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the miners to collude in order to alter code execution; this

provides for great trust on how code will be run.

Typical use cases for smart contracts include management

of fungible and non-fungible assets, voting, virtual markets,

cryptographic commitment,... A remarkable success story has

been the issuance of “Initial Coin Offerings”, or participa-

tive, unregulated capital funding raising for Blockchain-based

start-ups. In a ICO, a smart contract will manage a set of

blockchain-issued shares of “tokens”. Thanks to the ERC20

standard interface [4], “Token Exchanges” can interact with

the contracts, allowing for an essential secondary token market

where shares can be traded for fiat money or other crypto-

assets.

More advanced standarized interfaces for contracts and

new in-chain applications such as video games have been

proposed [5], [6].

However, the success of smart contracts has also brought

significant problematic in the form of critical software bugs.

The nature itself of the contracts as asset managers means

that bugs quickly translate to a loss of capital, and the

immutability of the code means that mitigation may be hard

or impossible. In many cases, the high enthusiasm over the

new platform wasn’t matched by the corresponding care when

writing the asset management algorithms. Famous bugs such

as the D.A.O. attack [7], [8] have made for losses in the tens

of millions of dollars; and in the last year, many interesting

papers have put focus on wide and serious class of problems

present in deployed contracts.

We can split recent work on formal verification and analysis

of Ethereum contracts in methods that work over the on-chain,

low-level contract bytecode [9]–[18], and methods that focus

on the functional specification of high-level, object-oriented

Solidity code [19]–[23].

The first set does employ methods as diverse as rewrit-

ing, CFG, Datalog, decompilation, partial-order reduction,

or symbolic execution; the methods targeting a high-level

representation feature high-level type systems, program-logics,

and state-transition diagrams.

However, the gap between high-level, programmer oriented

Solidity code and low-level, Ethereum Virtual Machine is

mostly unaddressed. As highlighted by Yoichi Hirai — who

was for several years the head of verification at the Ethereum

foundation: “the only way to know the meaning of a Solidity

Abstract—A blockchain is a tamper-proof distributed transac-
tion registry; first p opularized b y B itcoin [ 1], i t h as n ow been 
extended to support storage of arbitrary state and computations 
in-ledger. Ethereum [2] and its smart contract model have proven 
to be a very popular choice for this task, routinely managing 
assets valued in the billions. However, development of such 
contracts has been anything but easy. While formally specified, 
the Ethereum execution platform is based on a low-level machine, 
quite similar to assembly; semantics for contract operations such 
as call are quite complex, and the need for resource management 
creates unanticipated modes of failure. The dominant day-to-day 
programming platform for Ethereum is Solidity [3], an Object-
Oriented language that identifies c ontracts w ith o bjects. While 
reasoning about Solidity programs is much easier than for their 
bytecode counterparts, it is not extent of challenges either, and 
moreover, Solidity lacks a source-level semantics, which forces 
developers to reason over output bytecode again. In this short 
paper we explore the main barriers to lift in order to achieve a 
principled compilation strategy for Solidity. We will review the 
standard concepts on verified and secure compilation, and frame 
them in the context of the Ethereum platform.
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I. INTRODUCTION

Blockchain-based platforms need no introduction anymore;

the tamper-proof distributed ledger model introduced by Bit-

coin [1] has proven so far to be a hugely popular and robust

platform for permission-less, trust-less transactions.

At its origins, Bitcoin was targeted to solve the “electronic

cash problem”. However, it also provided a “script” language,

which allows to perform non-trivial computation as part of

a transaction. A few years later, Ethereum [2] pushed this

concept beyond popularizing the use of smart contracts in

the distributed, permission-less ledger model. In this setting,

a “smart contract” is a pair of mutable state and immutable

code associated to an address, which is then run when input

transactions are submitted to that particular code address.

The power of the model stems from three key points: first,

contracts run in a general-purpose virtual machine, allowing

arbitrary computation and providing a familiar programming

model to developers by means of Solidity: an Object-Oriented

programming language resembling JavaScript; second, there is
no storage limitation for contracts other than read/write fees;

and third, Ethereum provides consensus over the execution of

the contract itself, which would require almost a majority of



program is to compile it into bytecodes”. Indeed, Solidity code

has no formal (or even informal) semantics, and compiler bugs

have been common and in some cases very serious. In order to

understand complex multi-contract interactions we are bound

to directly look at the low-level VM code, which is indeed

fully specified and thus able to provide truly formal guarantees.

Needless to state, being bound to the low-level semantics

does pose some serious limitations: when end-to-end verifica-

tion is required, complex and costly proofs about bytecode will

have to be developed; rich functional properties such as [24],

[25] are all but unapproachable this level. Even so, program-

mers will write and modify solidity code, making the proofs

quickly stale. For people with less strict requirements, the use

of defensive programming techniques and code analysis tools

will provide for some relief, however, as contract code does

grow in size, risk for the autonomous asset management does

indeed increase.

In this short paper, we will discuss the challenges ahead to

achieve a more principled compilation strategy for Solidity.

In particular, we will describe the main tasks involved, and

classify the required certified compilation technology in 3

categories: a) problems already solved by the state of the art in

the general verified compilation setting; b) open problems in

the general setting; and c) problems specific to the Ethereum

/ Blockchain architecture.

In the next section, we will briefly introduce the Ethereum

Virtual Machine (EVM) and highlight its main points of

interest from the optic of certified compilation, such as gas

and exception semantics. After, we will survey the state of the

art on certified and secure compilation. Next, we will explore

the missing pieces to obtain a verifiable trace preservation

property between the high-level and low-level semantics of

Solidity / EVM; however — as we will see — in the presence

of adversarial code semantic preservation may not be enough,

and completeness with regards to low-level contexts may be

required. We conclude with perspectives and future work.

II. SOLIDITY AND THE ETHEREUM VIRTUAL MACHINE

The Ethereum [2] network is based on the same principles

than Bitcoin: blocks are produced at a quasi-constant rate,

and they contain a pointer to their parent plus a set of

cryptographically signed transactions. Miners (or validators)

compete to generate the next block, which will be awarded

by a random lottery but proportional to the raw computing

power of each validator. The validator that wins the privilege to

produce the next block will get a reward in the form of Ether,

and there is incentive for the rest of validators to follow the

longest-chain, or else waste large amounts of electric power.

For a transaction already included in a chain, the longest is the

suffix after it, the most likely is that it is valid, as this means

large amounts of energy were used to validate that chain.

For the rest of the paper, we assume that the “global state”

of the chain is encoded by a function σ : address → acc state.

Addresses are 160-bit identifiers, and the relevant bits of each

account state are σ[a]s, the storage for a, a map between 256-

bit integer values, the balance for a, written as σ[a]b, which

denotes the amount of Ether that particular account has; and

(optionally) σ[a]c: the code of the account in the from of EVM

opcodes. If an account a has some code attached to it we say it

is a “contract”, otherwise we refer to it as a “regular” account.

The fundamental state-altering operation in Ethereum is the

transaction. A transaction T = (n, p, g, t, v, {i, d}) consists

of a nonce n, a gas price p, and limit g, an addressee t, an

Ether amount v to send to t, and either an initial contract

code i, used if Tt = ∅ or some call data Td, which will be the

input for the code in σ[t]c otherwise. We omit the transaction

signature fields here, but they are essential of course to verify

that the transaction is authorized by the proper account.

Transactions are signed and submitted by users to a pool,

then selected by validators to be included into a block; from an

external point of view, transaction execution can be modeled as

a function σ′ = Υ(σ, T ), where Υ is in charge of executing

the transaction. A valid transaction will always modify the

state, even if just to record failure by incrementing the nonce

of the submitting account, and subtracting gas if possible. A

complete description of transaction processing is impossible

due to lack of space, but basically, contract code will be

executed by the Ethereum Virtual Machine, which is a stack-

based machine with access to local memory and the global

state, as long as it is authorized to do so. Validators are

expected to execute contract bytecode according to the official

specification, and execution is deterministic. We highlight 3

relevant aspects:

• the most interesting (and complex) operations are contract

creation, call, and destruction. Indeed, the EVM allows

complex interactions among contracts in a single trans-

action, including re-entrancy,

• a transaction may fail due to a variety of reasons: running

out of gas, exceeding the call-depth limit, or by executing

invalid code. Failure of a transaction does imply a revert

of the global state except for the fees,

• failure of a transaction is not the same than failure of a

contract call; indeed, a call to another contract may fail,

however the caller’s execution may continue and recover

from the failed call.

The bytecode language provided by the EVM is pretty rich;

we can query almost any parameter of the current transaction,

read code, hash values, delegate current permissions, etc...

Solidity

As mentioned before, low-level EVM bytecode does not

make for an ideal smart contract programming language:

it lacks compound types, names, subroutines, and writing

efficient code is hard due to the nature of the stack machine.

To alleviate these problems, Solidity was introduced early on.

Solidity is based on an Object-Oriented paradigm, identifying

classes with contract specifications, and object instances with

on-chain contracts. A typical Solidity contract will have a

global storage section, which is the state that will be persisted

between method calls, and methods which are the entry point

to the contract from transactions. For example a (buggy)

counter is implemented as:



1 contract Counter {

2 uint public ctr = 0;

3 function incr(uint value) public { ctr += value; }

4 }

compare this 2 lines with the 100s of instructions the contract

is compiled to. Given a contract of type Counter at address

a, we can then call a.incr(value) and set the counter to any

arbitrary value we would like it to be.

As of today, Solidity is quite feature-rich and includes some

defensive programming facilities based on past experience and

problems; it also inherits some of the oddities of the underlying

low-level programming model. For example, contracts do

have a default action, which is triggered when an Ether-only

transaction is sent; now, Solidity forces the programmer to be

explicit about this, otherwise rejecting unexpected transactions

right away.

III. NOTES ON VERIFIED AND SECURE COMPILATION

Before distilling what would a secure compilation chain

mean for Solidity + EVM, we briefly recall some basic

concepts from the verified and secure compilation literature.

We mostly follow the excellent presentation of [26], which

provides an in-depth overview of the current state of the art.

We assume a source language S, and a compilation procedure

↓ that will transform the source program P ∈ S to a program

P↓ in the target language T.

The goal is to show that the compilation procedure respects

semantics, which we can write as P ≈ P↓ where ≈ is

some desired equivalence. Given that the source and target

languages are different, it is customary to use indeed a notion

of observation between the programs. We say that t ∈ π is a

trace of a program execution; we write P  t for “program P

produces trace t when executed under the source semantics”,

and similarly P  t for the target semantics. Traces may be

finite or infinite, but the key point is they allow us to relate

behaviors from the source and target worlds, each one totally

different languages and execution rules. Armed with these

definitions, we can define now:

Proposition 1 (Soundness of Compilation):

∀P, t ∈ π, P  t ⇒ P↓  t

the above theorem basically states that for every possible trace

in the source language, its compiled version will have the same

trace; note that this definition doesn’t forbid the target trans-

lation from having more behaviors than the original program.

More details can be found in seminal works [27]–[29]; there

are many subtle variations of the idea, and in for each case,

details can greatly differ.

Soundness (and its variations) do help a lot when we control

all the code that we will run, bringing us to a full correctness

theorem for our compiler. However, in open scenarios such

guarantees may not be enough, take for example the case

of linking against untrusted code. Following the presentation

of [26] again, we introduce the notion of a context CS[·]; a

context represents the environment (including code, inputs,

etc...) in which a program is executed, we write CS[P] for the

composition of a program with its context. Secure compilation

assumes that the target context is in the hands of the adversary,

thus in order to soundly reason in the source language, it

should be the case that the source contexts can capture all

the possible behaviors when the target code is run:

Proposition 2 (Robust Trace Conservation):

∀P, CT, t, CT[P↓]  t ⇒ ∃CS, CS[P]  t

Proving robust trace preservation is in general very challeng-

ing; one example technique is given in [30], where thanks

to an universal embedding of target contexts, we can always

back-translate making RTC hold.

We end this section recalling the restrictions on the class

of preserved traces is quite common; both in the general lit-

erature, and in Ethereum-specific analysis tools. In particular,

two standard criteria are:

• Safety properties: some bad state is never reachable.

• Liveness properties: some good state is always reachable.

IV. ETHEREUM: A CASE STUDY

Armed with the formal machinery that we have developed

in the previous sections, we proceed to study its applicability

for the Solidity / EVM pair. We first try to define traces, then

we move to contexts. As it often happens with formal proofs,

to find the right definitions turns out to make for the large

majority of the proof effort.

A. Traces and Soundness

In order for correctness [and completeness] to be properly

defined, we must precisely distinguish two traces t1, t2 when

they do yield different global states. In particular, let σ1, σ2

be the global (or blockchain state) associated to t1, and t2
respectively; it must then hold that:

σ1 6= σ2 ⇒ t1 6= t2

Ideally, we would like the other direction to hold too, but it

is much harder to achieve.

Let’s revisit for a moment the definition of trace in Gr-

ishchenko et al. In their case, a trace is “a sequence of

action, where each action consists of an opcode, the address

of the executing contract, and a sequence of arguments to the

opcode.”

Unfortunately that definition of trace is not adequate for our

source language, Solidity in this case. Traces at the opcode

level are too fine-grained for a source language based on

object. Take for example the semantics of [22], based on

the standard one of [31], which do consider method call a

primitive operation, as opposed to the EVM.

While we could use a heterogeneous trace relation, things

would become very complicated quickly. Instead, we may try

to follow the approach of [29], which was able to obtain great

success when formally relating C code to low-level assembly.

In this setting, traces are order-preserving sequences of effect,

usually read/writes from the global state.

This definition of trace does get us much closer to a sensible

theorem statement. A “large” step in the source language, such



as a method call, should easily match the trace of the compiled

target. So far our use case seems to be reasonably standard, but

unfortunately, we are not there yet. The reason is gas. As we

briefly hinted in the previous sections, each transaction does

come with a gas limit, that is to say, an upper bound on the

number of opcodes the EVM will execute before throwing a

fatal “out-of-gas” exception. Semantics of gas become quite

complicated when a multi-contract call is present, as an out-

of-gas exception in a called contract will not be fatal for the

caller [but only exhaust its assigned budget]. This is already

the source of many problems, even when considering only

bytecode [18], but in our case, imposes either a painful gas

precondition on the statement of the theorem, or will require

to use some new technique to relate instruction cost among

the target and source traces. In a sense gas consumption can

be seen as an “effect”, which treated in the naı̈ve way quickly

produces unmanageable traces and proofs. The core of the

problem here is due to gas not being about asymptotic cost,

but about exact cost execution. A good example on why this

is a hard problem is that adding a trivially sound optimization

to our compiler will suddenly make the target language not

fail anymore, breaking preservation. Recent interesting work

in this area is [32], which indeed targets a typed version of

the EVM, and uses execution bounds to guarantee soundness.

B. Security vs Compartmentalization

We briefly discuss execution contexts, and how adversarial

EVM code could compromise an otherwise correct program.

In the case of Solidity, it “source contexts”, CS do correspond

to the “execution environments” that appear in regular OO-

semantics; already with some caveats with regards to object

references (see [22]). However, at the bytecode level, it is

not clear that low-level code can behave “worse” than source

contexts, other than previously discussed gas or recursion

problems. While it seems to us that the current compilation

scheme may not indeed be secure, a reasonable amount of

hardening should allow us to recover a security proof.

However, the line we are walking seems pretty fine here;

when the source-level semantics hold a pointer to a different

contract, some assumptions on well-formedness, or even on

behavior can occur. For example the payable attribute on

a contract type would allow the compiler to perform some

optimizations that are unsound under the perspective of secure

compilation. As discussed in [26], Sec. 3, we could instead

re-formulate our problem as a compartmentalization problem

where several components with given interfaces can become

compromised and thus behave arbitrarily bad. A general

treatment of these systems seems like an open problem as

of today; however in our opinion work in that area is highly

relevant smart contracts with an “open” formulation.

V. PERSPECTIVES AND FUTURE WORK

We hope to have shed some light on the challenges that

attack-resistant compilation of contracts does entail, and we

hope this information to be useful for the language and run-

time designers of platforms amenable to secure computing.

In the smart-contract world, some have called for validators

to directly implement higher-level languages. I do agree that

this would be a welcome step, lessening the need for complex

compilation chains and proofs such as the ones discussed here.

However, reality seems to disagree and the next version

of Ethereum and other smart contract platforms will be

likely based on low-level languages such as WebAssembly.

It seems that some inherent conflict stems between validators

and contract writers, as they disagree on the layer where

complexity should be pushed; we then expect that verified

compilation techniques will be relevant for the platforms still

in the medium term.
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