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Abstract  

 

Understanding and forecasting species’ geographic distributions in the face of global change is a 

central priority in biodiversity science. The existing view is that one must choose between 

correlative models for many species vs. process-based models for few species. We suggest that 

opportunities exist to produce process-based range models for many species, by using 

hierarchical and inverse modeling to borrow strength across species, fill data gaps, fuse diverse 

data sets, and model across biological and spatial scales. We review the statistical ecology and 

population and range modeling literature, illustrating these modeling strategies in action. A 

variety of large, coordinated ecological datasets that can feed into these modeling solutions 

already exist, and we highlight organisms that seem ripe for the challenge.   
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From trade-off to fusion  

Multiple global change factors, particularly climate change, drive the need for better 

understanding and prediction of species’ geographic distributions. Thomas et al. [1] estimated 

that 15-37% of species are “committed to extinction” by climate change. Their study also 

brought one of the tools they used, species distribution models (SDMs), to the forefront of 

biodiversity science. The appeal of SDMs is their ability to describe spatial occurrence patterns 

(presence-only or presence-absence data) in terms of environmental predictors (temperature, 

precipitation, etc.) and then forecast a species’ future geographic distribution based on expected 

environmental change. Because occurrence data are widely available, forecasts can be made for 

hundreds or thousands of species [2-3]. However, occurrence patterns are the net result of many 

underlying processes and factors, operating across spatial and biological scales, including 

physiology, demography, dispersal, biotic interactions, disturbance, adaptive evolution, etc., in 

addition to and interacting with climate. Thus ecologists have increasingly recognized that SDMs 

are incomplete, questioning the reliability of their forecasts [4-8]. Contemporary correlations 

between distribution and climate are expected to unravel, given change in the complex, 

underlying drivers of distributions. 

The alternative to correlative SDMs is to use mechanistic or process-based range 

models to project dynamics into the future. Pioneering examples include range models based on 

physiology [9,10], demography [11], and phenology [12,13]; more recent examples use 

metapopulation [14,15], metacommunity [16], dynamic vegetation [17,18], and food web models 

[19,20]. Process-based approaches are expected to yield better prediction of range dynamics 

because they explicitly model the biology underpinning distributions (e.g., biotic interactions, 

disturbance, climate, and interactions between them), thus they have the potential to disentangle 
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different drivers of range patterns and allow them to recombine in ways that may better reflect 

responses to global change. Further, process-based range models offer greater insight into the 

forces governing geographic ranges, which remain poorly understood [21], and they produce 

output that is more useful than correlative SDM output. For example, demographic models can 

yield a detailed understanding of population dynamics and its drivers [22,23], including 

sensitivities of various demographic processes to climate, and thus predictions of spatial 

variation in population growth rate, time-to-extinction, or other metrics of threat associated with 

anticipated climate change. However, this kind of process-based approach requires detailed 

observations, across years, sites, and throughout the life cycle. Such data are available for but a 

fraction of all species. Further, process-based range modeling requires more effort. 

This trade-off, between modeling few species in detail vs. many species superficially 

(Figure 1a), reflects overarching trade-offs in modeling, between precision, generality, and 

realism, identified a half century ago by Levins [24,25]. Addressing this trade-off, and making 

process-based range models for many species, is a grand challenge in biodiversity science. We 

suggest that traction can be gained on this challenge, regardless of the study group and process-

based range modeling framework, by using modeling strategies that borrow strength across 

species, fill data gaps,  fuse different data sources, and cross scales (Figure 1b). We review the 

recent literature in statistical ecology and population and range modeling with an eye towards the 

goal of process-based range modeling en masse, highlighting promising approaches already in 

use. We also highlight the data that are available to feed into those modeling strategies, and 

groups that seem best suited for the challenge of en masse process-based range modeling.  

 

Models that borrow strength, fill gaps, fuse data, and cross scales  



5 

 

Among the hurdles that obstruct en masse process-based range modeling, we focus here on two: 

(1) the data-hungry nature of process-based models, i.e., the need for estimates of niche 

parameters for many species, and (2) the need to account for processes occurring across a range 

of spatial and biological scales. The first barrier is partially overcome by the increasing number 

of large ecological datasets available (Box 1), some of which offer estimates of niche parameters 

[26-30], others of which can be used to estimate these or fit process-based models [31,32]. In the 

remainder of this section, we describe how hierarchical models and inverse modeling offer 

ways to make best use of these data sources, by borrowing strength across species, filling data 

gaps, and combining different kinds of data, allowing one to gain inference across biological and 

spatial scales.  

Borrowing strength, filling data gaps. Creating process-based range models for many 

species is challenging because there are many parameters to be estimated. One solution is to 

borrow strength across species: estimate critical niche parameters for all species in a single 

statistical model, treating species as random effects (Box 2). Rüger et al. [33] nicely illustrate 

this approach with respect to individual growth: they used a hierarchical model to estimate how 

light environment and individual size influence the growth of 171 tree species on Barro Colorado 

Island. The down-side of this approach is that parameter estimates for rare species can be overly 

influenced by the data for the most abundant species [34,35]. But this can be counteracted by 

incorporating species-level data on functional traits (Box 2), which have been shown to explain 

variation in vital rates, life history strategy, and range boundaries [36-38]. In Rüger et al.’s [33] 

model, species-level parameters, i.e., a species’ intrinsic growth rate, and the size- and 

environment-dependence of its growth, were predicted by functional trait and phylogenetic data. 

This improved inference of growth parameters, particularly for rare species. Vital rates (survival, 
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growth, and fertility) inferred in this way for many species could then be used to form population 

models to project range dynamics into the future (Box 2). Uriarte et al. [39] used such a 

hierarchical, trait-mediated approach to project how the composition of a second-growth tropical 

forest (171 tree species) might be influenced by climate change. 

Further, functional trait, life history, and phylogenetic data, incorporated into a multilevel 

modeling framework, can be used to impute (i.e., interpolate) the niche parameters so critical for 

process-based forecasting for those species missing data. Many data types offer information that 

can be used to impute niche parameters, such as body size (i.e., via allometric or metabolic 

scaling laws), phylogenetic information, and trait-trait correlations, much in the way that 

functional trait data are being imputed in increasingly sophisticated ways, and for large numbers 

of species [40-42]. Such gap-filling methods are receiving more attention now, but the 

underlying principles are not new: Caswell [43] simulated vital rates of a cetacean for which data 

were lacking based on data from other monovular mammals, rescaled by age at first 

reproduction. The emerging availability of comparative data on functional traits [44], life 

histories [26-29], and trophic niches [30], combined with phylogeny [45] (see Box 1), brings 

these gap-filling strategies increasingly within reach. 

Joint Species Distribution Models (jSDM) offer another example of borrowing strength 

across species. Information can be gained by modeling species as a joint distribution because 

their responses are correlated via interactions (i.e., competition, facilitation) and convergent 

dependencies on the environment [46-48]. Latent variable models (also hierarchical models) 

have been used to model abundance data for many species at a time, accounting for correlations 

among species using relatively few parameters [46].  A time-evolving version of abundance-
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based jSDMs, using simple population or metapopulation models, could be a powerful tool for 

modeling range change. 

 A second solution to the problem of estimating many parameters is the use of inverse 

modeling [49,50] (see Glossary). For example, occurrence data can be used to infer the values of 

key niche parameters (Figure 2b). Higgins et al [51] adopted a physiological model of plant 

growth, defined which physiological rates were sensitive to the environment and the functional 

form of those sensitivities, then fit parameters to presence-absence data for 22 tree species. Thus 

detailed physiological data were not needed to build physiology-based range models (Figure 2b). 

Hartig et al. [52] used inverse modeling to fit an individual-based model of tropical forest gap 

dynamics. Inverse modeling could be used to fit process-based range models explicitly 

accounting for biotic interactions, using time series data on the abundances of interacting 

species. As with any process-based approach, it is critical that the process model used is 

appropriate; that is, it requires a priori knowledge of which processes might be most important in 

governing range dynamics. 

Fusing Data. In the absence of costly, time-consuming collection of additional data, the 

challenge of en masse process-based range forecasting can only be met by careful fusion of 

diverse data: occurrence (presence-only and presence-absence) and abundance; demographic, 

phenological, functional trait, and phylogenetic; experimental and observational; remotely 

sensed data, genetic data, natural archives and fossils. These data contain complementary 

information, sampled at different spatial, temporal, or taxonomic scales. Combining data sources 

also can address weak parameter identifiability, i.e., caused by collinearity among climate 

predictors [53].  
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One promising way to fuse data, already used in population and range modeling, is 

hidden process models [54-56] (another hierarchical model). In hidden process models, the 

observation process is parsed from the latent (unknown) dynamics of the system, so that multiple 

data sets can be treated as observations arising from a common process of interest. One example 

of data fusion using a hidden process model is the inference of individual tree growth (an 

important niche parameter) from both tree-ring and forest inventory data [57], which have annual 

resolution and long time series vs. strong spatial representation, respectively – complementary 

temporal and spatial characteristics. In another example, called “dynamic range modeling”, a 

hidden process model was used to combine presence-absence data and abundance time-series 

data, and from those data, infer abundance on a grid through time, under an explicit model of 

demography (the Ricker model) and dispersal (a dispersal kernel) [58]. Integrated population 

models [59] also use hidden process models to fuse two types of data – mark-recapture data and 

abundance time series – to infer the vital rates underlying population dynamics (Figure 2c). 

Multi-site and spatially-explicit integrated population models [60-62] suggest that process-based 

range modeling using integrated population models is on the horizon.   

A key fusion to be made is between distribution data and data on individual performance 

(physiological, phenological, or demographic data). Unfortunately, presence-only data are of 

limited use for this purpose: they do not allow inference of absolute probability of presence or 

abundance [63,64]. Presence/absence data, however, can be used to infer abundance [65]. The 

solution then is to use presence-absence or abundance data for range modeling. In a 

“metamodel” approach [66], a distribution-scale model relying on presence-absence data is 

conditional upon a submodel. The submodel might include experimental data on the limits of the 

niche, or a process-based range model (e.g., based on phenology). The next step would be to 
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scale up the metamodel approach to handle many species at once, making a presence-absence 

based jSDM conditional upon submodel data for the same species. Key to the metamodel 

approach is the delineation of a biologically-justified way of linking the two data types, i.e., a 

scaling function that relates 1) the probability that the population growth rate is positive to 2) the 

probability of presence (from presence-absence data). Also critical is the criterion for weighting 

the likelihoods associated with the different data types.  

Where abundance data are available, the focus of range modeling can shift from 

occurrence towards abundance data [7,67]. Distribution models of abundance can then be fused 

with demographic, phenological, or physiological data. Integrated population models [59-62] 

applied to birds exemplify this: abundance data on birds are widely collected by amateurs and 

relatively simple demographic models can be fitted, in combination with observations on vital 

rates (i.e., mark-recapture data). Given the amount of data collected on birds (especially in North 

America and Europe) the development of multi-species integrated population models is a 

promising area for future research.  

A final approach for combining data is the use of inverse modeling. Hartig et al. [68] 

envision a wide range of data types – vegetation inventories, trait data, distribution data, remote 

sensing, eddy flux measurements, and paleorecords – combined together via Bayesian inverse 

modeling, with “bottom-up” data on parameters (e.g., metabolic rates) captured in informative 

priors, and “top-down” data (e.g., distribution data) captured in the likelihood function (similar 

to Figure 2c). Bayes’ theorem combines the two (priors and likelihood) to generate a posterior 

distribution of model parameters reflecting all data sources. The use of informative priors 

addresses the problem of equifiniality (or “non-identifiability”) associated with inverse 

parameter estimation in complex, process-based models, i.e., that multiple combinations of 
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parameter values can lead to the same observed data.  Gonzalez and Martorell [69] exemplify the 

spirit of Bayesian inverse modeling: they used the fit of observed size structure and density data 

across chronosequences of environmental change to infer vital rates and the impact of directional 

environmental change on vital rates. Alternative values of parameters were eliminated by using a 

priori biological knowledge – analogous to strong priors. More recently, Gonzalez et al. [70] 

showed how inverse modeling can be used to infer vital rates by combining time series data on 

population size, population structure, and limited individual-level data. 

Crossing Scales. The processes influencing a species’ abundance and distribution operate 

at a variety of scales – from microsite, to site, to landscape, to the macroecological scale of 

atmospheric circulation patterns and ocean currents [71-73]. Indeed, recent macrosystems 

research has highlighted the potential for cross-scale interactions and cross-scale emergence 

[72,73]. Even the inference of population-level parameters from individual-level data can be 

difficult [74,75]. For all these reasons, process-based range modeling relying on data at just one 

scale (e.g., individual-level performance) is unlikely to be robust across scales.  

A central challenge then is to build process-based range models that operate across 

spatial and biological scales. Key to crossing scales will be the modeling strategies described 

above that combine different kinds of data – hierarchical modeling and inverse parameter 

estimation. Hierarchical models are, beyond their ability to combine data at different scales, 

inherently capable of capturing the hierarchical heterogeneity of ecological systems, including 

both spatial and evolutionary nestedness, thus they can provide better inference of fixed (climate) 

effects, better propagation of uncertainty, etc [34,35].
 
Inverse parameter estimation, combined 

with forward parameter estimation, allows data at multiple scales to inform and better constrain 

critical niche parameters (Fig 2c). 
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We envision two approaches to crossing scales aimed at multi-species modeling. First is a 

“scaling down” approach – starting with models at the landscape scale, and adding more detailed 

data about individual species or lower-scale processes. Broad spatial scale, process-based models 

that can account for multiple species include dynamic vegetation models [76] (DVMs), 

macroecological models [16], metapopulation models [14,15], and food web models [19,20]. 

DVMs, for example, range in scale from a forest stand to a landscape or region to the global 

coupled vegetation-atmosphere system [76-78]. For example, Vanderwel et al. [17] 

parameterized an individual-based forest gap model with repeat measurements of >10
6
 trees, and 

then modeled growth, mortality, and recruitment at the scale of half a continent. Strategies that 

permitted individual-based modeling (considered computationally-intensive) at this scale 

included grouping species into plant functional types and individuals into cohorts. This model 

was then used to forecast the distributions of major forest types under projected warming [79]. 

To derive species-specific forecasts of geographic distributions, which would allow land 

managers to anticipate and adapt to climate change, the challenge then is to parameterize such a 

model at the species level.  

Second is a “scaling up” approach – merging individual- or population-level models 

(physiology, phenology, or demography) into landscape-scale models or SDMs. For example, 

Merow et al. [11] used sparse demographic data for a shrub, sampled across environmental 

gradients, to build integral projection models, and then map predicted asymptotic population 

growth rate. Their predictions corresponded remarkably well with presence-absence data. The 

challenge then is to build such a model for many species, and incorporate distribution data in 

model fitting. One possibility for doing so is a hidden process state space modeling framework 

that explicitly models abundance and the processes governing its dynamics [58]. Implemented in 
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a hierarchical modeling framework, it has the potential to integrate lower-level data that relate to 

abundance – demographic data on individual survival and fecundity, and in turn data on 

phenology or physiology that relate to vital rates. A second possibility is to combine forward and 

inverse parameter estimation to fuse individual-level and population-level (abundance) data, 

similar to integrated population modeling (Fig 2c).  

 

Concluding Remarks  

Robust process-based forecasting en masse will require flexible modeling tools that enable the 

fusion of multiple sources of data, relevant to ecological processes operating across a range of 

scales, and the estimation (or imputation) of process parameters for many species. Hierarchical 

and inverse modeling can help meet these needs. Testing these modeling approaches with data – 

both real and simulated – is of the utmost priority. What are the limits of “borrowing strength” 

across species and estimating niche parameters with the help of coarser forms of information 

(e.g., phylogenetic, life history, and functional trait)? As an example, abundant data are collected 

on butterflies in the United Kingdom, compared to less in the United States. Could process-based 

range models based on presence-absence and abundance data of U.K. butterflies (building on 

[58] and [80]) be combined with coarser information from butterflies in both places to develop 

range models for U.S. butterflies? Further exploration of the variety of ways that different data 

sources can be combined is critical as well – via informative priors, by weighting likelihoods, 

through the combination of forward and inverse parameter estimation, etc. Model parsimony is 

an open question: how complex do models need to be to adequately capture range dynamics? Is 

an individual-based model necessary, or will a metapopulation model suffice? Addressing this 

question will require range modelers to compare the performance of process-based range models 
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of differing complexity for the same organisms, which has not yet been done. Related to the 

issue of model complexity is the problem of computing power. Recent advances in flexible 

implementation of hierarchical models [81,82], strategies for writing efficient code [83], and 

recommendations for scaling up [76] offer hope, but will require further progress to fully realize 

the vision of process-based range modeling en masse.  Box 3 highlights these and additional 

unresolved questions needing attention, including the choice of predictors, the identification of 

range-limiting factors that vary over space, and accounting for biotic interactions and 

evolutionary processes. 

While we view the challenge of creating process-based models of species’ ranges en 

masse positively in the sense that an alternative to correlative, occurrence-based SDMs is clearly 

needed, this approach is not without pitfalls. Correlative SDMs are able to make reasonable-

looking predictions simply by fitting occurrence data well. The bar is higher for process-based 

range models: the key processes influencing species’ distributions must be correctly specified, or 

the models fail. In other words, process-based models have the potential to make better forecasts, 

but they also have the potential to make worse forecasts. Among the few direct comparisons 

between process-based and correlative range models, results thus far are mixed (Online 

Supplementary Material Table S1). These comparisons typically use fit to the current distribution 

as the metric of success (i.e., model performance). A better comparison might be the ability of 

distribution models (correlative vs. process-based) to project range change, or underlying 

performance, under changing environmental conditions. Evaluating the performance of forecasts, 

i.e., projections about the future, is problematic. For this reason, opportunities to validate 

distribution models or their subcomponents using hindcasting exercises should be given high 

priority (see [84]). Ultimately, a process-based approach offers the chance for improved 
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understanding, which is critical for forecasting in a world requiring robust extrapolation, i.e., 

climatic conditions outside the historical range of variation and no-analogue climates [85]. At the 

same time, distribution data will continue to play a key role, even in process-based range 

modeling, because they reflect all the processes that shape distributions – across spatial and 

temporal scales. Those processes or factors not captured well by plot-level or experimental data 

(e.g., dispersal when it is a slow process, spatial variation at a scale greater than available data) 

are reflected in distribution data. And while presence-only data cannot inform absolute 

abundance, they are useful for diagnosing the forces that shape distributions, offering clues as to 

what processes are necessary to explain species’ distributions. 

Along with general ecosystem models [86,87], process-based range modeling of many 

species is part of a trend to both scale up and add detail to models of complex ecological 

systems. Opportunities exist to produce process-based range models for many species – 

hierarchical and inverse models can fuse multiple sources of data, cross scales, borrow strength 

across species, and fill data gaps. Building on this foundation of strategies, ecologists can expand 

upon the existing diversity of range models, and progress towards process-based range modeling 

en masse. Though process-based range models will continue to be more difficult to implement 

for the foreseeable future, even with the strategies that we suggest, the need to advance 

ecological forecasting tools justifies the effort.  
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Glossary 

______________________________________________________________________________ 

Hidden process model: examples most familiar to ecologists are mark-recapture modeling [56] 

and occupancy modeling [54]. Hidden process models track two time series, one of the true, 

underlying dynamics of a system, and a second consisting of observations of the true state of the 

system [55,56]. For example, a species’ true abundance through time might be the variable of 

interest; the observations might be counts of that species. Because the true abundance is 

unknown, it is referred to as latent variable. Hidden Markov models and state space models are 

both examples of hidden process models, with the former governed by a Markov process and the 

latter governed by a process that may or may not be Markovian [56]. 

Hierarchical model: in a hierarchical model, the joint probability distribution of data and 

parameters is decomposed into multiple conditional probabilities. This may take the form, for 

example, of a data model, process model, and parameter model, such that the model itself has a 

hierarchical structure [35]. Alternatively, the data may have a nested or hierarchical structure, so 

that parameters (e.g., regression coefficients) vary among groups or subgroups; that variation is 

modeled probabilistically [33]. Taking the example in Box 2, the growth model presumes that 

individual tree growth increments (G) vary according to a normal distribution, with growth 

dependent on the tree’s size (B) at the previous time step and July maximum temperature (T). 

The trait-based parameter model presumes that the intercept and coefficients in the growth model 

(a, b, c) vary among species or subspecies according to functional traits. Hierarchical models can 

take a great variety of forms, including hidden process models, latent variable models, 

measurement error models, and others [100]. 
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Integrated Population Model: simultaneous analysis of individual-level demographic data 

(mark-recapture, fecundity) and population-level abundance data to infer vital rates and 

population dynamics [59]. Inference is based on the joint likelihood, which is created by the 

multiplication of the likelihoods from each dataset. Key to the fusion of these different datasets is 

that one or more parameters are shared across the different likelihoods, typically via a 

demographic model such as a Leslie or Lefkovitch matrix model. Integrated population models 

use a state space model, or hidden process model, as described above, to parse error associated 

with observation from process variability [59]. 

Inverse modeling: an approach to parameter estimation common across many scientific 

disciplines. Inverse modeling finds values of parameters that are consistent with the observed 

data, by varying the values of unknown parameters over a broad range of parameter space and 

producing simulated observations [49]. From these simulations, sets of parameter values are 

selected that produce outcomes that are similar to the observed data (e.g., occurrence data). In 

practice, efficient sampling of high-dimensional parameter space is accomplished through 

stochastic simulation (e.g., a Markov chain Monte Carlo sampling algorithm) [50]. 

Niche parameters: Parameters that influence the long-term persistence of a population or 

metapopulation under varying environmental conditions. This includes, for example, 

physiological, phenological, and demographic parameters and their environmental sensitivities, 

parameters governing metapopulation persistence (extinction-colonization dynamics), as well as 

parameters influencing a species’ place in successional dynamics, coexistence with other species 

in a community, and role within a food web. 

Process-based range model: A model of a species’ geographic range or distribution that 

specifies underlying processes or mechanisms. This might include physiological, phenological, 
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or demographic processes, for example, or metapopulation, metacommunity, or food web 

processes.  
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Figure Legends 

 

Figure 1. From trade off to fusion. The existing view (panel a) is that models projecting 

species’ future geographic distributions fall along a trade-off between phenomenological or 

correlative models for many species vs. mechanistic or process-based models for few species 

(arrow), relying upon a single data type, ranging from presence-only to physiological data (green 

box), respectively. An alternative view is that models combining these different types of data 

will enable process-based range modeling of many species (panel b). Examples of models that 

combine different data types are listed below the green data box in panel b, with points 

indicating the data used. These include dynamic range models [58], certain joint SDMs [47,48], 

integrated population models [59], a metamodel approach [66], and Bayesian inverse modeling 

[69]. 

 

Figure 2. Forward, inverse, and combined inference of parameters. a) Forward estimation of 

parameters for process-based range modeling might use data (box outlined in black) on 

physiological rates and their environmental sensitivities to parameterize a physiological model of 

plant growth (the Thornley transport resistance model, center panel, where B is biomass, C is 

carbon, and N is nitrogen), to then project a species’ current and future geographic distribution. 

b) Inverse estimation of parameters uses distribution data to find the best-fit values of those same 

physiological rates and sensitivities [51]. c) Combining both “bottom-up” and “top-down” 

sources of data to better constrain parameters is exemplified by integrated population modeling 

[59]. Mark-recapture data and counts of one-year olds (N1) vs. adults (Na) both inform estimates 
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of fecundity (b), survival (φ), and immigration (ω), the parameters of a population projection 

matrix. 



Box 1: What Data? Which Organisms? 1 

_____________________________________________________________________________ 2 

Process-based range modeling depends on the availability of data. Large repositories of 3 

presence-only data (e.g., the Global Biodiversity Information Facility [GBIF] and Biodiversity 4 

Information Serving Our Nation [BISON]) will continue to play an important role in range 5 

modeling. Some presence-only data sources are generating new data through citizen science 6 

initiatives (iNaturalist, iPANE). Presence-absence and abundance data make a more informative 7 

basis for range modeling than presence-only data; they can be extracted from certain atlas 8 

projects (e.g., the Protea Atlas) and citizen science checklist initiatives (e.g., the U. S. Breeding 9 

Bird Survey, eBird [32], and eButterfly). Where individuals are marked and censused, forest and 10 

other plot networks (e.g., U. S. Forest Inventory and Analysis Program [31], the Amazon Forest 11 

Inventory Network RAINFOR, and VEGBANK) can be used to estimate vital rates. Estimates of 12 

vital rates are available in an open-access, standardized form from COMPADRE (637 plant 13 

species [28]) and COMADRE (345 animal species [29]) and other databases (e. g., PanTHERIA 14 

[26]). Life history and Eltonian niche databases have been published for 21,322 species of 15 

amniotes [27] and 15,393 species of birds and mammals [30], respectively. Phenology and 16 

functional trait databases include the U. S. National Phenology Network (NPN) and the TRY 17 

plant trait database (~100,000 plant species [44]). Phylogenetic data are available from the Open 18 

Tree of Life project, with a draft phylogeny of 2.3 million tips [45]. Enormous amounts of data 19 

already exist, thus the challenge is to use them intelligently – to bridge the gap from what is 20 

known about individual species in a given ecological system or functional group to what is not 21 

known about other species.  22 

Trends Box



Certain functional groups or clades lend themselves to the first attempts at en masse process-23 

based range modeling. These include organisms that are economically important, like trees and 24 

fishes, and others that are charismatic, like birds, butterflies, marine mammals, carnivores, and 25 

primates. Insects are ripe for exploration especially in light of global change: their physiology is 26 

strongly temperature-driven; there is a substantial experimental literature testing their 27 

physiological limits, in part because some are economically important as pests, and some of 28 

those pests are monitored at a landscape scale; other insects have been important study 29 

organisms for the development of structured population models (i.e., Tribolium castaneum) or 30 

metapopulation models (i.e., butterflies); butterflies have been the subject of citizen science 31 

initiatives in several countries. 32 



 

Box 2



Box 3. Outstanding Questions 1 

______________________________________________________________________________ 2 

How detailed do models of species’ distributions need to be?   3 

An important challenge posed by the desire to create process-based range models for 4 

many species is the need to create “efficient” process-based models. How little detail can these 5 

models include, both in terms of mechanism and data, and still reliably forecast species’ 6 

distributions? One approach is to specify those processes understood to be important, while 7 

phenomenologically characterizing remaining pattern, e.g., in the form of spatial random effects 8 

[84]. If phenomenological characterization does not suffice for short-term forecasting, its pattern 9 

may provide clues to missing factors. For example, a range model that does not explicitly 10 

account for the process of dispersal, but includes spatial random effects, may suffice for 11 

forecasting of a species with limited dispersal capacity over the course of the 21st century. In 12 

contrast, a species with greater dispersal capacity, or a forecasting window that is longer relative 13 

to the organism’s dispersal capacity, suggests the need for explicit modeling of spatial dynamics 14 

(as is the case for invasive species [89]). 15 

What kinds of process-based range models work, where, and why? 16 

The literature suggests that there is more than one path forward to capture important 17 

processes governing range dynamics – e.g., physiology-, demography-, and phenology-based 18 

range models. Are all of these approaches equally effective for a given clade or functional group 19 

or ecosystem, and if not, why not? Can we identify the situations in which one approach is more 20 

likely to be successful over another? 21 

To the degree that every species’ niche is unique, how can niches (and distributions) be 22 

modeled en masse? 23 

Outstanding Questions



 When built for many species at a time, correlative (phenomenological) models of species’ 24 

ranges often use broad-stroke environmental predictors such as mean annual temperature and 25 

precipitation. Can these variables be used in the context of more mechanistic or process-based 26 

range models? Or, is it necessary to identify more specific limiting factors for each species 27 

(using machine-learning, data-mining, or empirical approaches)? 28 

How do the variety of factors limiting a given species combine to yield the observed 29 

variation in its abundance and its geographic limits? 30 

 The factors limiting a species’ distribution and abundance, including interactions between 31 

factors, are not the same throughout its range. For example, it’s been suggested that climate is a 32 

limiting factor at the high latitude edges of species’ ranges, whereas competition is a limiting 33 

factor at the low-latitude edges [21]. Mechanistic models of species’ ranges cannot be built to 34 

capture the limiting factors operating at just one location or one edge of a species’ distribution, 35 

they must be able to capture all of the limiting factors that define range boundaries, including 36 

interaction effects. 37 

Is it necessary to model biotic interactions explicitly in process-based range models? 38 

Evidence has emerged for the importance of biotic interactions in shaping the 39 

distributions of various taxa at coarse grains (e.g., birds, butterflies and their host plants, and 40 

frugivores and trees [90,91]). Though important progress has been made in suggesting how 41 

biotic interactions might be incorporated into process-based range models [92,93], great 42 

challenges remain. There is the issue of accumulating sufficient data on the strength and 43 

direction of interactions across the geographic ranges of interacting species. There is also the 44 

problem of determining which kinds of interactions are most important for structuring 45 

communities, within and across trophic levels. The emerging phenomenon of novel species 46 



interactions presents the challenge of dealing with no-analog situations where observational data 47 

on contemporary species interactions may be less informative than manipulative data from 48 

experiments where species that do not currently interact (e.g., due to range limits) are allowed to 49 

co-occur [94].  50 

Do process-based range models need to account for plasticity, local adaptation, genomics, 51 

or eco-evolutionary dynamics? 52 

Range models typically ignore within-species variation, even though plasticity and 53 

genetic variation due to local adaptation are well-established phenomena [95,96]. Recently, there 54 

has been interest in using cost-effective, high-throughput sequencing to understand local 55 

adaptation at the molecular level [97]. The use of ecological genomic data at the landscape scale 56 

(landscape genomics) to make spatially-explicit projections given different climate change 57 

scenarios remains largely uncharted territory [98]. The case (and a modeling platform) has been 58 

made for eco-evolutionary models of ranges dynamics, incorporating population dynamics, 59 

dispersal, plasticity, and local adaptation, all in a spatially-explicit context [99]. Each of these 60 

added complexities increases the parameter burden for process-based range modeling, thus they 61 

deserve critical evaluation in terms of cost/benefit ratio.  62 
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