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Towards Quantitative Analysis of Opacity

Jeremy Bryans, Maciej Koutny and Chunyan Mu

School of Computing Science, Newcastle University,
Newcastle upon Tyne, NE1 7RU, U.K.

Abstract. Opacity is a general approach for describing and unifying
security properties expressed as predicates. A predicate is opaque if an
observer of the system is unable to determine the satisfaction of the pred-
icate in a given run of the system. The meaning of opacity is straightfor-
ward when considering the standard (qualitative) operational semantics,
but there are a number of possible interpretations in a context where
quantitative information about system evolutions is available. We pro-
pose four variants of quantitative opacity defined for probabilistic la-
belled transition systems, with each variant capturing a different aspect
of quantifying the opacity of a predicate. Moreover, we present results
showing how these four properties can be checked or approximated for
specific classes of probabilistic labelled transition systems, observation
functions, and system predicates.

keywords: Probabilistic opacity, Probabilistic labelled transition sys-
tems, Observations

1 Introduction

Opacity has been shown to be a promising technique for describing and unifying
security properties [6]. For a given observer of a system (or adversary), a predi-
cate capturing a system property is opaque if the observer will never be able to
determine the truth of that predicate.

The definition of [6] is based on a qualitative operational semantics. In it,
observation functions are used in order to give fine-grained control over the
capabilities of an observer. Through such observations, an observer can establish
certain properties of the system. Informally, an observer cannot establish the
predicate (and hence the predicate is opaque) if for any run of the system in
which the predicate is true, there is a run for which the predicate is false, and the
two runs are observationally equivalent under the defined observation function.
However, in the case where the probability of the first run is significantly higher
than the probability of the second, the observer (although not able to be certain)
may have good reason to believe that the predicate (although opaque) is none
the less true. This paper presents the results of our initial investigations into
this probabilistic case.

The contribution of this paper is to show how the work referenced above
extends to the more general case when the information given about the system
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is qualitative. We therefore consider the general theory of probabilistic opacity in
the context of probabilistic labelled transition systems which allows us to reason
about the quantitative properties of systems. Based on the probabilistic model
of opacity, we introduce four alternative definitions of probabilistic opacity, and
investigate the efficiency with which they can be verified or approximated. We
relate the definitions to the existing work on qualitative opacity. The obtained
results can be used in a quantified information flow analysis of a system.

This paper is organised as follows. In Section 2 we recall some definitions
from the literature in particular relating to probability distributions, and in
Section 3 we give the definition of probabilistic labelled transition systems and
prove a property which is then needed to estimate the efficiency of our approx-
imations of probabilistic opacity. Section 4 contains our main contribution, i.e.,
the definitions of four variants of opacity together with an investigation of their
basic properties. Section 5 contains a brief comparison with other work, and in
Section 6 we present our concluding remarks.

2 Preliminaries

We use the standard mathematical notation. In particular, ǫ denotes the empty
sequence, |λ| denotes the length of a finite sequence λ, and λk denotes the con-
catenation of k copies of λ.

A probability distribution on a countable set X is a function f : X → [0, 1]
such that

∑
x∈X f(x) = 1. To measure difference between probability distri-

butions on the same set, we will use Jensen-Shannon divergence [11] which is
related to information-theoretical functionals, such as Kullback-Leibler distance
(the relative entropy). It therefore shares some of their properties as well as their
intuitive interpretation, and measures the difference in information bits. Unlike
the Kullback-Leibler distance, it is symmetric, always well-defined and bounded
by 1.

Let P = {px}x∈X and P ′ = {p′x}x∈X be two probability distributions on a
countable set X with associated weights w and w′, respectively (0 ≤ w,w′ ≤ 1
and w+w′ = 1). Then the weighted Jensen-Shannon divergence between P and
P ′ is given by:

DJS (w·P,w
′·P ′) = H

(
{w · px + w′ · p′x}x∈X

)
−w·H

(
{px}x∈X

)
−w′·H

(
{p′x}x∈X

)

whereH({qx}x∈X) = −
∑

x∈X qx log2 qx denotes Shannon entropy [16] (note that
if qx = 0 then qx log2 qx is taken to be 0 which is justified by limq→0+ q log2 q = 0).

If, in the above formula, we denote by dx the ‘contribution’ made by a single
element x ∈ X , then:

DJS(w · P,w′ · P ′) =
∑

x∈X

dx ,

where:

dx = −(w ·px+w
′ ·p′x) · log2(w ·px+w

′ ·p′x)+w ·px · log2 px+w
′ ·p′x · log2 p

′
x . (1)
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An individual contribution is minimal (dx = 0) if px = p′x, i.e., when P and P ′

do not diverge at x. It is maximal if one of the probabilities is 0, which gives
dx = −w · px · log2 w or dx = −w′ · p′x · log2 w

′, and so:

dx ≤ −w · px · log2 w − w′ · p′x · log2 w
′ ≤ c · (px + p′x) ,

where c > 0 is a constant depending on w and w′. As a consequence, if we take
Y ⊂ X then the contribution dY of the elements of Y to the overall divergence
satisfies:

dY ≤ c · (P (Y ) + P ′(Y )) . (2)

3 Probabilistic Labelled Transition Systems

In order to consider probabilistic behaviour and quantitative analysis of opacity,
we use probabilistic labelled transition systems which adapts the well-known
model introduced in [10].

A labelled transition system is a tuple:

LTS = (S,L,∆, s0) ,

where S is a countable set of states, L is a countable set of labels, ∆ ⊆ S×L×S
is the transition set, and s0 ∈ S is the initial state. We consider deterministic
labelled transition systems,1 and so for any transitions (s, l, s′), (s, l, s′′) ∈ ∆, it
is the case that s′ = s′′. For every state s ∈ S, we will denote by ∆s the set of
all transitions outgoing from s, i.e., ∆s = {(s′, l, s′′) ∈ ∆ | s = s′}.

A run of LTS is a finite sequence of labels λ = l1 . . . ln (n ≥ 0)2 such that
there are states s1, . . . , sn satisfying (si−1, li, si), for i = 1, . . . , n. We will denote
the state sn by sλ and call it reachable. Note that sλ is well-defined since LTS
is deterministic. Moreover, sǫ = s0, where ǫ denotes the empty run. The set of
all runs of LTS will be denoted by runs(LTS ).

Probabilistic labelled transition systems are labelled transition systems with
probability distributions attached to all the states.

Definition 1. A probabilistic labelled transition system is a tuple:

PLTS = (S,L,∆, s0, µ) ,

such that LTS = (S,L,∆, s0) is a labelled transition system and µ : S∪∆→ [0, 1]
is a mapping satisfying the following:

(i) for every s ∈ S, µ restricted to {s} ∪∆s is a probability distribution:

µ(s) +
∑

d∈∆s

µ(d) = 1 ,

and inf{µ(s) | s ∈ S ∧ µ(s) 6= 0} > 0.

1 Nondeterminism is introduced in the next section, through the notion of an obser-
vation function.

2 If n = 0 then λ = ǫ.
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(ii) there is an integer k ≥ 1 such that there is no sequence of transitions in ∆:

(s, l1, s2), (s2, l2, s3), . . . , (sm, lm, sm+1)

such that µ(s2) = µ(s3) = . . . = µ(sm) = 0 and m > k.

The set of runs of PLTS, denoted runs(PLTS ), is the same as that of the un-
derlying labelled transition system. Other notations are also inherited.

Definition 1(i) ensures that for every state s, the probability µ(s) of remaining
in that state together with the probabilities associated with all transitions out
of that state form a probability distribution. We also require that non-empty
probabilities µ(s) cannot be arbitrarily small (similarly as in [10] it was assumed
that non-empty probabilities µ(s, l, s′) cannot be arbitrarily small). Note that
this is always the case if there are finitely many states.

We extend the mapping µ to each run λ = l1 . . . lk of PLTS , in the following
way. Let s1, . . . , sk be states such that (si−1, li, si) ∈ ∆, for i = 1, . . . , k. Then:

µ(λ) = µ(sk) ·
k∏

i=1

µ(si−1, li, si) .

Note that µ(λ) is well-defined as the underlying labelled transition system is
deterministic. We also denote:

µ̃(λ) =
k∏

i=1

µ(si−1, li, si)

(i.e., µ(λ) = µ(sk) · µ̃(λ)) and, for every set of runs Λ ⊆ runs(PLTS ):

µ(Λ) =
∑

λ∈Λ

µ(λ) and µ̃(Λ) =
∑

λ∈Λ

µ̃(λ) .

Proposition 1. µ(runs(PLTS )) ≤ 1.

Proof. Follows from the fact that, for every i ≥ 0:

µ({λ ∈ runs(PLTS ) | |λ| ≤ i}) + µ̃({λ ∈ runs(PLTS ) | |λ| = i+ 1}) = 1 .

The above can be shown by a straightforward induction on i, using Defini-
tion 1(i). ⊓⊔

The formalisation of a probabilistic labelled transition system is tailored to
reflect our understanding of observation of a computing system. In a nutshell,
we treat

∏k
i=1 µ(si−1, li, si) in the standard way as the probability of executing

a sequence of transitions making up the run λ. In addition to that, the factor
µ(sk) gives the probability that the observation is concluded after the state
sk has been reached. For instance, it may be the probability that the process
terminates after reaching sk, similarly as it was done in [2]. It therefore follows
that Definition 1(ii) captures our intuition that the system cannot be indefinitely
‘unobserved’ (i.e., probability of a conclusive observation cannot be zero forever).
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Example 1. Consider the following probabilistic labelled transition system:

(1− p).s0 (1− q).s1

p.a

q.b

where 0 ≤ p, q ≤ 1 and the notation x.y indicates that x = µ(y). According
to Definition 1(ii), we must have p · q 6= 1. We can then show that µ defines a
probability distribution, as follows:

µ(runs(PLTS )) =

∞∑

k=0

µ((ab)k) +

∞∑

k=0

µ(a(ba)k)

=

∞∑

k=0

(p · q)k · (1− p) +

∞∑

k=0

p · (q · p)k · (1− q)

= (1− p) ·

∞∑

k=0

(p · q)k + p · (1− q) ·

∞∑

k=0

(q · p)k

= (1− p) ·
1

1− p · q
+ p · (1− q) ·

1

1− p · q

= 1 .

Note that if in the above example we assumed that p = q = 1, and hence
µ(s0) = µ(s1) = 0, then we would have µ(runs(PLTS )) = 0, and so µ would
not be a probability distribution on the runs of PLTS . To avoid this, we intro-
duced condition (ii) in Definition 1 which rules out this case. Note also that the
condition captured through Definition 1(ii) is easy to verify by checking that in
the graph of PLTS there are no cycles passing only through reachable states s
satisfying µ(s) = 0.

Since the set of runs is in general infinite, we will be approximating various
quantities defined on the basis of the set of runs, by looking only at runs up to
certain length. We therefore define, for every m ≥ 0:

runsm(PLTS ) = {λ ∈ runs(PLTS ) | |λ| ≤ m} .

The next result is crucial for the soundness of such approximations.

Proposition 2. There is an integer κ ≥ 1 and a real number 0 ≤ δ < 1 such
that, for every i ≥ 0:

µ(runsκ·i(PLTS )) ≥ 1− δi .

Proof. In what follows, for every state s ∈ S, we denote by PLTS s the prob-
abilistic labelled transition system obtained from PLTS by setting the initial
state to s.
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In the first part of the proof, we assume that PLTS satisfies the following
two properties:

(i) µ(s) > 0, for all s ∈ S \ {s0}.
(ii) If µ(s0) = 0 then there is no transition (s, l, s′) ∈ ∆ such that s′ = s0.

We also define:

δ =

{
sup{1− µ(s) | s ∈ S} if µ(s0) > 0
sup{1− µ(s) | s ∈ S \ {s0}} otherwise .

Note that 0 ≤ δ < 1 is well-defined by Definition 1(i). Proceeding by induction
on i ≥ 0, will now show that, for every i ≥ 0 and every s ∈ S:

µ(runs i(PLTS s)) ≥

{
1− δi if s = s0 and µ(s0) = 0
1− δi+1 otherwise .

(3)

In the base case:

µ(runs0(PLTS s)) = µ(ǫ) = µ(s) ≥

{
1− 1 = 1− δ0 if s = s0 and µ(s0) = 0
1− δ = 1− δ1 otherwise .

In the induction step, we assume that the thesis holds for i, and proceed as
follows:

µ(runsi+1(PLTS s)) = µ(s) +
∑

(s,lj ,sj)∈∆s

µ(s, lj , sj) · µ(runsi(PLTS sj ))

= 1− µ(∆s) +
∑

(s,lj,sj)∈∆s

µ(s, lj , sj) · µ(runs i(PLTS sj )) .

By the induction hypothesis, we obtain the following (note that sj 6= s0, for
every (s, lj , sj) ∈ ∆s):

µ(runsi+1(PLTS s)) ≥ 1−µ(∆s) +
∑

(s,lj ,sj)∈∆s

µ(s, lj, sj) ·(1−δ
i+1) = 1−δi+1 ·µ(∆s) .

Now, if s = s0 and µ(s0) = 0, then µ(∆s) = 1 and we get

µ(runsi+1(PLTS s)) ≥ 1− δi+1 ;

otherwise, δ ≥ µ(∆s) and we obtain:

µ(runsi+1(PLTS s)) ≥ 1− δi+2 .

Hence (3) holds.

In the second part of the proof, we transform PLTS into a probabilistic
labelled transition system PLTS ′ satisfying (i) and (ii) above, in the following
way:
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– For every s ∈ S, we set µ′(s) = µ(s).

– We create a fresh initial state s′0 with µ′(s′0) = µ(s0) and, for every sequence
of transitions of PLTS of the form:

(s0, l1, s1), (s1, l2, s2) . . . (sk−1, lk, sk)

such that 0 = µ(s1) = . . . = µ(sk−1) 6= µ(sk), we introduce a transition
(s′0, l1l2 . . . lk, sk) and set:

µ′(s′0, l1l2 . . . lk, sk) = µ(s0, l1, s1) · µ(s1, l2, s2) · . . . · µ(sk−1, lk, sk) .

– For every sequence of transitions of PLTS of the form:

(s1, l1, s2), (s2, l2, s3) . . . (sk, lk, sk+1)

such that µ(s1) 6= 0 = µ(s2) = . . . = µ(sk) 6= µ(sk+1), we introduce a
transition (s1, l1l2 . . . lk, sk+1) and set:

µ′(s1, l1l2 . . . lk, sk+1) = µ(s1, l1, s2) · µ(s2, l2, s3) · . . . · µ(sk, lk, sk+1) .

Note that by Definition 1(ii), there is the largest k as above, denoted by kmax .
We then delete all the states s ∈ S with µ(s) = 0 together with the adjacent
arcs. Thanks to Definition 1(ii), PLTS ′ is a well-defined probabilistic labelled
transition system whose labels are finite sequences of labels from PLTS ,

runs(PLTS ′) = {λ ∈ runs(PLTS ) | µ(λ) > 0} ,

and µ(λ) = µ′(λ), for all λ ∈ runs(PLTS ′). Moreover, we can apply (3) to PLTS ′

and conclude that, for every i ≥:

µ(runsi(PLTS
′)) ≥ 1− δi .

Thus, by:

runsi(PLTS
′) ⊆ {λ ∈ runs(kmax+1)·i(PLTS ) | µ(λ) > 0} ,

we have that µ(runsκ·i(PLTS )) ≥ 1− δi for κ = kmax + 1. ⊓⊔

In other words, we know how far to ‘unfold’ the transition system to approx-
imate with arbitrary accuracy ‘almost all’ the runs (in probabilistic terms).

As a corollary of our previous results, µ always defines a probability distri-
bution for the set of runs of the probabilistic labelled transition system.

Theorem 1. µ(runs(PLTS )) = 1.

Proof. Follows directly from Propositions 1 and 2. ⊓⊔
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4 Probabilistic Opacity

In this section, we introduce concepts relating to the definitions of probabilistic
opacity, and prove our main results.

In what follows, PLTS = (S,L,∆, S0, µ) is a probabilistic labelled transition
system, and Obs is a set of elements called observables. To model the different
capabilities for observing the system modelled by PLTS , we use an observation
function:

obs : runs(PLTS ) → Obs∗ .

We will, in particular, use the static observation function obs for which there is
a map obs ′ : L→ Obs ∪ {ǫ} such that, for every run λ = l1 . . . ln of PLTS :

obs(λ) = obs ′(l1)obs
′(l2) . . . obs

′(ln) .

Consider now an observation function obs . We are interested in whether an
observer (or attacker) can establish a property φ (a predicate over system runs)
for a run of PLTS having only access to the result of the observation function. We
will identify φ with its characteristic set, i.e., the set of all those runs for which
it holds. Now, given an observed execution of the system, we would want to find
out whether the fact that the underlying run belongs to φ can be deduced by
the observer. We will, in particular, be interested in the final opacity predicates,
φZ , where Z ⊆ S, defined as the set of all the runs λ of PLTS satisfying sλ ∈ Z.
Intuitively, this means that we are interested in finding out whether an observed
run of the system represented by PLTS ended in one of secret (or sensitive)
states belonging to Z. (Note that we are not interested in establishing whether
the underlying run does not belong to φ; to do this, we would consider the
property runs(PLTS ) \ φ.)

We will now introduce a series of notions relating to the idea of opacity,
recalling first its standard non-probabilistic (or qualitative) definition. In what
follows, obs is an observation function for PLTS , φ is a subset of runs(PLTS ),
and φ = runs(PLTS ) \ φ. Intuitively, φ captures a property which we want to
declare opaque.

4.1 Qualitative (non-probabilistic) opacity of [6]

When no probabilistic information is supplied, or if one is simply not interested
in probabilistic aspects of the system, we say that φ is opaque w.r.t. obs if, for
every run λ ∈ φ, there is another run λ′ /∈ φ such that obs(λ) = obs(λ′), i.e., λ′

covers λ. In other words, all runs in φ are covered by runs in φ:

obs(φ) ⊆ obs(φ) . (4)

Different variants of qualitative opacity have been discussed in, for example, [6].
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4.2 Quantitative (probabilistic) opacity

What it means to deduce (or satisfactorily cover) a property expressed as φ in
the probabilistic case may mean different things, depending on what is relevant
or important from the point of view of a real application. In particular, one may
consider different ways of quantifying the degree to which runs contained in φ
are covered by the runs in φ (c.f. the inclusion (4)), leading to different variants
of quantitative opacity.

π-opacity. A straightforward approach to defining probabilistic opacity might
be to require that the likelihood of ever witnessing an uncovered run of φ is
negligible. That is, we say that φ is π-opaque w.r.t. obs if the probability of
having a run in φ which is not covered by a run in φ is zero:

µ(φ \ obs−1(obs(φ))) = 0 . (5)

Example 2. Consider the following probabilistic labelled transition system:

1
2 .s0 1

2 .s1
1
5 .s2

1.s3

1
4 .s4

1
2 .s5

1
3 .b

1
2 .c

4
5 .a

1
6 .c 3

4 .a
1
2 .b

where obs(a) = a, obs(b) = ǫ and obs(c) = ǫ, as well as the property φ = φ{s2,s3}.
We then have:

φ = {bc, bca} and φ = {ǫ, b, c, ca, cab, cabb, . . .} .

In this case, we have obs(runs(PLTS )) = obs(φ) = obs(φ) = {ǫ, a} and so,
obviously, π-opacity is satisfied:

µ(φ \ obs−1(obs(φ))) = µ(∅) = 0.

Checking π-opacity may be straightforward, as shown by the next result and
its proof.

Theorem 2. For a finite PLTS and a static observation function obs, it is
decidable whether φZ (where Z ⊂ S) is π-opaque.

Proof. We first observe that in this case µ(φZ \obs
−1(obs(φZ))) = 0 is equivalent

to obs(L) ⊆ obs(L′), where L is the regular language obtained from PLTS by
changing each label l to obs(l) and setting as the final states all those s ∈ Z for
which µ(s) > 0; and L′ is the regular language obtained from PLTS by changing
each label l to obs(l) and setting S \Z as the final states. Since the inclusion of
two regular languages is decidable, the result follows. ⊓⊔
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πξ-opacity. One could argue that the probabilistic opacity captured by (5) is
too demanding, and one might require only that the probability of witnessing
an uncovered run of φ is low. To capture this, we say that φ is πξ-opaque w.r.t.
obs if 0 ≤ ξ ≤ 1 is the probability of having a run in φ which is not covered:

µ(φ \ obs−1(obs(φ))) = ξ . (6)

One would then declare φ opaque if ξ was sufficiently small number. Note that
π0-opacity coincides with π-opacity.

In practice, knowing the value of ξ with high accuracy (see Theorem 3)
would allow a designer or verifier to compare it with a given required opacity
level, ξreq . The system represented by PLTS would then satisfy the opacity w.r.t.
φ if ξ ≤ ξreq . Similar comment applies to other opacity notions introduced in
the rest of this paper.

Example 3. Consider the following probabilistic labelled transition system:

5
8 .s0 3

4 .s1
5
6 .s2

1.s3

7
8 .s4

1
2 .s5

1
4 .b

1
4 .c

1
6 .a

1
8 .c 1

8 .a
1
2 .b

where obs(a) = a, obs(b) = ǫ and obs(c) = c, as well as the property φ =
φ{s2,s3,s5}. We then have:

φ = {bc, bca, ca, cab, cabb, . . .} and φ = {ǫ, b, c} .

Hence:
φ \ obs−1(obs(φ)) = {bca, ca, cab, cabb, . . .} .

and we obtain:

µ(φ \ obs−1(obs(φ))) =
1

4
·
1

4
·
1

6
+

1

8
·
1

8
·
1

2
+

1

8
·
1

8
·
1

2
·
1

2
+ . . .

=
5

192
≈ 0.026.

The property φ{s2,s3,s5} is therefore π0.026-opaque.

Although determining the πξ-opacity may in general be difficult, in several
important cases it is possible to approximate the value of ξ with a desired accu-
racy.

The next result requires that the observation function is such that one does
not have to wait for ‘too long’ in order to find a run in φ covering λ ∈ φ. More
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precisely, we say that obs is N -efficient for PLTS and φ, if N is a positive integer
such that, for every run λ ∈ φ which is covered by runs in φ, there exists a run
λ′ ∈ φ covering λ and satisfying |λ′| ≤ N · |λ|. Note that being efficient is not too
demanding a requirement; in particular, each static observation function obs is
N -efficient provided that PLTS is finite and φ = φZ for some Z ⊂ S (N can then
be taken to be the number of states of PLTS ). Below, φk = φ ∩ runsk(PLTS )
and φk = φ ∩ runsk(PLTS ), for every k ≥ 0.

Theorem 3. If obs is N -efficient for PLTS and φ, then there is an integer
ζ ≥ 1 and a real number 0 ≤ η < 1 such that, for every i ≥ 0:

|µ(φ \ obs−1(obs(φ)))− µ(φζ·i \ obs
−1(obs(φζ·i)))| ≤ ηi .

Proof. By Proposition 2, there exists a positive integer κ and a real number
0 ≤ δ < 1 such that µ(runsκ·i(PLTS )) ≥ 1− δi, for every i ≥ 0. In other words,
for every i ≥ 0:

µ(runs(PLTS ) \ runsκ·i(PLTS )) ≤ δi . (7)

Let us now take any i ≥ 0, and consider:

x = µ(φ \ obs−1(obs(φ)))

y = µ(φN ·κ·i \ obs
−1(obs(φN ·κ·i))) .

We then observe that, by obs being N -efficient, we have:

y = µ(φκ·i \ obs
−1(obs(φN ·κ·i))) + µ((φN ·κ·i \ φκ·i) \ obs

−1(obs(φN ·κ·i)))

= µ(φκ·i \ obs
−1(obs(φ))) + µ((φN ·κ·i \ φκ·i) \ obs

−1(obs(φN ·κ·i))) .

We therefore obtain:

x− y = µ((φ \ φκ·i) \ obs
−1(obs(φ)))− µ((φN ·κ·i \ φκ·i) \ obs

−1(obs(φN ·κ·i)) .

Now, since

(φ \ φκ·i) \ obs
−1(obs(φ)) ⊆ runs(PLTS ) \ runsκ·i(PLTS )

(φN ·κ·i \ φκ·i) \ obs
−1(obs(φN ·κ·i) ⊆ runs(PLTS ) \ runsκ·i(PLTS )

and x, y ≥ 0, we obtain from (7) that |x− y| ≤ δi.
Hence the result holds with ζ = N · κ and ξ = δ. ⊓⊔

In other words, finite unfoldings of a probabilistic labelled transition sys-
tem can approximate the probability of the uncovered runs in φ with a desired
precision, providing a natural way of estimating πξ-opacity.
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πγ-opacity. Let us consider the set φcov of runs of φ which cover at least one
run in φ, i.e., φcov = φ ∩ obs−1(obs(φ)). The first two notions of quantitative
opacity retained the flavour of the original (qualitative) opacity. In particular, so
far we have accepted that a set of runs φ with non-zero occurrence probability,
µ(φ) > 0, can be covered by a set of runs with occurrence probability much
lower than that of φ, µ(φcov ) ≪ µ(φ), or indeed with a negligible chance of
ever occurring, µ(φcov ) = 0. That is, we were basically demanding very low
occurrence probability of totally uncovered runs in φ. In our next definition, we
remedy this by intuitively requiring that each run in φ is covered by γ runs,
where γ > 0 would normally be expected to be (much) greater than 1. More
precisely, for every γ ≥ 0, we say that φ is πγ-opaque if:

µ(φ) > 0 and
µ(φcov )

µ(φ)
= γ , (8)

or, slightly more generally (as we do not have to assume that µ(φ) > 0), if the
following holds:

µ(φcov )− γ · µ(φ) = 0 . (9)

In combination with πξ-opacity for small ξ, πγ-opacity for large γ would clearly
increase our confidence in declaring φ opaque.

Example 4. Consider the following probabilistic labelled transition system:

1
2 .s0 1

2 .s1
1
2 .s2

1.s3

3
4 .s4

1
2 .s5

1
4 .b

1
2 .c

1
2 .a

1
4 .c 1

4 .a
1
2 .b

where obs(a) = ǫ, obs(b) = b and obs(c) = c, as well as the property φ = φ{s3,s5}.
We then have:

φ = {bca, ca, cab, cabb, . . .} and φcov = {bc, c} .

and so we obtain:

µ(φ) =
1

4
·
1

2
·
1

2
+

1

4
·
1

4
·
1

2
+

1

4
·
1

4
·
1

2
·
1

2
+

1

4
·
1

4
·
1

2
·
1

2
+ . . . =

1

8

µ(φcov ) =
1

4
·
1

2
·
1

2
+

1

4
·
3

4
=

1

4

which leads to:
µ(φcov )

µ(φ)
= 2.

The property φ{s3,s5} is therefore π2-opaque.
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As before, we will now investigate how one could approximate πγ-opacity.
Below we assume that obs is inversely M -efficient for PLTS and φ, by which
we mean that M is a positive integer such that, for every run λ ∈ φcov , there
exists a run λ′ ∈ φ covered by λ and satisfying |λ′| ≤ M · |λ|. Again, being
inversely efficient is not too demanding a requirement; in particular, each static
observation function obs is inversely M -efficient provided that PLTS is finite
and φ = φZ for some Z ⊂ S (M can then be taken to be the number of states
of PLTS ).

Theorem 4. Let φ be πγ-opaque. If obs is inversely M -efficient for PLTS and
φ, then there is an integer ρ ≥ 1 and a real number 0 ≤ ν < 1 such that, for
every i ≥ 0:

|(µ(φcov )− γ · µ(φ)) − (µ(φcovρ·i )− γ · µ(φρ·i))| ≤ (1 + γ) · νi .

Proof. By Proposition 2, there exists a positive integer κ and a real number
0 ≤ δ < 1 such that, for every i ≥ 0:

µ(runs(PLTS ) \ runsκ·i(PLTS )) ≤ δi . (10)

Let us now take any i ≥ 0, and consider:

x = µ(φcov )− µ(φcovM·κ·i)

y = µ(φ) − µ(φM·κ·i) .

We then observe that, by obs being inversely M -efficient, we have:

x = µ(φ ∩ obs−1(obs(φ)))

− (µ(φκ·i ∩ obs−1(obs(φM·κ·i))) + µ((φM·κ·i \ φκ·i) ∩ obs−1(obs(φM·κ·i))))

= µ(φ ∩ obs−1(obs(φ)))

− (µ(φκ·i ∩ obs−1(obs(φ))) + µ((φM·κ·i \ φκ·i) ∩ obs−1(obs(φM·κ·i))))

= µ((φ \ φκ·i) ∩ obs−1(obs(φ))) − µ((φM·κ·i \ φκ·i) ∩ obs−1(obs(φM·κ·i)))

y = µ(φ \ φM·κ·i) ≤ µ(φ \ φκ·i) .

We therefore obtain from (10) that |x| ≤ δi and y ≤ δi. Consequently, we obtain
that

|x− γ · y| ≤ (γ + 1) · δi .

Hence the result holds with ρ =M · κ and ν = δ. ⊓⊔

In practice, one could approximate γ using the inequalities |x| ≤ δi and
y ≤ δi from the above proof.
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π̃ψ-opacity. The above notions of defining probabilistic opacity may still find
it difficult to distinguish between subtle differences in which obs acts upon φ
and φ. A possible way to assess such differences could be, e.g., to look at the
probability distributions induced by obs(φ) and obs(φcov ) and conclude that
they are rather similar.

In our last attempt at a notion of quantitative opacity, we define π̃ψ-opacity
which uses Jensen-Shannon divergence as a way to measure the differences in
which obs acts upon φ and φcov . Below we assume that µ(φ) > 0 and µ(φcov ) > 0.

Since runs(PLTS ) with µ is a probabilistic space, obs(runs(PLTS )) can also
be turned into a probabilistic space by defining

π(o) = µ(obs−1(o) ∩ runs(PLTS )) ,

for every o ∈ O = obs(runs(PLTS )). Moreover, any subset Λ of runs(PLTS )
with µ(Λ) ≥ 0 gives rise to a probability distribution ΠΛ on O. More precisely,
for every o ∈ O:

ΠΛ(o) =
µ(obs−1(o) ∩ Λ)

µ(Λ)
.

Then, for a property φ, we can define Πφ and Πφcov and say that φ is π̃ψ-opaque
if 0 ≤ ψ ≤ 1 is their weighted Jensen-Shannon divergence:

DJS (w ·Πφ, w
′ ·Πφcov ) = ψ ,

where w = µ(φ)
µ(φ)+µ(φcov ) and w′ = µ(φcov )

µ(φ)+µ(φcov ) .

Example 5. Consider the following probabilistic labelled transition system:

1
6 .s0 1

4 .s1
1
3 .s2

1.s3

1
4 .s4

1
2 .s5

1
2 .b

3
4 .c

2
3 .a

1
3 .c 3

4 .a
1
2 .b

where obs(a) = a, obs(b) = ǫ and obs(c) = c, as well as the property φ = φ{s2,s3}.
We then have:

φ = {bc, bca} and φcov = {c, ca, cab, cabb, cabbb, . . .} .

and so:

µ(φ) =
1

2
·
3

4
·
1

3
+

1

2
·
3

4
·
2

3
· 1 =

3

8

µ(φcov ) =
1

3
·
1

4
+

1

3
·
3

4
·
1

2
+

1

3
·
3

4
·
1

2
·
1

2
+ · · · =

1

3
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In this case, O = {ǫ, c, ca}, and we obtain:

Πφ =

{
ǫ 7→ 0, c 7→

1
8
3
8

, ca 7→
1
4
3
8

}
=

{
ǫ 7→ 0, c 7→

1

3
, ca 7→

2

3

}

Πφcov =

{
ǫ 7→ 0, c 7→

1
12
1
3

, ca 7→
1
4
1
3

}
=

{
ǫ 7→ 0, c 7→

1

4
, ca 7→

3

4

}

We calculate the weights of Πφ and Πφcov as:

wΠφ
=

3
8

3
8 + 1

3

=
9

17
and wΠφcov =

1
3

3
8 + 1

3

=
8

17

and finally calculate:

DJS (wΠφ
·Πφ, wΠφcov ·Πφcov ) = H

(
0 ,

9

17
·
1

3
+

8

17
·
1

4
,

9

17
·
2

3
+

8

17
·
3

4

)

−

(
9

17
· H

(
0,

1

3
,
2

3

)
+

8

17
· H

(
0,

1

4
,
3

4

))

≈ 0.006 .

The property φ{s2,s3} is therefore π̃0.006-opaque.

Similarly as in the previous cases, it may be possible to approximate the
value of ψ in π̃ψ-opacity with a desired accuracy, using finite unfoldings of the
probabilistic transition system. Below we assume that obs is K,L-bounded for
PLTS and φ, by which we mean that K and L are positive integers such that:

– for every observation o ∈ O and λ ∈ φ∪φcov , if obs(λ) = o then |λ| ≤ K · |o|.
– for every run λ ∈ φ ∪ φcov , |obs(λ)| ≤ L · |λ|.

Note that each static observation function obs is K, 1-bounded provided that
PLTS is finite and obs does not induce ǫ-loops in the part of PLTS which is
covered by the runs in φ ∪ φcov (K can then be taken to be the length of the
longest ǫ-path in such a part of PLTS plus 1).

In the next result, we attempt to approximate the value of:

DJS

(
w ·

{
µ(obs−1(o) ∩ φ)

µ(φ)

}

o∈O

, w′ ·

{
µ(obs−1(o) ∩ φcov)

µ(φcov )

}

o∈O

)
.

To simplify the discussion, we assume that we are given the values of w, w′,
µ(φ) and µ(φcov ) (note that we can calculate them with a desired accuracy
using Proposition 2).

Below Ok denotes {o ∈ O | |o| ≤ k}, for every k ≥ 0. Moreover, for every
o ∈ O and m ≥ 0:

dmo = −(w · p+ w′ · p′) · log2(w · p+ w′ · p′) + w · p · log2 p+ w′ · p′ · log2 p
′ ,
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where:

p =
µ(obs−1(o) ∩ φm)

µ(φ)
and p′ =

µ(obs−1(o) ∩ φcovm )

µ(φcov )
.

Theorem 5. Let obs be K,L-bounded for PLTS and φ, and κ and 0 ≤ δ < 1
be as in Proposition 2. Then there is α > 0 such that, for every i ≥ 0:

0 ≤ DJS (w ·Πφ, w
′ ·Πφcov )−

∑

o∈Oκ·L·i

dκ·L·K·i
o ≤ α · δi . (11)

Proof. Let do be the individual contribution of each o ∈ O to DJS (w · Πφ, w
′ ·

Πφcov ) as defined in (1). By the first part of K,L-boundedness, we obtain do =
dκ·L·K·i
o , for every o ∈ Oκ·L·i. This and (2) yields:

0 ≤ DJS(w ·Πφ, w
′ ·Πφcov )−

∑

o∈Oκ·L·i

dκ·L·K·i
o

=
∑

o∈O\Oκ·L·i

do ≤ c · (Πφ(O \ Oκ·L·i) +Πφcov (O \ Oκ·L·i)) .

Now, by the second part of K,L-boundedness, we have that:

obs−1(O \ Oκ·L·i) ⊆ runsκ·i(PLTS ) .

Hence, by Proposition 2, we obtain

Πφ(O \ Oκ·L·i) ≤
δi

µ(φ)
and Πφcov (O \ Oκ·L·i) ≤

δi

µ(φcov )
.

As a result, (11) holds with α = c ·
(

1
µ(φ) +

1
µ(φcov )

)
. ⊓⊔

5 Related work

Opacity and related concepts were first studied and related to information flow
properties in a qualitative context in [6, 7, 5]. In the probabilistic context, opacity
has been studied in [9, 2]. [9] studied the notion of opacity in the probabilistic
computational world. There opacity was based on the probabilities of observer’s
pre-beliefs on the truth of the predicate. The work in [2] presents a quantitative
information leakage analysis concerning probabilistic opacity, and there is a clear
relationship between that work and the work in this paper. Indeed, although the
setting in [2] is based on finite probabilistic automata, our probabilistic labelled
transition system could be viewed as a generalisation of the fully probabilistic
automaton (FPA) considered there. Note, however, that the automata in [2] are
always finite and the notion of opacity is symmetric, while our system model
allows infinite state spaces and we consider asymmetric opacity. Our work can
also be related to quantitative analysis for secure information flow, including
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[1, 3, 4, 8, 12–15]. Most of these works relate to the property of non-interference
from the security literature, and they focus on flow measurement.

Opacity has already provided a promising technique for describing and uni-
fying more general security properties. This paper has extended the notion of
opacity to the model of probabilistic labelled transition systems. The results
presented allow one to investigate and represent concepts from the literature on
secure flow analysis.

6 Conclusions and Further Work

We have presented a formal model for the description of probabilistic opacity
based on probabilistic labelled transition systems. We extend and generalise the
notion of qualitative opacity and show how it applies to probabilistic and quanti-
tative systems. We have investigated four alternative definitions of probabilistic
opacity and given initial efficiency and approximation results. We believe that
these results are promising and merit further consideration.

There is a clear link between the work presented here and the work on quan-
tified information flow within the security community. Information flow security
aims to ensure that information propagates throughout the execution environ-
ment without security violations such that only controlled secure information
is deducible from observations of the system. The information we require to be
confidential can be described as a predicate which we require to be opaque. By
studying opacity in a quantified context we can relax the strict qualitative secu-
rity policies, and tolerate a low probability that a quantitatively ‘small’ amount
of secure information is leaked. We therefore believe our general model and re-
sults will be useful for quantified flow analysis in the security community.

More generally, we believe our work can provide a framework for the mea-
surement of system security, by quantifying the opacity of key predicates with
respect to the system. In future work, we plan to develop and extend the initial
results presented here, as well as investigate and establish links between our work
and the other work in the security community on the measurement of quantified
information flow.
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