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Abstract

In composite web services one can only either hide
the identities of the participants or provide end-to-end
confidentiality via encryption. For a designer of inter-
organizational business processes this implies that she
either needs to reveal her suppliers or force her
customers to reveal their information. In this paper
we present a solution to the encrypted data modifica-
tion problem and reconciliate this apparent conflict.
Using a generic sender-transformer-recipient example
scenario, we illustrate the steps required for applying
XML transformations to encrypted data, present the
cryptographic building blocks, and give an outlook on
advantages and weaknesses of the proposed encryption
scheme. The transformer is then able to offer composite
services without itself learning the content of the
messages.

1. Introduction

In inter-organizational business processes, it is
highly critical to protect the business partners’ trade
secrets, such as supplier indentities. Additionally, busi-
ness processes tend to deal with sensitive information
that requires best-possible data protection. When con-
sidering both requirements in conjunction, a new type
of security problem occurs, which consist in the need
to modify encrypted data in transit. As of today, the
cryptographic technique of homomorphic encryption
can be used to serve this need, however, full homo-
morphic encryption (e.g. [8]) is far from applicability
to real-world scenarios due to its complexity.

In this paper, we present a slightly different solution
approach to this important problem. Our approach uses
a combination of Goldwasser-Micali [10] and Sander-
Young-Yung [16] encryption schemes to provide a
limited set of XML transformation operations that
can be applied to encrypted XML documents, without

revealing the contained data values themselves. Our
solution is proven to be secure and shown to be feasible
for real-world business processes as of today.

The paper is organized as follows. The next section
gives an example scenario using the notion of sender-
transformer-recipient, and derives the string operations
that are necessary for performing XML transforma-
tions on encrypted data. Then, the basic encryption
schemes are presented in Section 3, and the resulting
cryptographic protocols for the string operations are
given in Section 4. The paper concludes with related
work in Section 5 and future research indications in
Section 6.

2. Problem Statement

This section outlines the real-world environment
we assumed for our approach, which is an inter-
organizational business process setting that uses Web
Services technology to realize a service-oriented archi-
tecture.

2.1. Service-Orientation

The paradigm of service-orientation consists in
modularizing a distributed system architecture into a
dedicated set of services that provide specific subtasks
of the overall application. These atomic services can
then be aggregated into composite services, which
again can be used in other composite services, and so
on. However, a crucial part of the paradigm is that
a service user need not know the technical details
of how a certain service is provided (e.g. whether it
relies on the use of other, succeeding services or not),
and vice versa a service provider does not necessarily
know the context of why it actually gets invoked (e.g.
whether the service users are regular clients or part of
a composite service themselves).



Based on a generic example scenario, we show how
the real-world problem can be mapped into a model
that can be coped with in terms of cryptologic analysis.

2.2. Example Scenario

Assume a data sender to communicate with a data
recipient via an intermediate data transformer. Assume
the data transformer to have a vital interest in not
revealing the data recipient’s identity to the data sender,
and vice versa. Assume all participants to agree to take
part in a privacy-preserving communication protocol
that prevents all but the data sender and the ultimate
data recipient from getting to know the data sent. Fur-
ther, assume the data recipient to prescribe a specific
XML data format for incoming encrypted data, which
may reveal the data recipient’s identity. A solution has
to enable a confidential transmission of an XML data
fragment from the data sender to the data recipient
such that none of the given assumptions is broken.

<Payment xmlns="http://resellerCorp.com">

<CCName>John Doe</CCName>

<CCType>VISA</CCType>

<CCNo>1111 2222 3333</CCNo>

<ExpirationDate>

<Month>04</Month>

<Year>12</Year>

</ExpirationDate>

</Payment>

Figure 1. Credit card data XML notation example

In order to get to a viable solution, we
have to determine what basic operations are
necessary to transform arbitrary credit card data
representations (e.g. the one shown in Figure 1)
into the recipient’s representation. Commonly,
such a transformation would be done using XML
transformation languages like XSLT [13]. However,
as we are dealing with encrypted data, there is
no way to “parse” the encrypted XML, hence
all of the common transformation approaches
would fail. Nevertheless, the same transformation
can be expressed using a limited set of string
operations. For the given example, it would be
sufficient to replace the string of <Payment
xmlns="http://resellerCorp.com">
with its pendant <ccData
xmlns="http://creditcorp.com">.
Accordingly, the </Payment> string is to be
replaced with </ccData> in order to finish this
first transformation step. We emphasize that this
replacement may not be length preserving and that

replacement of deterministically encrypted strings or
characters is insufficient for ensuring privacy.

Most kinds of such XML transformations can be ex-
pressed by using cleverly crafted string replacements.
However, it is important to note that all of these string
operations substitute a known substring with another
known substring, but never replace parts of the (un-
known) data values. Hence, a string replacement can
be done without any knowledge on the real data values
contained in an encrypted XML data fragment. Thus,
the solution to the encrypted data modification problem
can be reduced to a solution of the string replacement
problem for known substrings of an encrypted string
(i.e. replacing known XML tags with other known
XML tags).

2.3. String Operations

A general flaw of the described approach is that
replacement of known substrings cannot be used for
all kinds of XML transformation. For instance, there is
no problem with replacing <Month> and <Year> of
Figure 1 (and their closing tags) with the empty string
"" in order to move their contents to the XML parent
element, but the opposite transformation is impossible
without knowledge of the data values themselves (at
least for the case of “splitting” or “moving” data
values). Hence, the question arises on what classes
of XML transformations require what kinds of string
operations to be performed. For instance, changing
the sequential order of the CCName and CCNo el-
ements of Figure 1 cannot be expressed by pure
string replacements. Hence, we accompanied the string
replacement operation with three other basic string
operations1, namely substring search, substring extrac-
tion, and string concatenation. These basic operations
are sufficient to support about all data-independent
XML transformations imaginable. In the following, we
present the most basic XML transformations, and show
how they can be performed using only the given set of
string operations.

2.4. XML Transformations on Encrypted Data

Based on the four basic string operations of string
replacement, substring search, substring extraction,
and string concatenation, a large set of XML trans-
formations can be performed on encrypted XML frag-
ments as well. However, due to the given restrictions

1. Obviously, the string replacement operation can be expressed
using a combination of the other three operations. However, we keep
it as a basic operation for convenience.



on transformations of XML text node values, it is not
possible to perform all kinds of XML transformations
with the given set of operations. For instance, some
XML transformation languages like XSLT allow for
testing whether an XML element’s content value is
smaller than a given number (if it is of integer value),
and perform different transformations based on that
test’s result. Such a differentiation is not possible
using the defined approach, since the test can not be
performed on the encrypted data. However, it may
be doubted on whether this is a real drawback, since
enabling such comparisons would inevitably render
any encryption scheme insecure due to the possibility
of binary search on encrypted data.

In the following, we illustrate the set of possible
XML transformations along with a description of the
substring operations to be performed for them. Note
that all of the following algorithms rely on a certain
level of syntactical uniformity in the given XML frag-
ment. This can be achieved by applying appropriate
XML canonicalization algorithms (e.g. [3]) prior to
encryption at the sender side.

2.4.1. Element and Text Replacement, Removal,
and Concatenation. Renaming XML elements in an
encrypted XML fragment can be achieved by straight-
forward use of the string replacement operator. Replac-
ing all of the element’s opening and closing tag names
(i.e. the strings "<X" and "</X>") with their new
element names is sufficient here. Note that the opening
tag should be given without its closing ">" character,
since it may contain unknown XML attributes or
namespace declarations.

Element removal can be achieved by replacing both
opening and closing tag with the empty string "".
This way, potential child elements and text values
are moved up to the parent element. This may result
in text concatenation of sibling element’s contents.
For instance, removing <Month> and <Year> of
Figure 1 would result in "<ExpirationDate>04
12</ExpirationDate>". Depending on the XML
Schema, it might be an option to e.g. replace the
opening tag of <Year> with "/" instead of "" to
achieve a proper syntax for expiration date values.
However, this largely depends on the data values’
semantics.

The same replacement operations work for editing
XML attribute names and known text values, however,
in such cases it is required to verify that the string
values only occur within the intended positions. For
instance, using plain string replacement for renaming
an attribute foo to bar will also result in replacement
of every occurrence of foo with bar in all XML

element tags, namespace declarations, and text node
contents as well. This does not apply to XML elements,
since the "<" character in XML is reserved explicitly
for XML tag names.

2.4.2. Element and Text Insertion. If the encrypted
XML fragment contains an empty element, it is possi-
ble to insert arbitrary child elements or text nodes. This
can be achieved by replacing the string "<X></X>"
with "<X>"+fragment to insert+"</X>". Similarly,
it is possible to insert arbitrary contents before or after
a known opening or closing tag, e.g. replacing "<X>"
with "<X>"+fragment to insert.

2.4.3. Element Swapping. In order to swap two ad-
jacent elements "<A>..</A>" and "<B>..</B>",
the following algorithm can be applied. First, the
document’s prefix string sprefix and fragment start po-
sition istart are defined by searching for "<A". Then,
the document remainder after "</B>" called spostfix
and its start position iend are calculated using a
search for "</B>" (with iend := search("</B>")+
length("</B>")). Third, the intermediate index
imiddle is calculated as istart of a search for "<B". The
substrings of <A>..</A> and <B>..</B> are then
defined as sA := substring(istart, imiddle) and sB :=
substring(imiddle, iend), respectively. The result of
the swap operation is then defined by concatenating
sprefix + sB + sA + spostfix.

3. Building Blocks

In order to realize the described XML element trans-
formations in a privacy-protecting way, the following
basic cryptographic protocols are utilized.

3.1. Goldwasser-Micali Encryption

Goldwasser-Micali (GM) encryption [10] is a
public-key, semantically-secure, homomorphic encryp-
tion scheme. Its plaintext length is 1 bit and its
security relies on the fact, that one cannot compute
the Jacobi symbol without factorization. Note, that the
computation of a Jacobi symbol is a cheap operation
compared to modular exponentiation and therefore the
encryption is quite fast albeit operating on bits.

Let EA(x) denote encryption of x under Alice’s GM
public key. Multiplying two ciphertexts, e.g. EA(x) ·
EA(y), results in an encryption of the exclusive-or
(XOR) denoted by ⊕. Obviously this allows negation
(XOR 1), but it also allows AND with an unencrypted
bit. To achieve the AND operation of EA(x) and an
unencrypted bit y, choose EA(y) if y = 0 and choose



EA(x) if y = 1. We denote this operation as ◦, e.g.
EA(x) ◦ y. In summary,

EA(x) · EA(y) = EA(x⊕ y)

EA(x) ◦ y = EA(x� y)

GM encryption is randomized (and semantically-
secure), i.e. one cannot infer from the ciphertext
and the public key whether it is a specific plaintext.
Randomization and homomorphism implies the ability
to re-randomize: simply XOR EA(0). This allows
encryptions to be untraceable, i.e. the result of an op-
eration on an encrypted value is uniformly distributed
among the ciphertexts (of that plaintext).

3.2. Sander-Young-Yung Encryption

Sander-Young-Yung (SYY) encryption [16] is also
a public-key, semantically-secure, homomorphic en-
cryption scheme. It probabilistically encrypts a bit, i.e.
there is a small probability of decrypting a 0 as a 1.
There is a security parameter λ and the probability of
incorrectly decrypting a 0 is 2−λ.

SYY encryption bases its security, semantic security
property, and re-randomization on the GM encryption,
but the homomorphic operation is different. Let E?A(x)
denote encryption of x under Alice’s SYY public key.
The element-wise product E?A(x) × E?A(y) of two
encryptions E?A(x) and E?A(y) is the logical and (AND
– �) of the two plaintexts:

E?A(x)× E?A(y) = E?A(x� y)

A bit encrypted in GM encryption EA(b) can be
converted into the same bit encrypted in SYY en-
cryption E?A(b) with a simple procedure. The reverse
conversion is not possible. We refer the reader to [16]
for details.

3.2.1. Oblivious Transfer. In Oblivious Transfer (OT)
Alice has two inputs a0 and a1 and Bob has a bit b. At
the end of the protocol, Bob will have obtained ab, but
learnt nothing about a¬b and Alice has not learnt b. As
of today, the fastest implementation of OT is described
in [15].

3.2.2. Yao’s Millionaires’ Protocol. Yao’s million-
aires’ problem was introduced (and solved) along
with the problem of secure computation [19]. Two
millionaires want to compare their wealth, but do not
want to reveal the exact amount to the other party.
I.e., Alice has a and Bob has b and they want to
compute a < b without revealing a to Bob and b to
Alice. This can be achieved using the general circuit

construction technique [19]. Furthermore, the problem
of comparison has received some attention of its own,
e.g. [6], and clever faster solutions have been found.

An extension of Yao’s millionaires’ problem is a
split-result Yao’s millionaires’ problem. In this case,
again Alice has a and Bob b, but they compute a < b,
such that the result is shared in a secret sharing
scheme, i.e. Alice obtains a random bit r and Bob
obtains r ⊕ (a < b). Neither Alice nor Bob alone
gain information about the comparison, but they can
use that value in future computations. A protocol can
be constructed using the circuit construction technique
by having Alice submitting a random bit as input and
returning the XOR of that bit and the result of the
regular protocol to Bob only, or special protocols may
be able to be modified for this purpose.

4. Protocols for Basic Operations

4.1. String Representation

Each string is represented as a length field and
sequence of characters. The sequence is padded with
0s to the maximum length of lmax characters. We
recommend to align the maximum length with byte
lengths of the length field, i.e. 255 byte strings (1 byte
length field), 64 Kbyte - 1 (2 byte length field), 4GByte
- 1 (4 byte length field), etc. In the following, let L
be a string, i.e. L = {l, ~x} where l denotes the length
and ~x is the padded character sequence.

4.2. Providing Input

Our protocols are two-party protocols on shared
strings, i.e. we assume that the parties use these secret
shares as input.

In order to provide (known) input ~x, e.g. an XML
tag, Alice, e.g. the transformer, creates a random share
by uniformly choosing a random number r′ (0 ≤ r′ ≤
lmax) and (also uniformly) a random vector ~r′′ (of
length lmax). She sends LB = {r′, ~r′′} to Bob, e.g. the
recipient, and sets her own string LA to {l − r′ mod
lmax, ~x⊕ ~r′′}.

In order to send a message, Charlie, e.g. the sender,
similarly splits his input into LA and LB , but instead
of keeping his share LA he encrypts it with Alice’s
public key. Furthermore he encrypts LB with Bob’s
public key and sends both ciphertexts to Alice. Alice
can decrypt her share LA and forwards the encrypted
share of Bob. After decryption Alice and Bob can then
execute the protocols for the basic string operations.
Note that Alice can prevent Charlie from learning
Bob’s identity (and needing to use his public key) by
using proxy-reencryption [1].



4.3. String Concatenation

The string concatenation protocol composes a shared
string based on two other shared strings X and Y.
After executing the protocol the two parties have a
share of the concatenated string Z.

The basic idea of the protocol is to shift one string
by the length of the other string (to the right) and
then combine them. The combination can be done with
XOR, since after shifting each character is partnered
with 0-padding character. There is one problem with
shifting: The length is shared modulo lmax, i.e. it may
be larger than lmax. Then shifting would move to an
incorrect position, but if we rotate (to the right) instead
of shift, the problem is fixed. The complete protocol
proceeds as follows:

Input: Shared strings X = {l, ~x} and Y = {m,~y},
i.e. Alice has XA = {lA, ~xA}, YA = {mA, ~yA} and
Bob has XB = {lB , ~xB}, YB = {mB , ~yB} where
l = lA + lB mod lmax, ~x = ~xA ⊕ ~xB , m = mA +
mB mod lmax, ~y = ~yA ⊕ ~yB .

Output: Shared string Z = {n, ~z}, i.e. Alice obtains
ZA = {nA, ~zA} and Bob obtains ZB = {nB , ~zB},
such that n = nA + nB mod lmax, ~z = ~zA ⊕ ~zB and
Z is the concatenation of X and Y.

1) Alice chooses (uniformly) a random vector ~rA
(of length lmax). She sets ~y′A = ~yA ⊕ ~rA and
sends EA(~y′A) to Bob.

2) Bob chooses (uniformly) a random vector ~rB (of
length lmax). He computes ~e = EA(~y

′
A⊕~rB) =

EA(~y
′
A) ·EA(~rB). He rotates to the right ~e by lB

characters: ~e′ = rotate right8lB (~e), i.e. e′i =
ei−8lB mod 8lmax

. He sets ~y′B = ~yB ⊕ ~rB . He
sends EB(~y′B) and ~e′ to Alice.

3) Alice decrypts ~e′: ~d = DA(~e
′). She ro-

tates to the right ~d by lA characters: ~d′ =
rotate right8lA(

~d). She sets her share of Z
to ZA = {lA + mA, ~xA ⊕ ~d′}. She computes
~g = EB(~y

′
B ⊕ ~rA) = EB(~y

′
B) · EB(~rA). She

rotates to the right ~g by lA characters: ~g′ =
rotate right8lA(~g). She sends ~g′ to Bob.

4) Bob decrypts ~g′: ~f = DB(~g
′). He ro-

tates to the right ~f by lB characters: ~f ′ =
rotate right8lB (

~f). He sets his share of Z to
ZB = {lB +mB , ~xB ⊕ ~f ′}.

4.3.1. Security Proof. The proof of security for a
secure computation is by comparison to the ideal
model. In the ideal model both parties send their input
to a trusted third party and receive the result from it.
We prove security in the semi-honest model [9]. In the
semi-honest model the parties follow the protocol as
prescribed, but keep a record of all messages and try

to infer as much information as possible. Therefore
we have to show that every message received can
be computed by a simulator given input and output
of the protocol, i.e. the output of the simulator is
computationally indistinguishable from Alice’s view
of the protocol. Our proof relies on a cryptographic
theorem.

First, that the encryption of a bit is (semantically)
secure, i.e. the probability of guessing the plaintext
given the cipher text and the public key is like a
random guess (i.e. it is at most negligible better than
that).

P [m = b|EX(m), EX(·)] ≤ 1

2
+

1

poly(|EX(·)|)
(1)

Proof: We first construct a simulator for Alice’s
view. Recall that Alice’s input is XA = {lA, ~xA} and
YA = {mA, ~yA} and her output is ZA = {nA, ~zA}.

1) Uniformly choose a random sequence ~r1 of lmax
characters. Set EB(~y′B) = EB(~r1).

2) Rotate ~zA⊕~xA to the left by lA characters: ~d =
rotate left8lA(~zA ⊕ ~xA) Set ~e′ = EA(~d).

We now prove computationally indistinguishability.
The computational indistinguishability of step 1 is a
corollary of (1). For step 2 the corresponding message
is derived from the output. We omit the proof for Bob’s
view for brevity, since it is the mirror image of Alice’s
view.

4.4. Substring

The composite protocol for substring algorithm for
generating a shared substring Z uses a shared string X,
a shared index s and a shared length t as input. This
algorithm consists of two basic algorithms, the sub-
string protocol with remainder bytes and the masking
protocol for remainder bytes. The first protocol rotates
the shared string X to the left by s. This protocol is
similar to the concatenation protocol and proceeds as
follows:

Input: Shared string X = {l, ~x}, i.e. Alice has
XA = {lA, ~xA} and Bob has XB = {lB , ~xB} where
l = lA + lB mod lmax, ~x = ~xA ⊕ ~xB . Shared index
s and length t, i.e. Alice has sA and tA and Bob
has sB and tB where s = sA + sB mod lmax and
t = tA + tB mod lmax.

Output: Shared string Z = {n, ~z}, i.e. Alice obtains
ZA = {nA, ~zA} and Bob obtains ZB = {nB , ~zB},
such that n = nA + nB mod lmax = t, ~z = ~zA ⊕ ~zB
and the (0, t)-substring of Z is (s, t)-substring of X.

1) Alice chooses (uniformly) a random vector ~rA
(of length lmax). She sets ~x′A = ~xA ⊕ ~rA and
sends EA(~x′A) to Bob.



2) Bob chooses (uniformly) a random vector ~rB (of
length lmax). He computes ~e = EA(~x

′
A⊕~rB) =

EA(~x
′
A) · EA(~rB). He rotates to the left ~e by

sB characters: ~e′ = rotate left8sB (~e), i.e. e′i =
ei+8sB mod 8lmax

. He sets ~x′B = ~xB ⊕ ~rB . He
sends EB(~x′B) and ~e′ to Alice.

3) Alice decrypts ~e′: ~d = DA(~e
′). She rotates to the

left ~d by sA characters: ~d′ = rotate left8sA(
~d).

She sets her share of Z to ZA = {tA, ~d′}.
She computes ~g = EB(~x

′
B ⊕ ~rA) = EB(~x

′
B) ·

EB(rA). She rotates to the left ~g by sA char-
acters: ~g′ = rotate left8sA(~g). She sends ~g′ to
Bob.

4) Bob decrypts ~g′: ~f = DB(~g
′). He ro-

tates to the left ~f by sB characters: ~f ′ =
rotate left8sB (

~f). He sets his share of Z to
ZB = {tB , ~f ′}.

The second protocol verifies the length of the sub-
string and makes sure that it is filled with zeros
after the position t, since the rotation may have left
some remainder characters and it is important for the
composition of several protocols that all strings are
only padded with 0 characters. Its basic idea is to
construct a masking string of the correct length and
compute the AND operation of it and the string. This
protocols proceeds as follows:

Input: Shared string X = {l, ~x}, i.e. Bob has XB =
{lB , ~xB}, but Alice only needs lA where l = lA +
lB mod lmax.

Output: “Shared share” of string Z, i.e. Alice obtains
~zA and Bob obtains ~zB , such that {lA, ~z = ~zA ⊕ ~zB}
is a share of string Z that has all trailing characters set
to 0.

1) Alice prepares a mask vector ~m =
18lA08lmax−8lA with 8lA heading ones and
trailing zeroes till lmax characters. She sends
~e = EA(~m) to Bob.

2) Bob prepends 8lB ones and appends ze-
roes till 2lmax characters to ~m, i.e. he
prepares an encrypted mask vector ~e′ =
EA(~m

′) = EA(1
8lB ), EA(~m), EA(0

8lmax−8lB ).
Let ~e′head = EA(m

′
head) be the head-

ing lmax characters and ~e′tail = EA(m
′
tail)

be the trailing lmax characters of ~e′, i.e.
~e′head = e′0, . . . , e

′
8lmax−1 and ~e′tail =

e′8lmax
, . . . , e′16lmax−1. Bob computes ~e′′ =

EA(~m
′′) = ~e′head · ~e′tail = EA(~m

′
head ⊕ ~m′tail).

He prepares two vectors ~e′′0 and ~e′′1 : one for the
case lA + lB ≥ lmax and one for the case
lA + lB < lmax. He sets ~e′′0 = EA(~m

′′
0) =

~e′′ · EA(18lmax) = EA(~m
′′ ⊕ 18lmax) and ~e′′1 =

EA(~m
′′
1) = ~e′′. He computes both ~e′′′0,1 =

EA(~m
′′′
0,1) = ~e′′0,1 ◦ xB = EA(~m

′′
0,1 � xB).

He chooses (uniformly) a random vector ~rB
(of length 8lmax). He computes both ~e′′′′0,1 =
EA(~m

′′′′
0,1) = ~e′′′0,1 · EA(rB) = EA(~m

′′′
0,1 ⊕ rB).

3) Alice and Bob engage in a split-result Yao’s
millionaires’ protocol for lA and lmax − lB .
Alice obtains ρA and Bob obtains ρB and the bit
lA + lB < lmax = lA < lmax − lB = ρA ⊕ ρB .

4) Bob prepares two messages: ~o0 = ~e′′′′ρB and ~o1 =
~e′′′′1⊕ρB . Alice and Bob engage in an Oblivious
Transfer and Alice obtains ~f = ~oρA = ~e′′′′ρA⊕ρB .

5) Alice decrypts ~f : ~d = DA(~f). She chooses (uni-
formly) a random vector ~rA (of length 8lmax).
She computes ~d′ = ~d ⊕ rA and sets her “share
of the share” ~zA = ~rA. She sends ~d′ to Bob.

6) Bob computes ~d′′ = ~d′ ⊕ ~rB and sets his “share
of the share” ~zB = ~d′′.

The following composite protocol uses the masking
protocol twice after the basic substring protocol to
clean both sides of the shared string.

Input: Shared string X = {l, ~x}, i.e. Alice has
XA = {lA, ~xA} and Bob has XB = {lB , ~xB} where
l = lA + lB mod lmax, ~x = ~xA ⊕ ~xB . Shared index
s and length t, i.e. Alice has sA and tA and Bob
has sB and tB where s = sA + sB mod lmax and
t = tA + tB mod lmax.

Output: Shared string Z = {n, ~z}, i.e. Alice obtains
ZA = {nA, ~zA} and Bob obtains ZB = {nB , ~zB},
such that n = nA + nB mod lmax, ~z = ~zA ⊕ ~zB and
Z is the (s, t)-substring of X.

1) Alice and Bob engage in the “substring with
remainder” protocol. Alice obtains Z′A =
{n′A, ~z′A} and Bob obtains Z′B = {n′B , ~z′B}.

2) Alice and Bob engage in the “masking” protocol
with Z′. Alice obtains ~z′′A and Bob ~z′′B .

3) Alice and Bob engage in the “masking” protocol
with Z′ again, but this time with the roles of
Alice and Bob interchanged. Alice obtains ~z′′′A
and Bob ~z′′′B .

4) Alice sets her share to ZA = {n′A, ~z′′A ⊕ ~z′′′A }.
Bob sets his share to ZB = {n′B , ~z′′B ⊕ ~z′′′B }.

4.4.1. Security Proof. The security of the composite
protocol follows directly from the composition theorem
of [9], since it is such a composition. In order to
complete the proof we need to prove the security
of the “substring with remainder” and the “masking”
protocol.

Substring Protocol with Remainder Bytes.
Proof: The simulator for Alice’s view is:

1) Uniformly choose a random sequence ~r1 of lmax
characters. Set EB(~x′B) = EB(~r1).



2) Rotate ~zA to the right by sA characters:
~d = rotate right8sA(~zA) Set ~e = EA(~d).

The simulator is almost identical to the simulator of
the string concatenation protocol. Bob’s view is again
a mirror image and omitted for brevity.

Masking Protocol. In the masking protocol we
will replace the invocations to Yao’s millionaires’ pro-
tocol and Oblivious Transfer by the ideal functionality
using Goldreich’s composition theorem. The compo-
sition theorem for secure multi-party computation [9]
states, loosely speaking, that a protocol using secure
building blocks protocols is secure if it is secure when
those are replaced by invocations to ideal trusted third
party. The security of these building blocks has been
established independently [15], [19].

Proof: The simulator for Alice’s view is:

1) Uniformly choose a random bit r1. Set ρA = r1.
2) Uniformly choose a random vector ~r2 of lmax

characters. Set ~f = EA(~zA ⊕ ~r2).
Step 1 follows from the definition of the split Yao’s

millionaires’ protocol. The security of the message in
step 2 follows from the random-pad security, since ~rB
has been chosen uniformly and is used only to hide
this message.

The simulator for Bob’s view is:

1) Uniformly choose a random vector ~r1 of lmax
characters. Set ~e = EA(~r1).

2) Uniformly choose random bit r2. Set ρB = r2.
3) Uniformly choose a random vector ~r3 of lmax

characters. Set ~d′ = ~zB ⊕ ~r3.

Step 1 follows from the security of encryption (see
equation (1) in section 4.3.1). The distribution of step
3 follows from the definition of the split-result Yao’s
millionaires’ protocol. The security of the message in
step 3 follows from the security of the random-pad,
since ~rA has been chosen uniformly and used only to
hide this message.

4.5. String Search

The string search protocol searches a shared string
X for a pattern string P. In this protocol the output is
known to both parties and not shared. After executing
this protocol the two parties have knowledge of each
position in X where P occurs.

The protocol uses the simple O(nm) string search
and computes the XOR of the two strings at each
position. Then the result of the XOR is compressed
by switching the encryption method, such that the
overall communication complexity can be reduced
significantly. The final protocol proceeds as follows:

Input: Shared string X = {l, ~x}, i.e. Alice has
XA = {lA, ~xA} and Bob has XB = {lB , ~xB} where
l = lA+lB mod lmax, ~x = ~xA⊕~xB . Bob has a search
pattern string P = {q, ~p}.

Output: Alice and optionally Bob have a binary
vector ~m of length lmax where mi = 1, if P occurs
at position i in X, and mi = 0, otherwise.

1) Alice sends EA(~xA) to Bob.
2) For each position i from 0 to lmax − q Bob

extracts the (encrypted) subsequence ~ei =
EA(~di) =
EA(~xA)8i, . . . , EA(~xA)8i+8q−1 from character i
to character i + q (inclusive) of EA(~xA). He
also extracts the same subsequence from his
share ~xB of X: ~hi = xB,8i, . . . , xB,8i+8q−1.
He computes ~gi = EA(~fi) = ~ei · EA(~hi) ·
EA(~p) · EA(18q) = EA(~di ⊕ ~hi ⊕ ~p ⊕ 18q).
He converts the Goldwasser-Micali encryption of
each ~gi into a Sander-Young-Yung encryption:
~g′i = E?A(

~fi). He computes the bit-wise AND of
each ~g′i: m

′
i = E?A(mi) = g′i,1 × . . . × g′i,8q =

E?A(fi,1�. . .�fi,8q). He appends q−1 encrypted
0’s to ~m′: ~m′′ = ~m′, E?A(0

q−1). He sends ~m′′ to
Alice.

3) Alice decrypts ~m′′: ~m = D?
A(~m

′′) and sends this
result to Bob.

4.5.1. Security Proof. Proof: The simulator for
Alice’s view is particularly simple and given without
further explanation. Let ~m be the output vector.

1) Set ~m′′ = E?A(~m).
The simulator for Bob’s view is:
1) Uniformly choose a random vector ~r1 of lmax

characters. Set EA(~xA) = EA(~r1).
The distribution of step 1 is indistinguishable due to
the security of the encryption (see equation (1) in
Section 4.3.1).

5. Related Work

Our privacy-preserving XML transformations repre-
sent special protocols for secure two-party computation
(STPC). In STPC two parties have an input each
and want to compute a joint function of their input
without revealing anything but the result. STPC has
been introduced in [19], but we improve over this
general circuit construction technique as implemented
in FairPlay [14]. All our protocols have communication
complexity O(lmax) whereas STPC has O(l2max) due
to the variable array indexing. Our string concatena-
tion and substring protocols also improve running to
O(lmax) compared to O(l2max).



We are not aware of any special secure protocols
for our basic string operations. Searchable encryption,
e.g. [2], [17], offers a non-interactive technique for
searching for a string in a ciphertext. This function-
ality is somewhat limited for our purposes particularly
with respect to composition. Privacy-preserving regular
expression search is presented in [18].

Our protocols employ a number of cryptographic
techniques including homomorphic encryption. Re-
cently fully homomorphic encryption that can im-
plement any function securely has been introduced
[8]. We emphasize that our protocols are significantly
more efficient than fully homomorphic encryption, but
our protocols also leak additional information. For in-
stance, they leak the number and order of applied basic
operations. Note, that if this information may not be
revealed to any party, the algorithm has to always run
for the maximum number of basic operations possible.
If the running time of the protocol depends on secret
input, this input may be inferred via timing attacks. A
secure protocol’s average complexity therefore always
equals its worst-case complexity. In case of XSLT
this worst case complexity is exponential in the input
length, and we therefore predict that even if efficient
fully homomorphic encryption is found it cannot be
applied to XSLT.

6. Conclusion and Future Work

In this paper we presented a solution to the problem
of modifying encrypted data in inter-organizational
service compositions in a privacy-preserving way. The
solution is based on a new data encryption scheme
that allows a large set of XML transformations to
be applied to the encrypted data, without revealing
the data values themselves. The scheme is useful in
all scenarios where the data structure itself reveals
information to the recipient that it should not get
according to the interests of a data transformer that
is not the data originator itself (e.g. a reseller).

The encryption scheme provides a strong level of
confidentiality, however, some further issues have to be
addressed. At first, there is no way yet for a data recip-
ient to verify the integrity of the data received by the
transformer. Hence, the transformer could maliciously
add new data items—which would be indistinguishable
from real original data—or re-use data fragments to
craft additional messages, potentially resulting in an
unintended revelation of the confidential data items to
the transformer (e.g. by sending a data copy to some
echoing service at the recipient). In order to address
these issues, future work consists in analyzing the use
of digital signatures in conjunction with the proposed

encryption scheme in order to assure data integrity as
well. Beyond that, an obvious future work will be an
in-depth performance and security analysis of a real-
world implementation of the proposed scheme.
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