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Towards Projectively Equivariant Quantization

Pierre B. A. Lecomte∗)

Institut de Mathématiques, Université de Liège,
Grande Traverse 12 (B 37), B-4000 Liège, Belgium

In this paper, we define a natural generalization of the notion of projectively equivariant
quantization on a flat space to arbitrary manifolds equipped with arbitrary projective struc-
tures. We show how to get such a quantization for the differential operators of order 2 and
explain how the method could be adapted to construct a quantization for all the differential
operators. In particular, we state a conjecture about the relevant cohomologies that would
insure the existence of such quantization in all cases.

§1. Introduction

Basically, a quantization is a way to assign a differential operator to each observ-
able. Observables are smooth functions on the phase space that are polynomial in
the momenta. The phase space is the cotangent bundle T ∗M of some smooth mani-
fold M . The algebra of observables is thus naturally identified with the space S(M)
of smooth contravariant symmetric tensor fields on M . The differential operators
associated to observables act on smooth functions on M or on smooth densities, the
case of 1

2 -densities being of particular interest. (See Ref. 1) for more informations
about that point.) We denote Fλ the space of λ-densities of M and Dλ(M) the
algebra of differential operators of M acting between λ-densities.

There are many quantization procedures but none of them is canonical. Techni-
cally, this means that no such procedure commutes with the action of the group of
diffeomorphisms of the manifold or, in a weaker sense, no quantization procedure is
equivariant with respect to the Lie algebra Vect(M) of vector fields of M acting by
Lie derivatives on S(M) and Dλ(M). In other words, these spaces are isomorphic
as vector spaces but not as Vect(M)-modules.

However, on IRm, there are isomorphic as modules over some Lie subalgebras
of Vect(IRm). Of course, they are isomorphic under the action of the affine Lie
subalgebra consisting of the polynomial vector fields of degree at most one. But
they are also isomorphic under the action of maximal subalgebras of the algebra
of polynomial vector fields. For instance, it has been shown 2) that there exists a
unique slm+1-equivariant quantization Qλ : S(IRm) → Dλ(IRm), where slm+1 is the
projective embedding of sl(m + 1, IR), i.e. the Lie subalgebra spanned by the vector
fields ∂i, x

i∂i, x
i ∑

j xj∂j , i, j ∈ {1, · · · , m}. A similar result has been obtained 1)

for the conformal Lie subalgebra so(p + 1, q + 1), p + q = m. See Ref. 4) for a
description of the graded maximal subalgebras of the algebra of polynomial vector
fields and Ref. 5) for the extentions of the above results to some of these algebras.

Moreover, on an arbitrary manifold M , for the observables of degree 2 and the
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operators of order 2, a bijection S2(M) → D2
λ(M) has been constructed using a

covariant derivation ∇ in such a way that
• the bijection depends only on the projective class of ∇ in the projective case,

and on the conformal class of the underlying metric in the conformal case (∇
being then the Levi-Civita covariant derivation),

• the bijection is the restriction of the corresponding slm+1- or so(p + 1, q + 1)-
equivariant quantization when M = IRm and when ∇ is the canonical flat
connection.

(See Ref. 6) in the projective case, and Ref. 8) in the conformal case. A similar
result has been obtained for degree 3 observables in Ref. 7).)

These formulae have been found in a purely heuristical and computational way.
It is the purpose of the present paper to describe some arguments and methods
that could be useful to get generalizations of them to higher degrees, at least in the
projective case.

We fix once for all a smooth manifold M of dimension m and a weight λ. The
various connections used in the paper are always supposed to be torsion free.

§2. Quantizations

Recall that the space of differential operators Dλ(M) is filtered by the order of
differentiation:

Dλ(M) = ⊕p≥0Dp
λ(M),

where Dp
λ(M) denotes the space of differential operators of order at most p. As

known, the associated graded space grDp
λ(M) is isomorphic to S(M): if A ∈ Dp

λ(M)
takes the form

A =
∑

0≤k≤p

∑
i1,···,ik

Ai1···ik∂i1 · · · ∂ik

in some local chart, then the element of Sp(M) defined by

σ(A)(ξ) =
∑

i1,···,ip
Ai1···ipξi1 · · · ξip

is independent of the chart. It is the principal symbol of A and the isomorphism
grDλ(M) ∼= S(M) maps A mod Dp−1

λ (M) onto σ(A).
Remark 1 We usually view S(M) as a graded space, the space Si(M) of tensors of
degree i being its ith term. It can also be considered as a filtered space, the ith filter
being then just ⊕0≤j≤iSj(M). We shall not use different notations to distinguish
the graded space from the filtered space.
Definition 1 A quantization of M on λ-densities is a linear map Q : S(M) →
Dλ(M) such that

• Q is filtered: Q(⊕0≤i≤p Si(M)) ⊂ Dp
λ(M),

• Q induces the identity on grDλ(M).
We denote Q(M)λ the space of all quantizations of M on λ-densities.
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It is not hard to construct quantizations. Here is a quite well known way that
we call the Lichnérowicz’s construction as A. Lichnérowicz used it systematically in
his development of the theory of star-products. Let ∇ be a covariant derivative
of M , associated to some (torsion free) connection. For a given density ϕ ∈ Fλ,
the symmetric p-covariant tensor field ∇pϕ ∈ Sp(M) ⊗ Fλ of M valued in Fλ is
defined inductively: ∇1ϕ is just the covariant differential ∇ϕ of ϕ and ∇p+1ϕ is
the symmetrization of ∇(∇pϕ). For each P ∈ Sp(M), τ∇(P ) : ϕ �→ 〈P,∇pϕ〉 is a
differential operator with principal symbol P . As easily seen, τ∇ extends linearly as
a quantization on the whole S(M).

§3. Projective structures on M

Here is a quick introduction to projective structures on arbitrary manifolds. For
more details, we refer the reader to Ref. 9).
Definition 2 As geodesics generalize the notion of straight lines in affine spaces, it
is quite natural to say that two covariant derivations are projectively equivalent if
they have the same geodesics (up to parametrizations) and that a projective structure
on M is an equivalence class of covariant derivations of M .

Denote C(M) the set of (torsion free) covariant derivations of M . It is an affine
space modelled on the vector space S1

2 (M) of tensor fields of M of type (12) which
are symmetric in their covariant indices. For any S ∈ S1

2 (M) and any ∇ ∈ C(M),
we denote S · ∇ the result of the action of S on ∇.

Any 1-form ω ∈ Ω1(M) of M can be identified with the element ω1 of S1
2 (M)

defined by

ω1(X, Y ) =
1

m + 1
(ω(X)Y + ω(Y )X).

(1 represents the identity tensor of type (11). The coefficient 1
m+1 is just a useful

normalization factor.) For simplicity, we set ω1 · ∇ = ω · ∇. By a theorem of
Weyl, two covariant derivations ∇ and ∇′ are projectively equivalent if and only if
∇′ = ω · ∇ for some ω ∈ Ω1(M). The set of projective structures on M is thus the
affine space C(M)/Ω1(M).

The group of diffeomorphisms that preserve a given projective structure on M
is a Lie group of dimension at most (m + 1)2 − 1. On IRm, the Lie algebra of the
Lie group preserving the projective structure of the canonical flat connection is the
projective embedding slm+1.

§4. Projectively equivariant quantizations

Definition 3 A projectively equivariant quantization is a map Q : C(M) → Q(M)λ

such that
• a) (projective invariance) Q∇ = Q∇′ , if ∇ and ∇′ are projectively equivalent,
• b) (naturality) LXQ = 0 for every X ∈ Vect(M).
Combining the above conditions a) and b), we see that if M = IRm and if ∇

is the canonical flat covariant derivation, then Q∇ is the unique slm+1-equivariant
quantization of λ-densities on IRm. Indeed, since slm+1 is the Lie algebra of the group
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of diffeomorphisms preserving the projective structure associated to the canonical
flat connection, we have then LX(Q∇) = (LXQ)∇ = 0 for each X ∈ slm+1.

As we shall see, it is easy to construct mappings from C(M) into Q(M)λ that
satisfy a) or b). The question is to construct such a mapping satisfying both
conditions.

The quantization τ∇ given by the Lichnérowicz’s construction defines obviously
a mapping τ : C(M) → Q(M)λ satisfying the naturality condition b). It is quite
obvious that this map does not verify the projective invariance condition a) (more-
over, this will be explicitly shown soon). It can be easily modified in order to satisfy
this condition. Doing this without caution, we will however loose the naturality. So,
although a map satisfying condition a) can be given immediately, we will explain a
method to get it that allow further to restore the naturality, at least for operators
of order 2. We believe that it works in general but the question is still open. It is
the subject of the thesis under development of one of our students.

§5. Splitting S1
2(M)

The space S1
2 (M) = Γ (∨2T ∗M ⊗ TM) has a nice decomposition. It is inherited

from a decomposition of each fiber of the bundle ∨2T ∗M ⊗ TM into irreducible
components under the action of gl(m, IR). We describe it in terms of the trace
mapping.
Definition 4 In any local chart, the trace tr S ∈ Ω1(M) = of S ∈ S1

2 (M) is defined
by contraction: in any local chart of M , it is given by

tr S = Si
ijdxj,

if
S = Sk

ijdx = EE ⊗ dxj ⊗ ∂k.

(In the above definition and below, summation over repeated indices is understood.)
One has

tr (ω1) = ω, ∀ω ∈ Ω1(M).

We set S̄ = S − (tr S)1 so that tr S̄ = 0 and

S = S̄ + (tr S)1, ∀S ∈ S1
2 (M).

The space S1
2 (M) is then the direct sum of the kernel and the image of tr .

§6. Projective invariance

In order to construct a Q : C(M) → Q(M)λ verifying the projective invariance
condition a) we will compose τ : C(M) → Q(M)λ with a map defined on C(M) and
valued in the space B(S(M)) of bijections from S(M) into itself. As we already said
above, we could give this map directly. For later purpose, we will construct it in
cohomological fashion.
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Definition 5 A map c from Ω1(M) into the set of functions from C(M) into B(S(M))
is a 1-cocycle if

c(ω1 + ω2,∇) = c(ω2,∇) ◦ c(ω1, ω2 · ∇),

for all ω1, ω2 ∈ Ω1(M) and all ∇ ∈ C(M). It is a coboundary if it is of the form

c(ω,∇) = b−1
∇ ◦ bω·∇

for some b : C(M) → B(S(M)).
Lemma 6 Each 1-cocycle is a coboundary.
Proof Choose an element ∇0 ∈ C(M). It defines an affine chart C(M) → S1

2 (M) :
∇ �→ S∇, where S∇ is such that ∇ = S∇ · ∇0. Let c be a cocycle and denote ĉ its
expression in that chart. Replacing in the cocycle condition ω1 by ω, ω2 by tr S∇
and ∇ by S∇ ·∇0, one sees that c is the coboundary of the map b : C(M) → B(S(M))
defined in the chart by

b̂(S) = ĉ(tr S, S̄). (1)

The map τ gives rise to a natural 1-cocycle

cτ (ω,∇) = τ−1
∇ ◦ τω·∇ .

There is thus some b : C(M) → B(S(M)) such that

τω·∇ ◦ b−1
ω·∇ = τ∇ ◦ b−1

∇ , r

meaning that the map ∇ �→ τ∇ ◦ b−1
∇ is projectively invariant. From the proof of the

above Lemma, it can be easily checked that

τ∇ ◦ b−1
∇ = τ

S̄·∇0
.

Under this form, it is obviously invariant under change of ∇ within the same projec-
tive class. Moreover, it is also clear that it is no longer natural. So, we lost naturality
in trying to gain projective invariance.

§7. Restoring naturality

From now on, we will assume that λ = 0.
As explained above, if cτ is the coboudary of b, one can modify τ to get a

projectively invariant map from C(M) into Q(M)λ. To make it both natural and
projectively invariant, it suffices to find a map a : C(M) → B(S(M)) projectively
invariant such that LX(a−1 ◦ b) = 0 for every vector fields X. Indeed, with such a
map, we would have

cτ (ω,∇) = (a−1
∇ ◦ b∇)−1 ◦ (a−1

ω·∇ ◦ bω·∇),

thus replacing the original b by a natural one. We will show that this is possible at
least for the restrictions of the above maps to the polynomials of degree at most 2
and we will explain how this could be generalized.
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Any linear map from S(M) into itself can be represented by an (infinite) matrix.
The element of the ith row and the jth column of that matrix is the component of
the map that acts from Si(M) into Sj(M). If the map is filtered, then the matrix
is upper triangular. In addition, if the map induces the identity on the associated
graded space, then the diagonal elements of the matrix are the identity maps of the
Si(M). (It is convenient to denote them 1.) The restriction of the map to the ith
filter is of course represented by the (i + 1)× (i + 1)-submatrix occupying the upper
left corner.
Lemma 7 For each ω ∈ Ω1(M) and each ∇ ∈ C(M), the restriction of cτ (ω,∇) to
the polynomials of degree at most 2 is represented by the matrix




1 0 0
0 1 −ω∂̄
0 0 1


 .

(For any 1-form α and any polynomial P ∈ S(M), α∂̄P denotes the derivative∑
αi

∂P
∂ξi

of P .)
Proof Straightforward computation.

It is remarkable that this does not depend on ∇. From the Lemma, we also
get immediately the expression of the restriction of the map (1) of which cτ is a
coboundary 


1 0 0
0 1 −(tr S)∂̄
0 0 1




so that, using the notations of the proof of Lemma 6, the restriction of LXb is
represented by the matrix




0 0 0
0 0 (tr LX∇0)∂̄
0 0 0


 . (2)

We seek for a under the form 


1 0 0
0 1 α
0 0 1


 ,

where, for every ∇ ∈ C(M), α(∇) is a linear map from S2(M) to S1(M). The con-
dition LX(a−1 ◦ b) = 0 is then equivalent to the condition (LXα)(∇) = (tr LX∇0)∂̄.

In the following Lemma, we use ∂̄2 to denote the natural action of any S ∈ S1
2 (M)

on S(M), namely
S∂̄2P = Si

jkξi∂̄j ∂̄kP.

Lemma 8 Let ∇ ∈ C(M) be given and denote D∇ = ∂̄i∇i : S(M) → S(M) the
corresponding divergence operator. For each P ∈ S(M) one has

(LXD∇)P = (tr LX∇)∂̄ + (LX∇)∂̄2P. (3)
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Proof Straightforward computation.

Using (3) and

(LX∇)∂̄2P = (LX∇)∂̄2P +
2

m + 1
(tr LX∇)∂̄P,

we get

(tr LX∇)∂̄ =
m + 1
m + 3

LXD∇ − m + 1
m + 3

LX∇∂̄2.

Therefore, (tr LX∇0)∂̄ is the Lie derivative in the direction of X of the map α given
by

α̂(S) =
m + 1
m + 3

D∇0 +
m + 1
m + 3

S̄∂̄2.

As this map is projectively invariant, we conclude in that way that it is possible to
construct a projectively equivariant quantization for the polynomials of degree at
most 2.

§8. Going further

The Lie derivative LXb represented by the matrix (2) is projectively invariant
(it even does not depend on ∇). We have shown above that on the polynomials of
degree 2, it is the Lie derivative of a projectively invariant map α. In other words, we
had a 1-cocycle X �→ LXb of Vect(M) acting on the space of projectively invariant
functions from C(M) into the mapping from S(M) into itself and we have seen that
it is a coboundary. We did that explicitly. But it could be done directly, using
Ref. 3) where the first space of the cohomology of Vect(M) acting on the space of
linear differential operators from Sp(M) into Sq(M) itself is computed. It is shown
in particular that it is of dimension 1 for p = 2 and q = 1 so that the non trivial
cocycle (tr LX∇)∂̄ is a priori cohomologous to a multiple of the non trivial cocycle
LX∇∂̄2.

It is obvious that LXb is projectively invariant but this is also a corollary of the
fact that cτ is natural. In order to extend the result to higher degree, and ultimately,
to get a projectively equivariant quantization, one could try to progressively modify
b in such a way that the lines parallel to the main diagonal (these composed by
the elements at positions (i, i + k), i = 0, 1, · · · for k = 1, 2, · · ·) in the matrix
representing it have natural entries, by induction on k. Assuming that the elements
bi,i+k, i = 0, 1, · · · are natural for k < K, the naturality of cτ implies that the
LXbi,i+K , i = 0, 1, · · · are projectively invariant. In order to make them natural, it
would suffice to show that these cocycles are coboundaries of projectively invariant
maps, as we did above in a very particular case.

The relevant cohomology is that of Vect(M) acting by Lie derivation on the space
of projectively invariant polynomial maps from C(M) valued in the space of linear
differential operators from Sp(M) into Sq(M). Indeed, as easily seen, cτ depends in
a polynomial fashion on the covariant derivation ∇ ∈ C(M). Moreover, the degree of
the elements bij as polynomials in ∇ is easily seen to be controlled by i, j, a feature
that could be useful.
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We denote
Pols( C(M), D(Sp(M),Sq(M)) ),

the space of polynomials of degree s on C(M) valued in the space D(Sp(M),Sq(M))
of differential operators between Sp(M) and Sq(M), and by

Pols( C(M), D(Sp(M),Sq(M)) )pi,

the subspace of its projectively invariant elements.
Conjecture 9 The inclusion of

Pols( C(M), D(Sp(M),Sq(M)) )pi ↪→ Pols( C(M), D(Sp(M),Sq(M)) )

induces an isomorphism in cohomology.
If this is true, then we can conclude and produce a projectively equivariant

quantization. Indeed, the derivatives X �→ LXbi,i+K , = i = 0, 1, . . . are coboundaries
as cochains valued in Pols( C(M), D(Sp(M),Sq(M)) ) and we just need them to be
coboundaries of elements in Pols( C(M), D(Sp(M),Sq(M)) )pi.

Unfortunately, very few is known about the spaces

H(Vect(M), Pols( C(M), D(Sp(M),Sq(M)) ))

and
H(Vect(M), Pols( C(M), D(Sp(M),Sq(M)) )pi).

In fact, as already said, only the first space of the first is known, for s = 0. However,
there is some hope to show the conjecture without computing them explicitly, first in
IRm by filtering by the subalgebra slmm+1 then globalizing by some classical gluing
argument.
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