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Abstract

In order to increase the overall performance of distributed parallel programs running in a
network of non-dedicated workstations, we have researched methods for improving load
balancing in loosely coupled heterogeneous distributed systems.

Current software designed to handle distributed applications does not focus on the problem of
forecasting the computers future load. The software only dispatches the tasks assigning them
either to an idle CPU (in dedicated networks) or to the lowest loaded one (in non-dedicated
networks).

Our approach tries to improve the standard dispatching strategies provided by both parallel
languages and libraries, by implementing new dispatching criteria. It will choose the most
suitable computer after forecasting the load of the individual machines based on current and
historical data. Existing applications could take advantage of this new service with no extra
changes but a recompilation.

A fair comparison between different dispatching algorithms could only be done if they run
over the same external network load conditions. In order to do so, a tool to arbitrarily
replicate historical observations of load parameters while running the different strategies was
developed.

In this environment, the new algorithms are being tested and compared to verify the
improvement over the dispatching strategy already available.

The overall performance of the system was tested with in-house developed numerical models.
The project reported here is connected with other efforts at CeCal devoted to make it easier
for scientists and developers to gain advantage of parallel computing techniques using low
cost components.
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Introduction

Parallel architectures are nowadays wide spread. With the growth of node power and the increases
of network bandwidth, present networks can be used as powerful parallel environments. This kind
of hardware support for distributed processing can be found in a growing number of companies and
universities.

However, software support for efficiently use this kind of architectures is still not good enough.
There is almost no visual environment for developing distributed systems, and the ones that exist
are extremely expensive. On the other hand, they are (in many senses) under-developed. In addition,
they only have rudimentary tools to cope with unexpected overload in a node. This usually leads to
a significant delay in the computation time.

CeCal [1] is concerned about this topic, and has many concluded ([2][3][4][5]) and ongoing
([6][7][8]) research projects.

This project proposes to improve PVM [9] dispatching algorithms in order to use historical
information about the use of the computers that compose the virtual machine. New algorithms
based in neural networks techniques and traditional statistical methods (ARMA, ARIMA) were
used to predict future usage of individual workstations based on historical usage. In order to
compare two forecasting algorithms under the same workload environment, two instances of the
same program with just the dispatching criteria changed should be run. However, this executions
should run in a background load environment as similar as possible.

This paper describes the work done on this direction, both about the development of new
dispatching algorithms and in the infrastructure needed to fairly compare them against the standard
ones (network load gatherer and replicator).

These new dispatching algorithms were tested using UCLA´s Global Climate Model [10] and a
Shallow Water Model. [11]

Load Balancing and new dispatching criteria

It has been proved that load balancing can be considered as the most relevant performance
enhancement in a multi-user network environment. When many tasks are used for solving some
problem, a single delay produces the whole system be delayed, with the other tasks waiting for the
delayed one at synchronizing points. Load balancing techniques allow distributed applications to
take care about this problem.

Standard load balancing strategies for distributed applications propose choosing the most
appropriate workstation of the virtual machine. The most appropriate workstation means the lowest
loaded machine at task spawning time. All the history of workstations load is ignored and only
instant load is considered.

Our project proposed and implemented two original methods for improving load balancing of
distributed applications. In both cases, load balancing will be considered before tasks are started, by
forecasting load in the target computer.



    Figure 1

By considering statistical information, load balancing could be improved. Our project will include
services in the PVM kernel for gathering virtual machine workstations load information, and using
it at task spawning time in order to forecast future workstation load and correctly define the "most
appropriated workstation" choice. Different time series forecasting methods were compared;
predictors were implemented and a framework was developed in order to test and compare
improved vs. traditional dispatch.

Determination of Load Meaningful Parameters

There exists many and different workload that can be considered for load balancing improvement:
number of tasks in the run queue, size of free available memory, 1-min load average, amount of free
CPU time, and so on. In order to improve PVM dispatching routine we have to predict, in some
way, future load of the workstations that compose the virtual machine. This prediction will be based
in some combination of the selected workload parameter. This value is usually called the load
index.

In order to compare our new dispatching strategy, we need to run the same PVM program in the
same virtual machine load environment with both the old and the new dispatching routines. So, we
must be able to generate a workload artificially, for arbitrarily replicate historical observations of
load parameters while applying the different strategies.

The framework developed for testing and comparing different task dispatching algorithms (the Load
Replicator) will be discussed below.

We needed support for replicating, at any time, a given network load situation.
Only with this artificially generated background workload, one could fairly
compare different solutions for the dispatching of a distributed program. The
input is, for N workstations, a time series of the load observed for some
representative parameters, and the output will be each workstation loaded with
the prescribed load.

UNIX systems provide at many levels of detail information about system usage
[12]. The load information we used is the one provided by the rstat service,
which gathers information about CPU usage, local (non NFS) disk usage,
paging and swapping, interrupts and context switches, network usage and
collisions. Some of them are graphically represented in figure 1.

Looking for simplicity and transparent processing, we discarded some
parameters that have no effect in global load patterns. For example, kernel
operations like context switching were ignored because they are extremely hard
to trace and replicate, and they do not affect global workstation performance
[13]. Also, parameters related with misconfiguration problems (for example, if
excessive swapping and paging is observed, possible exists a memory leak
problem) were ignored. On the other hand, parameters that hardly change or are
not meaningful over the time (like collisions) also were neglected.



The identification of suitable load indexes is not a new problem [14], and is well known that
simple load indexes are particularly effective. Kunz [15] found that the most effective of the
indexes we have mentioned above is the CPU queue length. However, due to the specific topic we
are managing (network parallel computing) where network traffic is a bottleneck and distributed
processes usually make great use of local disk, we considered that this two indexes should not be
neglected.

Artificial Replication of Network Load Environment

Under the assumptions described, we have replicated just CPU, disk and network usage for each
workstation.

Replication is not a new research area, and it is needed for testing purposes in many computer
science areas. Workload replicators for measuring performance of different file system
implementations were studied in [16][17].  Also replicators for real-time system applications were
developed that work at the kernel level, obtaining excellent results for very short periods of time
[14].

As our purpose is to replicate workloads in a complete network with many parameters of each
workstation, we don’t need excessive precision in the replication at the microsecond scale, but we
expect acceptable results for the long periods (like hours).  So we decided to work at the process level.

In this paper we will focus only on CPU replication; the other parameter replication are exactly the
same, just changing the loader subprocess. The procedure is very simple: if historical load is bigger
than actual load, then we do hard work in non-cacheable tasks; if not, we just wait. Periodically we
compare both loads and we act in consequence.

Figure 3 – Replicated CPU loadFigure 2 – Historical CPU load



Despite its simplicity, this strategy works fine. We can visually compare the historical load (figure
2) and the replicated one (figure 3). Vertical axis shows the percent of CPU used during the
measured interval, with increments in the range 1-100 per second. Horizontal axis indicates
historical measurements, taken every 60 seconds in these experiments. These units are used in all
experiments shown in this paper, unless is specified.

Errors obtained for CPU replication are shown in figure 4. Working with a 60 seconds interval,
average deviation was of 0,97 while the maximum deviation was 5. The vertical axis units are those
provided by rstat.

In order to measure the overhead generated by the replication processes, producer and replicator
processes could be run using zero historical data. Also, load overhead generated by the collector
process was considered. Figure 5 shows generated load for both auxiliary processes involved in
load replication. Load overhead observed was of 0.1 % of CPU used per second, so it could be
neglected, and ensures that previous results were fairly good for our purposes.

Disk and network replication designs were similar, although results were not so good. Disk
simulation was implemented writing random data directly to the raw device (in order to avoid
system caches). However, some historical high data was impossible to replicate, especially when
was generated due to access to very slow devices (like CD-RROM units). Network usage
replication was rather good: the average absolute deviation for each interval was of 25 packets/sec.

Additional information about this sub-project (and some other related projects) could be found at
[5].

Figure 5: generated load for both auxiliary processes
involved in load replication.

Figure 4 – Average deviation in CPU load
replication, per second
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Analyzing CPU usage as a representative execution time factor

In order to verify the relationship between CPU usage and the execution time for an almost-
deterministic task, a statistical experiment was designed. It proposes to charge a specifically host
and determining the way a large system CPU usage produces a individual task to be delayed.

The individual task was composed with standard parallel designed program instructions and its
almost-deterministic behaviour was tested by running it several times over a dedicated network
(null network load was present). The results are resumed and commented below.

a) Almost-deterministic behaviour over null network load

Running the test program over null network load conditions, we determined that the execution time
does not change substantially. We also tested the behaviour of our program test running over the
different architectures that compose our parallel machine. We found very small differences between
the results, and we concluded that the test program has an almost-deterministic behaviour. An
example test result is offered in figure 6, with data collected from machine maserati.fing.edu.uy
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Figure 6: almost-deterministic test program behaviour

The average time execution was 759.75 sec. The standard deviation of time execution was 30.92
sec., representing a 4,07% over average time execution.

b) Relationship between CPU usage and execution time over external load conditions

Running the test program over different load conditions in different hosts, we confirm a pseudo-
linear functional relationship between external CPU usage and execution time. The test program
was delayed when running over a high loaded machine, and the delay seems to be a linear function
for non extreme load values. Figure 7 resumes the results obtained, with data from
volvo.fing.edu.uy
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Figure 7: almost-linear relationship between external CPU
usage and  execution time

This results offer two main conclusions to bear in mind :

1) To determine whether a dispatch strategy is better than another one, the system
performance (simply measured by the average execution time) should be incremented in a factor
over the 4% given by the pseudo-deterministic behaviour when using the new criteria.

2) A pseudo-linear functional relationship between execution time and external CPU usage
was confirmed. As a consequence, CPU usage reveals itself as a meaningful parameter for load
balancing improvement. So, we have to predict CPU usage in our improved load management
dispatch algorithm.

Time Series Forecasting Load Parameters

We used time series to predict load just one time step ahead in time, using available information up
to (and including) spawning time. The implemented methods can be divided into two categories:
linear and non-linear. In the first case the estimated quantity is a linear combination of the available
data. Its general expression is bwxy j += , being yj the unknown quantity, x a vector which entries

are the available data and b a scalar constant; both the weight vector w and the number b depends
on the method. Typically the vector x holds the values of the same instant, and both w and b are
constants.



For non-linear methods the value is assigned using a non-linear formula. We compared a number of
different methods, and due to space constraints we will summarize those who proved successful.

The Naive prediction and the Perfect prediction were used as reference predictors. Naive strategy is
the standard PVM dispatching rule (it assumes that load will not vary as time goes by and uses the
instant value as prediction), while the Perfect prediction is defined only in our test environment and
it consists in the best prediction method. We used the real next value as a prediction, so the dispatch
strategy could not be improved. The idea behind this approach is to compare our new dispatching
criteria not only versus the standard methods but against the ideal one also, in order to determine the
improving accurately.

Computer load might have peak values that might be unreasonable or unusual. In the statistical
literature such values are denoted as outliers. They can be defined as values that do not follow the
pattern of the majority of the data and thus they might affect adversely the performance of the
methods.

Linear deterministic methods

Due to their simplicity, these methods are widely used. We worked with the Ordinary Least Squares
(OLS) method; a brief description follows: OLS is a standard method and the theory for it can be
found at [18]. The weights w are chosen in order to minimize the 2-norm of the vector M(j)w - m(j)

(a scalar proportional to the Root Mean Square of the Errors, RMSE) where M(j) is the matrix of the
available data (as many rows as events, as many columns as computers) and m(j) is a column vector
with the j-th computer load values shifted in time. The shift is required in order to use old values to
predict the new one; thus first entry of m(j) corresponds to the load at time t2 while first row of M(j)

hold values of the load at time t1. The version implemented assumes that the data is outlier free, so
w can be derived from (dropping the index j) MTMw=MTm, b=0. Notice that this method is prone
to suffer from the existence of outliers; the solution is either to remove the outliers before the
calculations or to use an estimate more robust like the ones described below.

The Ordinary Least Squares Predictor was implemented and included into PVM library.

Non linear methods

We used Artificial Neural Networks (ANN) methods to implement a non-linear predictor. ANN
where used to fit both a univariate or multivariate load parameters time series using available data,
in order to predict new load values for the machines in the network. (see Warner and Misra 1996;
Stern 1996 for an ANN thorough presentation).

We have distinguished two interesting cases: a) univariate and b) multivariate time series
forecasting. In the former case, only data for one computer is considered; in the other, data from all
other computers are considered as well. We summarizes the results obtained below :



a) Univariate case

The forecasting study was done using only data from one machine, dynsys.fing.edu.uy. The rest of
the data was used when necessary. The time series was splitted into two parts: the train-set and the
test-set. The train-set consists of the first two thirds of the database and the rest is used to measure
the quality of the prediction. RMSE is used to quantify the quality of the prediction. The RMSE is
calculated using the test-set and the predicted data for the set. The maximum and minimum errors
were also recorded.

The first ANN tried takes into account four days to predict the fifth. The network had an input layer
of four neurones and an output layer of a single neurone. All the transfer functions used were linear.
The topology of the first network used was:

* One input layer with four neurones
* One hidden layer with four neurones that applies a linear transfer function
* One output layer with one output neurone that apply a linear transfer function

All the networks were trained using the following criterion:

* 100 initial solutions were sorted
* each of them was refined -trained- 100 times
* the best solution was refined 1000 times afterwards.

Maximum and minimum values from the data set are 497.5375 and 0 respectively.

The next step was to change the transfer functions used on the hidden layers. From the results
obtained we can conclude that no significant benefits were obtained from more complex networks,
at least without further training. With this network it was possible to get a 14,5% of benefit on the
total RMS when compared with the Naive method.

Figure 8: Sketch of a typical ANN organisation. Information flows from left to right. There are
four inputs p, one hidden layer with five neurones with transfer function F1 , a second hidden

layer with three neurones with transfer function F2 which produces three outputs. The
summation symbol indicates a weighted average of all outputs from the previous layer plus a

bias term ni(j).



All the predictions done with the borrowed network gave a similar precision (the same order of
magnitude) than the one obtained with the locally trained network. This could be explained because
all the machines share the same profile of users, do the same kind of tasks and have many things in
common. Maybe the best predictor for a cluster of machines like this is a common ANN trained
with all the data from all the computers. This study was not done. From the present study we can
conclude that it was not possible to make significantly better predictions with more complex ANNs
than the prediction obtained from the initial 4p1p ANN.

b) Multivariate case

We have designed and compared a number of architectures, which vary depending on the transfer
function, the number of neurones in the hidden layer(s) and the input data. The terms purelin, logsig
and tansig and its transfer functions are defined in Demuth and Beale (1994). Despite all of them
might approximate a given function using enough neurons in the hidden layer, we want to keep this
number low for practical reasons connected with training requirements.

The ANN named bp11 has been trained as a forecasting tool; its inputs are the load values of the
last event, and its output is the load for the present event. It should be stressed that for each
computer a different ANN needs to be trained, using all the other load values of the previous event
as inputs. That implies 15 ANN in the CeCal net case.

All of the ANN were trained using one third of the available records trying to minimize the RMS of
the error. This approach is named supervised learning (Warner and Misra 1996). The error is
defined as the difference between ANN output and true value. Little improvement was obtained
even under high cost (in terms of CPU) training methods were used.

Preliminary results

The integrated system was tested running a small parallel application that simulates a parallelizable
domain decomposition for a finite difference discretization scheme. The model generates individual
tasks, dispatches them to the most suitable host; waits for the results at a sinchronizing point, and
starts over again, generating tasks using the new values.

Preliminary results show a small improvement using average execution time as the measurement
variable over 50 samples. They are summarized in Table 1.

Forecasting
Method

Average
Execution

Time

Standard
deviation

Improvement Over
Dispatching Using
Naive Prediction

Performance
Improvement2

Naive 796 sec. 17 sec. (2,13 %) - -
OLS 782 sec. 23 sec. (2,94 %) 14 sec. (1,79%) 25,9%
ANN 765 sec. 16 sec. (2,09 %) 31 sec. (4,05 %) 57,4%
Perfect Method 742 sec. 11 sec. (1,48 %) 54 sec. (7,27 %) 100%

Table 1 : Preliminary results.

                                                          
2 (100% =Perfect Dispatching)



Each sample was measured running our test program over a replicated historical load. The test
program had deterministic behaviour for every dispatching method used. The standard deviation has
always been less than 3% over average execution time.

The low improvement accomplished by the perfect method is an important result to highlight. This
method only decrease average execution time in a 7,27% factor, even using the exact load values
for the future.

Under these circumstances, the dispatching strategy based in ANN prediction works fine, achieving
half the improvement obtained by using the perfect method.

OLS-based strategy did not work satisfactorily. It only decreases average execution time in a 1,79%
factor, which is under the limit of 2,13% given by standard deviation of execution time.

A possible explanation for this fact is that ANN predictor can manage load data variations in a
better way than OLS predictor does. In these cases ANN prediction outperforms the statistical
methods and ANN - based scheduler reduces the execution time.

Conclusions and further work

Load replication and new dispatching strategies have been tested individually. Both worked
satisfactorily for the purpose of this project.

CPU load was replicated very accurately; a relative precision of 99% was achieved when
monitoring load once every minute. As our experiment shows that for the total execution time of an
application, external CPU load was dominant over disk and network traffic, so we made not too
much effort improving disk and traffic replicators, which were not so good as the CPU one. Further
work will be done about this topic.

Several studies were made using both statistical and neural network methods for CPU load
forecasting. Load forecasting results show that traditional statistical methods work fine and a
slightly better performance was obtained using linear ANN. We observed that more complex
networks could not improve the results obtained by simpler ones.

The primary test shows that ANN-based dispatching criteria works satisfactorily. Dispatchers using
standard statistical methods had troubles managing load data variations.

An important preliminary conclusion is that PVM default method is not so bad. Although we knew
the load values for the future, was not possible improve significantly the system performance,
measured in average execution time.

The next step consists in a great scale test: running the UCLA’s Global Climate and the Shallow
Water Model [5] , using the new dispatching algorithms over the same external load conditions,
generated by our replicator.

We expect to obtain good results, by decreasing the large total execution time of this complex
physical numerical model, especially when using the ANN-based dispatch criteria. We are working
in this topic now, and results will be available in the next months.



References

1. Centro de Cálculo, http://www.fing.edu.uy/cecal
2. Estudio Comparativo de Diferentes Sistemas Operativos para el Desarrollo de Aplicaciones

Distribuidas. Alvaro Fernandez, Pablo Prato. Technical report available at
http://www.fing.edu.uy/~t5pcompa

3. Matlab paralelo. Pablo Stapff, Pablo Gestido. Technical report available at
http://www.fing.edu.uy/~t5matpar

4. Checkpoint y Migración de Procesos PVM en un Ambiente Distribuído. Gladys Utrera,
Gustavo Atrio, Marcelo Benzo. Technical report available at  http://www.fing.edu.uy/~t5mig

5. Performance of a Shallow Water model and a Global Climate Model Distributed across
homogeneous and heterogeneous parallel architectures under improved PVM dispatch. Kaplan,
E.; López, A. and López, C.  http://www.fing.edu.uy/uruparallel

6. Modelado y Construcción de una Máquina Paralela Virtual con Componentes de Bajo Costo.
Héctor Cancela, Ariel Sabiguero. (Instituto de Computación - Centro de Cálculo, Facultad de
Ingeniería, Universidad de la República, Uruguay).

7. Thesis work on PTIDAL: a Shallow Water Model Distributed Using Domain Decomposition,
Elias Kaplan, available at http://www.fing.edu.uy/~elias.

8. Despacho Mejorado de Cálculo Científico distribuido en Redes de Computadoras no Dedicadas
utilizando PVM. Carlos López, Antonio López y Sergio Nesmachnow Centro de Cálculo,
Facultad de Ingeniería, Universidad de la República, Uruguay

9. PVM A User’s Guide and Tutorial for Networked Parallel Computing – The MIT Press.
Accesible at  http://www.netlib.org/pvm3/book/pvm-book.html

10. Wehner M. F., A. A. Mirin, P. G. Elgroth, W. P. Dannevik, C. R. Mechoso, J. D. Farrara and. J.
A.Spahr, 1995: Performance of a distributed finite difference atmospheric general circulation
model.Parallel Computing, 21, 1655-1675.

11. Kaplan E. (1996) A shallow water model distributed using domain decomposition. In
BjorstadP., Espedal M., and Keyes D. (eds) Proc. Ninth Int. Conf. on Domain Decomposition
Meths. (DD9).Wiley and Sons, Bergen.

12. Unix System V Man pages
13. The Design of the Unix Operating System. Maurice J. Bach. Prentice – Hall Software series.

1986
14. Synthetic Workload Generation for Load-Balancing Experiments. Pankaj Mehra, Benjamin

Wah. IEEE Parallel & Distributed Techonolgy. Vol 3. Nº3. Fall 1995.
15. The Influence of Different Workload Descriptions on a Heuristic Load Balancing Scheme. T.

Kunz, IEEE Trans. Software Eng., July 1997
16. A User-Oriented Syntetic Workload Generator. W-L. Kao, R. K. Iyer. Proc. 12th Int’l Conf. On

Distributed Computing Systems, CS Press, 1992, pp.270-277.
17. A Synthetic Workload Model for a Distributed File Server. R.B. Bodnarchuk, R.B. Bunt. Proc.

Sigmetrics Conf. On Measurement and Modeling of Computer Systems, ACM, 1991, pp.50-59.
18. Numerical Methods. Dahlquist and Bjork 1974


