
Towards Process Models for Disaster Response

Dirk Fahland1? and Heiko Woith2

1 Humboldt-Universität zu Berlin, Institut für Informatik, Unter den Linden 6, 10099
Berlin, Germany, fahland@informatik.hu-berlin.de

2 GeoForschungsZentrum Potsdam, Telegrafenberg, 14473 Potsdam, Germany

Abstract. In the immediate aftermath of a disaster routine processes,
even if specifically designed for such a situation, are not enacted blindly.
Actions and processes rather adapt their behavior based on observations
and available information. Attempts to support these processes by tech-
nology rely on process models that faithfully capture process execution
and adaptation. Based on experiences from actual disaster response set-
tings, we propose to specify an adaptive process as a set of scenarios
using a Petri net syntax. Our operational model provides an adaptation
operator that synthesizes and adapts the system behavior at run-time
based on the given scenarios. An example illustrates our approach.

Key words: process model, adaptation, scenarios, Petri nets, disaster
response

1 Introduction

The fairly general notion of a process as a computational entity in a distributed
system has found its application, among others, in workflows and process man-
agement systems. Here a process model relates atomic tasks, data and resources;
the runs of the model mimic the behavior observed in reality. A correct model
aids in planning and running complex processes while optimizing the use of
resources. The validity of the model depends on assumptions, e.g. about the
availability of data and resources and the possibility to enact tasks in a specific
way.

Disaster response comprises all behavior immediately after a disastrous event
with the aim of preventing loss of life and restoring order [5, pp.57]. Even at
an intuitive level of understanding it becomes apparent that assumptions of a
process or its model are likely to be violated in such situations; deviations are the
rule. An actual process in this context is adaptive and reacts on critical changes
in its environment by changing the process itself as it is being executed.

A feasible model of such a process must not only mimic these adaptation
dynamics, called instance level changes [24]. The process model itself must be
adaptable at run-time if the overall dynamics require sufficiently different process
behavior, i.e. type level changes [24]. For this reason the model has to be humanly
conceivable at any point in time to allow these changes.
? The author is funded by the DFG-Graduiertenkolleg 1324 “METRIK”.



2 Dirk Fahland, Heiko Woith

In this paper, we present a novel approach for modeling adaptive processes.
Rather than changing a static process model we propose to adaptively synthe-
size process behavior from scenarios. A scenario specifies a possible course of
(future) actions and the therein involved resources in the context of a larger
system. Whether a scenario suits a given situation is specified in a behavioral
precondition. A process model then is a set of scenarios describing sequentially
connected, concurrent, mutually exclusive, and overlapping behavior.

A run of the model is synthesized during execution by concatenating, merging
and removing scenarios depending on observed behavior and their respective
preconditions. Moreover, the set of scenarios that participates in the synthesis
can easily be changed during the run. Our approach has a formal, operational
semantics based on Petri nets [23]. Petri net-based process models are used in
existing process management systems, for instance YAWL [3]. Our approach
reflects some requirements from the disaster response domain, but our results
should extend to other domains as well.

The remainder of this paper is organized as follows. In Sect. 2 we provide
an introduction to disaster response and requirements for process models in this
setting. In Sect. 3, we present our approach for scenario-based process models
and sketch its possible use for process adaptation in Sect. 4. We discuss our
model regarding literature and conclude in Sect. 5.

2 Requirements for acting during disaster response

Based on common sense and media, one has an intuitive understanding of the
characteristics of a disaster and of its implications of acting in the immediate
aftermath of a disastrous event. In the following we want to substantiate this
understanding based on results from published literature and our experiences in
an ongoing case study.

2.1 A requirement analysis for disaster response

In a requirements analysis based on nine empirical studies of disasters and dis-
aster responses Jul [16] reflects American disaster management practices and
classifies working in disaster response. She investigates how the characteristics
of a disaster event influence acting in a response. We summarize those of her
results which we consider as related to processes and process models.

Jul has found that because the knowledge about an event may arrive only
as response is underway (or even later) the number and kind of involved orga-
nization changes. A notable effect is that ‘established organizations may part-
ner to form emergent organizations to address specialized demands.’ In these
cases suitable operational structures and procedures are developed as the event
evolves. [16, pp.140]

Individual responders may have to enact agent-generated tasks (based on
their skills and experiences) as wells as response-generated tasks (due to a spe-
cific situation) concurrently. Depending on the event’s anticipability, ‘responders



Process Models for Disaster Response 3

as well as responding organizations may need to develop new procedures and
structures, and my be working in unexpected settings.’ [16, pp.144]

Jul concludes from her analysis, among others, that response technology (1)
‘should seek to aid response-driven tasks, such as planning, coordination and
resource management ’; and (2) ‘must, insofar as possible, allow flexibility and
deviation in their application’ while ‘imposing standard structures and proce-
dures’ [16, pp.145]. We could confirm her findings in a concrete case-study.

2.2 Specific requirements from a concrete case-study

The authors conduct a joint case study with the ”German Task Force for Earth-
quakes” co-ordinated by the GeoForschungsZentrum Potsdam, the German re-
search center for geosciences. The task force ‘was founded on March 22, 1993,
jointly by geoscientists, civil engineers, sociologists, search and rescue specialists,
and experts from the insurance industries. The major purpose of the [task force]
is to co-ordinate the allocation of an interdisciplinary scientific-technical expert
team after catastrophic earthquakes worldwide.’ [21]

The case study aims on (1) understanding actual work procedures of the task
force during disaster response (2) finding which aspects can be supported by
process models, and (3) propose suitable concepts and technology to do so. The
case study is still ongoing, but we want to explain our findings so far confirming
and extending the analysis of Sect. 2.1.

The task force is activated immediately after a natural disaster has occurred,
collects necessary information about the event and its location, decides about,
and prepares for an in-field mission. In case of a mission, at most a week after
the initial event, task force members begin collecting and analyzing data at the
disaster site including seismic data of aftershocks, post-seismic deformation, hy-
drogeological data, and the damage distribution as well as structural conditions
of buildings. The results support local decisions and provide a scientific basis for
an improved intermediate and long term mitigation of earthquake effects, and
improve existing theories and their application.

At the site the team members naturally follow their agent-generated tasks
for which they are qualified by their expertise as a geoscientist or engineer. At
the same time they enact response-generated tasks; this involves for instance
organizing accommodation, transport, and communication or maintaining mis-
sion critical equipment. By cooperation with other organizations like disaster
response groups or military personnel the team members gain professional and
organized support. In turn they can use their experienced background to support
rapid decisions in coordinating rescue and damage mitigation efforts.

We are currently developing a process model. We succeeded in developing
a static model for the initial preparation phase; the current model has about
120 tasks. But we found that this kind of model is infeasible for specifying the
work at the disaster site for the following reasons: (a) Tasks and sub-processes
are event driven. (b) A task may vary on its prerequisites, effects, duration, and
costs. (c) Sub-processes (sometimes executed repeatedly) overlap and synchro-
nize on common data and tasks. (d) As team members work spatially distributed



4 Dirk Fahland, Heiko Woith

and communication is unreliable, decision making is also based on the possibility
to make them jointly, or not. (e) Agent-generated tasks and response-generated
tasks interfere with each other; each team member has to come up with a suit-
able, individual procedure as the situation evolves.

This result is not surprising in general and confirms a working hypothesis of
most works on process adaptation and models for adaptive processes, e.g. [4, 6,
8, 22]. However, we were able to model well-structured fragments of the process:
The task force members could provide information about their working through
story-telling. Such a story isolates a specific aspect of the process dynamics and
is part of the “acting recipes” of the task force members. These recipes are
chosen, instantiated, and followed in a concrete context. We turn this fact into a
process modeling paradigm in the following and discuss its features wrt. existing
approaches thereafter.

3 Oclets – a formal model for adaptive processes

The requirements analysis in the previous section shows that the kind of pro-
cesses we wish to model is subject and object to very complex dynamics. A
static process model is likely to be incomplete and will exhibit a high com-
plexity. Scenario-based specifications are one possibility to diminish behavioral
complexity. We propose to adopt this paradigm for process models subsequently.

3.1 Scenario-based specifications

The paradigm of scenarios is widely accepted in protocol specifications using
message-sequence charts. Life-sequence charts (LSCs) take this paradigm one
step further by decomposing behavior of highly complex, distributed systems
into reasonably-sized artifacts. [14]

An LSC specification consists of a set of charts, each specifying a scenario.
A “normal” LSC denotes a partial, partially ordered run of a system over local
events and exchanged messages. An anti -LSC specifies behavior that must not
occur while allowing all other. A LSC has a behavioral precondition denoting
which events have to be observed in which (partial) order to activate the chart.
An active chart is violated if the system exhibits behavior that is not specified
in the chart. A set of LSCs specifies the set of all runs where these charts are
not violated.

The LSC technique is declarative in the sense that a specification classifies
an observed run as valid or invalid. It has no operational semantics that allows
to generate the set of all valid runs of an arbitrary LSC specification; though
this is possible for subclasses [13].

3.2 Oclets – adopting scenarios to Petri nets

We want to use the paradigm of scenarios to model highly dynamic processes.
We adopt the concepts of LSCs to Petri nets and supplement them with an



Process Models for Disaster Response 5

operational semantics that allows constructing all valid, partially-ordered runs
of the system. In [11] we provide a formal model of our approach together with
a proof of correctness. Subsequently, we given an intuitive explanation of the
concepts and operations. A basic understanding of place/transition Petri nets
will be helpful; an introduction is given in [23].

Oclets. We formalize a scenario as an oclet which is a finite, acyclic, labeled Petri
net with some further annotations; Fig. 1 depicts some examples. As usual, a
box depicts a transition which, in an oclet, denotes the execution of a task. A
circle depicts a place, here denoting the presence of a physical or virtual resource.
Arcs denote which resources are consumed and which resources are produced by
executing a task. In this interpretation, an oclet denotes a scenario.

An oclet’s precondition, a causally closed prefix, is depicted above the dashed
line. It denotes the behavior that has to be observed to activate the oclet. The
remaining part of the oclet describes its contribution: a normal oclet denotes a
possible further execution while an anti-oclet disallows the execution; see Fig. 6.

In the following we construct complex behavior from oclets by repeatedly
concatenating, merging, and removing oclets based on their preconditions. An
adaptive process A = 〈O, P0〉 is a set O of oclets with a set P0 of labeled places
(describing the initial state). As an example consider the oclets of Fig. 1 and
place pidle with label idle constituting A1 = 〈{o1, o2, o3}, {pidle}〉; we denote a
place or transition by its label subsequently.

A1 specifies a process of a

need
sand

idle

alert

sand
avail

get
sand

o
1

need
bags

idle

alert

bags
avail

get
bags

missing
quantity

o
2

sand
avail

sandbags
placed

fill & place

bags
avail

leave site

finished

o
3

Fig. 1. Oclets o1, o2, o3 of the adaptive process
A1

response team in case of a flood-
ing alert to build a sand bag
barrier. A first requirement is
to get sand after an alert (o1).
The team shall also get bags ac-
cording to the missing quantity
(o2). Oclet o3 denotes that as
soon bags and sand are avail-
able, the bags shall be filled
with sand and placed. After the
sandbags are placed, the team

may leave the site. Note that this example is not based on concrete data and
might be too simplistic for an actual process. We extend it as we proceed in
explaining our concepts.

3.3 Constructing partially-ordered runs from scenarios

We describe the behavior of an adaptive process by branching processes. Infor-
mally, a branching process (BP) relates to a partially ordered run like an execu-
tion tree relates to a sequential run: A sequential run denotes process behavior
as a sequence of tasks by interleaving concurrent tasks; merging sequential runs
at common prefixes yields an execution tree. A partially ordered run explicitly



6 Dirk Fahland, Heiko Woith

denotes concurrency of tasks. Hence a BP is a directed acyclic graph that dis-
tinguishes causal ordering, concurrency and conflict of tasks. It is an important
result in Petri net theory that a BP of a Petri net N can itself be represented
as a Petri net βN s.t. any run of βN is a run of N . [9]

A state 〈β, m〉 of an adaptive process A is a Petri
Fig. 2. Initial
state s0. idle

s
0 net-BP β together with a reachable marking m of

places of β. We explain this notion of state and its
relation to oclets in the following. The initial state of an adaptive process
A = 〈O, P0〉 is the BP consisting of the places P0 that marks each place p ∈ P0

with one token, m(p) = 1. In our example, the initial state so of A1 consists of
the marked place pidle only, see Fig. 2.

The BP of a state 〈β, m〉 can be extended or reduced by applying an oclet
o which yields a step 〈β,m〉 o−→ 〈β′,m〉. Since the BP is a Petri net, its marking
m may enable a transition t of BP allowing the step 〈β, m〉 t−→ 〈β, m′〉.

Adding behavior with state-based preconditions. An oclet o that has a
precondition consisting only of a set of places is enabled in a state 〈β,m〉 if the
precondition of o is contained in the current marking m. To be precise, we need
an injective mapping h from equally labeled places of the precondition of o into
a set Y of marked places of β. We call Y enabling set and h an embedding of o’s
precondition into β. Our example oclets o1 and o2 are enabled in s0 of Fig. 2

If o is enabled in state 〈β, m〉 then we may perform the adaptation step
〈β, m〉 o−→ 〈β′, m〉 by adding the contribution of o, i.e. o minus its precondition, to
β. Formally, append a copy of o’s contribution to the enabling set and iteratively
merge a newly added node with an existing node if both have equal labels and
the same predecessors. This may result in merging all new nodes with existing
ones. Our formal definitions in [11] are more involved and attribute an oclet as
enabled only if the corresponding adaptation step changes β; here we continue
at a more intuitive level.

In our example, oclets o1 and o2

need
sand

alert

sand
avail

get
sand

idle
s
1

need
sand

alert

sand
avail

get
sand

need
bags

bags avail

get bags

missing
quantity

idles
2

Fig. 3. The step s1
o2−→ s2 of A1.

are enabled in s0. The result of the
step s0

o1−→ s1 is depicted on the left
in Fig. 3. In s1, o2 is still enabled and
the step s1

o2−→ s2 adds o2 and merges
the transitions alert that originate in
o1 and o2, respectively; see Fig. 3. In
s2 transition alert is enabled and may
fire: The transition step s2

alert−−→ s3

consumes the token on idle and pro-
duces a token on need sand, need bags,

and missing quantity (which is standard Petri net semantics).
For a consistent semantics, we prioritize adaptation steps over transition steps

and require to apply all enabled oclets before (nondeterministically) firing one
enabled transition. With this definition, we could easily construct and complete
the (only) run of our example model A1.



Process Models for Disaster Response 7

Now assume that in our example it may actually happen that the response
team can only get some bags instead of all, but that it continues with the pro-
cess afterwards. Oclet o4 of Fig. 4 specifies this behavior. We include o4 in our
adaptive process; o4 is enabled in s3 and the step s3

o4−→ s4 adds get some bags
in conflict to get bags, see Fig. 4. Both transitions are enabled in s4, but only
one of them may fire. The steps s4

get some bags−−−−−−−−→ s5
get sand−−−−−→ s6 mark sand avail

and bags avail which enables o3 to finish the process.
However, o3 does not suit

need
bags

bags
avail

get some
bags

missing
quantity

o
4

need
sand

alert

sand
avail

get
sand

need
bags

bags
avail

get
bags

missing
quantity

idle

bags
avail

get some
bags

s
4

Fig. 4. Oclet o4 and state s4 after applying o4

the slightly changed process
as its enabling depends on
the marking of s6 alone. By
strictly looking at the pro-
cess definition, the response
team would finish its work
even if the number of bags
was insufficient. Thankfully,
this is not the case in real-
ity. An actual response team

would rather assess the history of its actions and adapt forthcoming tasks and
behavior if necessary.

Oclet o5 of Fig. 5 specifies the following scenario: If only some bags could
be retrieved, the response team determines the missing quantity as the bags are
filled and placed. Then the team is notified that sand is still available but some
more bags are needed; the team gets the latter.

Adding behavior with history-based preconditions. The precondition
of oclet o5 in Fig. 5 is more complex and also denotes a partial execution that
must have led to the current state in order to activate the oclet. Generalizing our
earlier definition, an oclet o is enabled in a state 〈β,m〉 if the entire precondition
of o is contained in β (including arcs) s.t. the marked places of o are contained
in the current marking m. Formally, the enabling embedding h of o into β has
to be an arc-preserving injection between equally labeled nodes of o and β. The
definition of an adaptation step remains as before.

If we include o5 in our adaptive process, o3 and o5 are enabled in state s6.
If we had fired get bags instead of get some bags oclet o5 would not be enabled.
The mandatory adaptation steps s6

o3−→ s7
o5−→ s8 yield the state s8 that enables

transition fill&place. By the adaptation step of o5, transition fill&place gets a new
post-place missing quantity according to our adaptation semantics; the result of
s8

fill&place−−−−−→ s9 is depicted in Fig. 5. Thus, depending on the history of the process
execution the transition fill&place has different effects.

Oclet o5 introduced task get bags again which now also depends on task notify
team. Observe that notify team and leave site are in conflict. The latter belongs
to the “all went well”-scenario of oclet o3 while the former was introduced by
the “missing resource”-scenario of o5. Both scenarios make contradicting state-
ments about how to continue after the sandbags have been placed. There are



8 Dirk Fahland, Heiko Woith

sand
avail

sandbags
placed

fill &
place

bags avail

notify
team

need bags

get some
bags

missing
quantity

sand
avail

need
bags

get bags

bags avail

o
5

need
sand

alert

sand
avail

get
sand

need
bags

bags
avail

get
bags

missing
quantity

idle

bags
avail

get some
bags

sandbags
placed

fill &
place

notify
team

missing
quantity

sand
avail

need
bags

get
bags
bags
avail

leave site

finished

s
9

Fig. 5. Oclet o5 and state s9 after applying o5

sand
avail

sandbags
placed

fill & place

bags avail

leave

site

need bags

get some
bags

finished

anti

o
6

Fig. 6. Oclet o6

several ways how to resolve this contradiction while keeping the process sound;
we propose one in the spirit of scenarios.

In an actual process, the response team would know that the “all went well”-
scenario was violated; it would not leave if only some bags could be retrieved. We
use anti-oclets as mentioned in Sect. 3.2 to explicitly forbid tasks and behavior
depending on the execution history. The anti-oclet o6 in Fig. 6 specifies that after
only some bags were retrieved and filled, the team must not leave the site. We
include o6 in our example process.

Removing behavior with history-based preconditions. The enabling con-
dition for anti-oclets is essentially the same as before; oclet o6 is enabled in state
s9 of Fig. 5.

If an anti-oclet o is enabled in state 〈β, m〉 then the adaptation step 〈β, m〉 o−→
〈β′, m〉 removes the contribution of o from β. Formally, extend the enabling
embedding h of o’s precondition in β to map a maximal prefix of o into β. These
are the nodes of o’s contribution which are actually present in β; remove them
from β and iteratively remove all nodes of which a predecessor was removed.

In our example, the adaptation step s9
o6−→ s10 removes transition leave site

and place finished from s9. Now notify team is the only enabled transition (be-

cause leave site is no longer present). After the step s10
notify team−−−−−−→ s11 places

sand avail, need bags, and missing quantity are marked.
For semantical consistency, we first perform an adaptation step for each en-

abled normal oclet (adding all possible behavior), then an adaptation step for
each enabled anti-oclet (removing all infeasible behavior) and then fire one en-
abled transition (nondeterministically choosing one possible, feasible behavior).



Process Models for Disaster Response 9

ne
ed

sa
ndal

er
t

sa
nd

av
ai

l

ge
t

sa
nd

ne
ed

ba
gs

ba
gs

av
ai

l

ge
t

ba
gs

m
is

si
ng

qu
an

tit
y

id
le

ba
gs

av
ai

l

ge
t s

om
e

ba
gs

sa
nd

ba
gs

pl
ac

ed

fil
l &

pl
ac

e

no
tif

y
te

am
m

is
si

ng
qu

an
tit

y

sa
nd

av
ai

l

ne
ed

ba
gs ge

t
ba

gs

ba
gs

av
ai

l

sa
nd

ba
gs

 p
la

ce
d

fil
l &

 p
la

ce

le
av

e 
si

te

fin
is

he
d

ge
t

so
m

e
ba

gs

s
1
4

Fig. 7. State s14 depicting the result of a behavior synthesis from o1, . . . , o6

This definition concludes the basic concepts of our approach for adaptive
processes. Let’s finish our example: Because o4 is enabled in s11 we have to
adapt s11

o4−→ s12. Again, the team could either get some bags or all bags wrt.
the missing quantity. The former transition yields a state which is equivalent to
s6 (wrt. execution history): the same oclets and transitions get enabled. This
way oclets express loops in process executions. We assume that this time the
team gets all bags, s12

get bags−−−−−→ s13 enabling o3 only, and does not enter the
loop again. The result of s13

o3−→ s14 is shown in Fig. 7. From there the steps
s14

fill&place−−−−−→ s15
leave site−−−−−→ s16 get the process into its final state, finished.

4 Using oclets to realize adaptive processes

We have just presented the basic concepts of our approach for modeling processes
with scenarios. In this section we want to sketch how these concepts can be used
in modeling adaptive processes.

We already mentioned in the introduction that we understand an actual
process to be adaptive if it reacts on critical changes in its environment by
changing the process itself. This definition is cyclic. Splitting the cycle helps: (1)
the behavior of an adaptive process can change at run-time and (2) the change
of the behavior is triggered by the process. We explain how our model helps in
realizing (1) and spend some ideas on (2).

Considering (1), in our case the process type of an adaptive process is given by
a set of oclets, see Sect. 3.2. A process instance is a state of an adaptive process,
being a branching process and a reachable marking as explained in Sect. 3.3. It
includes its current run-time state, its execution history, and a part of its future
behavior. Our semantic model synthesizes, and extends, an instance from the
set of oclets at a time and executes it. Changing the set of oclets changes the
future process behavior, as exercised in the previous section.

In our approach, a type level change is realized by changing a set – of oclets.
Moreover, it smoothly yields instance level changes as an instance is incremen-



10 Dirk Fahland, Heiko Woith

tally synthesized from a set of oclets at a time. In practice it might be necessary
to use instance migration strategies when changing the process type s.t. different
instances have different sets of oclets which eventually converge [24].

Regarding (2), our model allows to trigger behavior change in closed sys-
tems as follows. Assume two different oclets oK and oL having the same pre-
condition where oK suits some context K and oL suits some other context L.
The adaptive process AK = 〈O]{oK}, m〉 shall be feasible in K; a change to
AL = 〈O]{oL},m〉makes it feasible for L. This kind of change must be triggered
externally when someone observes a context change from K to L.

The oclets O can be extended to distinguish contexts K and L; we demon-
strated this in Sect. 3.1 when introducing o4. Let O+ denote these oclets. In
the same way, the preconditions of oK and oL can be extended differently to
distinguish contexts, let this be o+

K and o+
L ; oclets o3 and o5 of Sect. 3.3 are

an example. Now the process A+ = 〈O+ ]{o+
K , o+

L},m〉 distinguishes context K
from L and chooses the appropriate behavior. What was an explicit adaptation
of behavior from AK to AL is now gracefully included in the process dynamics.

5 Conclusion

We have presented an approach to model adaptive processes that can change
their behavior at run-time. Such processes arise for instance during disaster
response. We presented conceptual and concrete requirements for process models
in this setting which exceed the capabilities of static process models.

We proposed to model an adaptive process in scenarios with an intuitively
understandable Petri net syntax which we formalized as oclets. We contributed
an operational adaptation step that synthesizes the behavior of the process from
its oclets at run-time. The synthesis depends on the process execution and may
add, remove, or modify future behavior. This effectively leads to a run-time
adaptation of process dynamics. Further, the process model can be changed at
run-time to adapt to process-external changes. We demonstrated the concepts
of our approach in an example from the emergency response settings.

The semantic model for our approach are Petri net branching processes. It is
operational and may be verified using efficient model-checking techniques [10].

Discussion and Related Work. The problem of adapting process behavior
has been researched from various angles. Many works consider the adaptation
of workflows by run-time application of transformation rules on a static process
model [4, 6, 8, 22], or by a notion of relating an old system specification to a
new system specification to guarantee a correct replacement [1]. Some of these
approaches, e.g. [22], are more expressive than our approach. But our oclets
make the condition when to perform an adaptation step an explicit part of the
operational system specification. This is not the case in the mentioned works,
where process adaptation must be triggered externally.

Hee et al. demonstrated how to make process dynamics dependent on execu-
tion history in a Petri net model using transition guards [15]. We contribute an



Process Models for Disaster Response 11

intuitive Petri net-notation for history-dependent dynamics; the actual relation
between both models deserves further research.

Petri net theory has developed a number of models that allows operationally
changing Petri nets at run-time by putting the net to be changed as a token into
a high-level net that does the change [17]. Adaptations have been formalized
as direct operations on nets [12] and as graph transformations based on rules
that allow constructing system behavior from scenarios [7]. Dynamically adaptive
systems can also be expressed with various sorts of process algebras, for instance
χ [2] or the π-calculus [20], including communication and changes in topologies.
But like in the approaches mentioned above, the operations to adapt process
behavior are an explicit part of the process definition. The “worklet” concept
of YAWL allows adding encapsulated sub-workflows (“worklets”) during process
execution in a hierarchical workflow model [3].

Our result suggests that adaptive process dynamics need no hierarchies and
no explicit adaptation operation to be part of the process model. The modeler
declares the behavior she wants to include or exclude together with a precon-
dition; the operational behavior is synthesized at run-time. The advantage or
disadvantage of having no hierarchies depends on the actual process.

In this direction, Leoni et al [18] propose a situation calculus based on second-
order logic to model processes. Their approach includes a control-loop scheme
where the process correctly changes its behavior based on actual observations,
including unforseen events. This is not covered by any other approach, including
ours. A possible drawback is its text-based specification language that might
obfuscate an intuitive understanding of the process.

We already mentioned that the concepts of our approach originate in live-
sequence charts [14] which are an entirely declarative technique, while we provide
an operational model. We consider a detailed comparison as future work.

We also see another contribution of our approach. The results of Mendling et
al [19] suggest that the size of a process model and ‘the number of arcs [has] an
important influence on understandability.’ They also found that ‘small variations
between models can lead to significant differences in their comprehensibility.’ We
take this as an indicator that our approach of modeling with well-conceivable
process fragments has taken a reasonable direction.

Future Work We are currently implementing our concepts and the algorithms
in a proof-of-concept run-time environment for adaptive processes. This tool will
help us in validating our approach. We are researching the formal properties of
our approach that help in verifying such processes. We are also investigating
which further concepts we need to include in our model to achieve more expres-
sivity. Benchmarks are our case study from the disaster response domain and
practically relevant adaptation patterns as identified in [24].

References

1. W.M.P. v.d. Aalst and T. Basten. Inheritance of workflows: an approach to tackling
problems related to change. Theor. Comput. Sci., 270(1-2):125–203, Feb 2002.



12 Dirk Fahland, Heiko Woith

2. J.C.M. Baeten abd D.A.v. Beek and J.E. Rooda. CRC Handbook of Dynamic
System Modeling, chapter 19: Process algebra, pages 19.1–21. Chapman & Hall,
2007.

3. M. Adams, A.H.M. t. Hofstede, D. Edmond, and W.M.P. v.d. Aalst. Worklets: A
Service-Oriented Implementation of Dynamic Flexibility in Workflows. In OTM
Conferences (1), pages 291–308, 2006.

4. A. Agostini and G. De Michelis. Improving Flexibility of Workflow Management
Systems. In LNCS, volume 1806, pages 218–234. Springer-Verlag, 2000.

5. W. Nick Carter. Disaster Management: A Disaster Manager’s Handbook. Asian
Development Bank, 1991.

6. F. Casati, S. Ceri, B. Pernici, and G. Pozzi. Workflow evolution. In International
Conference on Conceptual Modeling / the Entity Relationship Approach, pages
438–455, 1996.

7. H. Ehrig, K. Hoffmann, and J. Padberg. Transformations of Petri Nets. Electr.
Notes Theor. Comput. Sci., 148(1):151–172, 2006.

8. C. Ellis, K. Keddara, and G. Rozenberg. Dynamic change within workflow systems.
In COCS’95, pages 10–21. ACM Press, 1995.

9. J. Engelfriet. Branching processes of Petri nets. Acta Inf., 28(6):575–591, 1991.
10. J. Esparza and K. Heljanko. Unfoldings - A Partial-Order Approach to Model

Checking. Springer-Verlag, 2008.
11. D. Fahland. Oclets - a formal approach to adaptive systems using scenario-based

concepts. Informatik-Berichte 223, Humboldt-Universität zu Berlin, 2008.
12. B. Farwer. Recovery and reset in object petri nets with process markings. In

Proceedings of CS&P 2006, pages 47–57, Sept. 2005.
13. D. Harel and H. Kugler. Synthesizing State-Based Object Systems from LSC

Specifications. In LNCS, volume 2088, pages 1–33. Springer-Verlag, 2001.
14. D. Harel and R. Marelly. Come, Let’s Play: Scenario-Based Programming Using

LSC’s and the Play-Engine. Springer-Verlag New York, Inc., 2003.
15. K.M.v. Hee, A. Serebrenik, N. Sidorova, M. Voorhoeve, and J.M.E.M.v.d. Werf.

Modelling with history-dependent petri nets. In LNCS, volume 4714, pages 320–
327, 2007.

16. S. Jul. Who’s Really on First? A Domain-Level User, Task and Context Analysis
for Response Technology. In ISCRAM 2007, pages 139–148, 2007.

17. M. Köhler and H. Rölke. Reference and value semantics are equivalent for ordinary
object Petri nets. In LNCS, volume 3536, pages 309–328. Springer-Verlag, June
2005.

18. M. de Leoni, M. Mecella, and G. De Giacomo. Highly dynamic adaptation in
process management systems through execution monitoring. In LNCS, volume
4714, pages 182–197. Springer-Verlag, 2007.

19. J. Mendling, H.A. Reijers, and J. Cardoso. What makes process models under-
standable? In LNCS, volume 4714, pages 48–63, 2007.

20. R. Milner. Communicating and Mobile Systems: the Pi-Calculus. Cambridge Uni-
versity Press, June 1999.

21. GFZ Potsdam. Mission statement of the “German Task Force Earthquakes”.
http://www.gfz-potsdam.de/pb2/pb21/Task Force/index e.html, 15th May 2008.

22. M. Reichert and P. Dadam. ADEPTflex-Supporting Dynamic Changes of Work-
flows Without Losing Control. J. Intell. Inf. Syst., 10(2):93–129, 1998.

23. W. Reisig. A Primer in Petri Net Design. Springer Compass International, 1992.
24. B. Weber, S. Rinderle, and M. Reichert. Change patterns and change support

features in process-aware information systems. In LNCS, volume 4495, pages 574–
588, 2007.


