
Towards Programming Tools for Robots That Integrate
Probabilistic Computation and Learning

Sebastian Thrun
Computer Science Department

Carnegie Mellon University
Pittsburgh, PA

Abstract

This paper describes a programming language extension of
C++, called CES, specifically targeted towards mobile robot
control. CES’s design is motivated by a recent series of suc-
cessful probabilistic methods for mobile robot control, with
the goal of facilitating the development of such probabilis-
tic software in future robot applications. CES extends C++
by two ideas: Computing with probability distributions, and
built-in mechanisms for learning from examples as a new
means of programming. An example program, used to con-
trol a mail-delivering robot with gesture commend interface,
illustrates that CES may reduce the code development by two
orders of magnitude. CES differs from other special-purpose
programming languages in the field, which typically empha-
size concurrency and real-time/event-driven processing.

1 Introduction

In recent years, probabilistic algorithms have become pop-
ular in mobile robotics. Probabilistic algorithms explicitly
represent a robot’s uncertainty explicitly, enabling it to cope
with ambiguities and noise in a mathematically sound and
elegant way. Probabilistic approaches are typically more ro-
bust than traditional methods, as demonstrated by a series of
fielded systems such as (in our own work) the RHINO and
MINERVA tour-guide robots [3, 25].
Equally popular has become the idea of learning in robotics.
Learning has successfully been applied for the design of
mobile robot software—such as in Pomerleau’s autonomous
ALVINN vehicle [20] which was trained by watching a hu-
man drive—as well as during robot operation—such as in
systems that learn maps on-the-fly [5, 3].
The underlying mechanisms—probabilistic computation
and learning—are generic and transcend beyond a specific
application. Moreover, the development of probabilistic
software or learning software is often tedious and time-
consuming. Thus, there is a clear need for programming
tools that support for these ideas and facilitate their use in
future robotic applications.
This paper presents an extension to C++, called CES (short
for: C++ for embedded systems) that integrates learning and

probabilistic reasoning into C++:

1. Probabilistic computation. To handle uncertain infor-
mation, data types are provided that represent proba-
bility distributions. Computing with probability distri-
butions is very similar to computing with conventional
data types, with the added benefit of increased robust-
ness.

2. Learning. CES provides function approximators and
the necessary infrastructure (credit assignment mecha-
nisms) to train them based on experience. In particular,
CES uses gradient descent to learn from “distal” target
information.

C++ has been chosen as base language because of the popu-
larity of C and C++ in robotics. The remainder of this paper
describes the major concepts and demonstrates their benefits
in the context of an implemented mobile robot system.

2 Probabilistic Computation in CES

2.1 Probabilistic Data Types and Assignments

The template prob constructs probabilistic variables from
conventional data types. Examples of probabilistic variables
are

prob<char> prob<int> prob<double> ...

which parallel the standard data types char, int, dou-
ble. Probabilistic variables represent probability distribu-
tions over their respective base data types.
In CES, such distributions are represented using lists of val-
ues, annotated by a numerical probability. If a distribution is
finite, such list may contain any value of the variable’s do-
main annotated by their probability. In continuous variables,
such as prob<double>, the list is a sample-based approx-
imation of a (hypothetical) true density. If constructed ap-
propriately, such sample approximations converge at a speed
of

�� � , with � denoting the number of samples [18, 22].
The reader may notice that such sample-based approxima-
tions have been applied with great success in robotics [4, 7]
and computer vision ??.

Just as conventional variables, probabilistic variables can be
initialized by constants. For example, the assignment

prob<double> x = 2.4;

assigns a Dirac distribution to x whose probability is cen-
tered on 2.4. Finite distributions are specified trough lists.
The assignment

x = { {1, 0.5}, {2, 0.3}, {10, 0.2} };

assigns to x a distribution with three elements: 1, 2, and 10,
whose probabilities are 0.5, 0.3, and 0.2, respectively:���������
	��

= 0.5������������
= 0.3���������
	����
= 0.2

CES offers a range of frequently used distributions, such as:

x = normal1d(0.0, 1.0);
x = uniform1d(-1.0, 1.0);

Arithmetics with probabilistic data types is analogous to
arithmetic with conventional data types. For example, con-
sider the following code segment:

prob<int> x, y, z;
x = { {2, 0.5}, {3, 0.5} };
y = { {10, 0.1}, {11, 0.9} };
z = x + y;

The last statement generates a new distribution z, whose val-
ues are all possible sums of x and y, and whose probabilities
are the products of the corresponding marginal probabilities:

{ {12, 0.05}, {13, 0.5}, {14, 0.45} };

Just as in C++, CES offers type conversions between con-
ventional and probabilistic variables. Suppose x is declared
as a double, and y is declared as a prob<double>. The
statement

y = prob<double>(x);

assigns to y a Dirac distribution whose probability mass is
centered on the value of x. The inverse statement,

x = double(y);

assigns to x the mean of the distribution y, computed in
the obvious way. For additional means of converting dis-
tributions to values, CES offers functions such as mean(),
ml(), median(), and variance().

2.2 Independence

To keep probabilistic computation tractable, CES makes an
implicit and very important independence assumptions be-
tween probabilistic variables. The variables on the right
hand-side of statements like

z = x - y;

are assumed to be independent, that is, their joint distribution
is the product of the marginal distributions:

��������������� �������������������
(1)

The independence assumption is essential to maintain
tractability in large CES programs.
To see, consider the situation in Bayes networks [9, 19],
a popular, alternative framework for reasoning probabilis-
tically. Bayes networks interpret statements like z=x-y as
constraints on a high-dimensional joint distribution; hence,
they must keep track of implicit dependencies arising from
such statements (e.g., � depends on � and

�
). As a re-

sult, evaluating a Bayes network (marginalizing a high-
dimensional joint distribution) can be difficult, specifically
if the network possesses loops [19]. CES interprets pro-
gram code as computational transformations, instead of con-
straints on a joint distribution. This is semantically much
closer to conventional procedural programming languages.
It ensures tractability of large CES programs with loops.

2.3 The probloop Command

Sometimes, however, CES’s independence assumption is too
strong. CES offers a mechanisms for explicitly maintaining
dependencies arising in the computation: the probloop
command. This command provides a sound mechanism to
maintain arbitrary dependencies within a limited code seg-
ment of the programmer’s choice.
The syntax of the probloop command is as follows:

probloop(var-list-in; var-list-out) program-
code

where var-list-in and var-list-out are lists of probabilistic
variables separated by commas, and program-code is reg-
ular code. Variables may appear in both lists, and either list
may be empty.
The probloop command interprets the variables in var-
list-in as probability density functions. It executes the
program-code with all combinations of values for the vari-
ables in the var-list-in, with the exception of those whose
probability are zero. Inside the program-code, all vari-
ables in both lists (var-list-in, var-list-out) are their non-
probabilistic duals. The program-code can read values from
the variables in var-list-in, and write values into probabilis-
tic variables in var-list-out. For each execution, two things
are cached: The probability of the combination of values
(according to the probabilistic variables in the var-list-in),
and the effect of the program-code on the probabilistic vari-
ables in var-list-out. From those, it constructs new probabil-
ity densities for all probabilistic variables in the var-list-out.
For an example, consider the following code segment:

prob<int> x, y, z;
x = {{1, 0.2}, {2, 0.8}};
y = {{10, 0.5}, {20, 0.5}};
probloop(x, y; z)

if (10 * x - 1 > y) z = 1; else z = 0;

The probloop instruction loops through all combinations
of values of x and y, which are: � 	���	���� , � 	�� !��� , � "��	��#� ,

and � "� !�#� . For all of those, the program-code is executed
and the result, which according to the var-list-out resides in
x and z, is cached along with the probability assigned to
values assigned to x and y. The result is then converted into
a probability distribution for z, the only variable in var-list-
out:

{ {0, 0.6}, {1, 0.4} }

The probloop command provides a sound way to use
probabilistic variables in commands such as for loops,
while loops, and if-then-else (see also [24]).

2.4 Direct Manipulation of Densities

Statements like

x = y * z;

assign to x the distribution

����� � ��� ��������� �����
	"� ������� �� � 	 ���"� (2)

Such a manipulation is called indirect. It combines y and z
by iterating through their domains. Sometimes, it is useful
to manipulate or combine densities more directly, e.g., to
obtain:

����� � ��� ������	�� �����
�"�
(3)

This is achieved using built-in functions such as

x = multiply(y, z);

Direct manipulation of densities is useful for a range of op-
erations, including averaging of multiple probabilistic vari-
ables, and implementing Bayes rule. For example, Bayes
rule

�����
��� � ��� ��������� �"� �����
�"�
������� � (4)

is implemented in CES as

x = divide(multiply(y, xprior), yprior);

assuming that y holds
��������� �"�

, xprior holds
�����
�"�

, and
yprior holds

������� �
.

To perform direct manipulations using our sample-based ap-
proximation of probability densities (e.g., for the data type
prob<double>, an approximation of the (complete) den-
sity is temporarily constructed from the samples using den-
sity trees [11, 17]. Following the idea of importance factors
[], two densities are combined by manipulating the sample
probabilities of one sample set using the tree generated by
the other sample set. Unfortunately, space limits prevent us
from describing this mechanism in greater detail.

3 Learning

To support learning, CES provides built-in function approx-
imators and a mechanism for credit assignment in program
code. For example, the programmer might specify that an
artificial neural network be used to map raw camera images
into the steering direction of a vehicle (see [20] for a fa-
mous example of this approach). To “train” the program, the
programmer may then provide a target signal (e.g., a target
steering direction for a vehicle). The basic idea behind our
approach is that programmers can leave “gaps” in their pro-
grams which are “filled” by learning/teaching.

3.1 Leaving Gaps

Function approximators are created through a template fa
which requires the data type of the input and that of
the output. Currently, input and output can be dou-
ble, prob<double>, or vectors thereof (e.g., vec-
tor<prob<double> >). Additionally, the programmer
must specify the type of the function approximator. For ex-
ample

fa<vector<double>, prob<vector<double> > >
mynet(oneLayerNeuronet, 10);

creates a Backpropagation neural network with one hidden
layer and ten hidden units that maps a vector of doubles to a
probability distribution over such vectors. The dimension of
the vector is obtained automatically when using the function
approximator.
Once created, function approximators can be accessed
through the special method eval():

vector<double> x(4); // dimension 4
prob<vector<double> > y(3); // dimension 3
y = mynet.eval(x);

The output of a function approximator is restricted to lie be-
tween 0 and 1. Our current implementation offers a collec-
tion of function approximators (Backpropagation networks,
linear regression, radial-basis functions).

3.2 Training

CES programs are trained using the method train(),
which is defined for probabilistic data types. The assignment

x.train(y);

specifies that the desired value for the variable x is y (at
the current point of program execution). Here both vari-
ables, x and y, are either of the same type, or x is of type
prob<foo> if y’s type is foo.
In our current implementation, the training operator induces
a quadratic error norm. When a training operator is encoun-
tered, CES adjusts the parameters of all contributing func-
tion approximators accordingly. To do so, CES possess a
built-in built-in credit assignment mechanism that uses gra-
dient descent. More specifically, let y be a probabilistic vari-
able. An operation such as

y = f.eval(y);

(a) (b)

Figure 1: (a) The Real World Interface B21 robot used in our
research. (b) Schematics of the robot’s environment.

attaches to each sample of x, denoted � � � ��� � , a gradient��������
	 where �� is a parameter of the function approximatorf.
The gradients are then passed on to subsequent (dependent)
probabilistic variables. For example if further down in the
program execution CES encounters a statement such as

z = y + a;

the gradients
�������� 	 are computed automatically using the

chain rule of differentiation. When a training function is
executed, the desired parameter updates can be computed
immediately using these gradients and the chain rule.
As a pleasing consequence, the programmer does not have to
provide target signals directly for the output of each function
approximator. Instead, it suffices to provide target signals for
some variable(s) whose values depend on the parameters of
the function approximator. This is convenient, as it enables
programmers to specify (through examples) the input-output
behavior of code segments that might, internally contain one
or more function approximator—without having to generate
examples of the input-output behavior of the function ap-
proximator(s) itself.

3.3 The Importance of Probabilities for Learning

Probabilistic computation is a key enabling factor for CES’s
learning mechanism. Conventional (i.e., non-probabilistic)
C++ code is usually not differentiable. Consider, for exam-
ple, the statement

if (x > 0) y = 1; else y = 2;

where x is assumed to be of the type double. Obviously,� 	� � � �
with probability 1. (5)

Consequently, program statements of this and similar types
will, with probability 1, alter all gradients to zero, gradient
descent will not change the parameters, and no adaptation
will occur.

left hand right hand both hands

no gesture no gesture no gesture

Figure 2: Positive (top row) and negative (bottom row) ex-
amples of gestures.

Fortunately, the picture changes if probabilistic variables
are used. Suppose both x and y are of the type
prob<double>. Then the same statement is differentiable
with non-zero gradients:� ��� ��	 � 	��� ��� � � � �"� � � 	

if
��� �� 	

if
��� � (6)

� ��� ��	 � ��� ��� � � � �"� � � 	
if

��� �� 	
if

��� � (7)

Notice that none of the gradients are zero. The differentiabil-
ity of probabilistic variables is essential for CES’s gradient
descent function approximator.

4 Proof-of-Concept: A Mail Delivery Robot

To provide a first proof-of-concept, we successfully im-
plemented a program for a mail-delivery robot instructed
through gestures. Obviously, a single example is insufficient
to demonstrate the generality of the language; and only time
can tell how useful the concepts are. However, in our ex-
ample CES reduced the length of the program by more than
two orders of magnitude, when compared to a previous im-
plementation in C. A second example, described in [], also
led to code that was 2 orders of magnitude shorter than the
original implementation in C.
Table 1 shows the full program, whose development is de-
scribed in detail in [24]. This program, along with the appro-
priate training is sufficient to make the robot shown in Fig-
ure 1a deliver mail an office environment. The robot, which
is instructed through visual gestures such as those shown in
Figure 2, delivers mail to up to two designated locations in a
populated corridor environment, labeled “A” and “B” in Fig-
ure 1b. The CES program, which is only 137 lines long and
has been trained with less than two hours worth of data. The
program operates on raw sensor data and directly controls
the robot’s motors (velocities). It successfully implements a
highly reliably robotic controller involving collision avoid-
ance, localization, point-to-point navigation, gesture recog-

001: main(){
002:
003: // ============= Declarations ==============
004: fa<vector<double>, prob<double> > netSonar(oneLayerNeuronet, 5);
005: fa<prob<vector<double> >, prob<double> > netX(oneLayerNeuronet, 5),
006: netY(oneLayerNeuronet, 5);
007: fa<vector<double>, prob<int> > netLeft(oneLayerNeuronet, 5),
008: netRight(oneLayerNeuronet, 5);
009: prob<double> alpha, alphaLocal, probRotation;
010: prob<double> thetaLocal, theta, transVel, rotVel;
011: prob<double> x, xLocal, y, yLocal, probTransl;
012: prob<int> coin = {{0, 0.5}, {1. 0.5}};
013: prob<int> gestureLeft, gestureRight;
014: prob<vector<double >> newSonar(2);
015: double alphaTarget, scan[24], image[300];
016: double xTarget, yTarget, xGoal, yGoal, t, v;
017: struct { double rotation, transl; } odometryData;
018: struct { double x, y, dir; } stack[3];
019: int targetLeft, targetRight;
020: int numGoals = 0, activeGoal;
021:
022: // ============= Initialization ==============
023: alpha = UNIFORM1D(0.0, M_PI);
024: theta = UNIFORM1D(0.0, M_PI);
025: x = XHOME; y = YHOME;
026:
027: // ============= Main Loop ==============
028:
029: for (;;){
030:
031: // ---------------- Localization ----------------
032: GETSONAR(scan); // get sonar scan
033: alphaLocal = netSonar.eval(scan) * M_PI;
034: alpha = multiply(alpha, alphaLocal);
035: probloop(alphaLocal, coin; thetaLocal){
036: if (coin)
037: thetaLocal = alphaLocal;
038: else
039: thetaLocal = alphaLocal + M_PI;
040: }
041: theta = multiply(theta, thetaLocal);// robot’s orientation
042: probloop(theta; newSonar){
043: int i = int(theta / M_PI * 12.0);
044: int j = (i + 12) % 24;
045: if (scan[i] < 300.0) newSonar[0] = scan[i];
046: if (scan[j] < 300.0) newSonar[1] = scan[j];
047: }
048: xLocal = netX.eval(newSonar);
049: yLocal = netY.eval(newSonar);
050: x = multiply(x, xLocal); // robot’s x coordinate
051: y = multiply(y, yLocal); // robot’s y coordinate
052:
053: GETODOM(&odometryData); // get odometry data
054: probRotation = prob<double>(odometryData.rotation)
055: + normal1d(0.0, 0.1 * fabs(odometryData.rotation));
056: alpha += probRotation;
057: if (alpha < 0.0) alpha += M_PI;
058: if (alpha >= M_PI) alpha -= M_PI;
059: theta += probRotation; // new orientation
060: if (theta < 0.0) theta += 2.0 * M_PI;
061: if (theta >= 2.0 * M_PI) theta -= 2.0 * M_PI;
062: theta = probtrunc(theta, 0.01);
063: probTransl = (prob<double>) odometryData.transl
064: + NORMAL1D(0.0, 0.1 * fabs(odometryData.transl));
065: x = x + probTransl * cos(theta);
066: y = y + probTransl * sin(theta);
067: x.truncate(0.01); // new x coordinate
068: y.truncate(0.01); // new y coordinate

069: // ------------ Gesture Interface & Scheduler -

070: GETIMAGE(image);
071: gestureLeft = netLeft.eval(image);
072: gestureRight = netRight.eval(image);
073: if (num-
Goals == 0){ // wait for gesture
074: if (double(gestureLeft) > 0.5){
075: stack[numGoals].x = XA; // loca-
tion A on stack
076: stack[numGoals].y = YA;
077: stack[numGoals++].dir = 1.0;
078: }
079: if (double(gestureRight) > 0.5){
080: stack[numGoals].x = XB; // loca-
tion B on stack
081: stack[numGoals].y = YB;
082: stack[numGoals++].dir = 1.0;
083: }
084: if (numGoals > 0){
085: stack[numGoals].x = XHOME; // HOME lo-
cation on stack
086: stack[numGoals].y = YHOME;
087: stack[numGoals++].dir = -1.0;
088: activeGoal = 0;
089: }
090: }
091: else if (stack[activeGoal].dir * // reached a goal?
092: (double(y) -
stack[activeGoal].y) > 0.0){
093: SETVEL(0, 0); // stop robot
094: activeGoal = (activeGoal + 1) % depth;
095: if (activeGoal)
096: for (HORN(); !GETBUT-
TON();); // wait for button
097: else
098: numGoals = 0;
099: }
100:
101: else{ // ---------------- Navigation ----------

102: xGoal = stack[activeGoal].x;
103: yGoal = stack[activeGoal].y;
104: probloop(theta, x, y, xGoal, yGoal;
105: transVel, rotVel){
106: double thetaGoal = atan2(y - yGoal, x -
xGoal);
107: double thetaDiff = thetaGoal -
theta; // location of goal
108: if (thetaDiff < -M_PI) thetaD-
iff += 2.0 * M_PI;
109: if (thetaDiff > M_PI) thetaDiff -
= 2.0 * M_PI;
110: if (thetaDiff < 0.0)
111: rotVel = MAXROTVEL; // ro-
tate left
112: else
113: rotVel = -MAXROTVEL; // ro-
tate right
114: if (fabs(thetaDiff) > 0.25 * M_PI)
115: transVel = 0; // no translation
116: else
117: transVel = MAXTRANSVEL; // go ahead
118: }
119: v = double(rotVel); // con-
vert to double
120: t = double(transVel); // con-
vert to double
121: if (sonar[0] < 15.0 || sonar[23] < 15.0) t = 0.0;
122: SETVEL(t, v); // set velocity
123: }
124:
125: // ---------------- Training ----------------
126: GETTAR-
GET(&alphaTarget); // these command are
127: alpha.train(alphaTarget); // only en-
abled during
128: GETTARGET(&xTarget); // train-
ing. They are
129: x.train(xTarget); // re-
moved afterwards.
130: GETTARGET(&yTarget);
131: y.train(yTarget);
132: GETTARGET(&targetLeft);
133: gestureLeft.train(targetLeft);
134: GETTARGET(&targetRight);
135: gestureRight.train(targetRight);
136: }
137: }

Table 1: The complete implementation of the mail delivery program. Line numbers have been added for the reader’s conve-
nience. Functions in capital letters (GET ... and SET ...) are part of the interface to the robot.

nition, and high-level scheduling of deliveries, in an ambigu-
ous and dynamic environment.
Our program uses neural networks to recognize gestures
from camera images (lines 70-72). Depending on the ges-
ture, the robot schedules one or two target locations (lines
73-90) and then navigates there (lines 101-123). At the tar-

get locations, the robot honks a horn and waits for a person
to pick up his mail (lines 91-99). While doing so, it main-
tains an accurate, probabilistic estimate of its location (in�

-
�

-
�

world coordinates), using sonar readings, neural net-
works, and Bayes rule to update its belief (lines 32-68). The
robot also avoids collisions with unexpected obstacles such
as humans, by decelerating the proximity of such obstacles

Figure 3: Plot of the robot trajectory (raw odometry) dur-
ing 8 consecutive runs (11 pieces of mail delivered). Shown
here are also the raw sonar measurements. The robot reaches
the various destination points with high accuracy, despite the
rather significant error in the robot’s odometry.

(line 121). As described in [24], the code was developed
in stages, interleaving conventional programming and teach-
ing. To train the various function approximators (lines 4 to
8), two data sets were collected and labeled manually (one
for localization, lines 126-131, and one for the gesture-based
interface, lines 132-135). Collecting and labeling the data
took less than 2 hours, using our mobile robot and a graphi-
cal interface for data labeling.
We found that our CES program is indeed sufficient to con-
trol a mobile robot reliably in a crowded environment, de-
spite its shortness. In extensive tests, the robot navigated for
extended periods of time in a populated corridor without ever
loosing its position, or colliding with an obstacle. Figure 3
shows an example trace (raw data), recorded during 20 min-
utes of continuous deliveries (58,992 sonar measurements,
2,458 odometry measurements). Notice that raw odometry
is insufficient to track the robot’s position. Our program reli-
ably navigated the robot to the correct location with high ac-
curacy (� 1 meter) and delivered all pieces of mail correctly.
In tests with independently collected data, the error rate of
the gesture interface was consistently below 2.5% despite its
simplicity (measured on 138 independently collected testing
examples).
Mail delivery [13] and gesture-based human robot interac-
tion [10, 14] have often been used as reference problems in
the AI mobile robotics community. Even though our short
program is obviously restricted in many ways (e.g., the robot
must operate in a single corridor), the key result here is that
with our new language, we were able to provide a solution
with a 137-line program and less than 2 hours of training.
Comparable systems usually require at least two orders of
magnitude more code and are considerably more difficult to
implement (see, for example, the various chapters in [13]
and [2]). A second example in [24] demonstrates how a
5,000 lines state-of-the-art mobile robot localization algo-
rithm [21, 23] has been implemented in 52 lines of CES

code.

5 Related Work

A large number of recent robot application illustrates the
great power of probabilistic methods and learning for
robotics (e.g., [3, 5, 20, 25]). These and similar applica-
tions should benefit greatly from CES, as the mechanisms
described here are sufficiently generic to support a broad
range of useful mechanisms in probabilistic robotics.
Probabilistic Reasoning. The vast majority of work in
UAI, such as Bayes networks [9, 19], represent probabilistic
knowledge declaratively, not procedurally as in CES. Bayes
networks can be seen as a version of programming language
which, for example, lacks loop statements like for and
while. Contrary to CES, they employ probabilistic sep-
arate inference mechanisms to compute the desired quanti-
ties (marginal distributions). Some of the implications were
discussed above, in Section 2.2. When compared to CES,
such approaches actually have the advantage that they sup-
port reasoning in multiple directions (e.g., from the output
of a network to its input). However, CES is much richer, as
it includes conventional means of programming, and it has
a different semantics. Since it is procedural, computation
and knowledge representation are one and the same thing,
thereby avoiding serious computational problems when scal-
ing to large programs—which currently exist for large Bayes
networks.
Machine Learning. From a machine learning point of
view, CES provides a means for integrating prior knowl-
edge (program code) and learning. Previous approaches
to knowledge-based induction, such as the work origi-
nated in [16], require declarative representations for prior
knowledge. CES represents such knowledge procedurally.
Since declarative representations require inference methods
whose timing is often unpredictable, they are rarely used in
robotics.
CES differs from other procedural approaches, such as
Generic Programming [15], in that its learning components
keep the human-provided program code intact, making it
easier for programmers to understand their code after learn-
ing.
Robotics. Various AI researchers have proposed special-
purpose programming languages for robots and similar em-
bedded systems. Existing languages typically support con-
currency and event-driven execution [6, 8, 12], sometimes
restricting the design of program modules [1]. These issues
are entirely orthogonal to those pursued in CES.

6 Discussion

Recent trends in mobile robotics suggest that probabilistic
robotics and robot learning are viable means of designing
robot software; however, existing programming tools do not

provide support for probabilistic computation or learning.
This paper described a language extension to C++, specifi-
cally developed for robots (and other sensor-based, embed-
ded systems). It introduces two new ideas, previously not
found in general purpose programming languages: proba-
bilistic computation and exemplar-based learning/teaching.
Software development in CES interleaves phases of conven-
tional programming with phases where the program is taught
using examples. As a result, functions that are difficult to
program by hand (but easily trained) can be learned. CES’s
probabilistic data types facilitate computation with uncertain
information (as generated by most sensors); hence provide
additional robustness and aid the learning.
The primary benefit of the CES extension is that is facil-
itates rapid development of robust software. To validate
this claim, we presented an example program for a gesture-
instructed mail delivery robot. This example demonstrated
an improvement (both in size of code and program develop-
ment time) by more than an order of magnitude, when com-
pared with today’s best practice. Of course, a single example
(and even a second one in [24]) are insufficient to fully assess
the advantages of this new programming framework; how-
ever, since the ideas underlying CES are extremely generic,
we are hopeful that similar benefits can be obtained in many
other applications.
By integrating probabilistic computation and learning into a
popular procedural programming language, we hope to fa-
cilitate the dissemination of these important ideas into main-
stream robotics. Both ideas—probabilistic computation and
learning—have shown great promise in a range of state-of-
the-art robot applications; we hope that they will become an
integral part of any future robot application faced with inac-
curate sensing and unpredictable, dynamic environments.

Acknowledgments

The author thanks Frank Pfenning and Sungwoo Park for
invaluable input on this project.
This research is sponsored in part by DARPA via TACOM
(contract number DAAE07-98-C-L032) and Rome Labs
(contract number F30602-98-2-0137), and by the National
Science Foundation (regular grant number IIS-9877033 and
CAREER grant number IIS-9876136), which is gratefully
acknowledged.

References

[1] R.A. Brooks. Intelligence without reason. IJCAI-91.

[2] W. Burgard, A.B., Cremers, D. Fox, D. Hähnel, G. Lakemeyer,
D. Schulz, W. Steiner, and S. Thrun. The interactive museum tour-
guide robot. AAAI-98.

[3] W. Burgard, A.B. Cremers, D. Fox, D. Hähnel, G. Lakemeyer,
D. Schulz, W. Steiner, and S. Thrun. Experiences with an interac-
tive museum tour-guide robot. Artificial Intelligence, to appear.

[4] F. Dellaert, W. Burgard, D. Fox, and S. Thrun. Using the conden-
sation algorithm for robust, vision-based mobile robot localization.
CVPR-99.

[5] A. Elfes. Occupancy Grids: A Probabilistic Framework for Robot
Perception and Navigation. PhD thesis, ECE, CMU, 1989.

[6] R.J. Firby. An investigation into reactive planning in complex do-
mains. AAAI-87.

[7] D. Fox, W. Burgard, F. Dellaert, and S. Thrun. Monte Carlo local-
ization: Efficient position estimation for mobile robots. AAAI-99.

[8] E. Gat. ESL: A language for supporting robust plan execution in
embedded autonomous agents. AAAI FSS, 1996.

[9] D. Heckerman. A tutorial on learning with bayesian networks. TR
MSR-TR-95-06, Microsoft Research, 1995.

[10] R.E. Kahn, M.J. Swain, P.N. Prokopowicz, and R.J. Firby. Gesture
recognition using the perseus architecture. CVPR-96.

[11] D. Koller and R. Fratkina. Using learning for approximation in
stochastic processes. ICML-98.

[12] K. Konolige. COLBERT: A language for reactive control in saphira.
KI-97.

[13] D. Kortenkamp, R.P. Bonasso, and R. Murphy, editors. AI-based
Mobile Robots: Case studies of successful robot systems, MIT Press,
1998.

[14] D. Kortenkamp, E. Huber, and P. Bonasso. Recognizing and inter-
preting gestures on a mobile robot. AAAI-96.

[15] J. Koza. Genetic Programming: On the Programming of Computers
by Means of Natural Selection. MIT Press, 1992.

[16] T.M. Mitchell. Machine Learning. McGraw-Hill, 1997.

[17] A.W. Moore, J. Schneider, and K. Deng. Efficient locally weighted
polynomial regression predictions. ICML-97.

[18] R.M. Neal. Probabilistic inference using Markov chain Monte Carlo
methods. TR CRG-TR-93-1, University of Toronto, 1993.

[19] J. Pearl. Probabilistic reasoning in intelligent systems: networks of
plausible inference. Morgan Kaufmann, 1988.

[20] D. A. Pomerleau. Rapidly adapting neural networks for autonomous
navigation. NIPS-91.

[21] R. Simmons and S. Koenig. Probabilistic robot navigation in partially
observable environments. IJCAI-95.

[22] M.A. Tanner. Tools for Statistical Inference. Springer, 1993.

[23] S. Thrun. Bayesian landmark learning for mobile robot localization.
Machine Learning, 33(1), 1998.

[24] S. Thrun. A framework for programming embedded systems: Initial
design and results. TR CMU-CS-98-142, CMU, 1998.

[25] S. Thrun, M. Bennewitz, W. Burgard, A.B. Cremers, F. Dellaert,
D. Fox, D. Hähnel, C. Rosenberg, N. Roy, J. Schulte, and D. Schulz.
MINERVA: A second generation mobile tour-guide robot. ICRA-99.

