
Towards Programmable Enterprise WLANs with Odin

Lalith Suresh
Instituto Superior Tecnico

Lisbon, Portugal

lalith.puthalath@ist.utl.pt

Julius Schulz-Zander
Telekom Innovation

Laboratories / TU Berlin
Berlin, Germany

julius@
net.t-labs.tu-berlin.de

Ruben Merz
Telekom Innovation

Laboratories / TU Berlin
Berlin, Germany

ruben.merz@telekom.de

Anja Feldmann
Telekom Innovation

Laboratories / TU Berlin
Berlin, Germany

anja@
net.t-labs.tu-berlin.de

Teresa Vazao
INESC-ID / Instituto Superior

Tecnico
Lisbon, Portugal

teresa.vazao@ist.utl.pt

ABSTRACT

We present Odin, an SDN framework to introduce programma-
bility in enterprise wireless local area networks (WLANs).
Enterprise WLANs need to support a wide range of services
and functionalities. This includes authentication, authoriza-
tion and accounting, policy, mobility and interference man-
agement, and load balancing. WLANs also exhibit unique
challenges. In particular, access point (AP) association de-
cisions are not made by the infrastructure, but by clients.
In addition, the association state machine combined with
the broadcast nature of the wireless medium requires keep-
ing track of a large amount of state changes. To this end,
Odin builds on a light virtual AP abstraction that greatly
simplifies client management. Odin does not require any
client side modifications and its design supports WPA2 En-
terprise. With Odin, a network operator can implement
enterprise WLAN services as network applications. A pro-
totype implementation demonstrates Odin’s feasibility.

Categories and Subject Descriptors

C.2.3 [Network Operations]: Network management; C.2.1
[Network Architecture and Design]: Wireless Commu-
nication

Keywords

Odin, SDN, Enterprise WLANs, Virtualization, OpenFlow

1. INTRODUCTION
Deployments of modern IEEE 802.11 [1] enterprise wire-

less local area networks (WLANs) can range from a few

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
HotSDN’12, August 13, 2012, Helsinki, Finland.
Copyright 2012 ACM 978-1-4503-1477-0/12/08 ...$15.00.

dozen to thousands of access points (AP), serving a mul-
titude of client devices such as smart-phones, laptops or
tablets. Large deployments provide resilience, fault-tolerance
and fail-over capabilities. Scalability in this context is paramount.
Independent of the size, what most enterprise WLAN de-
ployments have in common is the support for features such
as authentication, authorization and accounting (AAA), pol-
icy management, mobility management, interference man-
agement with dynamic channel reconfigurations or client re-
associations, load balancing and providing quality of service
guarantees. Their management is usually centralized. These
systems are also proprietary, with each vendor offering its
own closed-source platform.

In this paper, we propose Odin1, a prototype software de-
fined networking (SDN) framework for enterprise WLANs.
The objective of Odin is to empower network operators to
program and deploy typical enterprise WLAN services and
features as network applications. In this context, WLANs
exhibit specific challenges. The 802.11 standard lets clients
make AP association decisions on the basis of locally made
decisions. The infrastructure has no control over these deci-
sions made by the client. In addition, the association state
machine at the AP, combined with the dynamic, broadcast
and time-varying nature of the wireless medium can require
to keep track of state information changes continuously. Fur-
thermore, not only associated, but also all interfering 802.11
devices need to be managed.

To simplify the programming model, for instance, to not
have to handle callbacks for 802.11 state machine changes,
Odin builds on a light virtual access point (LVAP) abstrac-
tion. LVAPs virtualize association state and separate them
from the physical AP. For the programmer, multiple clients
connected to a single physical AP are treated as a set of logi-
cally isolated clients connected to different ports of a switch.
The LVAP design not only prevents from directly handling
the association state, it also greatly facilitates mobility man-
agement. It allows for the infrastructure to handoff clients
without triggering the re-association mechanism.

Odin is work in progress, under heavy development and
currently makes several assumptions: It targets fully central-
ized and reasonably sized deployments with one controller.

1Odin is a major god in Norse mythology.

115

It does not expect any client side modifications and its de-
sign supports WPA2 Enterprise. Clients connect to an Odin
network as regular IEEE 802.11 stations in infrastructure
mode. Odin is fully transparent to the client.
There is much literature available on enterprise WLAN ar-

chitectures. Systems like CENTAUR [2] and Dyson [3] pro-
pose architectures that assume heavy modifications to the
IEEE 802.11 [1] client side logic. Systems like DenseAP [4]
and DIRAC [5] assume legacy 802.11 clients. However, these
systems have certain performance limitations. For instance,
they cannot work around the delays involved with a hand-
off by a client. With regards to improving performance in
the network, Rozner et al. describe traffic aware channel as-
signment in enterprise WLAN deployments [6], and Bahl
et al. [7] propose the use of desktop computers as monitor-
ing stations in order to collect statistics about the network,
which can be used for making network management deci-
sions. For Odin, these works represent typical applications
that we expect to eventually support. Odin is built on top
of an OpenFlow controller [8]. Previous work on OpenFlow
for an 802.11 and WiMAX environment [9] concentrates on
supporting concurrently running experiments. Odin goes
much further by recognizing and taking into account pecu-
liarities of the 802.11 environment. Recently, research efforts
like Frenetic [10] and NetCore [11] were made in the direc-
tion of programming languages and compilers for network
programming. These efforts are complementary to the Odin
framework. Finally, Odin also borrows ideas from Onix [12],
which treats a network as an eventually consistent graph
with different elements. With Odin, we seek the high-level
primitives that a programmer needs within the context of
enterprise WLANs.
The remainder of this paper is organized as follows. The

design of Odin is presented in Section 2. A set of Odin
applications are described in Section 3. Section 4 discuss
implementation details of Odin. The feasibility of Odin is
demonstrated in Section 5 in a small scale deployment. Fi-
nally, we detail current work and conclude the paper in Sec-
tion 6.

2. ODIN FRAMEWORK DESIGN
To effectively express applications that implement high-

level services in enterprise WLANs, the programmer needs
simple and powerful abstractions. This is essential if the pro-
grammer operates on a central view of the entire network.
However, 802.11 clients associate or re-associate with any
AP on the basis of locally-made decisions. A design goal
of Odin is to prevent the programmer from keeping track
of changes to the authorizer, authenticator and client state
machines. Indeed, the programmer cannot make assump-
tions about the endpoints of the link between the client and
the infrastructure (MAC and IP address). To shield the pro-
grammer from this burden and to simplify the programming
model, we propose light virtual access points (LVAP). With
LVAPs, programmers always see a fixed link between clients
and the infrastructure (Section 2.2). We first explain Odin’s
architecture.

2.1 Architecture of Odin
Odin’s architecture consists of a single master, multiple

agents and a set of applications (Figure 1). The master itself
is an application on top of an OpenFlow [8] controller. It
has a global view of flows in the network, clients connected

Odin Master

OpenFlow

Controller

App App App

Access Point Switch

Odin

Agent

Odin

Protocol

Figure 1: Architecture of Odin. The Odin Master
(an OpenFlow application), speaks OpenFlow to the
switches and the APs, and uses a custom protocol
to talk to each Odin Agent running on APs. Odin
applications use Odin’s primitives to implement en-
terprise specific services.

to the network, and the infrastructure that comprises the
network. Odin agents run on the APs. Together, the master
and agents implement a Wi-Fi split-MAC (see CAPWAP
[13]). A TCP connection is used between the agent and
the master (established at boot time). It serves as Odin’s
control channel, and used by the master to invoke commands
on the agents and collect statistics from them. Applications
running on the Odin framework implement network services
using interfaces exposed by the master.

2.2 Light Virtual AP (LVAP)
LVAPs are a central primitive within the Odin framework.

When Wi-Fi clients in managed mode scan for APs, probe
request messages are generated. APs responding with probe
response messages become potential association candidates.
A client then proceeds to perform a connection handshake
with a locally selected AP. The LVAP abstraction enables to
take control of association decisions from the client and leads
to a logical isolation of clients with respect to the 802.11
MAC. With LVAPs, every client receives a unique BSSID
to connect to, i.e, every client is given the illusion of own-
ing its own AP. In Odin, the LVAP is the client specific
AP. Each physical AP hosts an LVAP for each connected
client. Removing a client LVAP from a physical AP and
spawning it on another achieves the effect of handing off a
client without the client performing a re-association, gen-
erating additional layer 2 or 3 messages, and most impor-
tantly, without requiring any special software or hardware
at the client. Thus, Odin always provides clients a consis-
tent link to the network, and the programmer of an Odin
application needs not be concerned with how the client’s
link to the network changes. The end-point of a link always
corresponds to the client IP and MAC addresses and the
unique BSSID assigned by Odin. The implementation of
the LVAPs, its resource utilization and beaconing issues are
explained in Section 4.3. Note that LVAPs are considerably
different from using virtual interfaces on a physical wireless
interface (as is leveraged by OpenRoads [9]). With regular
virtual interfaces, there is a state machine maintained for
each virtual interface which the infrastructure has no con-
trol of.

116

Client has

LVAP

assigned?

Client has

LVAP

assigned?

Client has

LVAP

assigned?

Receive 802.11

Data Frame

Receive 802.11

Mgt. Frame

Assign

LVAP
Drop

Frame

Forward

Up

Process

and

Respond

No

No

NoYes Yes

Odin Agent Odin Master

Figure 2: Processing path for 802.11 frames. When
an 802.11 management frame is received by an
agent, it checks whether an LVAP is hosted for the
client that generated the frame. If yes, it processes
and responds to the frame as per the 802.11 proto-
col. If there is no LVAP for the client, the agent
informs the controller which assigns the client an
LVAP. The agent then attempts to respond to the
client accordingly.

3. APPLICATIONS
In this section, we illustrate applications that can be built

on top of Odin.

3.1 Seamless Mobility
With Odin’s LVAPs, a handoff does not involve any ad-

ditional message exchanges or state machine changes at the
client. This can be leveraged by an Odin based application
to implement mobility (Figure 3). The application can query
various statistics provided by the Odin framework, and in-
voke handoffs depending on an application specific mobility
metric. Our rudimentary mobility manager uses the receiver
signal strength of the client at all agents that can hear it.
The application ensures the client is handed off to the agent
where this metric is the highest (Figure 4).

3.2 Load Balancing
For scalability reasons, the load at multiple APs can be

balanced by dynamic re-assignment of clients to different
APs (according to different metrics). Most existing work
employs specialized software on the client, which the infras-
tructure uses to control client associations (such as [14]).
The 802.11k amendment [15] also attempts to address this
issue, but requires modifications to the client (or supplicant).
Since handoffs with LVAPs are inexpensive and fast, re-

association based load balancing can be easily implemented
as an Odin application. As will be explained in Section 5,
even executing these handoffs every 100 ms does not result
in any TCP perceived throughput degradation at the client.

3.3 Hidden Terminal Mitigation
Mitigating hidden terminals is a well known and classi-

cal problem in enterprise WLANs [2]. Several approaches
exist to measure and mitigate the impact of hidden termi-
nals in enterprise WLAN environments. They span from
adaptive RTS/CTS to tight scheduling. However, most ap-
proaches require client modifications. An application miti-

a)

b)

Figure 3: LVAP Abstraction: a) Clients connect to
LVAPs, with one or more LVAPs being hosted on
the same physical AP. LVAPs on top of a physical
AP share the same wireless channel. b) The Odin
master detects a client movement and performs an
LVAP migration to realize a smooth handoff.

gating hidden terminal issues perfectly suits Odin because of
the centralized view of the network and the control over the
association state of a client. This application is considered
to provide per client measurements of link impairments (see
[16]) such as hidden and exposed terminals and collisions.

We are envisioning further applications and extensions to
Odin and LVAPs. In particular, full virtualization and slic-
ing of the MAC and more measurement support with conflict
graph construction.

4. ODIN FRAMEWORK IMPLEMENTATION

4.1 Odin Master
The Odin Master is implemented as an application on top

of the Floodlight OpenFlow controller [17]. It uses an in-
band control channel to invoke commands on the agents.
In its current form, Odin commands can add and remove
LVAPs and query for statistics. The master, through Flood-
light, uses the OpenFlow protocol to update forwarding ta-
bles on the AP and switches. Odin applications execute as
a thread on top of the Odin Master. Applications can view
the statistics exposed by the master in a key-value format.
As shown in Figure 4, applications can make decisions based
on these statistics and use Odin’s primitives to implement
different services.

4.2 Odin Agent
Odin agents run on physical APs, and are implemented

with Click elements [18]. Agents contain the logic for the
Wi-Fi split-MAC and LVAP handling. Agents also record in-
formation about clients using radiotap headers, and commu-

117

while (1) {
sleep (probe_interval);

for client in odinMaster.getClients() {
int max = 0;
OdinAgent agent_to_handoff_to = null;

for agent in odinMaster.getAgents () {
// query agent for statistics
Map <String , String > clientStats

= agent.getStats ().get(client.hwAddress);

if (clientStats != null) {
int signal = clientStats.get("signal");
if (signal > max) {

agent_to_handoff_to = agent;
max = signal;

}
}

}
}

// Perform LVAP handoff
odinMaster.handoffClientToAp(client.hwAddress ,

agent_to_handoff_to);
}

Figure 4: Pseudo-code of simple proactive mobility
manager. The application LVAP-handoffs the client
to the AP where the client has the best received
signal strength.

nicate with the Odin Master over the Odin control channel.
The physical AP hosting the agent also requires a slightly
modified Wi-Fi device driver to generate ACK frames for
every LVAP that hosted on the AP. For supporting authen-
tication, the driver would also need a modification to inject
per client encryption keys into the key table.

4.3 Realizing LVAPs
The first step to assign per-client LVAPs is to have Odin

agents track probe request frames generated by clients. When
an agent receives a probe request from a client for which
it is not already hosting an LVAP, the agent informs the
master. If the client is not already associated with the net-
work, the Odin Master spawns an LVAP on the Odin agent
which received the probe request (or one of the many agents
which received the request). The agent then responds to the
client’s probe request with a unique BSSID provided by the
master. Per-user network names (SSIDs) can be statically
assigned, or a common SSID can be provided to all clients
that attempt to connect to the network. To ensure logical
separation between clients and their respective LVAPs, bea-
cons (and probe responses) are unicast to the clients. This
causes clients to drop all beacons that are not destined to
it. Thus, each client can be presented with a unique BSSID
to connect to. From this point onwards, the client connects
to the newly spawned LVAP as in standard 802.11. An im-
portant implementation detail is to ensure that a client is
consistently provided the same BSSID. In its current form,
we statically assign BSSIDs to clients, but this is easily reme-
died by generating a BSSID deterministically for the client
on the basis of its MAC address.
In its current form, an LVAP is represented by the follow-

ing four-tuple:
{mac_addressclient, ip_v4_addressclient,

lvap_bssidclient, lvap_ssidclient}

This takes up a fixed size of 16 bytes, along with the length
of the SSID. It is stored on the agent within a hash map
keyed by the client MAC address. With a worst case length
of 32 characters for the SSID, the storage involved on the
AP with each addition of an LVAP is only 48 bytes. For this
reason, hosting an LVAP does not incur a significant mem-
ory load on the AP. For each frame that the AP generates
to a client, a lookup on this hash map is performed in order
to obtain the right BSSID value to be used as the source
MAC address in the 802.11 frame. Since this lookup is con-
stant time and is not a function of the number of LVAPs,
the processing load on the AP will remain a function of the
number of packets the agent has to process (as is the case
with a regular AP), and not a function of the number of
LVAPs. Note that in order to support authentication, en-
cryption keys need to be incorporated into the LVAP. This
will further increase the memory used per LVAP.

However, since the agent generates beacons corresponding
to each LVAP, having too many LVAPs can lead to more
beacon generation, which in turn leads to more contention
on the channel. Although we’re yet to measure the impact
of this on a client throughput, this can be easily remedied
by using longer beacon intervals.

4.4 Network Authentication
The architecture of Odin is compatible with the two most

deployed approaches to authentication.
WPA2 Enterprise: A client is authenticated against

the system after it is assigned an LVAP. In WPA2 Enter-
prise, a client performs a series of handshakes with the AP
and an authentication server in order to negotiate a session
key. This session key is then used by both the client and
the AP to encrypt the connection. With Odin, this ses-
sion key can be accounted for in the LVAP state. Whenever
any subsequent AP is to host an LVAP, it installs the cor-
responding session key into the wireless device key table.
Thus, the LVAP approach is compatible with existing enter-
prise authentication schemes. We are presently working on
implementing this.

Guest Wi-Fi: A client is assigned its own LVAP only
after it has authenticated against the system. This fits with
the common mode of authentication in guest Wi-Fi systems,
wherein a user is given an unsecured Wi-Fi connection, and
is redirected to a login page through the web browser [19].
The authentication mechanism can then return a token to
the Odin Master for the client after successful authentication
by the latter. The client is then assigned an LVAP.

5. EVALUATION
Since LVAPs are a central primitive of Odin, we perform

experiments to gauge their effectiveness. The goal is under-
stand what performance related assumptions Odin applica-
tions can make when using LVAPs. The testbed for our
evaluation comprises a single client, two APs on the same
subnet, and servers to run the OpenFlow controller and serve
as a traffic end-point. All APs are based on a x86 architec-
ture with Atheros AR9280 802.11abgn cards running Open
vSwitch with OpenFlow 1.0 support. We are currently de-
ploying Odin on a larger testbed.

In all experiments, the client is provided a static IP in or-
der to exclude DHCP related delays. Authentication is dis-
abled, and the standard IEEE 802.11 four-way handshake
is performed when using Odin or legacy Wi-Fi. With Odin,

118

Table 1: Latencies involved in a layer 2 handoff using
open authentication.

Scenario Min (s) Max (s) Avg (s) Std. Dev.
Same channel

handoff 0.1737 0.3793 0.1897 0.0320
Different channel

handoff 0.1767 18.3059 0.3632 1.0260

DHCP and authentication related delays only appear in the
very first connection to the network, and not with each hand-
off. We run three experiments: In experiment E1, we mea-
sure the handoff delay involved in layer 2 in the 2.4 Ghz
band over channels 1 to 11. This indicates of the delay
incurred by the regular four-way handshake in a basic han-
dover scenario. Note that Odin LVAP based handoff is not
susceptible to this delay. Channel 48 in the 5 Ghz band is
used for experiments E2 and E3 where the effect of LVAP
handoffs on a TCP session are observed. In these two exper-
iments, only the participating stations are transmitting on
the channel. This ensures measurements under stable TCP
conditions. All measurements are averaged over ten runs.

5.1 E1: Layer 2 Delay in Re-association
In this experiment, we measure handoff delays within a

noisy wireless setting. All measurements are taken in a typ-
ical office environment during normal working hours. The
client is made to associate with one AP, and then handed
off to another. Using the nmcli utility, we observe the time
delay involved for the client to disconnect from the first AP
and complete its association with respect to the second one.
The results are shown in Table 1. Handoffs are tried between
all combinations of channels. The average handoff delay of
350 ms that we observe is in line with previous literature.
The average delay for a handoff within the same channel is
around 190 ms. As mentioned earlier, the delay for handing
off within the same channel does not apply to Odin LVAP
based handoffs. In Odin, a successful handoff occurs when
a REMOVE_LVAP() and ADD_LVAP() messages are delivered at
the old and new APs respectively. Since the master already
has a TCP socket connection setup with each agent when
the latter registers with the master, the time involved here
is at most one RTT (assuming TCP is not forced to re-
transmit), along with the negligible amount of computation
delay involved at both APs. In our testbed, this is less than
1 ms from the invocation of the LVAP-handoff call at the
master (but can potentially increase if the network between
the master and the agents is heavily loaded).

5.2 E2: Single Handoff Impact on HTTP Down-
load

In this experiment, the client associates to one of the APs
and begins a wget download of a large file. After 13 seconds,
the client is made to handoff to the other AP. When using
Odin, the handoff corresponds to an LVAP migration. In
regular 802.11 mode, the client is explicitly made to handoff
using the iw command. As explained above, the client uses
a static IP and open authentication, which gives us a lower
bound on the handover delays involved.
Figure 5 shows the throughput over time when using a

regular 802.11 setup and having a handoff performed dur-
ing a download session. The throughput drops to zero over

 0

 5

 10

 15

 20

 25

 30

 35

 40

1 2 3 4 5 6 7 8 9
1
0

1
1

1
2

1
3

1
4

1
5

1
6

1
7

1
8

1
9

2
0

2
1

2
2

2
3

2
4

2
5

2
6

2
7

2
8

2
9

3
0

T
h
ro

u
g
h
p
u
t
 (

M
b
it
/s

e
c
)

Time (seconds)

Throughput versus time for normal handoff experiment (wget)

Normal handoff

Figure 5: Effect of a regular 802.11 handoff with-
out authentication or DHCP on the throughput of
a file download over HTTP. There is a period of dis-
connectivity spanning several seconds when such a
handoff is made.

 0

 5

 10

 15

 20

 25

 30

 35

 40

1 2 3 4 5 6 7 8 9
1
0

1
1

1
2

1
3

1
4

1
5

1
6

1
7

1
8

1
9

2
0

2
1

2
2

2
3

2
4

2
5

2
6

2
7

2
8

2
9

3
0

T
h
ro

u
g
h
p
u
t
 (

M
b
it
/s

e
c
)

Time (seconds)

Throughput versus time for Odin handoff experiment (wget)

Odin handoff

Figure 6: Effect of an Odin LVAP-handoff on the
throughput of a file download over HTTP. There is
no throughput degradation.

several seconds before recovering. In the presence of DHCP,
and 802.1X authentication, this time window would be much
larger. Figure 6 describes the same experiment performed
with Odin and an LVAP-handoff.the throughput curve is
unaffected in spite of the LVAP-handoff. However, Fig-
ure 6 indicates an overall reduction of throughput (close to
5 Mbit/sec) as opposed to the curve in Figure 5. Because
we currently use userspace Click to run the Odin agents,
slower and jittery forwarding performance on our AP hard-
ware is obtained. Consequently, TCP is forced to throttle
down. However, this is orthogonal to continuously maintain-
ing layer 2 and 3 connectivity, which Odin achieves through
LVAP migrations.

5.3 E3: LVAP-Handoff Benchmark
We want to understand how often an LVAP-handoff can be

executed against a client without affecting its performance.
The same setup as the previous experiment is used, but a
single iperf based TCP session is executed with the client
as the source. The duration of the measurement is 30 sec-
onds. Between the 5th and 25th seconds of the measurement,

119

 0

 5

 10

 15

 20

 25

 30

 35

 40

0.1 0.5 1.0 2.0 5.0 10.0

T
h
ro

u
g
h
p
u
t
 (

M
b
it
/s

e
c
)

Interval between two Odin handoffs (seconds)

Throughput results with benchmark experiment

Throughput with Odin

Figure 7: Average throughput achieved in the pres-
ence of continuous Odin LVAP-handoffs at fixed in-
tervals. The throughput degradation negligible.

LVAP-handoffs are repeatedly made between the two APs at
a fixed interval. We then observe the throughput degrada-
tion in this fixed interval. The results are shown in Figure 7.
Despite repeatedly performing LVAP-handoffs every 100 ms,
there is no significant throughput degradation. Although it
is unrealistic for an Odin application to perform this many
handoffs per second, it illustrates the inexpensive nature of
this operation.

6. DISCUSSION & CONCLUSIONS
Odin shows the benefits of introducing programmability

into the enterprise WLAN, by designing the right set of
primitives. LVAPs are only one such primitive, which are
lightweight and cheap and can be used to develop different
kinds of network services efficiently. We are enhancing and
deploying Odin on an indoor and outdoor testbed with a
larger number of users [20]. We are exploring further ab-
stractions in order to support the needs of a more diverse
set of network applications. We also plan to explore fault-
tolerance and fail-over capabilities and policy management
for Odin.

7. REFERENCES
[1] IEEE Std 802.11-2007 (Revision of IEEE Std

802.11-1999), 2007.

[2] V. Shrivastava, N. Ahmed, S. Rayanchu, S. Banerjee,
S. Keshav, K. Papagiannaki, and A. Mishra.
CENTAUR: realizing the full potential of centralized
wlans through a hybrid data path. In Proceedings of
the 15th annual international conference on Mobile
computing and networking, 2009.

[3] R. Murty, J. Padhye, A. Wolman, and M. Welsh.
Dyson: an architecture for extensible wireless LANs.
In Proceedings of the 2010 USENIX conference on
USENIX annual technical conference, 2010.

[4] R. Murty, J. Padhye, R. Chandra, A. Wolman, and
B. Zill. Designing high performance enterprise Wi-Fi
networks. In Proceedings of the 5th USENIX
Symposium on Networked Systems Design and
Implementation, 2008.

[5] P. Zerfos, G. Zhong, J. Cheng, H. Luo, S. Lu, and
J. J.-R. Li. DIRAC: a software-based wireless router

system. In Proceedings of the 9th annual international
conference on Mobile computing and networking, 2003.

[6] E. Rozner, Y. Mehta, A. Akella, and L. Qiu.
Traffic-Aware channel assignment in enterprise
wireless LANs. In IEEE ICNP 2007, 2007.

[7] P. Bahl, R. Chandra, J. Padhye, L. Ravindranath,
M. Singh, A. Wolman, and B. Zill. Enhancing the
security of corporate Wi-Fi networks using DAIR. In
Proceedings of the 4th international conference on
Mobile systems, applications and services, 2006.

[8] N. McKeown, T. Anderson, H. Balakrishnan,
G. Parulkar, L. Peterson, J. Rexford, S. Shenker, and
J. Turner. Openflow: enabling innovation in campus
networks. SIGCOMM Comput. Commun. Rev.,
38:69–74, March 2008.

[9] K.-K. Yap, M. Kobayashi, D. Underhill,
S. Seetharaman, P. Kazemian, and N. McKeown. The
Stanford OpenRoads deployment. In ACM WiNTECH
09, 2009.

[10] N. Foster, R. Harrison, M. J. Freedman, C. Monsanto,
J. Rexford, A. Story, and D. Walker. Frenetic: a
network programming language. In Proceedings of the
16th ACM SIGPLAN international conference on
Functional programming, 2011.

[11] C. Monsanto, N. Foster, R. Harrison, and D. Walker.
A compiler and run-time system for network
programming languages. In ACM SIGPLAN-SIGACT
POPL 12, 2012.

[12] T. Koponen, M. Casado, N. Gude, J. Stribling,
L. Poutievski, M. Zhu, R. Ramanathan, Y. Iwata,
H. Inoue, T. Hama, and S. Shenker. Onix: A
distributed control platform for large-scale production
networks. In OSDI 10, 2010.

[13] CAPWAP protocol binding for IEEE 802.11.
http://www.ietf.org/rfc/rfc5416.txt, March 2012.

[14] I. Papanikos and M. Logothetis. A study on dynamic
load balance for IEEE 802.11b wireless LAN. In
COMCON, 2001.

[15] IEEE 802.11k-2008 (Amendment 1: Radio Resource
Measurement of Wireless LANs), 2012.

[16] D. Giustiniano, D. Malone, D.J. Leith, and
K. Papagiannaki. Measuring transmission
opportunities in 802.11 links. Networking, IEEE/ACM
Transactions on, 18(5):1516 –1529, oct. 2010.

[17] Floodlight. http://floodlight.openflowhub.org/, March
2012.

[18] E. Kohler, R. Morris, B. Chen, J. Jannotti, and M. F.
Kaashoek. The click modular router. ACM
Transactions on Computer Systems, 18(3):263297,
August 2000.

[19] K.-K. Yap, Y. Yiakoumis, M. Kobayashi, S. Katti,
G. Parulkar, and N. McKeown. Separating
authentication, access and accounting: A case study
with OpenWiFi. Technical report, OpenFlow 2011-1.

[20] T. Fischer, T. Hühn, R. Kuck, R. Merz,
J. Schulz-Zander, and C. Sengul. Experiences with
bowl: Managing an outdoor wifi network (or how to
keep both internet users and researchers happy?). In
Proceedings of the 25th Large Installation System
Administration Conference (LISA ’11). Usenix.

120

