do not carry clock signals. As a result, the receiving device re-

covers clock from the transitions in the received bitstream. There must be

enough transitions (one to zero or zero to one) for easier clock synchro-

nization, which is achieved by scrambler in Ethernet.

computer network: A collection of computers and network devices that com-

municate data via data links.
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covert channel: A channel that is not intended for information transfer, but can

leak sensitive information.

covert storage channel: The sender of a covert channel modulates the

value of a storage location to send a message.

covert timing channel: The sender of a covert channel modulates system

resources over time to send a message.

cyclic redundancy check (CRC): A check value that is computed from data and

sent along with data to detect data corruption from the receiver.

datacenter: A facility that consists of racks of servers and a network connecting

servers along with the physical infrastructure and power.

device driver: A computer program that controls a hardware device attached

to a system.

direct memory access (DMA): Transfer of data in and out of main memory

without involving central processing unit.

Ethernet: A family of standards specified in IEEE 802.3 that is used for data

communication between network components in local area networks.

Ethernet frame: A unit of data in Ethernet. See also Ethernet.

field-programmable gate array (FPGA): An integrated circuit that can be con-

figured and programmed after manufacture.

first in first out (FIFO): A data structure where the oldest entry is processed

first.

hardware timestamping: Timestamping performed by network interface cards

before transmitting a packet to a network or after receiving a packet from

a network. See also timestamp.
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homogeneous packet stream: A stream of packets that have the same destina-

tion, the same size and the same IPGs (IPDs) between them. See also inter-

packet delay, interpacket gap and network packet.

interpacket delay (IPD): The time difference between the first bits of two suc-

cessive packets.

interpacket gap (IPG): The time difference between the last bit of one packet

and the first bit of the following packet.

kernel: The core component of operating systems, managing systems resources

and hardware devices, providing interface to userspace programs for ac-

cessing system resources.

meta-stability: An unstable state in a digital circuit where the state does not

settle into ’0’ or ’1’ within a clock cycle.

network: See computer network.

network application: A program running on a host that is communicating with

other programs running on other machines over a network.

network device: See network component.

network component: Network interface cards, switches, routers, or any other

devices that build a network and send, receive, forward or process net-

work packets. See also computer network and network packet.

network covert channel: A covert channel that sends hidden messages over

legitimate packets by modifying packet headers or by modulating inter-

packet delays. See also covert channel.

network interface card (NIC): Device attached to a computer that connects the

host computer to a network.
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network measurement: Measuring the amount and type of network traffic on

a network.

network node: See network component.

network packet: A unit of data being transferred in a network.

network switch: A multi-port network device that forwards network packets

to other network devices.

cut-through switch: A switch that starts forwarding a frame once the des-

tination port is known without checking CRC value. It does not store

an entire frame before forwarding. Switching latency is lower than

store-and-forward switches. See also Cyclic Redundancy Check.

store-and-forward switch: A switch that stores an entire frame, verifies

CRC value, and forwards it to destination port. See also Cyclic Re-

dundancy Check.

network traffic: Data being moved in a network.

offset: In clock synchronization, the time difference between two clocks. See

also clock skew.

oscillator: A circuit or device that generates a periodically oscillating signal.

one way delay (OWD): The time it takes for a message to travel across a net-

work from source to destination.

operating system (OS): A software that manages hardware and software re-

sources and provides abstracts and services for programs.

pacing: Controlling time gaps between network packets.

packet: See network packet.

peripheral device: Hardware device that is attached to a computer.
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peripheral component interconnect express (PCIe): A standard for serial com-

munication bus between a computer and peripheral devices.

precision: Closeness of two or more measurements to each other. In clock syn-

chronization, it is the degree to which clocks are synchronized, or the max-

imum offset between any two clocks. In timestamping packets, it is the

closeness of the timestamp to the actual time it was received. In pacing

packets, it is the closeness of an intended time gap to the actual time gap

between two messages. See also clock synchronization, offset, pacing, and

timestamp.

process: An instance of program that is being executed.

robustness: In covert channels, delivering messages with minimum errors.

round trip time (RTT): The sum of the length of time it takes for a request to be

sent and the length of time it takes for a respond to be received.

router: See network switch.

symbol: A pulse in the communication channel that persists for a fixed period

of time and that represents some number of bits.

symbol stream: A sequence of symbols. See also bitstream and symbol.

synchronization FIFO: A special FIFO that delivers data between two clock do-

mains. See also clock domain crossing and first-in-first-out.

system clock: The number of seconds since the epoch (1 January 1970 00:00:00

UTC).

system time: What a system clock reads. See also system clock.

undetectability: An ability to hide the existence of a covert channel.
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userspace: All code that run outside the operating systems’ kernel. It includes

programs and libraries that provide interface to the operating system. See

also operating system and kernel.

time synchronization protocol: A protocol that achieves clock synchronization

in a network. See also clock synchronization.

timeserver: A server that reads the reference time from an atomic clock or a

GPS receiver and distributes the time to other systems in a network.

timestamp: The time at which an event is recorded, such as when a packet is

transmitted or received.

timestamp counter (TSC): A register in Intel processors that counts the number

of cycles since reset or boot.

transceiver: A device that can both transmit and receive signals.
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