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Abstract. This paper is the first part in a series of two articles

and presents a data-driven wildfire simulator for forecasting

wildfire spread scenarios, at a reduced computational cost

that is consistent with operational systems. The prototype

simulator features the following components: an Eulerian

front propagation solver FIREFLY that adopts a regional-

scale modeling viewpoint, treats wildfires as surface prop-

agating fronts, and uses a description of the local rate of

fire spread (ROS) as a function of environmental conditions

based on Rothermel’s model; a series of airborne-like ob-

servations of the fire front positions; and a data assimilation

(DA) algorithm based on an ensemble Kalman filter (EnKF)

for parameter estimation. This stochastic algorithm partly ac-

counts for the nonlinearities between the input parameters of

the semi-empirical ROS model and the fire front position,

and is sequentially applied to provide a spatially uniform

correction to wind and biomass fuel parameters as obser-

vations become available. A wildfire spread simulator com-

bined with an ensemble-based DA algorithm is therefore a

promising approach to reduce uncertainties in the forecast

position of the fire front and to introduce a paradigm-shift

in the wildfire emergency response. In order to reduce the

computational cost of the EnKF algorithm, a surrogate model

based on a polynomial chaos (PC) expansion is used in place

of the forward model FIREFLY in the resulting hybrid PC-

EnKF algorithm. The performance of EnKF and PC-EnKF is

assessed on synthetically generated simple configurations of

fire spread to provide valuable information and insight on the

benefits of the PC-EnKF approach, as well as on a controlled

grassland fire experiment. The results indicate that the pro-

posed PC-EnKF algorithm features similar performance to

the standard EnKF algorithm, but at a much reduced compu-

tational cost. In particular, the re-analysis and forecast skills

of DA strongly relate to the spatial and temporal variability

of the errors in the ROS model parameters.

1 Introduction

Real-time prediction of the direction and speed of a propa-

gating wildfire has been identified as a valuable research ob-

jective with direct applications in both fire risk management

and fire emergency response (Noonan-Wright et al., 2011).

In addition, the perspective of climate change tends to fa-

vor extreme drought events and to alter precipitations (Milly

et al., 2002; Palmer and Räisänen, 2002; Boé et al., 2009);

these conditions dramatically increase the risk for the de-

velopment of large highly destructive wildfires, commonly

known as megafires (Nijhuis, 2012). In this context, accurate

predictions of the resulting change in fire regime and inten-

sity cannot only rely on the analysis of past observed wildfire

events; the use of a data-driven wildfire spread simulator that
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takes full advantage of the recent technological advances for

geo-referenced front-tracking becomes essential.

Despite our recent progress in computer-based wildfire

spread modeling, our ability to accurately simulate the be-

havior of wildfires remains limited because the underlying

dynamics feature complex multi-physics processes occurring

at multiple scales (Viegas, 2011). The dynamics of wildfires

are determined by interactions between pyrolysis, combus-

tion and flow dynamics, radiation and convection heat trans-

fer, as well as atmospheric dynamics and chemistry. These

interactions occur at the following scales: vegetation scales

that characterize the biomass fuel; topographical scales that

characterize the terrain and vegetation boundary layer; and

meteorological micro/meso-scales that characterize atmo-

spheric conditions.

Relevant insight into wildfire dynamics has been obtained

in recent years via detailed numerical simulations performed

at flame scales (i.e., with a spatial resolution of the or-

der of 1 m). For instance, FIRETEC (Linn et al., 2002) or

WFDS (Mell et al., 2007) combine advanced physical mod-

eling and classical methods of computational fluid dynam-

ics (CFD) to accurately describe the combustion-related pro-

cesses that control the fire behavior (e.g., thermal degradation

of biomass fuel, buoyancy-induced flow, combustion, radia-

tion and convection heat transfer). Note that because of the

high computational cost, flame-scale CFD is currently re-

stricted to research projects (Linn et al., 2002; Mell et al.,

2007; Rochoux, 2014) and is not compatible with opera-

tional applications. In contrast, a regional-scale viewpoint

(i.e., a viewpoint that considers scales ranging from a few

tens of meters up to several kilometers) is adopted in the

following: the fire is described as a two-dimensional front

that self-propagates normal to itself into unburnt vegeta-

tion; the local propagation speed is called the rate of spread

(ROS). This viewpoint is the dominant approach used in

current operational wildfire spread simulators, see for in-

stance FARSITE (Finney, 1998), FOREFIRE (Filippi et al.,

2009, 2013), PROMETHEUS (Tymstra et al., 2010) and

PHOENIX RapidFire (Chong et al., 2013). In particular,

FARSITE uses a model due to Rothermel (1972) that treats

the ROS as a semi-empirical function of biomass fuel proper-

ties associated with a pre-defined fuel category (i.e., the ver-

tical thickness of the fuel layer, the fuel moisture content, the

fuel particle surface-to-volume ratio, the fuel loading and the

fuel particle mass density), topographical properties (i.e., the

terrain slope) and meteorological properties (i.e., the wind

velocity at mid-flame height). This approach is limited in

scope because of the large uncertainties associated with the

accuracy of computer models since they do not account for

the interaction between the fire and the atmosphere, and since

they have a limited domain of validity resulting from a cali-

bration procedure based on experiments (Perry, 1998; Sulli-

van, 2009; Viegas, 2011; Cruz and Alexander, 2013; Finney

et al., 2013). This approach is also limited because of the

large uncertainties associated with many of the input param-

eters to the fire problem (Jimenez et al., 2007; Finney et al.,

2011).

In order to overcome some of the current limitations of

regional-scale wildfire modeling and to build predictive sim-

ulations that are compatible with operational framework, the

uncertainties in the input data of the ROS semi-empirical

model need to be quantified and reduced. The uncertain-

ties inherent in wildfire spread modeling go beyond the lim-

itations of deterministic forecast abilities of the dynamical

model (also referred to as the forward model) and thus, sug-

gest the use of ensemble forecasts to stochastically character-

ize the nonlinear response of the front-tracking simulator to

variations in the input environmental parameters (D’Andrea

et al., 2010; Finney et al., 2011). For instance, Finney et al.

(2011) describes an ensemble-based forecasting capability,

in which a large number of fire spread scenarios (i.e., the

ensemble members) are generated based on a probabilistic

uncertainty in the weather conditions and in the moisture

content of biomass fuels. Model uncertainties are a combi-

nation of epistemic errors that express an imperfect knowl-

edge of the input parameters of the ROS model (that could

in theory be removed), and of aleatoric errors that result

from natural and unpredictable stochastic variabilities of the

physical system (that can be addressed by stochastic models,

see for instance Reference by Pagnini and Mentrelli (2014),

whose model relies on a stochastic component to represent

the transport of firebrands). These uncertainties translate in-

evitably into errors in the output variables of interest (e.g.,

time-evolving position of the front, burnt area, maximum

value for the ROS). The most classical methodologies for un-

certainty quantification in these output variables are random

sample-based statistical methods derived from Monte Carlo

methodologies. While these methodologies are generic and

robust for the simulation of stochastic models, they are how-

ever computationally expensive due to the required size of

the sample (the computational cost of one realization may

be already expensive itself, see Lucor et al., 2007) and each

implementation typically requires ad-hoc variance reduction

techniques (Boyaval, 2012). More efficient sampling meth-

ods have been developed to reach a comparable level of ac-

curacy as Monte Carlo-based techniques but with fewer for-

ward model integrations; these sampling methods take ad-

vantage of the (possible) regularity of the model response

to varying input parameters in order to increase the con-

vergence rate compared to Monte Carlo-based methodolo-

gies. In particular, polynomial chaos (PC) non-intrusive tech-

niques issued from spectral-based representations and intro-

duced by Wiener (1938) are very often efficient in terms of

precision and cost (Ghanem and Spanos, 1991; Le Maître and

Knio, 2010). The key idea is to build a polynomial represen-

tation of the forward model response (referred to as the surro-

gate model) to varying input parameters. Once the surrogate

model is available, it is possible to benefit from a large sam-

ple of realizations (at almost no cost) in order to accurately

characterize the model uncertainties. Still, the application

Nat. Hazards Earth Syst. Sci., 14, 2951–2973, 2014 www.nat-hazards-earth-syst-sci.net/14/2951/2014/



M. C. Rochoux et al.: PC-EnKF parameter estimation for data-driven regional-scale wildfire spread 2953

of PC-based sampling techniques to problems of hyperbolic

conservation laws remains a challenging task (Desprès et al.,

2013).

Recent progress made in airborne remote sensing provides

new ways to monitor real-time fire front positions (Wooster

et al., 2005, 2013; Riggan and Robert, 2009; Paugam et al.,

2013). Unfortunately, these thermal-infrared measurements

provide an incomplete description of the fire spread (in par-

ticular due to the opacity of the fire-induced thermal plume

and/or due to a limited monitoring) and are subject to instru-

mental errors as well as representativeness errors (i.e., incon-

sistency between what the sensor can measure and what the

computer model can describe). From this perspective, data

assimilation (DA) offers a convenient framework for inte-

grating fire sensor observations into a computer model in

order to provide optimal estimates of poorly known model

parameters and/or model state, and to improve in fine pre-

dictions of the fire spread behavior (Mandel et al., 2008;

Cowlard et al., 2010; Lautenberger, 2013; Rochoux, 2014).

The key idea is that, when used alone, neither measurements

nor computer models can provide a reliable and complete de-

scription of the real state of the physical system. In the fol-

lowing, the set of model state and/or model parameters to be

corrected through DA is gathered in the control vector. The

DA algorithm is sequentially applied; each sequence (also

referred to as the assimilation cycle) is decomposed into two

steps: (1) a prediction step, in which the control variables are

advanced in time given some uncertainty ranges; and (2) an

update step based on the classical Bayes’ theorem, in which

new observations are considered and the probability density

function (PDF) of the control variables is modified consis-

tently with the observations in order to reduce the uncer-

tainties in the model outputs (Gelb, 1974; Tarantola, 1987;

Todling and Cohn, 1994; Ide et al., 1997; Kalnay, 2003; Re-

ichle, 2008). The Kalman filter (KF) is the most commonly

used sequential DA technique. However, the KF assumes lin-

ear dynamics between the control variables and the model

outputs as well as a Gaussian statistical distribution for both

modeling and observation errors. Extensions of the KF that

partly overcome these limitations have been proposed, for in-

stance the extended Kalman filter (EKF) that uses local lin-

earization techniques (Gelb, 1974) or the ensemble Kalman

filter (EnKF) that relies on a stochastic description of the

model behavior (Evensen, 1994, 2009). An insightful com-

parison between EKF and EnKF is given within the frame-

work of land DA in Reichle et al. (2002).

In this study, an ensemble-based DA methodology is con-

sidered in order to reduce the uncertainties in the ROS model

parameters using measurements of the time-evolving loca-

tion of the fire front. This study is an extension of our previ-

ous works presented in Rochoux et al. (2013a, b), in which a

prototype data-driven wildfire simulator was developed. The

initial prototype featured the following main components: an

Eulerian front-tracking solver combined with a model de-

scription of the local ROS proposed by Rothermel (1972);

a series of observations of the fire front position; and a cost-

effective EKF-based DA algorithm. This prototype was suc-

cessfully evaluated when applied for estimating the input pa-

rameters of the Rothermel-based ROS model (e.g., the fuel

moisture content, the fuel particle surface-to-volume ratio,

and/or the wind direction and magnitude). However, the EKF

algorithm relies on the assumption that the relation between

a perturbation in the ROS model parameters and the result-

ing changes in the fire front position (i.e., the generalized

observation operator) can locally be approximated by a lin-

ear relation. While the EKF-based studies presented in Ro-

choux et al. (2013a, b) produced encouraging results and

confirmed the value of a DA strategy for improved wild-

fire spread predictions, the linearity assumption is no longer

valid in regional-scale fires, especially when the wind direc-

tion and magnitude vary and the vegetation properties are po-

tentially strongly heterogeneous. To better account for non-

linearities in the generalized observation operator, an exten-

sion to an EnKF approach was preliminarily explored in Ro-

choux et al. (2012). This ensemble-based DA approach was

originally developed for dynamic state estimation (Evensen,

1994) and has already been used in the field of wildfire mod-

eling for correcting the temperature state variable (Beezley

and Mandel, 2008; Mandel et al., 2008, 2011). It was also

largely extended to sequential parameter estimation, for in-

stance in the field of hydrology (Durand et al., 2008; Morad-

khani et al., 2005). Still, the large number of realizations

required by the EnKF algorithm to obtain satisfactory re-

sults (Rochoux, 2014) may prove computationally burden-

some within an operational framework. This behavior of the

EnKF algorithm for parameter estimation is due to four main

reasons: (1) the slow convergence rate of the Monte Carlo

sampling; (2) the nonlinear interrelation between the con-

trol space and the observation space; (3) the complexity of

retrieving the specific signature of each control parameter

on the resulting distribution of the simulated fire front; and

(4) the accumulation of sampling errors along assimilation

cycles that can only be addressed by increasing the size of

the sample (Li and Xiu, 2008). The required size of the sam-

ple significantly increases with the complexity of the physics

(multi-parameter estimation) and the model nonlinearities

(complex physics), thus emphasizing the need for a reduced-

cost EnKF. Efforts have therefore been devoted to design-

ing more efficient EnKF schemes by reducing sampling er-

rors (Szunyogh et al., 2008; Saad, 2007; Li and Xiu, 2008,

2009; Blanchard et al., 2010; Xiu, 2010; Rosić et al., 2013).

For this purpose, and following work from Li and Xiu (2009),

an EnKF strategy based on a PC approximation (PC-EnKF)

is proposed in this paper; the polynomial surrogate model be-

ing used during the EnKF prediction step to generate a large

number of model simulation trajectories at almost no cost

and without loss of accuracy (Birolleau et al., 2014).

In this paper, we present a hybrid PC-EnKF DA algo-

rithm that improves wildfire spread modeling by reduc-

ing uncertainty in the vegetation properties used as inputs
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of the Rothermel-based ROS model. The objective of this

study is to show the feasibility of this approach for wildfire

spread forecasting under several assumptions, i.e., a mini-

malist treatment of the fire front (idealized as an interface and

consistent with the limited knowledge on the environmen-

tal conditions); a semi-empirical formulation of the ROS;

Gaussianity of the errors on the input parameters of the ROS

model and on the observations; prior values for the control

parameters specified based on user-defined mean and error

standard deviation (STD). In this first part, both the EnKF

and PC-EnKF algorithms are limited to the estimation of spa-

tially uniform parameters of the ROS model due to compu-

tational cost constraints and a lack of high-resolution data

on the environmental conditions. Although it seems appro-

priate to translate the inability of a fire spread model to gen-

erate accurate fire front positions into parameter uncertainty,

other sources of uncertainties such as model structural er-

rors or boundary/initial condition errors also need to be ac-

counted for. For this purpose, in the second part of this se-

ries of two articles (Rochoux et al., 2014), a state estimation

strategy is designed to address anisotropic uncertainties in

wildfire spread as well as to provide observation-informed

initial condition for model integration at future lead times.

Thus, parameter estimation and state estimation are comple-

mentary approaches that are valuable for wildfire behavior

forecasting; it is therefore important to discuss their benefits

and drawbacks for experiments with increasing complexity.

The outline of the paper is as follows. Section 2 presents

the available observations of the fire behavior and the wild-

fire spread model named FIREFLY (i.e., the forward model).

The hybrid PC-EnKF algorithm developed for the wildfire

application is presented in Sect. 3; in this section, the sequen-

tial implementation of the ensemble-based algorithms is also

described. Section 4 illustrates how the classical EnKF and

the hybrid PC-EnKF allow to properly estimate model pa-

rameters on simple test cases, in which the observations are

synthetically generated. The performance of the data-driven

wildfire spread capability using the reduced-cost approach

is demonstrated in a validation test corresponding to a con-

trolled grassland fire experiment.

2 Information on wildfires at regional scales:

observations and forward model

2.1 Observations of the fire front location

2.1.1 Overview of available observations of fire spread

In practice, continental surfaces and vegetation are mainly

observed within the mid- and near-infrared regions of the

electromagnetic spectrum of wavelengths (0.75 to 15 µm). It

is known that for high temperatures as encountered in wild-

fires (varying from 600 K for smoldering to 1200 K in the

flaming zone), the maximum radiant intensity occurs within

the mid-infrared (MIR) region. Thus, current spaceborne and

airborne systems observe wildfires within a narrow wave-

band centered on the 3.9-micron wavelength (Butler et al.,

2004; Wooster et al., 2005, 2013; Paugam et al., 2013; Ro-

choux, 2014), which is both sensitive to flaming and smolder-

ing combustion modes. Beyond fire detection, remote sens-

ing is regarded as a promising approach to provide a quan-

titative description of the fire radiation release to charac-

terize sub-pixel fires (occupying a limited area of the sen-

sor pixel down to 0.1 to 1 % of the pixel area) and to esti-

mate fuel consumption as well as smoke emissions (Wooster

et al., 2013). Using spaceborne or airborne platforms, the fire

radiative power (FRP) emissions are detected in the burn-

ing area, while non-active areas remain blank. This infor-

mation is crucial to retrieve the brightness temperature and

thus, to track the time-evolving location of the fire front. For

instance, Paugam et al. (2013) showed that spatiotemporal

variations of the flame front ROS can be accurately retrieved

using FRP analysis on a reduced-scale controlled fire experi-

ment (the final burnt area of the reduced-scale study is about

1000 m2); ongoing research aims at extending this FRP anal-

ysis to regional-scale wildfire spread.1,2

Currently, most spaceborne instruments, including the pi-

oneer generation such as the AVHRR (Advanced Very High

Resolution Radiometer) and the MODIS (MOderate resolu-

tion Imaging Spectroradiometer), offer neither a sufficiently

short revisit period nor a high enough spatial resolution im-

agery for efficient front-tracking at regional scales. While

these objectives no longer seem out of reach for the dual

SPOT-Pléiades constellation,3 airborne platforms still seem

the most suitable solution for real-time geo-location of ac-

tive fire contours. Typical examples are the LIVEFIRE sys-

tem (Merlet, 2008; Crombette, 2010) and its US counterpart

FIREMAPPER system deployed since 2004 by the US Forest

Service and the US Department of Interior Bureau of Land

Management (Riggan and Robert, 2009). As a complement,

spaceborne data could be used for validation as well as cali-

bration of models and DA procedures.

2.1.2 Choice of observations for data assimilation

In the present study, we assume that observations of the

fire front position are available and that these observations

can be made at different relevant times with a low mea-

surement error (typically, 0–30 m for the LIVEFIRE sys-

tem). In the following, the observed fire front is represented

as a segmented line using a pre-defined number of equally

spaced markers (i.e., the No
fr observation markers); the obser-

vation vector noted yo
t contains the two-dimensional coordi-

nates (xo
i ,yo

i ) of the fire front markers (the subscript i is the

1http://wildfire.geog.kcl.ac.uk/
2http://gofc-fire.umd.edu/
3https://directory.eoportal.org/web/eoportal/satellite-missions/

p/pleiades
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Figure 1. Eulerian front-tracking simulator FIREFLY. Left: the fire

front is the cfr = 0.5 contour line; Ŵ measures the local ROS of

the fire along the normal direction to the front nfr (defined by the

direction angle of fire propagation αfr) given the wind velocity vec-

tor (u∗
w,α∗

w). Right: profile of the spatial variations of the progress

variable c across the fire front, (xi ,yi ) representing the location of

the ith fire front marker.

index of a particular marker in the observation vector, with

i = 1, · · · ,No
fr) observed at the analysis time t . The size of

the observation vector yo
t is 2No

fr. The coordinates of the fire

front markers are assumed to have independent Gaussian-like

random errors ǫo with zero mean and with STD σ o. Note

that this classical assumption of uncorrelated observation er-

rors could be questionable. However, this aspect is out of the

scope of this study and is still under active research in the DA

field (Brankart et al., 2009; Gorin and Tsyrulnikov, 2011).

Two types of experiments are presented in the follow-

ing: observation system simulation experiments (OSSE), in

which observations are synthetically generated using a refer-

ence solution of the FIREFLY fire spread model (called the

true evolution) that is modified by random observation er-

rors ǫo; and a controlled grassland fire experiment, in which

the observations are reconstructed from measured tempera-

ture maps and using a definition of the fire front as the 600 K

temperature contour line.

2.2 The fire spread model (the forward model)

The front-tracking solver, called FIREFLY and formally

noted M in the following, simulates the propagation of sur-

face wildfires within the biomass fuel bed and at regional

scales, as illustrated in Fig. 1. Note that the present study is

limited to flat terrains and problems with complex topogra-

phy are outside its scope. FIREFLY tracks the time-evolving

location of the fire front using the following three compo-

nents: (1) a sub-model for the ROS noted Ŵ; (2) an Eulerian

front-tracking solver for the fire front propagation equation;

and (3) an isocontour algorithm for the reconstruction of the

fire front.

2.2.1 The Rothermel-based rate of spread sub-model

(a) Original one-dimensional formulation

The ROS sub-model is based on the widely used semi-

empirical model due to Rothermel (1972) that describes Ŵ as

a function of the local environmental conditions (e.g., veg-

etation and weather properties). The ROS is derived from

the one-dimensional formulation of the energy balance equa-

tion per unit volume of the unburnt biomass fuel located

ahead of the flame; the physical quantities involved in this

energy balance are then parameterized using wind-tunnel ex-

periments. In this formulation, Ŵ [m s−1] is expressed as the

ratio between the heat flux received by the unburnt vegeta-

tion Ip [J m−2 s−1] and the energy required to ignite the fuel

Hig [J m−3]. Ŵ reads as follows:

Ŵ =
Ip

Hig
=

ξ Ir

ρb χ Qig

(

1 + 8w

)

. (1)

Ip is a function of the energy release rate of the combus-

tion Ir, of the dimensionless propagating flux ratio ξ (that de-

scribes the proportion of energy that is released by the flame

and transferred to the vegetation in the non-flaming zone).

The wind correction coefficient 8w, which was determined

for a one-dimensional case corresponding to a head fire con-

figuration, nonlinearly depends on the wind velocity magni-

tude at mid-flame height uw such that

8w ≡ 8w(uw) = Cw uBw
w

(

βv

βv, opt

)−Ew

, (2)

with Cw, Bw and Ew calibrated parameters depending on

the biomass fuel surface-to-volume ratio 6v [m−1], with

βv the biomass fuel packing ratio and βv, opt ≡ βv, opt(6v)

its optimum value (optimum meaning that βv,opt character-

izes the optimum arrangement of the biomass fuel parti-

cles that produces the most effective mixing between air and

fuel gas reactants for the occurrence of combustion). The

ignition energy Hig is formulated as Hig = ρb χ Qig, with

Qig [J kg−1] the heat of ignition, χ the dimensionless ef-

fective heating number (i.e., amount of fuel effectively in-

volved in the ignition process) and ρb [kg m−3] the biomass

fuel bulk mass density that satisfies ρb = βv ρp for a porous

medium, ρp [kg m−3] being the biomass fuel particle mass

density.

The expression for the local ROS Ŵ due to Rothermel may

be written in the following compact form that is equivalent

to Eq. (1):

Ŵ ≡ Ŵ
(

δv,Mv,Mv, ext,6v,m
′′
v,ρp,1hc,uw

)

, (3)

where the nomenclature for the input parameters are sum-

marized in Table 1. Note that the fuel loading m′′
v [kg m−2]

satisfies m′′
v = ρb δv/(1+st) = (βvρp)δv/(1+st), st being the

fuel particle total mineral content.

www.nat-hazards-earth-syst-sci.net/14/2951/2014/ Nat. Hazards Earth Syst. Sci., 14, 2951–2973, 2014
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Table 1. Input parameters of the Rothermel-based ROS sub-model.

Name Symbol Unit

Fuel depth (vertical thickness of the vegetation layer) δv m

Fuel moisture (mass of water divided by mass of dry vegetation) Mv %

Fuel moisture at extinction Mv, ext %

Fuel particle surface-to-volume ratio 6v m−1

Fuel loading m′′
v kg m−2

Fuel particle mass density ρp kg m−3

Fuel heat of combustion 1hc J kg−1

Wind velocity magnitude at mid-flame height (projected onto horizontal plane) uw m s−1

(b) Extension to two-dimensional surface wildfire spread

The original Rothermel’s one-dimensional model is extended

to two-dimensional configurations, in order to account for the

wind effects on the shape of the fireline, while still maintain-

ing a simple parameterization of the ROS with respect to lo-

cal environmental conditions. Accounting for wind-induced

wildfire spread in FIREFLY is such that when the wind blows

in the direction of the fire spread (i.e., a head fire configura-

tion), the wind contribution to the ROS is maximum. On the

contrary, the wind contribution to the ROS is zero when the

wind blows in the direction opposite to the direction of the

fire spread (i.e., a rear fire configuration), meaning that the

fire propagates at the value of no-wind ROS on this section

of the fire front (i.e., 8w = 0). On the flanks, the fire front

advances faster than in the absence of wind (i.e., 8w > 0).

This implies that the ROS can drastically change along the

fireline at a given time. For this purpose, characteristic an-

gles in the horizontal plane (x,y) are defined to represent the

direction angle of the wind noted α∗
w and the direction angle

of the fire propagation noted αfr (the index fr referring to the

front); αfr indicates the outward-pointing normal direction to

the fire front noted nfr (see Fig. 1). These angles are defined

from the northern direction, namely from the positive y co-

ordinates and increasing in the clockwise direction. Since the

propagation of wildfires is anisotropic, the normal vector nfr

is not uniform along the fireline and is modified over time,

with

nfr ≡ nfr(x,y, t) =

(

sin αfr(x,y, t)

cos αfr(x,y, t)

)

. (4)

Thus, the wind velocity magnitude at mid-flame height uw

(see Table 1) corresponds to the projection of the wind ve-

locity vector u∗
w along the normal direction to the front nfr:

uw ≡ uw(x,y, t) = u∗
w · nfr(x,y, t), (5)

with u∗
w defined by its magnitude, u∗

w [m s−1], and direction

angle, α∗
w [◦]:

u∗
w =

(

u∗
w sin α∗

w

u∗
w cos α∗

w

)

. (6)

In the following, u∗
w and α∗

w are treated as spatially uni-

form and time-independent. The projected wind velocity

at mid-flame height uw ≡ uw(x,y, t) is a time-dependent

and spatially varying quantity along the propagating fire-

line. It is worth noting that the wind contribution 8w is

forced to a zero-value in FIREFLY when the scalar prod-

uct u∗
w · nfr(x,y, t) is negative (see Eq. 5) to ensure that the

ROS Ŵ remains positive. This is consistent with the common

assumption in the field of fire spread modeling that the fire

propagates at least at the no-wind ROS. As for biomass fuel

properties, the fuel depth δv ≡ δv(x,y) is treated as a time-

independent, spatially varying quantity; all other ROS model

parameters are treated as constant and uniform.

(c) Sensitivity study of the rate of spread

The identification of which parameters are important to in-

clude in the control vector (denoted by x) is an essential step

towards the application of DA to FIREFLY. The key idea

when dealing with parameter estimation is to focus the cor-

rection on a reduced set of parameters that have significant

uncertainties and to which FIREFLY is the most sensitive.

In order to identify to which input parameters the ROS

Ŵ is the most sensitive among biomass fuel properties and

weather conditions, a sensitivity study is carried out with

the classical one-dimensional Rothermel’s model for short

grass. Nominal environmental conditions are as follows:

the head fire propagates in presence of a moderate wind

u∗
w = 1m s−1, and the vegetation is characterized by the

moisture content Mv = 20%, the particle surface-to-volume

ratio 6v = 11485m−1, the layer thickness δv = 0.5m, and

the layer packing ratio βv = 0.106%. These four parame-

ters are perturbed around these nominal conditions. Note that

the moisture at extinction Mv, ext = 30%, the fuel particle

mass density ρp = 512.6 kg m−3, the effective fuel mineral

content se = 1% (st = 5.55%), and the heat of combustion

1hc = 1.861×107 J kg−1 remain constant and correspond to

the standard values of the Rothermel’s fuel database (Rother-

mel, 1972).

Figure 2 compares the variability in the ROS Ŵ when un-

certainties are assumed in four parameters, u∗
w, Mv, 6v and

βv. It is found that the ROS values are the most sensitive to
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Figure 2. Sensitivity of the Rothermel-based ROS Ŵ to environmen-

tal parameters; nominal conditions are indicated by vertical lines.

u∗
w. As for biomass fuel properties, they feature a wide scat-

ter for Mv and 6v, while Ŵ is less sensitive to βv, indicating

that a lack of information in u∗
w, Mv and 6v results in a sig-

nificant uncertainty range in the ROS model predictions. It

is also shown that the ROS Ŵ depends nonlinearly on the

pair of parameters Mv and 6v; in particular, there is a ROS

acceleration when the biomass fuel becomes drier or when

the biomass fuel particles become thinner. Note that these

nonlinearities are more important when the wind magnitude

fluctuates over time or when the fire active area is covered

by heterogeneous biomass fuels. This highlights the impor-

tance of applying a DA methodology able to handle multiple

sources of nonlinearities in the fire spread model.

2.2.2 The Eulerian front-tracking solver

An Eulerian front-tracking solver is used to propagate the

fire front at the Rothermel-based ROS. FIREFLY adopts a

classical approach taken from the premixed combustion lit-

erature (Poinsot and Veynante, 2005), in which a reaction

progress variable noted c ≡ c(x,y, t) is used as the prognos-

tic variable of the solver and is introduced as a flame marker:

c = 0 in the unburnt vegetation, c = 1 in the burnt vegetation,

and the flame front is identified as the contour line cfr = 0.5

as illustrated in Fig. 1. In the Eulerian front propagation tech-

nique, the progress variable c is calculated as a solution of the

following propagation equation:

∂c

∂t
= −γ · ∇c = Ŵ |∇c| , (7)

with Ŵ = γ · nfr the projected ROS given by Eq. (3) and de-

fined along the normal direction to the fire front that satisfies

nfr = −∇c/ |∇c| .

Equation (7) is solved using a second-order Runge–Kutta

scheme for time-integration and an advection algorithm for

spatial discretization based on a second-order total varia-

tion diminishing (TVD) scheme combined with a Superbee

slope limiter (Rehm and McDermott, 2009; Mallet et al.,

2009). Note that FIREFLY requires a two-dimensional field

c(x,y, t −1) as initial condition of any time period [t −1, t].

This initial condition is constructed such that the transition

between c = 0 and c = 1 is smooth; a tangent hyperbolic

function is used to represent this transition.

The validation of the FIREFLY Eulerian front-tracking

solver was presented in prior works (Rochoux et al., 2013a;

Rochoux, 2014). Model diagnostics were developed to en-

sure the correct numerical behavior of FIREFLY. These di-

agnostics were derived from the Kolmogorov–Petrovsky–

Piskounov (KPP) analysis valid for uniform fuel condi-

tions (Poinsot and Veynante, 2005) and extended to het-

erogeneous biomass fuel for application to wildfire spread.

They verify that the rate of change of the progress variable c

matches the average ROS along the fireline and also that the

ROS at the head of the fire is consistent with the Rothermel’s

0-D formulation (see Eq. 3). In addition, they also verify that

the front thickness, estimated as the average inverse of the

maximum gradient of c, remains small (i.e., a few mesh step-

sizes) and relatively constant over time. In all tests performed

to date, these diagnostics have showed the non-diffusive be-

havior of the numerical scheme underlying FIREFLY, con-

sistently with the physics of the fire spread problem. Further

details are provided in Rochoux (2014).

2.2.3 Reconstruction of the simulated fire front and

comparison with the observed fire front

Once the spatiotemporal variations of the progress reaction

c are known, the position of the fire front is extracted using

a simple isocontour algorithm such that, formally, the outputs

of the FIREFLY model are as follows:

[

(xi, yi), 1 ≤ i ≤ Nfr

]

= M[t−1,t](ct−1,λ), (8)

where (xi,yi) represents the two-dimensional coordinates of

the Nfr front markers obtained at time t (the index i indi-

cating the marker), where ct−1 designates the initial con-

dition (i.e., the spatial distribution of the progress variable

c at time (t − 1)), and where λ designates the list of in-

put parameters of the ROS model presented in Table 1,

λ = (δv,Mv,Mv, ext,6v,m
′′
v,ρp,1hc,uw).

The correction provided by the DA algorithm relies on

the comparison between the FIREFLY simulated fire front
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Figure 3. Construction of the differences between simulated

fire front (SFF) and observed fire front (OFF) noted d t =

[dt,1, · · · ,dt,No
fr
]. In this illustration, r = Nfr/N

o
fr

= 4.

(SFF) described by the Nfr markers (corresponding to a fine-

grained discretization of the front) and the observed fire front

(OFF) at time t . Since observations of the fire front position

are likely to be provided with a much coarser resolution and

since they may cover only a fraction of the fire front perime-

ter, the OFF is discretized with a set of No
fr markers such that

the observation vector yo
t reads:

yo
t =

[

(xo
1 ,yo

1), (xo
2 ,yo

2), . . . , (xo
No

fr
,yo

No
fr
)
]

, (9)

with No
fr much lower than Nfr. In order to compare SFF

with OFF, a selection operator H is introduced. This oper-

ator pairs a subset of No
fr markers along SFF with the No

fr

markers along OFF, associating each marker of OFF with its

closest neighbor along SFF (see Fig. 3). Preliminary tests re-

ported in Rochoux (2014) have shown that a simple treat-

ment (taking 1 out of every r points) provides reasonable re-

sults. Thus, No
fr = (Nfr/r), where r is an integer taking val-

ues much larger than 1 that represents the difference in reso-

lution between SFF and OFF. One of the advantages of this

representation of the fire fronts is that it provides a local in-

formation on the discrepancies between SFF and OFF, and

not only a global information such as the difference in the

burnt area or in the fireline perimeter. This local information

is efficient at representing the anisotropy in wildfire spread.

It is worth noting that the topology of the fire front can

be complex in real-world wildfire spread cases, and/or only

a section of the fire front can be observed due to the opacity

of the fire-induced thermal plume or due to a limited moni-

toring. Thus, the pairing between simulated markers and ob-

served markers becomes more challenging for complex fire

front topology. The generalization of this treatment to com-

plex fire front topology is out of the scope of this study.

It is also worth mentioning that the EnKF and PC-EnKF

parameter estimation strategies presented in this paper are

valid for any fire spread model; FIREFLY could readily be

replaced by any other front-tracking wildfire spread simula-

tor, for instance FARSITE, FOREFIRE, PROMETHEUS or

PHOENIX RapidFire.

3 Data assimilation algorithm: the polynomial

chaos-based ensemble Kalman filter

3.1 The standard ensemble Kalman filter

We present here the ensemble Kalman filter (EnKF) algo-

rithm applied, in the context of parameter estimation, for one

assimilation cycle between time (t − 1) and time t .

3.1.1 Definition of the control space

The vector xt ∈ R
n corresponds to the control vector that in-

cludes the n uncertain parameters to be estimated over the

assimilation cycle [t − 1, t]. This implies that the location of

the fire front is not estimated by the EnKF but is indirectly

modified by integrating again the fire spread model over the

time window [t − 1, t] with the newly estimated control pa-

rameters. Note that a parameter estimation approach can be

considered by itself as an estimation problem and does not

need to be combined with a state estimation approach to ob-

tain an optimal EnKF (Pétron et al., 2002; Peters et al., 2005,

2007; Moradkhani et al., 2005; Durand et al., 2008; Ruiz

et al., 2013a).

In the present study, the control parameters xt are assumed

global (i.e., spatially uniform) and constant over the time

window [t − 1, t]; they are only modified when moving to

the next time window [t, t + 1].

3.1.2 Generalized observation operator

The generalized observation operator Gt maps the control

space of xt onto the observation space of yo
t . Within the

framework of parameter estimation, Gt is a composition

of the fire spread model M[t−1,t] (providing the Nfr front

marker locations associated with a realization of the control

vector xt ) with the selection operator Ht (taking 1 out of ev-

ery r = Nfr/N
o
fr markers along SFF at time t). Formally, Gt

reads:

yt = Gt (xt ) = Ht ◦M[t−1,t](ct−1,λ
′,xt ), (10)

with yt the location of the No
fr fire front markers associated

with a set of control parameters xt at time t (corresponding to

the model counterparts of the observed quantities), and with

λ′ the input parameters of the Rothermel-based model that

are not included in the control vector xt . In the following,

both xt and yo
t are considered as random variables.

The observation operator Gt defined in Eq. (10) is time-

dependent since OFF is dynamically evolving: the selection

procedure Ht depends on the location and on the topology of

the fire front at a given time, implying that the observation

operator is not the same for all members of the ensemble.

This formulation is an unusual application of the EnKF algo-

rithm.
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Figure 4. Flowchart of the EnKF algorithm during the [t − 1, t] as-

similation cycle for a parameter estimation approach. Data random-

ization (Burgers et al., 1998) is used in the EnKF with ξo,(k) fol-

lowing observation error statistics for each member k = 1, · · · ,Ne.

3.1.3 Sequential estimation

The EnKF algorithm is sequentially applied over an assimi-

lation window [t −1, t]; each assimilation cycle decomposes

into two successive steps for each member of the ensemble

indexed by the exponent k as illustrated in Fig. 4:

1. a prediction step (forecast), in which the system is

evolved from time (t − 1) to time t (t being the next

observation time) through an integration of FIREFLY

to forecast the fire front position yt given some uncer-

tainty ranges in the control vector xt . We note pf(xt )

this PDF of the control vector (also called the forecast

PDF) at time t . We also note F[t−1,t] the operator de-

scribing the temporal evolution of the control parame-

ters from time (t−1) to time t , with xt = F[t−1,t](xt−1).

A temporal evolution of the control vector is introduced

here to fit with the classical description of the EnKF al-

gorithm: since there is no dynamic model available to

describe the evolution of the control parameters, persis-

tence forecasting is used to relate the forecast control

parameters to the analysis control parameters (Peters

et al., 2005). For this purpose, two techniques are re-

ported in the literature, inflation on the one hand, a ran-

dom walk model on the other hand (West, 1993; Morad-

khani et al., 2005; Ruiz et al, 2013b). In this study, the

parameter evolution model F[t−1,t] is artificially set up

using a random walk model (see Eq. 23).

2. an update step (analysis), in which new observations are

considered at the analysis time t and the forecast PDF

of the control parameters is modified consistently with

the observations yo
t , in order to reduce the uncertainties

in the computer model outputs yt . The new PDF, called

the analysis and noted pa(xt ), is given by the classical

Bayes’ theorem:

pa(xt ) ∝ p(yo
t |xt )pf(xt ), (11)

where the symbol ∝ means proportional to and where

p(yo
t |xt ) represents the data likelihood, i.e., the condi-

tional PDF of having the observations yo
t given the con-

trol vector xt .

Based on Bayesian theory, the EnKF algorithm assumes

that the errors on the control parameters xt and the errors on

the observations yo
t are random variables defined by Gaus-

sian PDFs with a zero mean value and an error covariance

model. Under these assumptions, the forecast PDF may be

written as follows:

pf(xt ) ∝ exp

{

−
1

2

(

xt − xf
t

)T
(Pf

t )
−1

(

xt − xf
t

)

}

, (12)

where xf
t is the forecast estimate of the control vector, and

where Pf
t ∈ R

n×n is the forecast error covariance matrix rep-

resenting errors in the ROS model parameters. The data like-

lihood may be similarly expressed as follows:

p(yo
t |xt ) ∝ exp

{

−
1

2
dT

t R−1 d t

}

, (13)

with R ∈ R
2No

fr×2No
fr the observation error covariance matrix

representing observation errors (assumed constant over time

in this study), and with d t the innovation vector of size 2No
fr

corresponding to the differences between SFF and OFF:

d t = yo
t − yf

t = yo
t −Gt (x

f
t ). (14)

Using the selection procedure (see Fig. 3), d t is simply de-

fined as the vector formed by the directed distances between

the paired SFF-OFF markers. Note that the statistical mo-

ments of d t (e.g., mean and STD) provide a convenient mea-

sure of the deviations of model predictions from observa-

tions.

Within this framework, the analysis PDF from Eq. (11) is

also Gaussian and is written as follows:

pa(xt ) ∝ exp

{

−
1

2

(

xt − xf
t

)T
(Pf

t )
−1

(

xt − xf
t

)

−
1

2
dT

t R−1 d t

}

, (15)

∝ exp

{

−
1

2

(

xt − xa
t

)T
(Pa

t )
−1

(

xt − xa
t

)

}

, (16)

where xa
t is the analysis estimate of the control vector, and

where Pa
t ∈ R

n×n is the analysis error covariance matrix.

Conditional mode estimation searches for the mode of the

PDF pa(xt ), i.e., the value of the control vector xt that max-

imizes the probability to estimate its true value xt
t . Under

Gaussian assumption, this maximum likelihood estimation is
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equivalent to a minimization problem:

max
xt∈Rn

pa(xt ) ⇐⇒ min
xt∈Rn

{

− ln[pa(xt )]
}

= min
xt∈Rn

J (xt ), (17)

with J the cost function of the estimation problem defined

as follows:

J (xt )=
1

2

(

xt−xf
t

)T
(Pf

t )
−1

(

xt−xf
t

)

+
1

2
dT

t (R)−1 d t . (18)

The direct minimization of J leads to the classical KF equa-

tions when the generalized observation operator Gt is linear

(denoted by Gt ). In the present case, this implies that the fire

spread model M[t−1,t] is linear and that the parameter evo-

lution model F[t−1,t] is linear (denoted by F[t−1,t]). Using

these assumptions, it could be shown that the forecast in the

prediction step is obtained via the integration of the follow-

ing equations:

xf
t = F[t−1,t] x

a
t−1, Pf

t = F[t−1,t] Pf
t−1 FT

[t−1,t], (19)

assuming there is no error in the formulation of the param-

eter evolution model. In this context, the analysis update in

Eq. (16) leads to the following equations:

xa
t = xf

t + Kt

(

yo
t − Gt x

f
t

)

, (20)

Kt = Pf
t GT

t

(

GtP
f
t GT

t + R
)−1

, (21)

Pa
t =

(

In − Kt Gt

)

Pf
t , (22)

where Kt is called the gain matrix. Starting from a prior value

of the control parameters (i.e., the forecast xf
t ) and using the

observations yo
t available at time t , the analysis estimate xa

t

is a feedback information for the fire spread model; xa
t is

optimal when the variance of its distance to the true value

xt
t gets to a minimum, meaning, for Gaussian cases, that its

PDF is dense around its mean. The expressions in Eqs. (20–

22) are the basis of the EKF algorithm used in Rochoux et al.

(2013a, b), F[t−1,t] and Gt being the tangent linear opera-

tors (Jacobian) of F[t−1,t] and M[t−1,t] in the vicinity of the

control vector xt , respectively. Thus, in the EKF, a linearized

and approximate equation is used for the prediction of errors

statistics as well as for the relation between the control space

and the observation space.

In contrast, the EnKF algorithm used in this study does not

require the explicit use of the linear operators F[t−1,t] and Gt

in the prediction step. As shown in Fig. 4, the forecast control

parameters xf
t are stochastically represented at time t based

on Ne realizations called the ensemble members

[

x
f,(1)
t , · · · ,x

f,(k)
t , · · · ,x

f,(Ne)
t

]

,

with k varying between 1 and Ne. These realizations are ran-

domly generated based on mean and error STD according to

the user-defined confidence interval for each control param-

eter over the first assimilation cycle and to previous analysis

results for next assimilation cycles. The temporal evolution

of the control parameters is artificially set up using a random

walk model so that the k-th ensemble member reads:

x
f,(k)
t = F[t−1,t]

(

x
a,(k)
t−1

)

= xa
t−1 + e

(k)
t−1, (23)

where xa
t−1 is the mean of the posterior estimates obtained at

the previous analysis time (t − 1), and where e
(k)
t−1 is a ran-

domly generated white noise following a Gaussian distribu-

tion of zero mean and given STD (taken equal to the forecast

error STD σ f in the following). Thus, the generation of the

ensemble of forecast parameters at time t is performed in two

steps as in Peters et al. (2005): (1) the mean forecast estimate

over the time window [t, t +1] is specified using the mean of

the analysis estimates obtained over the previous assimilation

cycle [t−1, t]; and (2) the ensemble of forecast parameters is

obtained by applying a STD to this mean forecast estimate.

Additionally, the error STD used in the random walk model

remains constant over all assimilation cycles (Peters et al.,

2005; Ruiz et al, 2013b). A series of Ne independent forward

model integrations up to the analysis time t based on these

Ne realizations of the control parameters is performed (start-

ing from the same initial condition at time (t − 1) that cor-

responds to the mean of the posterior estimates xa
t−1); this

forecast step provides Ne fire front positions at time t cor-

responding to the model counterparts of the observed quan-

tities and designated as [y
f,(1)
t , · · · ,y

f,(k)
t , · · · ,y

f,(Ne)
t ], with

y
f,(k)
t = Gt (x

f,(k)
t ) for the kth ensemble member.

We note Cxy ∈ R
n×2No

fr the matrix that represents the

stochastically based relation between the control space (of

size n) and the observation space (of size 2No
fr); Cxy is ex-

pressed as follows:

Cxy = Pf
tG

T
t (24)

=

Ne
∑

k=1

(

x
f,(k)
t − xf

t

)(

Gt (x
f,(k)
t ) −Gt (x

f
t )

)T

Ne − 1
,

where the overline denotes the mean value over the en-

semble. Similarly, the symmetric error covariance matrix on

the predicted measurements denoted by Cyy ∈ R
2No

fr×2No
fr is

stochastically formulated as follows:

Cyy = GtP
f
tG

T
t (25)

=

Ne
∑

k=1

(

Gt (x
f,(k)
t ) −Gt (x

f
t )

)(

Gt (x
f,(k)
t ) −Gt (x

f
t )

)T

Ne − 1
.

This means that the EnKF algorithm approximates the mean

and the covariance of the forecast by the mean and the covari-

ance of an ensemble, while still making the assumption that

all PDFs are Gaussian. Additionally, the distance between the

kth prediction y
f,(k)
t = Gt (x

f,(k)
t ) and the observation vector

yo
t is computed according to Burgers et al. (1998), meaning

Nat. Hazards Earth Syst. Sci., 14, 2951–2973, 2014 www.nat-hazards-earth-syst-sci.net/14/2951/2014/



M. C. Rochoux et al.: PC-EnKF parameter estimation for data-driven regional-scale wildfire spread 2961

that an additional noise ξo,(k) is added to the observation vec-

tor to avoid ensemble collapse. Thus, for the kth member, the

innovation vector d
(k)
t reads:

d
(k)
t = yo

t + ξo,(k) − y
f,(k)
t . (26)

During the analysis, each ensemble member is updated based

on the classical KF formulation presented in Eqs. (20)–(22),

with the difference than the generalized observation operator

Gt is nonlinear and that the gain matrix Ke
t is now stochasti-

cally calculated using Eqs. (24)–(25). The kth member anal-

ysis satisfies:

x
a,(k)
t = x

f,(k)
t + Ke

t

(

yo
t + ξo,(k) −Gt

(

x
f,(k)
t

))

, (27)

Ke
t = Cxy(Cyy + R)−1. (28)

One of the advantages of the EnKF formulation in Eqs. (27)–

(28) is that the explicit estimation of the tangent-linear of the

observation operator Gt (including the tangent-linear of the

fire spread model for parameter estimation) is avoided. This

ensemble-based method allows the nonlinearity in the obser-

vation operator Gt to be better taken into account than a local

estimation Gt achieved for instance through a finite differ-

ence scheme as in the EKF (Ros and Borga, 1997; Rochoux

et al., 2013a, b). The use of Eqs. (27)–(28) provides an en-

semble of posterior estimates at time t ,

[

x
a,(1)
t , · · · ,x

a,(k)
t , · · · ,x

a,(Ne)
t

]

,

which is easily used to simulate over the time window [t −

1, t] an ensemble of retrospective posterior estimates of the

fire front positions [y
a,(1)
t , · · · ,y

a,(k)
t , · · · ,y

a,(Ne)
t ] as well as

an ensemble of forecasts of the fire spread beyond time t .

Note that in the present study, we assume that observation

errors are uncorrelated, i.e., the observation error covariance

matrix R is treated as a diagonal matrix, in which each diag-

onal term is the error variance (σ o)2 associated with the error

in the x- or y-coordinate of the markers along OFF.

As a summary, the main steps of the proposed EnKF al-

gorithm for parameter estimation over the assimilation cycle

[t − 1, t], are as follows:

1. build an ensemble of forecast control parameters based

on Eq. (23), starting from the progress variable field cor-

responding to the mean analysis field obtained at time

(t − 1);

2. compute the observation operator through Eq. (10),

which includes the FIREFLY fire spread model integra-

tion from time (t − 1) to time t , in order to obtain the

model counterparts of the observations at time t ;

3. apply the Kalman filter update equation at time t for

each member of the ensemble based on Eqs. (24)–(28);

EnKF prediction 

Surrogate model 

Surrogate model 

Forward model Hermite quadrature Simulated fire fronts 
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distribution!
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(
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)
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Figure 5. Flowchart of the PC-EnKF algorithm during the assimila-

tion cycle [t −1, t] decomposed into three steps: (1) construction of

the PC expansion of the generalized observation operator; (2) EnKF

prediction and update for the assimilation cycle [t−1, t]; and (3) pa-

rameter evolution to the next assimilation cycle [t, t + 1].

4. re-integrate the model Eq. (8) with the analysis parame-

ters over the time period [t−1, t] to obtain the corrected

locations of the fire front and the updated progress vari-

able field at time t .

To move to the next assimilation cycle [t, t + 1], step (1)

can be performed again. The integration of the FIREFLY fire

spread model starts again from the location of the fire front

associated with the mean analysis estimate at time t , using

the modified control parameters following the random walk

model (see Eq. 23).

The proposed parameter estimation algorithm can be re-

garded as a three-dimensional variational technique with a

stochastically based estimation of the error covariance ma-

trices; the three-dimensional variational technique also lacks

the dynamic interrelation between analysis and forecast error

covariances (Peters et al., 2005; Ruiz et al, 2013b).

3.2 Polynomial chaos-based ensemble Kalman filter

In the classical EnKF algorithm, a Monte Carlo sampling

is used to generate the forecast members xf
t and their as-

sociated fire front trajectory yf
t . While this provides accu-

rate access to the full statistics of the modeling uncertainties

(provided the ensemble Ne is sufficiently large), it involves

a large number of forward model integrations (as illustrated

in Fig. 4) that becomes time-consuming for regional-scale

fire spread problems. To maintain the computational cost of

the EnKF algorithm compatible with the objective of wildfire

spread forecasting, a numerical strategy based on a polyno-

mial chaos (PC) expansion is introduced; this PC expansion

is used in the prediction step of the EnKF algorithm as out-

lined in Fig. 5. This hybrid EnKF algorithm is denoted by

PC-EnKF in the following.
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3.2.1 General formulation of the surrogate model

The PC-based surrogate model approximates the general-

ized observation operator Gt at time t and is therefore de-

noted by Gpc,t . It is parameterized with respect to the multi-

dimensional control vector xf
t ∈ R

n following the forecast

PDF pf(xt ). This random vector may be regarded as a set of

second-order random variables (i.e., with finite variance) ex-

pressed in terms of a random event ω such that xf
t = xf

t (ω). It

can be projected onto a stochastic space spanned by orthogo-

nal PC functions of independent Gaussian random variables

ζ (ω) as follows:

xf
t (ω) =

[

xf
1,t ,x

f
2,t , · · · ,xf

n,t

]

=
∞
∑

q=0

x̂q ϕq

(

ζ (ω)
)

. (29)

The simulated positions of the fire front yf
t = Gt (x

f
t (ζ )) can

also be viewed as a random variable and therefore, they can

be projected onto a stochastic space spanned by orthogonal

PC functions as follows:

yf
t = Gpc,t

(

xf
t (ζ )

)

=
∞
∑

q=0

ŷq(t)ϕq(ζ ), (30)

where ŷq ≡ ŷq(t) are time-dependent coefficients, and

where (ϕq)q=0,··· ,∞ designate the multi-dimensional approx-

imating polynomial functions forming an orthogonal basis

with respect to the joint PDF pf(xt ) = pf(x1,t ,x2,t , · · · ,xn,t ).

The choice for the basis functions may depend on the type

of random variable functions (Xiu and Karniadakis, 2002).

Since the control vector xf
t is assumed to follow a Gaussian

PDF pf(xt ) within the framework of the EnKF, the surrogate

model of the observation operator Gpc,t is built upon the ba-

sis of the Hermite polynomials (Ghanem and Spanos, 1991).

Stated differently, the Hermite polynomials form the optimal

basis for random variables following multi-variate Gaussian

PDF. Note that the model outputs yf
t are represented in terms

of the same random event ω as the model inputs xf
t , since

the uncertainty in the model outputs is assumed to be mainly

due to the uncertainty in the ROS model parameters within

the framework of parameter estimation.

In practice, a truncated version of Eq. (30) is used; there

are several ways of constructing the approximation space.

The most common choice is to constrain the number of terms

Npc in the PC expansion by the number of control parame-

ters n and by the maximum order of the polynomial basis

Qpo such that

Npc =
(n + Qpo)!

(n! Qpo!)
. (31)

This choice of Npc ensures that the PC approximation is of

highest order Qpo. Note that Qpo is a user-defined quantity

that must be chosen carefully according to the model non-

linearity, in order to obtain an accurate representation of the

model outputs yf
t with a high-order convergence rate. Theo-

retically, Qpo = 1 (i.e., only two terms for n = 1 correspond-

ing to the mean and STD of the control variable) is enough

to approximate exactly a Gaussian random variable. Note

also that Npc rapidly grows with n and Qpo, implying that

a balance between accuracy and computational cost must be

found. For instance, if n = 2 and Qpo = 2, there are Npc = 6

terms retained in the PC expansion. Using this formalism, the

surrogate model Gpc,t can be formulated as follows:

yf
t
∼= Gpc,t

(

xf
t (ζ )

)

=

Npc
∑

q=0

ŷq(t)ϕq(ζ ), (32)

where the unknowns are the following time-dependent vec-

tors:

ŷq ≡ ŷq(t) =
[

(x̂1, ŷ1)q , . . . , (x̂No
fr
, ŷNo

fr
)q

]

t
, (33)

q varying between 1 and Npc, with No
fr the number of markers

along OFF at time t . Note that the size of the qth vector ŷq is

2No
fr (each marker location being represented with both the

x- and y-coordinate on the horizontal plane) and thereby, the

computation of (2No
frNpc) coefficients (also referred to as the

PC modes) is necessary to build the surrogate model Gpc,t .

3.2.2 Calculation of the polynomial chaos modes

Due to the orthogonality of the PC basis, it can be shown that

the qth PC coefficients ŷq are given by the following:

ŷq =
E

[

Gpc,t (x
f
t )ϕq(ζ )

]

E

[

ϕq(ζ )2
] , (34)

where

– E[·] refers to the expectation operator satisfying

E[ϕq(ζ )ϕl(ζ )] = 0 if q 6= l, with the following defini-

tion for the inner product:

E

[

ϕq(ζ )ϕl(ζ )
]

=

∫

Rn

ϕq(ζ )ϕl(ζ )p(ζ )dζ = δql

[

ϕ2
q

]

,

(35)

with δql the Kronecker delta-function;

– E[ϕq(ζ )2] is a normalization factor equal to 1 if the ba-

sis is constructed orthonormal;

– E[Gpc,t (x
f
t )ϕq(xf

t )] is computed using a Gauss-Hermite

quadrature rule, with [x
f,(1)
t , · · · ,x

f,(j)
t , · · · ,x

f,((Nquad)
n)

t ]

the quadrature roots vector of size (Nquad)
n constrained

by the maximum order of the polynomial basis Qpo
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such that 2Qpo ≤ 2(Nquad − 1). Thus, this term is com-

puted as follows:

E

[

Gpc,t (x
f
t )ϕq(ζ )

]

=

∫

Rn

Gt (x
f
t )ϕq(ζ )dp(ζ ) (36)

∼=

(Nquad)
n

∑

j=1

Gt (x
f,(j)
t )ϕq(ζ (j))w(j),

where y
f,(j)
t = G(x

f,(j)
t ) corresponds to the FIREFLY

forward model integration evaluated at the j th quadra-

ture root x
f,(j)
t with its associated weight w(j), and

where ϕq is the qth multi-dimensional basis function

formulated as tensor products of one-dimensional poly-

nomial functions:

ϕq ≡ ϕq(ζ ) =
n

∏

l=1

ϕ1D
i(l)

(

ζl

)

, (37)

with ϕ1D
i(l) the one-dimensional polynomial basis and its

multi-index i(l) varying between 0 and Qpo to deter-

mine the proper term in the multi-variable space.

Based on this formulation, the construction of the surro-

gate model Gpc,t over the assimilation window [t − 1, t] re-

quires a limited number of (Nquad)
n forward model integra-

tions (see the first step in Fig. 5). The polynomial approxima-

tion Gpc,t calculated in Eq. (32) is then used in the prediction

step of the EnKF algorithm (instead of the observation op-

erator Gt ) to compute the predictions of the time-evolving

fire front locations yf
pc,t for a large number of members Ne

(see the second step in Fig. 5). This ensemble of forecasts

is used to accurately estimate the covariance matrices Cxy

and Cyy that are required in the formulation of the Kalman

gain matrix. Thus, the EnKF update can be performed with

reliable covariance matrices at a reduced computational cost

compared to the standard EnKF algorithm based on a Monte

Carlo sampling. This approach leads to analysis estimates of

the control parameters x
a,(k)
t and to accurate PDF of the fire

front locations y
a,(k)
t (k = 1, · · · ,Ne) using the same surro-

gate model as for the forecast estimates.

In order to reduce the computational cost of the EnKF al-

gorithm, a surrogate model based on a PC expansion is used

in place of the forward model (i.e., the FIREFLY regional-

scale wildfire spread model) in the DA procedure. The per-

formance of the resulting PC-EnKF algorithm is assessed on

synthetically generated fire spread cases based on prelimi-

nary work presented in Rochoux et al. (2012) as well as on

the controlled grassland fire experiment.

3.3 Numerical implementation

In practice, the EnKF and PC-EnKF ensemble-based DA

algorithms were implemented with the fire spread simula-

tor FIREFLY using the OpenPALM dynamic coupling soft-

ware (Lagarde et al., 2001), co-developed at CERFACS and

ONERA.4 OpenPALM allows for the coupling of indepen-

dent code components with a high-level of modularity in the

data exchanges and treatment, while providing a straightfor-

ward parallelization environment (Fouilloux and Piacentini,

1999; Buis et al., 2006). In this study, it is used as a task-

parallelism manager to handle communications and data ex-

changes between FIREFLY and the mathematical units re-

quired to sequentially apply the EnKF and PC-EnKF algo-

rithms. The PALM-PARASOL functionality in OpenPALM

was used to efficiently and independently run the FIREFLY

time-integrations in parallel, on the available processors.

The master processor of PALM-PARASOL spawns multiple

copies of the same computer program (i.e., the slaves), each

on one or several processors with a different set of input pa-

rameters of the ROS model. Each slave integrates FIREFLY

using one realization of the control vector xt to provide the

associated fire front position yt , subsequently used for the

computation of the covariance matrices Cxy and Cyy . As il-

lustrated in Figs. 4 and 5, this integration is performed for

the Ne ensemble members using the forward model FIRE-

FLY for the classical EnKF. In contrast, for the PC-EnKF al-

gorithm, a limited number of FIREFLY model integrations

(Nquad)
n is used to build the surrogate model and subse-

quently, a large number of evaluations of the surrogate model

(Ne) are computed using the PALM-PARASOL functional-

ity.

4 Data assimilation experiments

4.1 Convergence of the ensemble-based algorithms

The EnKF and PC-EnKF algorithms are compared on

an OSSE experiment, in which the Rothermel-based ROS

model of Eq. (3) is reformulated as Ŵ(x,y) = P δv(x,y) with

P [s−1] a proportionality coefficient and δv ≡ δv(x,y) a spa-

tially varying function that is assumed to be perfectly known.

Note that this formulation takes advantage of the proportion-

ality between the ROS Ŵ and the fuel layer thickness δv in the

Rothermel’s formulation. Thus, the control vector is limited

to a single parameter, x = P , which encompasses different

uncertainties that are not distinguished here.

The fire is ignited at (xign,yign) = (100m,100m) as a cir-

cular front with a radius of 5 m; it spreads upon a random fuel

distribution δv(x,y) over a 200m × 200m domain. Observa-

tions (represented using No
fr = 20 front markers) are synthet-

ically generated at 50s intervals with FIREFLY and a chosen

true value xt = P t = 0.4s−1. An observation error character-

ized by the error STD σ o is also introduced. The ensemble of

prior values is drawn from a Gaussian distribution centered in

xf = 0.2s−1 with an error STD σ f = 0.05s−1 (assumed con-

stant along the assimilation cycles). Note that the true value

of the control parameter xt is at the tail of the Gaussian PDF

associated with the forecast estimates. This case is chosen on

4http://www.cerfacs.fr/globc/PALM_WEB/
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Figure 6. Convergence of the mean analysis estimates of the pro-

portionality coefficient P [s−1] with respect to the number of en-

semble members Ne for a fixed observation error STD σ o = 2m and

a single assimilation cycle: comparison of the performance between

the EnKF and PC-EnKF algorithms. The orange triangled-dashed

line corresponds to Qpo = 2; and the red circled-dashed line corre-

sponds to Qpo = 4 for the PC-EnKF algorithm. Black squares cor-

respond to the analysis estimates obtained using the standard EnKF.

Vertical error bars correspond to the associated error STD.

purpose, in order to evaluate the ability of the parameter esti-

mation approaches (EnKF and PC-EnKF) to retrieve accurate

values of the control parameter, even though the prior value

is far from the true control parameter and its uncertainty is

high (compared to the observation error STD).

A PC approximation (with a polynomial order Qpo = 4

and subsequently a quadrature order Nquad = 5, see Sect. 3.2)

is used to build the model response surface Gpc to the control

parameter x = P corresponding to the forecast (xf, σ f).

4.1.1 Sensitivity to sampling errors

Convergence properties of the EnKF-based analysis esti-

mates are studied in Fig. 6 with respect to the number of

ensemble members Ne for a fixed observation error STD

σ o = 2m and for one assimilation cycle. Since there is no

analytical solution to the problem, the convergence of the

EnKF is assumed to be achieved if the mean value of the con-

trol parameter and its STD remain constant when increasing

Ne. The performance of the PC-EnKF algorithm is compared

to that of the standard EnKF algorithm (black squares) for

different PC polynomial orders, Qpo = 2 (orange triangled-

dashed line) and Qpo = 4 (red circled-dashed line).

Figure 6 shows that in the present configuration, the EnKF

algorithm converges for a minimum of Ne = 48 members

(meaning that FIREFLY is integrated 48 times to produce

48 fire front trajectories associated with each realization of

the control parameter). In particular, below this threshold,

the error bars corresponding to the error STD of the analy-

sis parameter estimates are narrower for both EnKF and PC-

EnKF algorithms. The error STD computed with a low num-

ber of members is therefore not reliable and the ensemble-

based algorithms require a larger sample to accurately repre-

sent the tails of the Gaussian PDF related to the control pa-

rameter P . It is shown that the PC-EnKF algorithm provides

a comparable result as the EnKF (in terms of mean and STD)

above Ne = 40 members for a polynomial order Qpo = 4.

However, the results achieved with PC-EnKF are obtained

for a lower number of FIREFLY time-integrations (i.e., 5

FIREFLY model integrations only since Nquad = 5 quadra-

ture points are used to build the model surface response Gpc)

than the standard EnKF, while considering the same number

of members Ne to generate the forecast/analysis estimates.

Thus, the PC-EnKF algorithm provides a solution that re-

produces the converged solution of the EnKF for a compu-

tational cost that is reduced by a factor of at least 8. This

implies that for more complex fire spread cases where more

members are required to track spatial variations in wind and

vegetation conditions, the PC-EnKF algorithm appears as

a promising alternative to obtain accurate simulations of fire

spread at a reasonable computational cost. Additionally, the

PC-EnKF algorithm provides a mean estimate that is less

fluctuating than the EnKF algorithm, with a slightly reduced

scatter for low values of Ne, indicating that the PC-EnKF

strategy requires less ensemble members Ne to reach conver-

gence.

Figure 6 also illustrates the sensitivity of the PC-EnKF-

based analysis to the choice of the PC polynomial order

Qpo for a varying number of ensemble members Ne. While

Qpo = 2 (i.e., Nquad = 3) provides a reasonable approxima-

tion of the mean analysis estimate when considering the

standard EnKF as reference, Qpo = 4 (i.e., Nquad = 5) leads

to a more accurate estimate without loss of accuracy. Even

though the fire front marker locations exhibit approximate

Gaussian PDF and in theory n = 1 is sufficient to character-

ize their distributions, a high polynomial order is required

in this case. The true value (P t = 0.4s−1) is indeed not in

the zone of high probability occurrence of the forecast esti-

mates (P f = 0.2s−1 with σ f = 0.05s−1); the true fire front

locations are at the tail of the forecast PDF, which makes the

estimation of the fire front locations more difficult. This diffi-

culty shows the ability of the PC-EnKF procedure to retrieve

accurate estimates of the fire spread at a low computational

cost and without loss of accuracy, even though the prior in-

formation is very uncertain.

4.1.2 Example of polynomial chaos-based surface

response

Figure 7 provides a comparison in the observation space

between the observed fire front and the forecast/analysis
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Figure 7. Comparison of fire front locations using the PC-EnKF

approach with an EnKF update at 50 s for σ o = 2m, Qpo = 4 and

Ne = 1000; estimation of the proportionality coefficient P [s−1];

all fronts correspond to time 50 s. Black crosses correspond to ob-

servations; the blue circled-dashed line corresponds to the mean

forecast estimate of the fire front and the red squared-solid line

corresponds to the analysis counterpart. Horizontal and vertical er-

ror bars correspond to the associated error STD along the x- and

y-directions, respectively. The location of the fire front marker in-

dexed by the character m is indicated.

estimates obtained through the PC-EnKF algorithm for an

observation error STD σ o = 2m, a PC polynomial order

Qpo = 4 and a number of ensemble members Ne = 1000

(a single assimilation cycle is considered). As expected, the

analysis estimates (red squared-solid line) provide a more

accurate approximation of the observed fire front location

(black crosses) than the forecast estimates (blue circled-

dashed line).

To offer insight into the main ideas underlying the PC-

EnKF algorithm, Fig. 8 illustrates the mapping between the

control space and the observation space for one marker of

the fireline (its position on the forecast/analysis fireline is in-

dicated in Fig. 7 by the character m). The variations in the

x and y coordinates of this marker are represented with re-

spect to variations in the control parameter P : black crosses

indicate the simulated marker positions associated with the

Nquad = 5 quadrature roots (i.e., FIREFLY model integra-

tions) corresponding to the first step of the PC-EnKF algo-

rithm; and blue circles indicate the forecast estimates ob-

tained through the surrogate model evaluation combined with

a Monte Carlo sampling (Ne = 1000) corresponding to the

second step of the PC-EnKF algorithm (see Fig. 5). These

fire front estimates are associated with the forecast control

parameter P f = 0.20s−1 and its error STD σ f = 0.05s−1. In

contrast, red squares are produced by the EnKF update ap-

plied for any of the 1000 ensemble members, they corre-
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Figure 8. Model surface response (or surrogate model) of the x and

y coordinates of the front marker indexed by m on the fireline (see

Fig. 7), with respect to the control parameter P [s−1]. Black crosses

correspond to quadrature roots (i.e., FIREFLY forward model inte-

grations); blue circles correspond to (a) forecast estimates, and red

squares to (b) analysis estimates obtained through the PC-EnKF al-

gorithm at time 50 s. The vertical solid line indicates the true value

P t = 0.4s−1; the vertical dashed lines indicate the mean forecast

and analysis estimates of the proportionality coefficient P [s−1].

spond to the analysis estimates related to P a = 0.38s−1 and

σ a = 0.01s−1. The scatter of the ensemble is significantly

reduced in the analysis, around the true value P t = 0.40s−1,

highlighting the uncertainty reduction achieved through the

ensemble-based DA.

4.1.3 Sensitivity to observation errors

For verification purposes on the behavior of the PC-EnKF

algorithm, Fig. 9 examines the influence of the observation

error on the performance of the EnKF and PC-EnKF algo-

rithms (the EnKF algorithm is used as reference). Statistics

(in terms of mean value and STD) of the analysis obtained

for Ne = 48 members over one assimilation cycle at time

t = 50s are presented as a function of the magnitude of the

observation errors measured by σ o (up to σ o = 30m); ver-

tical bars give a graphical representation of the magnitude

of the STD within the analysis ensemble. The results show

the consistency of the PC-EnKF algorithm with the EnKF

in retrieving realistic values for the control parameter, even

www.nat-hazards-earth-syst-sci.net/14/2951/2014/ Nat. Hazards Earth Syst. Sci., 14, 2951–2973, 2014



2966 M. C. Rochoux et al.: PC-EnKF parameter estimation for data-driven regional-scale wildfire spread

0 5 10 15 20 25 30
0.15

0.2

0.25

0.3

0.35

0.4

Observation error STD 
o
 [m]

M
e

a
n

 o
f 

th
e

 a
n

a
ly

s
is

 e
s
ti
m

a
te

s
 [

1
/s

]

Figure 9. Mean and STD of the analysis estimates of the propor-

tionality coefficient P [s−1] as a function of the observation error

STD σ o for a fixed number of members Ne = 48 and for one assim-

ilation cycle (with an EnKF update at 50s): comparison between

EnKF and PC-EnKF. The black solid line corresponds to the true

value 0.4s−1; the blue dashed line corresponds to the mean fore-

cast estimate 0.2s−1; and the red circled-dashed line corresponds to

the mean analysis estimate obtained using the PC-EnKF algorithm.

Black squares correspond to the mean analysis estimates obtained

by the standard EnKF. Vertical error bars correspond to the associ-

ated error STD.

though the observation error is significant. When the obser-

vation error STD σ o is small, the PC-EnKF algorithm suc-

cessfully drives the analysis ensemble towards the true value

of the parameter P t = 0.4s−1; the resulting analysis exhibits

a much reduced scatter by at least a factor 4 in comparison to

the forecast STD σ f = 0.05s−1. In contrast, when σ o is large,

the PC-EnKF algorithm has reduced effects and the analysis

ensemble remains close to the forecast ensemble (the analy-

sis STD is similar to the forecast STD σ f = 0.05s−1). For

intermediate values of σ o, the PC-EnKF algorithm produces

optimized analyses lying between forecast and observation;

as expected, the more accurate the observations, the more

certain the analysis for a given forecast error.

4.2 Temporal variability of the parameter error

Sequential application of the EnKF allows for a temporal

correction of the parameter P for a case in which the time-

varying profile of the true parameter P t was artificially set up

between 0.3 and 0.6s−1 over seven assimilation cycles (the

true profile is shown in Fig. 10a in black solid line). While

the mean value of the forecast estimates is set to 0.2s−1 for

the first assimilation cycle, it is set to the mean analysis esti-

mate from the previous assimilation cycle for all further as-
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(a) Control parameter space.

(b) Observation space.

Figure 10. Sequential EnKF estimation of the coefficient P [s−1]

over seven assimilation cycles with Ne = 48 members and σ o =

5m; time-varying true control parameter. The green triangled-

dashed-dotted curve corresponds to the free run (without DA); the

blue circled-dashed curve corresponds to the mean forecast esti-

mate; the red squared-solid curve corresponds to the mean analysis

estimate; and the black solid line corresponds to the true control pa-

rameter. (a) Parameter estimates (vertical error bars correspond to

the associated error STD). (b) Mean distance to the observed fire

front.

similation cycles. Since there is no explicit dynamic model

for the control parameter P , it is of primary importance to

track the temporal variability of the error in the parame-

ter through a sequential estimation combined with a random

walk model in the EnKF prediction step (see Eq. 23). Note

that for this experiment, Ne = 48 members are considered in
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the ensemble and a constant observation error STD σ o = 5m

is assumed.

Figure 10a shows the temporal variations of the EnKF esti-

mates along the assimilation cycles. The EnKF solution (red

squared-solid curve) provides an optimal mean value of the

control parameter, resulting in an ensemble of fire fronts that

is coherent with the observation error statistics (see Fig. 10b).

In contrast, the model without DA (green triangled-dashed-

dotted curve) significantly underestimates the ROS. While

being not as accurate as the analysis at the assimilation time,

the forecast (blue circled-dashed curve) provides a signifi-

cant improvement in the prediction of wildfire spread at fu-

ture lead times compared to the model without DA (i.e., free

run). Note that there is a temporal shift between the forecast

and analysis estimates in Fig. 10a. The analysis estimates are

obtained at the current observation time and thereby, provide

the most recently updated information. In contrast, the fore-

cast estimates only contain information up to the previous

analysis time:

– if the error in the control parameter does not change,

the correction obtained at the previous analysis time is

still valid and adapted to track the actual fire front posi-

tion: the forecast estimates provide reliable scenarios of

wildfire spread at future lead times;

– if this error significantly varies in-between two succes-

sive analysis times (this is the case of the present DA ex-

periment), the correction is no longer suitable to predict

wildfire spread at long lead times. For instance, over the

assimilation cycle indexed by 5, the analysis estimates

provide a good approximation of the actual fire front lo-

cation at time t4; however, the forecast obtained at time

t5 when starting from the analysis at t4 overestimates the

true ROS, meaning that a new observation is required to

gain information on the wildfire behavior.

In the present case, Fig. 10b shows that the error in the

forecast is systematically higher than that of the error in the

analysis in the observation space. This means that the assim-

ilation needs to be renewed according to the temporal vari-

ability of the error in the control parameter to ensure a high-

level performance of the data-driven simulated forecast.

4.3 Application to a controlled grassland fire

The EnKF and PC-EnKF algorithms are applied to a real-

world case study, corresponding to a reduced-scale con-

trolled grassland fire (4m × 4m), propagating over a flat ter-

rain and occurring under moderate wind conditions (Paugam

et al., 2013). These wind conditions are assumed to be uni-

form and constant, u∗
w = 1.0m s−1, blowing into a western

direction, α∗
w = 307◦. The grass is assumed to exhibit a uni-

form layer thickness, δv = 0.08m, and controlled properties,

for instance the moisture content and the grass surface-to-

volume ratio are (approximately) known, Mv = 22% (field
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(a) Forecast estimates.

(b) Analysis estimates.

Figure 11. Model surface response (or surrogate model) of the x

and y coordinates of the front marker indexed by m on the fire-

line (see Fig. 12) with respect to the control vector x = [Mv,6v]

(n = 2). Black crosses correspond to quadrature roots (FIREFLY

integrations). (a) Forecast estimates (blue circles) and (b) analysis

estimates (red squares) of the x (top panel) and y coordinates (bot-

tom panel) of the fire front positions are mapped onto the PC-based

model surface response.

measure) and 6v = 11485m−1 (values related to short grass

taken from the Rothermel’s fuel database). The observed

fire front locations are extracted from thermal-infrared imag-

ing at 28s intervals; they are discretized with No
fr = 40 front

markers with a measurement error estimated to σ o = 0.05m

(based on the spatial resolution of the camera).

The performance of both algorithms is studied over one

assimilation cycle [50,78s] with an EnKF update at time

t1 = 78s (analysis mode) as well as over a forecast time

period [78,106s] with an EnKF forecast at time t2 = 106s

(forecast mode); the initial condition at t0 = 50s is taken as

the observed fire front at t0. The control parameters are the

fuel moisture Mv and the fuel particle surface-to-volume ra-

tio 6v such that x = [Mv,6v] with n = 2. A PC approxima-

tion (with a polynomial order Qpo = 4 and a quadrature order

Nquad = 5) is used to build the model response surface to the

two control parameters Mv and 6v; this response surface is

shown for one particular simulated front marker in Fig. 11a

(black crosses). A forecast ensemble of Ne = 1000 members

(blue circles) is generated at no cost using the PC-based sur-

rogate model assuming uncertainties in Mv and 6v; the fore-

cast estimates of these control parameters are described in

Table 2 along with the associated STD. Note that the blue cir-

cles are contained within the surface response described by
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Figure 12. Comparison between simulated and measured fire front

positions for the controlled grassland fire experiment at (a) analysis

time and (b) forecast time: black crosses correspond to observa-

tions, the blue circled-dashed line corresponds to the mean forecast

estimate constructed through the PC-based surrogate model; the red

squared-solid line corresponds to the mean analysis estimate ob-

tained by the PC-EnKF procedure applied at time t1 = 78s. Black

squares correspond to the standard EnKF used as reference. The

location of the fire front marker indexed by m is indicated.

the black crosses that represent the (Nquad)
2 = 25 FIREFLY

forward model integrations performed to build the PC-based

surface response. Thus, the PC decomposition properly ap-

proximates the observation operator.

4.3.1 Analysis mode

In the analysis mode, the forecast ensemble is corrected by

assimilating the fire front at time t1 = 78s. The comparison

between the observations (black crosses), the forecast es-

timates (blue circled-dashed line) and the PC-EnKF-based

analysis estimates (red squared-solid line) obtained at time

t1 = 78s are presented in Fig. 12a. The forecast trajectory

represents the ensemble mean of the surrogate model simu-

lations obtained without DA (i.e., using the forecast estimates

of the control parameters), while the analysis trajectory de-

rives from an EnKF update at t1 using the analysis estimates

in the surrogate model integrations.

Table 2. PC-EnKF-based experiment for the controlled grassland

fire experiment: error statistics (in the parameter space) of the fore-

cast and analysis ensemble estimates for x = [Mv,6v] (n = 2). The

number of FIREFLY integrations is also presented as indicator of

the computational cost.

FORECAST Cost Ens. mean Ens. STD

PC-EnKF 25
15.0%

11500m−1
4.0%

3000m−1

EnKF 1000
15.0%

11500m−1
4.0%

3000m−1

ANALYSIS Cost Ens. mean Ens. STD

PC-EnKF 25
13.8%

22583m−1
1.4%

1157m−1

EnKF 1000
13.5%

22345m−1
1.4%

1170m−1

It is found that the PC-EnKF strategy allows to signifi-

cantly decrease the distance between the observations and the

simulated fronts with a comparable level of accuracy as the

standard EnKF algorithm (the PC-EnKF algorithm provides

similar analysis mean and STD, see Table 2). As illustrated in

Fig. 11b, the uncertainty in the fire front positions is signif-

icantly reduced in comparison to the forecast since the STD

related to the analysis estimates is much smaller than that of

the forecast estimates. This indicates that the PC-EnKF algo-

rithm allows reliable statistical information to be retrieved

for only 25 FIREFLY model integrations (in contrast, the

standard EnKF algorithm requires 1000 members to correct

n = 2 control parameters and thereby, correct 2No
fr = 80 fire

front marker coordinates).

Consistently, Fig. 13 shows that the support of the anal-

ysis PDF (see Fig. 13b) is significantly reduced compared

to the forecast PDF (see Fig. 13a) for the x and y coordi-

nates of the No
fr = 40 observed front markers. The topology

of the PDF along the observed fire front is found to be over-

all preserved through the EnKF update, implying that the

assumption of Gaussian error statistics for the modeling er-

ror statistics seems not to deteriorate the performance of the

ensemble-based DA algorithms. Some regions of the PDF

related to the x coordinates of the front marker locations

(nearby x = 2m) are not sensitive to variations in Mv and

6v. These regions correspond to the flank of the fire, mean-

ing that the x coordinates of the surrounding front markers

do not vary and the growth of the burning area only induces

variations in the y coordinates.

As discussed for the OSSE test cases, the nonlinear re-

sponse of the observation operator to the control parameters

induces a slightly non-Gaussian PDF for the forecast esti-

mates: it is indeed found that the mode of the PDF does not

exactly coincide with the mean value. Note that the PDF ex-

hibits a relatively flat tail for decreasing x and increasing y
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(a) PDF related to the ensemble of forecast estimates.
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Figure 13. Colormap of the PDF of the fire front marker locations

(in terms of x and y coordinates) for the controlled grassland fire

experiment at the analysis time t1 = 78s. (a) Forecast PDF with

respect to the x (left panel) and y (right panel) coordinates of the

observed fire front markers. (b) Analysis PDF with respect to the x

(left panel) and y (right panel) coordinates of the observed fire front

markers.

coordinates of the observed fire front markers: this is due to

a sharp ROS acceleration when decreasing the fuel moisture

content Mv or alternatively, when increasing the fuel particle

surface-to-volume ratio 6v (see Fig. 2b and c).

4.3.2 Forecast mode

In the forecast mode, Fig. 12b compares the fire front posi-

tion at t2 = 106s obtained using the forecast estimates (with-

out DA) and the analysis estimates derived from a DA up-

date at t1 = 78s. The PC-EnKF algorithm appears to prop-

erly represent the forecast trajectory at t2 = 106s in compar-

ison to the standard EnKF. This result illustrates that a PDF

sampling based on PC (instead of Monte Carlo in the stan-

dard EnKF) can significantly reduce the computational cost

of the EnKF prediction/update steps (in terms of number of

FIREFLY model integrations that constitute the most time-

consuming task in the PC-EnKF algorithm) and thereby, pro-

vide accurate error statistics on the inputs and outputs of the

wildfire spread model. For instance, 1000 FIREFLY model

integrations were used in the EnKF algorithm to accurately

represent the error statistics; in contrast, only 25 FIREFLY

model integrations were performed in the PC-EnKF algo-

rithm. Thus, the number of FIREFLY model integrations is

here divided by a factor of 40.

Additionally, Fig. 12b shows that the errors in the control

parameters do not significantly change in-between the two

observation times (i.e., at t1 = 78s and t2 = 106s), meaning

that an observation time period of 28 s seems appropriate

for applying DA (relatively to the temporal variability of the

errors in the control vector x).

While the improved accuracy of EnKF-based data-driven

simulations is obtained at the expense of heavy computa-

tional cost (in the context of multi-parameter estimation for

instance), the PC-EnKF strategy appears as a promising strat-

egy for solving Bayesian filtering problems at a low compu-

tational cost that is a requirement of operational frameworks.

5 Conclusions

A data assimilation (DA) strategy based on the ensemble

Kalman filter (EnKF) with parameter estimation is demon-

strated to account for both experimental and modeling uncer-

tainties in wildfire spread modeling and thereby, to provide

optimized forecast of wildfire behavior.

The proposed filtering strategy relies on a stand-alone se-

quential parameter estimation approach (the model state is

not included in the control space), in which the control pa-

rameters are assumed spatially uniform and constant over the

time window over which optimal values are sought for, and

in which the observation operator is dynamically evolving to

track the actual location of the fire front over time. This strat-

egy was found efficient at reducing uncertainty in the numer-

ical predictions of fire spread for synthetic measurements as

well as for a (reduced-scale) controlled grassland fire exper-

iment. It was also found that the nonlinear interrelation be-

tween the environmental parameters and the fire front posi-

tions induced by the nonlinearities of wildfire spread can be

stochastically described over the ensemble members. Since

there is no suitable dynamical model for the evolution of the

control parameters, a random walk model based on the idea

of persistence forecasting and on the assumption of constant

error standard deviation is used to relate the forecast to the

analysis parameter estimates. Thus, the parameter estimation

approach can be regarded as a three-dimensional variational

technique with stochastically based estimation of the error

covariance matrices. In this context, it was highlighted that

the duration of the assimilation cycle is of primary impor-

tance in the success of the proposed DA approaches: the as-

similation must be renewed according to the temporal vari-

ability of the parameter errors, in order to track the actual fire

behavior.

In order to reduce computational cost and balance sam-

pling errors due to frequent assimilation cycles, a proba-

bilistic sampling based on polynomial chaos techniques (PC-

EnKF) was shown to significantly reduce the computational

cost of the EnKF-based parameter estimation approach (by

a factor of at least 10 in the present configurations), and

thereby to provide access to accurate error statistics on both

model inputs and outputs for the formulation of the Kalman

gain matrix.
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In both EnKF and PC-EnKF DA approaches, the formula-

tion of the observation operator can be regarded as the com-

putation of a front-to-front distance, in which the location

and topology of each front is evolving over time. The under-

lying selection operator that pairs the simulated front markers

with the observed front markers differs between the members

of the ensemble. This is an unusual application of the EnKF

algorithm that has demonstrated very good results to track

coherent features but that still needs more extensive verifi-

cation to ensure that the optimality of the filter is preserved.

Indeed, the computation of the distance between simulated

and observed markers becomes more challenging for com-

plex fire front topology. The generalization of this treatment

in the EnKF algorithm to complex fire front topology will be

revisited in future work and needs to be extended to the oper-

ational context, where wildfires propagate in a highly hetero-

geneous environment and where in-situ, airborne or space-

borne monitoring is currently limited. Projection schemes re-

ported in Rochoux (2014) are expected to provide a valuable

answer to this issue and could be integrated to the proposed

DA algorithms.

Future plans include the extension of the proposed PC-

EnKF approach to cases with spatially varying biomass fuel

conditions and time-varying wind conditions to further val-

idate and optimize this strategy in terms of computational

cost, in order to meet operational requirements. Note that

there is the possibility to change the parameters that are in-

cluded in the control vector between the assimilation cycles,

according to the level of information available (uncertainties

in the surface wind and in the biomass fuel properties are

not time-invariant); automatic sensitivity tests could be per-

formed inline to focus the EnKF update on the most uncertain

parameters over a given time period.

Future plans also include addressing the correlations of

observational errors along the fireline at a given time, simi-

larly to spaceborne data along the pass of polar-orbiting satel-

lites (Brankart et al., 2009; Gorin and Tsyrulnikov, 2011),

in order to improve the performance of both EnKF and PC-

EnKF DA algorithms. In the present study, the assumption

of uncorrelated observation errors is believed not to signifi-

cantly deteriorate the DA results since the procedure of front

selection with a low number of markers (No
fr ≪ Nfr) can be

regarded as a filtering procedure that tends to reduce the spa-

tial correlations between the observed front markers.

Even though both EnKF and PC-EnKF DA algorithms

used in this study are effective in correcting the input pa-

rameters of the rate of spread (ROS) model, the treatment of

highly anisotropic uncertainties remains an important chal-

lenge for wildfire spread forecasting. Due to the operational

constraints on the computational cost, the parameter estima-

tion approach could be extended to the case of weak spatial

variations of the ROS model parameters. Assuming that the

errors on the parameters vary slowly in time, the DA cor-

rection could then reasonably be used for forecast at future

lead times, thus allowing for mid- to long-term forecast. Still,

there is a need to design a strategy to address spatially dis-

tributed error correlations along the fireline in order to be

able to correct the shape of the time-evolving fire front. There

is also a need to address all possible sources of uncertainty

in the fire spread model, not only in the input parameters of

the ROS model but also in the parameterization of the ROS

that is limited in scope due to a lack of physical modeling

(e.g., steady-state assumption, spotting). The second part of

this series of two articles (Rochoux et al., 2014) is dedicated

to the evaluation of a state estimation approach that is able

to account for both anisotropic uncertainties and modeling

uncertainties. While out of the scope of this series of two ar-

ticles, a proper representation of the model errors could be

performed in the EnKF by introducing a model error covari-

ance matrix (Trémolet, 2007), which could be modeled using

a stochastic model such that proposed by Pagnini and Men-

trelli (2014) for the transport of firebrands.
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