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ABSTRACT
Recommender systems are used to predict user preferences
for products or services. In order to seek better prediction
techniques, data owners of recommender systems such as
Netflix sometimes make their customers’ reviews available to
the public, which raises serious privacy concerns. With only
a small amount of knowledge about individuals and their
ratings to some items in a recommender system, an adver-
sary may easily identify the users and breach their privacy.
Unfortunately, most of the existing privacy models (e.g., k-
anonymity) cannot be directly applied to recommender sys-
tems.

In this paper, we study the problem of privacy-preserving
publishing of recommendation datasets. We represent rec-
ommendation data as a bipartite graph, and identify several
attacks that can re-identify users and determine their item
ratings. To deal with these attacks, we first give formal
privacy definitions for recommendation data, and then de-
velop a robust and efficient anonymization algorithm, Pre-
dictive Anonymization, to achieve our privacy goals. Our
experimental results show that Predictive Anonymization
can prevent the attacks with very little impact to prediction
accuracy.
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1. INTRODUCTION
To help consumers make intelligent buying decisions,

many websites provide recommender systems [29] that give
users suggestions of items of potential interest to them. The
recommender systems collect users’ input (e.g., reviews, rat-
ings, etc.), compare the collected data to others, and calcu-
late a personalized list of recommended items for the user.
It has been proven to be effective at delivering users more
intelligent and proactive recommendations [32].

To support advanced data mining and prediction algo-
rithms, data owners sometimes publicly release their rec-
ommendation datasets. The released datasets may include
information that is legally protected, or otherwise private
or sensitive data, such as buying records and movie-viewing
histories. For example, in 2006, Netflix, the world’s largest
online DVD rental service, announced a one million-dollar
Netflix Prize for improving their movie recommendation al-
gorithm.1 To aid contestants, Netflix released a Netflix Prize
dataset containing more than 100 million movie ratings, cre-
ated by around 500 thousand Netflix subscribers between
December 1999 and December 2005. As the dataset con-
tains users’ private preferences to the movies, Netflix re-
moved customers’ names to protect their privacy. However,
this naively anonymized data suffers from re-identification
attacks as recently demonstrated [26].

1.1 Motivation Examples
With some additional knowledge about a user’s review

history, an adversary may be able to uniquely identify and
consequently learn additional information about the user.
For example, suppose the adversary knows her co-worker Al-
ice watched Pretty in Pink, a movie from the eighties which
has not been reviewed by many people. By matching with

1The prize was claimed in September 2009.
http://www.netflixprize.com
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Figure 1: An example: (a) The original graph with user names replaced with IDs, (b) The k-anonymized
graph where k = 2. The rectangle boxes represent anonymization groups. Dotted lines represent fake edges
added for the purpose of anonymization. New ratings are computed as the average of existing ratings in the
anonymization group.

the released dataset in Figure 1 (a), the adversary can iden-
tify that ID 0004 corresponds to Alice. Consequently the
adversary learns all movies that Alice has reviewed and her
preferences to these movies.

Online shopping is very popular on the Web today, and
costumers of E-commerce sites such as Amazon.com or E-
bay.com are under the same privacy risk. For example,
an adversary knows his neighbor Bob recently purchased
a not-so-popular cell phone from Amazon. By searching the
phone model, the adversary can learn other items that Bob
has bought through the collaborative filtering features pro-
vided by Amazon (e.g., what do customers ultimately buy
after viewing this item, customers who bought this item also
bought, etc.). Furthermore, if Amazon decides to publish
their recommendation data for research or other purposes,
insufficient anonymization could leave users’ personal infor-
mation vulnerable to attack. Similar issues arise with con-
tent sharing website Digg.com, which recently implemented
collaborative filtering to recommend new articles or web con-
tent based on users’ viewing and rating histories. Knowledge
of a user’s history could reveal sensitive information, e.g. a
user’s sexual orientation or political affiliation.

Such privacy risks have been studied by Narayanan et. al.
who show that very little knowledge about an individual
subscriber is necessary to identify her record if it is present
in the Netflix dataset [26]. For instance, 84% of subscribers
can be uniquely identified if the adversary knows 6 out of
8 movies outside the top 500 most popular movies. The
ease of attack is largely due to the sparsity of the Netflix
Prize data. The intuition is that unpopular movies are rarely
rated by users; thus, by rating unpopular movies the user
distinguishes herself from the crowd. These examples show
that removing user names is not sufficient to protect users
from attack; with certain auxiliary knowledge of users’ re-
views, the adversary is still able to violate their privacy and
obtain sensitive information. Such background knowledge
can be easily obtained from personal blogs, public bulletin
board systems (BBS), and other related recommender sys-
tems (e.g., the IMDB website2).

Releasing anonymized data to the public for research is an
inevitable trend3 and has the potential to provide society
with substantial benefits in many fields, including health-
care, medical sciences, and social sciences. However, there
is a tradeoff between the utility and privacy of anonymized
data. In recommender systems, as the anonymized data
deviates from its original in attempts to preserve privacy,

2The Internet Movie Database, http://www.imdb.com
3Netflix has already announced plans for a second Netflix
Prize with a new dataset.

predictions based on the anonymized data may become less
accurate. Sparsity in recommendation data significantly in-
creases the difficulty of such anonymization tasks in real-
world datasets, a challenge which we aim to address. In this
paper, we take on the task of developing an efficient, utility-
preserving approach for anonymizing large-scale real-world
recommendation datasets.

1.2 Challenges
Although privacy preservation in data publishing has been

studied extensively under several privacy models (e.g., k-
anonymity [33] and l-diversity [22]), most algorithms pro-
posed are only designed for relational datasets. There have
also been several studies on privacy-preserving publishing of
graphs [9, 17, 34, 36]. In this work, we model recommenda-
tion databases as labeled bipartite graphs. The additional
structure and labels make users more susceptible to privacy
attacks and introduce new challenges to anonymization that
have not yet been addressed in the literature.

Most importantly, none of existing anonymization work
has studied the effect that sparsity has on privacy. Real-
world recommendation data is quite sparse; that is, each
individual’s rating profile only contains values for a small
fraction of items in the database [26]. The so-called sparsity
problem has an adverse affect on anonymization: it increases
the difficulty of designing anonymization schemes that pro-
vide acceptable predication accuracy. Unfortunately, the ex-
isting anonymization algorithms are not effective when ap-
plied to sparse recommendation datasets.

In addition, most of the existing privacy methods are built
around the assumption that there are two non-overlapping
value sets: sensitive values, which need to be kept private,
and quasi-identifier values, which can be used by the adver-
sary to identify individuals. In recommender systems, these
two sets are not disjoint; all information in a recommenda-
tion dataset could be sensitive, and can also potentially be
used as quasi-identifiers. This additional challenge requires
new privacy models that are applicable to recommender sys-
tems.

1.3 Contributions
In this paper, we study how to publish sparse recom-

mender data in a privacy- and utility-preserving manner.
Our high-level approach is to group and average similar user
profiles together. However, in a sparse dataset, finding sim-
ilar users is challenging – even users with similar tastes have
a relatively small overlap in items rated. Our main idea is
that before anonymization, we reduce sparsity by padding
the data with predicted values. This pad-then-anonymize



approach is able to uncover and leverage the latent inter-
ests of users that would otherwise be lost without the pre-
processing step. Our solution, Predictive Anonymization,
is a powerful and general approach for publishing all types
of recommender data. We summarize our contributions as
follows.

• We formalize privacy and attack models for recom-
mendation databases. We model the review data as
a labeled bipartite graph, where two disjoint sets of
nodes represent users and items, respectively. We for-
mally define two types of adversary attacks, namely
a structure-based attack and a label-based attack. We
also give definitions of k-anonymity and l-diversity in
the context of recommendation databases.

• We develop Predictive Anonymization, a novel tech-
nique to pad, cluster, and anonymize recommendation
data. We propose several variations of the algorithm
and analyze their privacy guarantees.

• We perform a set of experiments to test the effective-
ness and efficiency of our approach. Our experiments
are carried out on the entire Netflix Prize dataset,
which contains 480,189 users and 17,770 movies. Fi-
nally, we use the results to study the privacy-utility
trade-off when anonymizing recommendation data.

Organization of the paper The rest of paper is orga-
nized as follows. Section 2 provides a brief background of
recommender systems. Our privacy model is defined in Sec-
tion 3. In Section 4 we present our Predictive Anonymiza-
tion method. Complexity and security analysis are given
in Section 5. Extensions to the anonymization algorithm,
based on the idea of l-diversity, are given in Section 6. The
experimental results are described and analyzed in Section 7.
Section 8 presents related work. Section 9 summarizes the
paper.

2. RECOMMENDER SYSTEMS
Recommender systems produce automatic predictions

about the interests of users by collecting preference infor-
mation from many users. A recommender system consists
of: (1) A set of users U = {u1, . . . , um}, (2) A set of items
O = {o1, . . . , on}, (3) An ordered set of possible rating val-
ues S, and (4) A set of user ratings {(u, o, r)} where u ∈ U ,
o ∈ O, and r ∈ S is the rating value assigned by the user u
to an item o (only if u has rated o).

Given a recommender system, the ratings can be repre-
sented as an m × n matrix R. Each cell ri,j is either a real
number r, which corresponds to the triplet (ui, oj , r), or 0
if user ui has not rated item oj . This leads to a natural
representation of the system as a bipartite graph. We refer
to the vertices that represent users, denoted by VU , as user
nodes. Vertices representing the items, denoted by VO, are
called item nodes.

Definition 1. Bipartite Review Graph A recom-
mender system (U,O, R) corresponds to a bipartite review
graph G = (VU ∪ VO, E, L), where each user ui ∈ U corre-
sponds to a node vui

∈ VU , each item oj ∈ O corresponds to
a node voj

∈ VO, and each non-zero entry ri,j in the rating
matrix corresponds to the edge (vui

, voj
) ∈ E. L : E → S is

the label function, which assigns to each edge (vui
, voj

) ∈ E

Figure 2: Models of adversary knowledge

the label ri,j ∈ S, one of the possible rating values. Thus the
rating (ui, oj , r) corresponds to the edge e = (vui

, voj
) ∈ E

being labeled with L(e) = r.
Furthermore, the review graph of user u is the subgraph

Gu = ({vu} ∪ N(vu), Eu, Lu), where N(vu) ⊆ VO is the
neighborhood of vu, i.e. N(vu) = {vo | (vu, vo) ∈ E}, and
Eu ⊆ E and Lu ⊆ L are the corresponding edges and labels
in the subgraph induced by {vu} ∪ N(vu).

An example of a bipartite review graph is shown in Figure
1 (a). In this graph, the review graph of user 0001 consists
of his/her user node, two movie nodes, Star Wars and God-
father, and two labeled edges connecting the user node with
the two movie nodes.

The task of recommender systems is to predict the rating
r ∈ S that a user u ∈ U would assign to an item o ∈ O.
Much research has been done to improve the quality of pre-
diction by combining information from many users, a task
known as collaborative filtering. Most existing approaches to
this task are variations of k-nearest neighbors (e.g., [2], [14])
or singular value decomposition (SVD) (e.g., [15]). We refer
the readers to [5] for a good survey of collaborative filtering
algorithms.

3. PRIVACY AND UTILITY MODELS
In released recommendation data, e.g. Netflix, usernames

are replaced with unique integer IDs, while item names and
ratings are made public for data analysis purposes. In this
paper, we identify two privacy goals in anonymizing recom-
mendation data.
(1) Node identification privacy: re-identification of individ-
uals in a released database is considered a privacy breach.
(2) Link existence privacy: the knowledge of which items are
reviewed by a specific user is considered private information
of that user.

3.1 Attacks Models
By gathering information from external data sources, an

adversary may know a subset of items that a specific user
has reviewed. The adversary can try to uniquely identify
the user by matching this background knowledge with the
released dataset. Based on this, we define the structure-
based attack.

Definition 2. Structure-based Attack Given a re-
leased bipartite review graph G∗ = (VU ∪ VO, E∗, L∗), let
GA

u = ({vu} ∪ NA(vu), EA
u , ∅) be the subgraph representing

the adversary knowledge of user u. If there are k user nodes,
each of which vu′ ∈ VU has GA

u ⊆ G∗
u′ , we say that user u

is identified by the structure-based attack with probability
1/k.

Figure 2 (a) shows an example of the adversary knowledge
for a structure-based attack. The adversary knows that Ben



has watched the movies Godfather and English Patient. By
matching this knowledge to the released data in Figure 1
(a), the attacker uniquely identifies Ben as user 0002.

In addition to the structure-based attack that is based on
knowledge of which items have been reviewed by a user, the
attacker may also know the ratings of these items. Such ad-
ditional adversary knowledge enables the label-based attack.

Definition 3. Label-based Attack Given a released bi-
partite review graph G∗ = (VU ∪ VO, E∗, L∗), let GA

u =
({vu} ∪ NA(vu), EA

u , LA
u ) be the subgraph representing the

adversary knowledge of user u. If there are k nodes, each
of which vu′ ∈ VU has GA

u ⊆ G∗
u′ , we say that user u is

identified by the label-based attack with probability 1/k.

Figure 2 (b) shows an example of adversary knowledge
for the rating-based attack. The adversary knows that Tim
has given a low rating to the movie English Patient. By
matching this knowledge to the released data (Figure 1 (a)),
the adversary uniquely identifies Tim as user 0003, since the
other user who reviewed English Patient gave a high rating.

The label-based attack is a stronger model than the
structure-based attack. Thus by giving privacy guarantees
against the label-based attack, we are protecting against the
structure-based attack as well. In the following, we mainly
focus on the label-based attack.

3.2 Privacy Model
In practice, it is hard to predict the amount of background

knowledge that an adversary has gained. Therefore, we aim
to provide protection against the strongest adversary that
we have considered, the label-based attack. To achieve this
goal, we adapt the definition of k-anonymity [30, 33] to our
model. The conventional k-anonymity model defines quasi-
identifier attributes (publicly available information that may
be used to identify individuals) and sensitive attributes (pri-
vate information known only by the individual). These two
sets of values are assumed to not overlap. In our problem,
the nodes, edges, and labels in the released review graph are
both quasi-identifiers and sensitive values. To address this
problem, we define k-anonymity in recommender systems as
follows:

Definition 4. k-anonymity Given a bipartite review
graph G = (VU ∪ VO, E, L), let G∗ = (VU ∪ VO, E∗, L∗)
be the review graph of the released dataset. We say G∗ sat-
isfies k-anonymity if for every user u ∈ U , there are at least
k−1 other users {ui}i∈I such that G∗

u is isomorphic to G∗
ui

.
We say that {u} ∪ {ui}i∈I is the anonymization group of u.

Intuitively, Definition 4 requires that for each user node
u, there are at least k − 1 other user nodes that have iden-
tical review graphs to u in terms of both structure and la-
bels. Thus the k-anonymity model is effective for defending
against both the structure-based and label-based attacks.

3.3 Utility Measure
Since data owners publish their recommendation data to

seek improved recommendation algorithms, it is desirable
that the released data preserves prediction accuracy as much
as possible. Unfortunately, existing utility measures for rela-
tional databases (e.g., the ratio of nodes in the generalization
taxonomy trees [19, 35], the distance between the distribu-
tions of the original and anonymized datasets [20], and the

estimation error of aggregate query answers [28]) cannot be
applied to recommender systems to achieve this utility goal.

We propose using the root mean squared error (RMSE)
to measure the accuracy of prediction results. More specifi-
cally, given the original recommendation dataset D and its
anonymized version D∗, let RMSED and RMSED∗ be the
average RMSEs of the prediction results on D and D∗, re-
spectively. Intuitively, the closer these two RMSEs are, the
better utility that the anonymization preserves. Our RMSE-
based method allows us to easily measure the prediction ac-
curacy of both original data values and their anonymized
ones, which is a general approach for computing the amount
of information change during anonymization.

4. PREDICTIVE ANONYMIZATION
To protect sensitive information about users in a recom-

mender system, the data owner should anonymize recom-
mendation data before publishing it. We delineate several
goals for an effective anonymization algorithm:

1. Privacy Goal: the anonymized dataset must satisfy
k-anonymity

2. Utility Goal: the published data should preserve pre-
diction accuracy

3. Performance Goal: the algorithm must be efficient
for large datasets

We design a general method, Predictive Anonymization,
that achieves these goals. The key idea in our method is a
predictive padding step that aims to amplify the original data
features by strategically replacing null entries with mean-
ingful values. However, if not done carefully, padding may
destroy original data patterns and cause information loss.

In this section, we outline the general Predictive
Anonymization procedure and provide details of our imple-
mentation. The procedure consists of three major steps:
(1) strategically pad the data to reduce sparsity, (2) con-
struct anonymization groups from the pre-processed data,
and (3) homogenize the ratings within each group.

4.1 Step 1: Predictive Padding
Recommender systems are typically sparse [16, 32, 31];

that is, the percentage of items reviewed by an average user
is small. Sparsity can be detrimental to privacy because
it decreases the amount of auxiliary information needed for
re-identification [26]. Furthermore, it hampers the effective-
ness of anonymization that is based on grouping users with
similar ratings. Due to data sparsity, even users with very
similar preferences may have very small overlap in the items
they have rated. Thus, anonymization on the original data
may not effectively group similar users, which impairs the
accuracy of prediction.

We take a novel approach to anonymization by
padding the data with predicted values before constructing
anonymization groups. An important insight of our tech-
nique is that similar users are not necessarily those who have
rated the same items; rather, it is users who have similar
item preferences. Since the end goal is to preserve predic-
tion accuracy in the anonymized dataset, it is essential to
form anonymization groups of users with similar item prefer-
ences to minimize information loss. We use a method called
Regularized SVD (Singular Value Decomposition) to achieve
that goal.



Figure 3: Our Sample and Cluster Procedure. The
randomly chosen sample points are designated by
stars. The dashed lines identify the bins, and solid
ovals represent the final anonymization groups.

Regularized SVD is a matrix approximation method that
has been effectively used in the domain of natural language
processing, and has more recently been proposed for col-
laborative filtering [12]. Given an input matrix A and an
accuracy parameter r, SVD outputs the matrix A′ of rank
r with the minimum approximation error in terms of least
squared distance from A. Regularization imposes additional
restrictions that prevent overfitting, which enables us to ex-
tract pertinent information from the existing ratings and use
it to inpute the missing values. Note that although we chose
to use Regularized SVD for our implementation, predictive
padding is a general approach that supports any method of
imputation.

At the end of the padding phase, all null ratings have been
replaced with predicted values, effectively eliminating the
sparsity problem. This predictive padding does not affect
the original data, which may still be used to construct the
final released anonymized dataset. Yet, the padded data sig-
nificantly improves the accuracy of clustering that is based
on user similarities, which is explained next.

4.2 Step 2: Forming Anonymization Groups
Our high-level anonymization strategy is to partition users

into anonymization groups of size at least k so that an adver-
sary can not distinguish between the ratings of individuals
within a group. This is accomplished using a clustering algo-
rithm that guarantees a minimum cluster size. At the end of
the procedure, each cluster has at least k users with similar
item preferences.

Since the most accurate clustering algorithms for sparse
recommendation data run in super-linear time, we employ
a sampling technique to improve the efficiency of our al-
gorithm. Our clustering procedure differs from existing
clustering-based anonymization work (e.g., [1]) by comput-
ing and utilizing pair-wise similarity values for clustering
weighted bipartite graphs. Also, our method based on sam-
pling and bin-assigning is scalable to large datasets. Our
clustering procedure (shown in Figure 3) works as follows:

1. Randomly select a set of sample points from the
dataset.

2. Cluster the sample points into equal-sized “bins”.

3. Partition the entire dataset, placing each point into
the nearest bin.

4. Determine anonymization groups by clustering points
within each bin.

Clustering Algorithm The task of clustering data has
been studied in great depth. One classic clustering tech-
nique is known as the k-Means algorithm [21, 23]. To avoid
confusion with the k in k-anonymity, we use the term t-
Means throughout the paper. The t-Means algorithm takes
an input parameter, t, and partitions a set of objects into t
clusters so that the resulting intra-cluster similarity is high.

In practice, however, it has been observed that classic
clustering algorithms frequently produce clusters whose sizes
are of skewed distribution (i.e., some clusters are very large
while some are small or even empty), especially when clus-
tering high-dimensional datasets [4]. In contrast, a balanced
distribution of cluster sizes is desired in Step 2 to ease com-
putation for subsequent steps, as well as in Step 4 to min-
imize information loss during anonymization while guaran-
teeing the k-anonymity privacy requirement.

To achieve this, we use the Bounded t-Means algorithm
from [34], which guarantees that the sizes of all t clusters
are no smaller than a pre-defined lower bound. We first
apply the Bounded t-Means algorithm to the sample points
to find balanced bins for partitioning the dataset. To reduce
the complexity of the entire clustering procedure, we choose
the value t =

√
n. More details of why we pick this value

are explained in Section 5.1.
Finally, we apply the Bounded t-Means algorithm to clus-

ter the users in each bin. For bin Bi we set the parameter
t = |Bi|/k, so that every cluster is guaranteed to contain
at least k users. By grouping similar users into the same
bin, we incur little information loss by first using our sam-
pling procedure, compared to if we had clustered all the
users at once. However, our procedure yields a significant
speed-up in run-time for the clustering step, especially when
performed on large datasets. See Section 5.1 for details.

Similarity Metric To perform Bounded t-Means cluster-
ing, we must first define our user similarity metric. Let ∆ be
the difference between the highest and the lowest possible
ratings in the dataset, i.e. ∆ = max(S) − min(S). Then
given two users u and u′ and their corresponding rating vec-
tors (r1, . . . , rn) and (r′1, . . . , r

′
n), we define the similarity

between u and u′ to be

sim(u, u′) = 1 −
P

1≤i≤n(1 − di)
2

n

where di = |ri − r′i|/∆ for 1 ≤ i ≤ n.
It is straightforward to verify that sim(u, u′) = 0 only

when u and u′ match exactly on every common entry, and
sim(u, u′) = 1 only when u and u′ have opposite minimum
and maximum ratings for each item. This method essen-
tially gives a squared penalty for large differences in item
preferences between two users. We studied the effectiveness
of this metric against other similarity metrics. More details
can be found in Section 7.4.

Cluster Centers An operation used frequently in the
Bounded t-Means algorithm is computing the center of a
cluster. We adapt the idea of virtual centers from [34] to
our problem.

Consider a cluster C of users {u1, . . . , uk}, each ui as-
signed with a rating vector 〈ri,1, . . . , ri,n〉 to the items
o1, . . . , on. Then the virtual center c of cluster C is a vector
of ratings 〈r̂1, . . . , r̂n〉 such that r̂j =

Pk
i=1

ri,j/n, where ri,j
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Figure 4: Real User vs. Virtual Center Points

is the padded rating of ri,j . Note that since we are using
the padded user rating vectors, there are no null ratings.

Our experimental results demonstrate the effectiveness
of using virtual centers as opposed to real users as center
points. Figure 4(a) shows that using real user centers for
clustering the sample points results in bin sizes varying from
50 to 2000, whereas virtual centers yield bin sizes within the
range 200 to 900. Since balanced clusters facilitate easy
data handling and faster running time in later anonymiza-
tion steps, we use virtual centers in our implementation.

4.3 Step 3: Homogenization
To defend against both the structure-based attack and

label-based attack, our final step is to homogenize the users
in each anonymization group so they have identical review
graphs. A straightforward way to do this is to apply the pop-
ularly used generalization and suppression techniques [30,
33]. However, as pointed out by [26], generalization and sup-
pression may completely destroy the utility of the data for
collaborative filtering. We take a different approach, homog-
enization, which consists of adding fake edges and labels so
that all users within an anonymization group are connected
to the same set of item nodes with the same ratings.

Formally, the homogenization of the anonymization group
corresponding to cluster C of users {u1, . . . , uk} has the fol-
lowing operations: union, complete, and average. First, we
construct the union of the review graphs of all users in C.
Let the union result be GC = (C ∪ N(C), EC , LC). Sec-
ond, we add fake edges between users and items to create
G∗

C , a complete bipartite subgraph; i.e., E∗
C = C × N(C).

For instance, in Figure 1 (b), user 0001 and 0002 are in the
same anonymization group. A fake edge is added between
user 0001 and movie English Patient, so that both user 0001
and 0002 review the same set of movies in the review graph.
Third, we re-label all the edges in G∗

C , including the fake
ones, with the appropriate average ratings. When calcu-
lating the average ratings, we can use either the ratings in
the original dataset or the ones in the padded dataset. Fol-
lowing this, we design two homogenization schemes: padded
anonymization and pure anonymization.

Padded anonymization uses the ratings in the padded
dataset. That is, for each anonymization group, we calculate
the homogenized rating of each item as the average padded
rating over all users in the group. Formally,

(∀ui ∈ C, oj ∈ O) L∗
C(ui, oj) = r̂j =

X

ui∈C,ri,j 6=0

ri,j/m,

where m is the number of users in the database, and ri,j is
the padded rating of user i for item j. Note that an average
rating is computed for every item in the dataset, since in
padded anonymization there is an edge between every user
and every item in the anonymized review graph.

Pure anonymization uses the ratings in the original
dataset. That is, for each anonymization group, we refer
back to the unpadded data and calculate the homogenized
rating of each item as the average rating over only users who
rated that item in the original dataset. Formally,

(∀ui ∈ C, oj ∈ N(C)) L∗
C(ui, oj) = r̂j =

X

ui∈C,ri,j 6=0

ri,j/k′,

where k′ is the number of users in C who rated item oj .

Note that in all variants of Predictive Anonymization, all
users in cluster C are assigned the same homogenized rat-
ing r̂j for each item oj . The difference is that in padded
anonymization, the released dataset contains padded values,
which effectively obscure real data and thus provide stronger
privacy protection against homogeneity attacks (more de-
tails are in Section 6). However, the padded-anonymized
data deviates significantly from the original dataset, as it is
strongly influenced by padded values. If the predictions used
in the padding step were not accurate, this may adversely
affect the utility of the released data. Furthermore, much of
the structure of the original data is lost – including sparsity,
one of the most defining characteristics of recommendation
data. This casts doubt on the ability of padded anonymiza-
tion to preserve the integrity of the data. On the other hand,
a released dataset that has undergone pure anonymization
does not contain any padded values, and thus better pre-
serves the integrity and utility of the data, although it may
provide weaker privacy guarantees. A more detailed com-
parison of the two methods is described in Section 7.

5. ANALYSIS
In this section, we analyze the complexity and security of

our predictive anonymization algorithms.

5.1 Complexity Analysis
Let m be the number of users, and let n be the number of

items (m = 480, 189 and n = 17, 700 in the Netflix dataset).
Using recent techniques for optimization of SVD, Step 1
(Section 4.1) can be performed in O(mn) time. Step 2.1
(Section 4.2) takes O(s) time, where s is the size of the sam-
ple. The bounded t-means algorithm in Step 2.2 (Section
4.2) has complexity O(st1n). For Step 2.3 (Section 4.2), us-
ing the center points from the sample to partition the dataset
into bins runs in O(mt1n) time; clustering on each bin takes
time O(|Bi|tn) = O((|Bi| ∗ |Bi|/k)n), where |Bi| is linear in
m/t1. Thus the complexity is O(m2n/(t21k)). There are t1
bins overall, so the total complexity is O(m2n/(t1k)). To re-
duce the quadratic complexity in m, we set t1 =

√
m, which

results in the complexity of this step being O(m3/2n/k).
For Step 3 (Section 4.3), homogenization of each cluster C
takes complexity O(|C|n) = O(kn). There are m/k clus-
ters, thus the total complexity is O(mn). Based on the
above, the complexity of the entire anonymization approach
is O(mn + s

√
mn + m3/2n + m3/2n/k + mn). Since s < m,

the complexity is O(m3/2n).

5.2 Privacy Analysis
In this section, we analyze the guarantee that our Pre-

dictive Anonymization algorithm provides both node re-
identification privacy and link existence privacy defined in
Section 3.1. The following theorem is analogous to the cor-
rectness of the k-anonymity model on relational databases.



Theorem 5.1. Node Re-identification Privacy Let G
be the bipartite review graph for a recommender dataset,
and let G∗ be the corresponding released review graph. If
G∗ is k-anonymous, then a user cannot be re-identified in
G∗ with confidence greater than 1

k
.

As shown in Section 4.3, fake edges are added between
user vertices and item vertices during the homogenization
step, which prevents the adversary from explicitly determin-
ing which edges exist in the original dataset (or furthermore
their labels). Assume that all (user, item) ratings are inde-
pendent, both the existence and the values of the ratings.
Furthermore, assume the adversary has no prior knowledge
about the likelihoods that users have rated items. Then the
confidence with which the adversary can learn the existence
of a link is at most 1/k. This claim is stated concisely as
follows.

Theorem 5.2. Link Existence Privacy Assume that
all ratings are independent. Then an adversary with no
prior knowledge employing a label-based attack cannot pre-
dict the existence of an edge (vu, vo) with confidence greater
than 1

k
.

Suppose an adversary has prior knowledge that the proba-
bility a user has rated item o is p. Obtaining this knowledge
is often feasible in practice by learning aggregate informa-
tion about the database. For example, in the Internet Movie
Database (IMDB), the most frequently rated movie is “The
Shawshank Redemption”, which has been rated by 2.4% of
registered users. Assume that p ≤ 1/k (a reasonable as-
sumption due to the sparsity of recommender datasets). We
claim that even with this additional prior knowledge, the
adversary cannot significantly improve his confidence that a
user has rated item o.

Theorem 5.3. Link Existence Privacy With Prior

Knowledge Assume that all ratings are independent. Then
an adversary with prior knowledge p ≤ 1

k
for item o employ-

ing a label-based attack cannot predict the existence of an
edge (vu, vo) with confidence greater than 1

k
+ p

2−kp
.

Proofs can be found in the Appendix. Note that the great-
est confidence gain occurs when p = 1/k, at which point the
adversary has a 2/k confidence probability. Therefore, as-
suming that p ≤ 1/k, the maximum confidence in predicting
the existence of a link is bounded by 2/k. Furthermore, rec-
ommendation data is typically very sparse, so it is of note
that the adversary confidence tends to 1/k as p → 0.

While it may be difficult to learn the existence of a link,
learning the non-existence of links is easy with a label-based
attack. However, we claim that due to the sparsity of the
data and the practical significance of a link, it is reason-
able to assume that only positive link existence should be
considered sensitive.

6. ACHIEVING L-DIVERSITY
The l-diversity model provides complementary privacy

protection to k-anonymity. In relational data, l-diversity re-
quires that sensitive attributes should have diversity by hav-
ing at least l distinct values in each k-anonymous class [22].
However, the definition and security implications of l-
diversity in recommender databases are unclear. Therefore,
we give the first formal definition of l-diversity for labeled

bipartite review graphs, and an algorithm to realize both
k-anonymity and l-diversity in recommender systems.

To appreciate the need for l-diversity in recommendation
data, we need to first understand a subtle attack against link
privacy. Once the anonymization group of a target victim
is identified via a structure-based or label-based attack, it
becomes easier to target that user for more sophisticated at-
tacks. Although the adversary cannot explicitly identify any
user, more can be deduced from the anonymized data than
what we want to allow. For example, suppose an adversary
only has the background knowledge to perform a structure-
based attack. After identifying the correct anonymization
group, since the k users in that group have identical re-
view profiles, the adversary can easily learn new information
about the ratings that the target user gave to those items.

This problem is further exacerbated by the fact that some
items are rarely reviewed. Exploring rare items to re-identify
users in Netflix data was recently studied [26], and facilitates
the easy identification of a user’s anonymization group, leav-
ing the target susceptible to the above attacks. We refer to
these attacks as homogeneity attacks following [22]. The
threat of these homogeneity attacks motivates the need for
l-diversity.

Definition 5. Homogeneity Attack in Bipartite
Graphs Given a released bipartite review graph G∗ =
(VU ∪VO , E∗, L∗), let GA

u = ({vu}∪NA(vu), EA
u , LA

u ) be the
subgraph representing the adversary knowledge for a user
u. Let {vu′} denote the set of nodes, including vu, each of
which vu′ ∈ VU has GA

u ⊆ G∗
u′ . If all the nodes in {u′} are

identical, then we say the review profile of user u is uniquely
identified by the homogeneity attack.

Unlike relational data, our k-anonymization algorithm
alone provides some degree of privacy even in the face of
a homogeneity attack (See Theorem 5.3). Because we add
fake edges during anonymization to average the k users, a
rating in the anonymized data does not necessarily mean
that the target user has rated that item, or if so, that the
anonymized rating accurately reflects the true rating of that
user. However, as explained above, homogeneity attacks can
be effective in some scenarios.

First, we formally define (b, l)-diversity. We present an
extension to the Predictive Anonymization algorithm that
realizes both k-anonymity and (b, l)-diversity. The b indi-
cates that the adversary’s prior knowledge includes at most
b items that have been reviewed by the user. Intuitively,
(b, l)-diversity requires that every subset of b items must be
included in at least l different anonymization groups.

Definition 6. (b, l)-diversity Given a bipartite review
graph G = (VU∪VO, E, L), let G∗ = (VU∪VO, E∗, L∗) be the
corresponding k-anonymized review graph with anonymiza-

tion groups
·
S

Ci = U . We say G∗ satisfies (b, l)-diversity if
for every set of b items B = {o1, . . . , ob} ⊂ O that have been
rated by a user, there are at least l distinct anonymization
groups Ci such that B ⊂ N(Ci).

To achieve (1, l)-diversity, we modify our algorithm as fol-
lows: After homogenization is performed, we check whether
each item o has been covered by l groups. If it has not, we
randomly select anonymization groups C such that o 6∈ C
and add fake edges between item o and all user nodes in C,
so that every item o is connected to at least l groups. The



labels on these fake edges are computed using the padded
values for the corresponding users. The above method can
be easily generalized to realize (b, l)-diversity, the details of
which are omitted here.

7. EXPERIMENTS
We have done a set of experiments to evaluate both the ef-

fectiveness and efficiency of our k-anonymization algorithm
(without l-diversity). Specifically, we want to evaluate the
impacts of padding and anonymization on the utility and
structure of the anonymized data, and the amount of in-
formation change introduced by the anonymization. In this
section, we describe our experiment design and results.

7.1 Setup
We ran our experiments parallelized on 6 different ma-

chines. Four of the machines are equipped with eight In-
tel(R) Xeon(R) CPU 3.00GHz, 16GB memory and CentOS
5.2 Linux, and the other two machines are equipped with
two Intel(R) Core(TM)2 Duo CPU at 3.00GHz, 3GB mem-
ory and Fedora 8 Linux. We implemented our algorithm in
C++, Java, and Perl.

We use the entire Netflix dataset for our experiment. The
original data contains a total of 480,189 users’ ratings on
17,770 movies. The ratings range from 1 to 5, with 0 mean-
ing a rating does not exist. The Netflix challenge set (a.k.a.
probe set) is used to evaluate the performance of a pre-
diction algorithm. It contains 459,178 users and 1,425,333
user-movie pairs to be predicted. The users are a subset
of the original Netflix dataset. In our experiments, we use
the challenge set to evaluate the utility and information loss
in the anonymized data, by comparing to a fixed prediction
algorithm, namely SVD. (We do not aim to develop a new
collaborative filtering mechanism.) Briefly, the challenge set
is used as follows. For each user-movie pair in the challenge
set, one needs to predict the corresponding ratings based on
the dataset D̂, where D̂ is the Netflix Prize set excluding
the challenged entries.

We use the open-source SVD implementation in the Net-
flix Recommender Framework [25] for padding, and also for
prediction in some experiments, which is described in more
detail later. After running SVD padding, the size of the
(padded) dataset is about 36GB. All data is written into
hard disk in binary format, and accessed using the mmap
system call. Due to the file size limit for mmap and in Linux,
we split the padded dataset into 40 binary files.

To measure the utility of the anonymized dataset, we
modify the conventional error computation by calculating
the RMSE for users before and after their anonymization.
This new error quantification approach for anonymized rec-
ommender data is called target deviation and is defined
as follows: For user u in the challenge set, we (the data
owner) identify u′, the anonymized version of u, among other
anonymized users, and then output the predicted ratings of
u′ as our predictions for u. The advantage of target devi-
ation is the direct and simple quantification of differences
before and after the anonymization by leveraging the back-
ground knowledge of the data owner4.

4The data owner is able to uniquely identify u′ from u by
keeping track of the anonymization process, whereas the
public cannot.

Experiment Series RMSE∗

Original Data 0.951849
Padded Anonymization (k = 5) 0.95970
Padded Anonymization (k = 50) 0.95871

Pure Anonymization (k = 5) 2.36947
Pure Anonymization (k = 50) 2.3771

Table 1: The target deviation RMSEs

Rating Range No. of Ratings No. of Ratings
in Original Dataset After Padding

[0] 98.84%* 0
[1] 0.053% 0.79%
[2] 0.117% 14.12%
[3] 0.334% 46.71%
[4] 0.390% 33.49%
[5] 0.267% 4.89%

Table 2: The rating histograms before and after
SVD padding. *This value is the number of zero
entries.

7.2 Evaluation of the Utility of Anonymized
Data

First, we measure the utility of both pure anonymization
and padded anonymization schemes (details in Section 4.3).
The RMSE results of both experiments under different k
values are shown in Table 1. The high RMSE values (2.36947
and 2.3771) for the pure anonymization is due to both the
limited data size and the sparsity of the anonymized data.
With k = 50, there are only 9,294 anonymized users (i.e.,
groups) in the public released data. Among them, 80% of the
ratings are null if the averaging is done on the original data
(as in pure anonymization), as opposed to no null ratings in
the padded data (used for padded anonymization).

7.3 Data Characterization and Clustering
Evaluation

We characterize the data sparsity and compare the spar-
sity before and after our padding procedure. We simply
count the number of ratings that fall within a range. The
results are shown in Table 2. It is clear that padding sig-
nificantly changes the distribution of ratings in the dataset,
in particular, null ratings. Padding data with SVD tremen-
dously reduces the data sparsity, and provides a rich context
for identifying similar users, as the pair-wise user similarity
computation is more accurate and meaningful.

We characterize the various user similarity metrics that
may be used in the clustering algorithm. We evaluate
four metrics: closeness-0.5, closeness-1.0, weighted similar-
ity, and our weighted-squared similarity measure Closeness-
a is a simple similarity measure on two vectors V1 and V2

by counting two corresponding vector entries similar if their
difference is within threshold a. Weighted similarity assigns
a weight to various ranges to penalize discrepancies. All
similarity values are normalized to within [0,1], and are cat-
egorized into 20 disjoint ranges, namely: [0, 0.05), [0.05, 0.1),
. . . , [0.95, 1.0). Figure 5 (a) shows the distribution of pair-
wise similarities for 5000 users under the four measures be-
fore clustering (after padding), and (b) shows the distribu-
tion of similarities between users within one single cluster.
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Figure 5: Comparison of four distance metrics in
user-user similarity computation. WeightedSq de-
notes our similarity measure used in this work.

Experiments With Similar-User Deviation RMSE
Padded Anonymization (k = 50) 1.00563
Pure Anonymization (k = 50) 1.17525

Table 3: RMSEs for padded and pure anonymization
experiments with k = 50.

The shift in distribution to the left indicates that the clus-
tering algorithm is able to group similar users. However, if
a similarity measure is too relaxed (e.g., closeness-1.0), then
the similarity values are artificially inflated, which does not
provide a good indicator in clustering. In comparison, a
more strict similarity measure such as ours has a more fine-
grained ability to distinguish similarities in user profiles.

7.4 RMSE By Similar-User Deviation
Target deviation is more accurate in reflecting the infor-

mation loss incurred during anonymization. It implicitly
assumes that the anonymized user is the most similar to
herself before the anonymization, as the RMSE is computed
by directly comparing the ratings of a user before and after
anonymization. To eliminate the assumption in target de-
viation, we define a similar-user deviation, which is a more
realistic method for computing the utility of anonymized
data. It is based on user-based collaborative filtering. For a
user u in the challenge set, we find the anonymized user v
(in the anonymized dataset) is most similar to u according
to a similarity measure. We apply v’s ratings as our pre-
diction for u, and then compute the RMSE for the entire
challenge set. Table 3 shows the experimental results com-
puted based on our similar-user deviation definition for both
padded anonymization and pure anonymization experiments
with k = 50.

To evaluate the differences between the two deviation met-
rics, we define self-rank of a user u in the challenge set as the
rank of her anonymized version u′ among other anonymized
users in terms of similarity to u. Specifically, compute and
sort the similarities between u and all the anonymized users;
identify the rank of u′. (Note that the data owner perform-
ing the anonymization is able to uniquely identify u′ from
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Figure 6: Number of users whose self-rank (See Sec-
tion 7.4) is within a certain percentage.

u, whereas the public cannot.)
In target deviation, the self-ranks are assumed to be one

for all users in the challenge set. With similar-user deviation,
most self-ranks values are quite low, indicating that target
deviation is a good approximation in the error computation.
We categorize the self-rank values in Figure 6.

Experiment summary We quantify and compare the
information loss in different experiment setups, in partic-
ular when the original data is released as opposed to the
padded data. Padded anonymization is effective in preserv-
ing the data quality with low prediction errors. Our privacy
analysis also shows that the padded data improves user pri-
vacy as a positive side effect. The value of k does not have a
significant impact on prediction accuracy. This proves that
strategically replacing null entries with padded values has
positive impacts on the utility of anonymized data.

Although preserving prediction accuracy, the padded
anonymization method loses authentic data properties and
the released data cannot support statistical queries. For ex-
ample, one is unable to find out what percentage of users
have rated a movie. This underlines an intrinsic tradeoff
between user privacy and data utility.

In comparison, Pure Anonymization mitigates these issues
to some degree, as it homogenizes on the original dataset
(as opposed to padded data). For example, it can accu-
rately answer queries such as, What is the average rating
on a movie? However, homogenization on the original data
as in the Pure Anonymization method gives much higher
RMSE than Padded Anonymization. Averaging incurs high
information loss and affects data patterns even with a small
k value. This undesirable result also validates earlier pre-
dictions by others [26].

8. RELATED WORK
Our anonymization problem is related to privacy-

preserving publishing of relational databases, anonymization
of network graphs, publishing of unlabeled bipartite graphs,
and privacy-preserving collaborative filtering. We describe
some of the related work in these areas in the following.

Privacy-preserving publishing of relational
databases There has been a great deal of work on privacy-
preserving publishing of relational databases. However,
due to differences between relational and recommendation
datasets (see Section 1), many of the techniques for achiev-
ing anonymity in relational databases are ineffective when
applied to recommender systems.

Byun et. al. introduce a suppression-based algorithm for



anonymizing relational databases [6]. Suppression is ineffec-
tive for recommendation data because of the sparsity prob-
lem, and may therefore result in a high degree of informa-
tion loss. Furthermore, suppression is undesirable because
the anonymization process changes the format of the original
database, and thus may render it invalid for some prediction
algorithms.

Another active research area in privacy-preserving
databases is differential privacy (e.g., [10, 11, 24]). While
very promising for contexts in which aggregate query re-
sults are sufficient, differential privacy is not applicable to
our model, where the desired utility is prediction accuracy
of collaborative filtering on anonymized data.

Anonymization of network graphs Anonymization of
social network graphs has attracted much attention recently
[17, 3, 36]. Since we model recommendation databases as
bipartite graphs, any method proposed for general graphs
could be directly applied. However, due to the specific bi-
partite structure of recommendation data, the techniques
suggested in the graph anonymization literature are not ef-
fective and do not adequately address the additional chal-
lenges posed by recommender systems.

Publishing of unlabeled bipartite graphs Cormode
et. al. studied the problem of privacy-preserving anonymiza-
tion of bipartite graphs [9]. Similar to our work, their pri-
vacy goal is to protect the association between the nodes in
two partitions in the graph (in our case, users and items).
However, their work concerns unlabeled graphs where nodes
may have attribute values; on the other hand, we consider
labeled bipartite graphs, with the possibility of edge labels
being used as part of the adversary knowledge. As they
state, their solution is only “applicable in situations where it
is considered safe to publish the unlabeled graph.” Our pri-
vacy model does not make this assumption. In addition, we
have different target utility goals: they aim to preserve the
accuracy of SQL aggregate queries on the released dataset,
whereas we measure success by prediction accuracy.

An elegant anonymization approach was proposed by Gh-
inita et. al. to handle sparse unlabeled bipartite graphs by
capturing underlying data correlations [13]. However, their
model requires a universal set of sensitive items, and allows
only the other items to be used as quasi-identifiers. In com-
parison, our model allows that any item may be sensitive,
and furthermore, any item may be used to re-identify users.
The existence of edge labels in recommendation datasets
introduces additional challenges, and thus demands differ-
ent privacy and attack models and new anonymization ap-
proaches. Also, their utility measure is based on aggregate
query results, rather than prediction accuracy.

Privacy-preserving collaborative filtering Canny
proposes two schemes for privacy-preserving collaborative
filtering [7, 8] in which a community of users compute a
public aggregate of their ratings without exposing any in-
dividual users’ ratings. Their solutions involve a homomor-
phic encryption mechanism. In a similar fashion, Hsieh et.
al. [18] also take an encryption-based approach. Polat et.
al. consider the same problem under a centralized frame-
work [27], in which users send their data to a central server
that will conduct the collaborative filtering. Instead of en-
cryption, they propose for users to randomize their private
ratings such that the center server cannot derive the truthful
ratings, but will still be able to compute the collaborative
filtering result from the perturbed data.

It is important to note that we do not claim to offer
a new collaborative filtering algorithm, but rather to pro-
vide an anonymization technique that produces anonymized
datasets on which any collaborative filtering algorithm could
be performed. Each of the above solutions apply only to a
particular collaborative filtering method, and thus could not
be used to achieve the desired goals of this paper.

9. CONCLUSIONS AND FUTURE WORK
In this paper, we report our efforts towards anonymiz-

ing Netflix Prize dataset, the difficulties of which are well
publicized due to the Narayanan-Shmatikov attack [26].
Our techniques and results have general applications in
anonymizing other sparse bipartite recommendation data.
We focus on padding as a pre-processing step to reduce data
sparsity during anonymization. Our proposed approach is
called predictive anonymization. We gave SVD as a concrete
padding technique before anonymization, but our methodol-
ogy can be applied with other padding algorithms. We for-
mally defined the model and developed a practical and effi-
cient anonymization algorithm called Predictive Anonymiza-
tion.

Our studies using the Netflix Prize dataset to evaluate
the effectiveness of our algorithm in preserving utility of the
anonymized data. Padded-anonymized data gives excellent
privacy and low prediction errors, however, the data authen-
ticity is low due to the padded values in the released dataset.
In comparison, pure-anonymized data has improved data
authenticity, but yields high prediction errors. Our study
experimentally illustrates the tradeoffs between data util-
ity/authenticity and privacy in anonymization. Padding is a
useful pre-processing step for eliminating data sparsity dur-
ing data anonymization, in particular for finding and group-
ing similar users as we demonstrated.

For future work, we are planning to take a different ap-
proach to improve the utility of the pure anonymization
method. Instead of averaging values in the homogenization
step, we could permute the rating values for each item within
each anonymization group. This may better preserve some
characteristics of the data, but it remains to be seen how
this approach will affect prediction accuracy and other util-
ity measures. We will conduct extensive experiments with
various parameters to investigate the effectiveness of this
approach in achieving our privacy and utility goals.
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APPENDIX
Theorem 5.2

Proof. Suppose an adversary, using a label-based attack,
is able to identify the anonymization group containing user
u. Based on the existence of a link to item o in the released
review graph, the adversary would like to infer whether user
u gave a rating for o in the original dataset. However, the
existence of the link in the anonymized graph only implies
that at least one user in that anonymization group had rated
o. With no additional prior knowledge, the adversary can
only infer that user u had rated o with probability at least
1

k
.

Theorem 5.3

Proof. Suppose an adversary, using a label-based attack,
is able to identify the anonymization group containing user
u. Based on the existence of a link to item o in the released
review graph, the adversary would like to infer whether user
u gave a rating for o in the original dataset. Let Pr(u, o)
denote the probability that user u rated item o in the original
dataset, and let Pr(C, o) be the unconditional probability
that at least one user in anonymization group C rated o.
We wish to calculate Pr((u, o)|(C, o)), the probability that
user u rated item o, given that the edge exists in the released
anonymized review graph.

By Bayes’ Rule, we have that Pr((u, o)|(C, o)) =
Pr((C, o)|(u, o)) ∗ Pr(u, o)/Pr(C, o). First note that
Pr((C, o)|(u, o)) = 1 directly from our anonymization pro-
cedure, and we also have that Pr(u, o) = p. Furthermore,
since we have assumed that each user has rated item o in-
dependently with probability p, we can find a bound on
Pr(C, o) as follows:

Pr(C, o) = 1 − (1 − p)k

= 1 − (1 − kp +

 

k
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Combining these results, we get that

Pr((u, o)|(C, o)) ≤ 1 · p
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