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Abstract. We present new candidates for quantum-resistant public-key cryptosystems based on the con-
jectured difficulty of finding isogenies between supersingular elliptic curves. The main technical idea in our

scheme is that we transmit the images of torsion bases under the isogeny in order to allow the parties to
construct a shared commutative square despite the noncommutativity of the endomorphism ring. Our work
is motivated by the recent development of a subexponential-time quantum algorithm for constructing iso-
genies between ordinary elliptic curves. In the supersingular case, by contrast, the fastest known quantum
attack remains exponential, since the noncommutativity of the endomorphism ring means that the approach

used in the ordinary case does not apply. We give a precise formulation of the necessary computational
assumptions along with a discussion of their validity, and prove the security of our protocols under these
assumptions. In addition, we present implementation results showing that our protocols are multiple orders
of magnitude faster than previous isogeny-based cryptosystems over ordinary curves.

This paper is an extended version of [19]. We add a new zero-knowledge identification scheme, and
detailed security proofs for the protocols. We also present a new, asymptotically faster, algorithm for key
generation, a thorough study of its optimization, and new experimental data.
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1. Introduction

The Diffie-Hellman scheme is a fundamental protocol for public-key exchange between two parties. Its
original definition over finite fields is based on the hardness of computing the map g, ga, gb 7→ gab for g ∈ F∗

p,
while its elliptic curve analogue depends on the difficulty of computing P, aP, bP 7→ abP for points P on
an elliptic curve. Recently, Stolbunov [43] proposed a Diffie-Hellman type system based on the difficulty of
computing isogenies between ordinary elliptic curves, with the stated aim of obtaining quantum-resistant
cryptographic protocols. The fastest known (classical) probabilistic algorithm for solving this problem is
the algorithm of Galbraith and Stolbunov [17], based on the algorithm of Galbraith, Hess, and Smart [16].
This algorithm is exponential, with a worst-case running time of O( 4

√
q). However, on a quantum computer,

recent work of Childs et al. [10] has shown that the private keys in Stolbunov’s system can be recovered
in subexponential time. Moreover, even if we only consider classical attacks in assessing security levels,
Stolbunov’s scheme requires 229 seconds (even with precomputation) to perform a single key exchange
operation at the 128-bit security level on a desktop PC [43, Table 1].

In this work we present isogeny-based key-exchange, encryption and identification schemes that address
both the performance and security drawbacks of Stolbunov’s system. Our primitive achieves performance
on the order of 60 milliseconds (cf. Section 7) at the 128-bit security level (as measured against the fastest
known quantum attacks) using desktop PCs, making our schemes far faster than Stolbunov’s. In terms of
security, our schemes are not vulnerable to the algorithm of Childs et al. [10], nor to any algorithm of this
type, since they are not based on a group action. The fastest known attacks against our schemes, even on
quantum computers, require fully exponential time. Our schemes involve new computational assumptions
upon which their quantum resistance is based, and like all new computational assumptions, further study
and the passage of time is needed for validation. Nevertheless, we believe our proposal represents a promising
candidate for quantum-resistant isogeny-based public-key cryptography.

Our proposal, presented in Section 3, uses isogenies between supersingular elliptic curves rather than
ordinary elliptic curves. The main technical difficulty is that, in the supersingular case, the endomorphism
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ring is noncommutative, whereas Diffie-Hellman type protocols require commutativity. We show how to
overcome this obstacle by providing the outputs of the isogeny on certain points as auxiliary input to the
protocols. To the best of our knowledge, nothing similar to this idea has ever previously appeared in the
literature. Providing this auxiliary input does not seem to make the problem of finding isogenies any easier,
and the added difficulty arising from noncommutativity actually makes our protocols stronger; see Section 5.1
for a full discussion. The multiple orders of magnitude of performance gains in our scheme arise from the
fact that supersingular isogeny graphs are much faster to navigate than ordinary graphs, as described in
Section 4. In Sections 5 and 6 we provide formal statements of the hardness assumptions and security
reductions for our system. Finally, in Section 7 we present implementation results confirming the correctness
and performance of our protocol.

2. Isogenies

Let E1 and E2 be elliptic curves defined over a finite field Fq. An isogeny φ : E1 → E2 defined over Fq

is a non-constant rational map defined over Fq which is also a group homomorphism from E1(Fq) to E2(Fq)
[37, III.4]. The degree of an isogeny is its degree as a rational map. For separable isogenies, to have degree
ℓ means to have kernel of size ℓ. Every isogeny of degree greater than 1 can be factored into a composition
of isogenies of prime degree over F̄q [11].

An endomorphism of an elliptic curve E defined over Fq is an isogeny E → E defined over Fqm for somem.
The set of endomorphisms of E together with the zero map forms a ring under the operations of pointwise
addition and composition; this ring is called the endomorphism ring of E and denoted End(E). The ring
End(E) is isomorphic either to an order in a quaternion algebra or to an order in an imaginary quadratic
field [37, V.3.1]; in the first case we say E is supersingular and in the second case we say E is ordinary.

Two elliptic curves E1 and E2 defined over Fq are said to be isogenous over Fq if there exists an isogeny
φ : E1 → E2 defined over Fq. A theorem of Tate states that two curves E1 and E2 are isogenous over Fq if
and only if #E1(Fq) = #E2(Fq) [45, §3]. Since every isogeny has a dual isogeny [37, III.6.1], the property
of being isogenous over Fq is an equivalence relation on the finite set of F̄q-isomorphism classes of elliptic
curves defined over Fq. Accordingly, we define an isogeny class to be an equivalence class of elliptic curves,
taken up to F̄q-isomorphism, under this equivalence relation.

The ℓ-torsion group of E, denoted E[ℓ], is the set of all points P ∈ E(F̄q) such that ℓP is the identity.
For ℓ such that p ∤ ℓ, we have E[ℓ] ∼= Z/ℓZ⊕ Z/ℓZ.

Curves in the same isogeny class are either all supersingular or all ordinary. We assume for the remainder
of this paper that we are in the supersingular case.

Supersingular curves are all defined over Fp2 , and for every prime ℓ ∤ p, there exist ℓ+1 isogenies (counting
multiplicities) of degree ℓ originating from any given such supersingular curve. Given an elliptic curve E
and a finite subgroup Φ of E, there is up to isomorphism a unique isogeny E → E′ having kernel Φ [37,
III.4.12]. Hence we can identify an isogeny by specifying its kernel, and conversely given a kernel subgroup the
corresponding isogeny can be computed using Vélu’s formulas [48]. Typically, this correspondence is of little
use, since the kernel, or any representation thereof, is usually as unwieldy as the isogeny itself. However,
in the special case of kernels generated by Fp2 -rational points of smooth order, specifying a generator of
the kernel allows for compact representation and efficient computation of the corresponding isogeny, as we
demonstrate below.

2.1. Ramanujan graphs. Let G = (V, E) be a finite graph on h vertices V with undirected edges E .
Suppose G is a regular graph of degree k, i.e., exactly k edges meet at each vertex. Given a labeling of the
vertices V = {v1, . . . , vh}, the adjacency matrix of G is the symmetric h × h matrix A whose ij-th entry
Ai,j = 1 if an edge exists between vi and vj and 0 otherwise.

It is convenient to identify functions on V with vectors in Rh via this labeling, and therefore also think
of A as a self-adjoint operator on L2(V). All of the eigenvalues of A satisfy the bound |λ| ≤ k. Constant
vectors are eigenfunctions of A with eigenvalue k, which for obvious reasons is called the trivial eigenvalue
λtriv. A family of such graphs G with h → ∞ is said to be a sequence of expander graphs if all other
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eigenvalues of their adjacency matrices are bounded away from λtriv = k by a fixed amount.1 In particular,
no other eigenvalue is equal to k; this implies the graph is connected. A Ramanujan graph is a special
type of expander which has |λ| ≤ 2

√
k − 1 for any nontrivial eigenvalue which is not equal to −k (this last

possibility happens if and only if the graph is bipartite). The Ramanujan property was first defined in [26].
It characterizes the optimal separation between the two largest eigenvalues of the graph adjacency matrix,
and implies the expansion property.

A fundamental use of expanders is to prove the rapid mixing of the random walk on V along the edges
E . The following rapid mixing result is standard but we present it below for completeness. For the proof,
see [20] or [12, 25, 35].

Proposition 2.1. Let G be a regular graph of degree k on h vertices. Suppose that the eigenvalue λ of any
nonconstant eigenvector satisfies the bound |λ| ≤ c for some c < k. Let S be any subset of the vertices of G,

and x be any vertex in G. Then a random walk of length at least log 2h/|S|1/2

log k/c starting from x will land in S

with probability at least |S|
2h = |S|

2|G| .

2.2. Isogeny graphs. An isogeny graph is a graph whose nodes consist of all elliptic curves in Fq belonging
to a fixed isogeny class, up to F̄q-isomorphism (so that two elliptic curves which are isomorphic over F̄q

represent the same node in the graph). In practice, the nodes are represented using j-invariants, which are
invariant up to isomorphism. Isogeny graphs for supersingular elliptic curves were first considered by Mestre
[27], and were shown by Pizer [31, 32] to have the Ramanujan property.

Every supersingular elliptic curve in characteristic p is defined over either Fp or Fp2 [37], so it suffices to fix
Fq = Fp2 as the field of definition for this discussion. Thus, in contrast to ordinary curves, there are a finite
number of isomorphism classes of supersingular curves in any given isogeny class; this number is in fact g+1,
where g is the genus of the modular curve X0(p), which is roughly p/12. It turns out that all supersingular
curves defined over Fp2 belong to the same isogeny class [27]. For a fixed prime value of ℓ 6= p, we define
the vertices of the supersingular isogeny graph G to consist of these g isomorphism classes of curves, with
edges given by isomorphism classes of degree-ℓ isogenies, defined as follows: two isogenies φ1, φ2 : Ei → Ej

are isomorphic if there exists an automorphism α ∈ Aut(Ej) (i.e., an invertible endomorphism) such that
φ2 = αφ1. Pizer [31, 32] has shown that G is a connected k = ℓ + 1-regular multigraph satisfying the

Ramanujan bound of |λ| ≤ 2
√
ℓ = 2

√
k − 1 for the nontrivial eigenvalues of its adjacency matrix.

3. Public-key cryptosystems based on supersingular curves

In this section we present a key-exchange protocol and a public-key cryptosystem analogous to those of
[34, 43], and a zero-knowledge identification scheme, all using supersingular elliptic curves.

Our protocols require supersingular curves of smooth order. Such curves are normally unsuitable for
cryptography since discrete logarithms on them are easy. However, since the discrete logarithm problem is
unimportant in our setting, this issue does not affect us. In the supersingular setting, it is easy to construct
curves of smooth order, and using a smooth order curve will give a large number of isogenies that are
fast to compute. Specifically, we fix Fq = Fp2 as the field of definition, where p is a prime of the form
ℓeAA ℓeBB · f ± 1. Here ℓA and ℓB are small primes, and f is a cofactor such that p is prime. Then we construct
a supersingular curve E defined over Fq of cardinality (ℓeAA ℓeBB f)2. By construction, E[ℓeAA ] is Fq-rational

and contains ℓeA−1
A (ℓA + 1) cyclic subgroups of order ℓeAA , each defining a different isogeny; the analogous

statement holds for E[ℓeBB ].

1Expansion is usually phrased in terms of the number of neighbors of subsets of G, but the spectral condition here is
equivalent for k-regular graphs and also more useful for our purposes.
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Our protocols revolve around the following commutative diagram

(1)

E E/〈P 〉

E/〈Q〉 E/〈P,Q〉

φ

ψ

where φ and ψ are random walks in the graphs of isogenies of degrees ℓA and ℓB respectively. Their security
is based on the difficulty of finding a path connecting two given vertices in a graph of supersingular isogenies.
We refer to Section 4 for low-level algorithmic details, and Section 5 for a full discussion of security.

3.1. Zero-knowledge proof of identity. We begin with the protocol which is easiest to understand. Peggy
knows a cyclic degree ℓeAA isogeny φ : E → E/〈S〉, with the curves E and E/〈S〉 publicly known, and wants
to prove Vic that she knows a generator for 〈S〉, without revealing it.

Our protocol is loosely inspired by the zero-knowledge proof of membership for Graph Isomorphism [18].
In that protocol, Peggy shows that she knows a graph isomorphism G ≃ G′ by first publishing a random H
such that the following diagram commutates

(2)

G G′

H

φ ψ

and then revealing only one among φ and ψ. Intuitively, this protocol is perfectly zero-knowledge because
the information that Peggy reveals (i.e., a random permutation of G or G′) could be easily computed by
anyone without her help.

In an analogous way, our protocol consists in publishing the vertices of diagram (1), and then revealing
some, but not all, of its arrows. Unlike the case of Graph Isomorphism, in our protocol Peggy needs to use
her secret knowledge to create the diagram, thus we cannot achieve a perfect zero-knowledge. Nevertheless,
we will show in Section 6 that, under suitable assumptions, our protocol is computationally zero-knowledge.

We show below the diagram used in our protocol. 〈S〉 is the kernel of the secret isogeny φ of degree ℓeAA ,
while 〈R〉 is a cyclic group of order ℓeBB .

(3)

E E/〈S〉

E/〈R〉 E/〈S,R〉

φ

ψ ψ′

φ′

Peggy can compute the diagram as follows:

• She uses Vélu’s formulas to compute the isogeny ψ : E → E/〈R〉;
• She computes R′ = φ(R) and the isogeny ψ′ : E/〈S〉 → E/〈S,R〉;
• She computes S′ = ψ(S) and the isogeny φ′ : E/〈R〉 → E/〈S,R〉.

Now, the natural question is: which arrows of the diagram can Peggy reveal without compromising her
secret φ? It is not hard to see, and we will show it in Theorem 6.3, that the knowledge of (ψ, φ′) or (ψ′, φ′)
allows anyone to compute the kernel of φ. However, we will argue that there is no obvious way to compute
φ from the sole knowledge of φ′. Revealing one of ψ or ψ′ is no problem either, however revealing (ψ,ψ′)
altogether is more subtle. Indeed, revealing the points R and φ(R) uncovers some information on the action
of φ on E[ℓeBB ]: it is to be expected that after a few iterations Peggy will reveal a basis (P,Q) of E[ℓeBB ] and
the respective images φ(P ), φ(Q), thus allowing anyone to evaluate φ on the whole E[ℓeBB ]. Nevertheless, we
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conjecture that this leakage does not compromise Peggy’s secret either, and we make these data part of the
public parameters.2

Finally, we present our protocol.

Secret parameters: A supersingular curve E defined over Fq and a primitive ℓeAA -torsion point S
defining an isogeny φ : E → E/〈S〉.

Public parameters: The curves E and E/〈S〉. Generators P,Q of E[ℓeBB ] and their images φ(P ), φ(Q).
Identification: Repeat m times:

(1) Peggy chooses a random primitive ℓeBB -torsion point R and computes diagram (3).
(2) Peggy sends the curves E1 = E/〈R〉 and E2 = E/〈S,R〉 to Vic.
(3) Vic selects a random bit b and sends it to Peggy.
(4) If b = 0, Peggy reveals the points R and φ(R′). Vic accepts if they have order ℓeBb and generate

the kernels of isogenies E → E1 and E/〈S〉 → E2, respectively.
(5) If b = 1, Peggy reveals the point ψ(S). Vic accepts if it has order ℓeAA and generates the kernel

of an isogeny E1 → E2.

3.2. Key exchange. The key exchange protocol is a variation à la Diffie-Hellman over diagram (1). The
idea is to let Alice choose φ, while Bob chooses ψ. Although similar in spirit to the protocol based on the
action of the class group on ordinary elliptic curves of [43], a main technical difference is that, since ideal
classes no longer commute (or indeed even multiply together) in the supersingular case, extra information
must be communicated as part of the protocol in order to ensure that both parties arrive at the same common
value.

We fix as public parameters a supersingular curve E0 defined over Fp2 , and bases {PA, QA} and {PB , QB}
which generate E0[ℓ

eA
A ] and E0[ℓ

eB
B ] respectively, so that 〈PA, QA〉 = E0[ℓ

eA
A ] and 〈PB , QB〉 = E0[ℓ

eB
B ]. Alice

chooses two random elements mA, nA ∈R Z/ℓeAA Z, not both divisible by ℓA, and computes an isogeny
φA : E0 → EA with kernel KA := 〈[mA]PA + [nA]QA〉. Alice also computes the image {φA(PB), φA(QB)} ⊂
EA of the basis {PB , QB} for E0[ℓ

eB
B ] under her secret isogeny φA, and sends these points to Bob together

with EA. Similarly, Bob selects random elementsmB , nB ∈R Z/ℓeBB Z and computes an isogeny φB : E0 → EB

having kernel KB := 〈[mB ]PB + [nB ]QB〉, along with the points {φB(PA), φB(QA)}. Upon receipt of EB

and φB(PA), φB(QA) ∈ EB from Bob, Alice computes an isogeny φ′A : EB → EAB having kernel equal to
〈[mA]φB(PA) + [nA]φB(QA)〉; Bob proceeds mutatis mutandis. Alice and Bob can then use the common
j-invariant of

EAB = φ′B(φA(E0)) = φ′A(φB(E0)) = E0/〈[mA]PA+[nA]QA,[mB ]PB+[nB ]QB〉

to form a secret shared key.
The full protocol is given in Figure 1. We denote by A and B the identifiers of Alice and Bob, and use

sID to denote the unique session identifier.

3.3. Public-key encryption. The key-exchange protocol of Section 3.2 can easily be adapted to yield a
public-key cryptosystem, in much the same way that Elgamal encryption follows from Diffie-Hellman. We
briefly give the details here. All notation is the same as above. Stolbunov [43] uses a similar construction,
upon which ours is based.

Setup: Choose p = ℓeAA ℓeBB · f ± 1, E0, {PA, QA}, {PB , QB} as above. Let H = {Hk : k ∈ K} be a
hash function family indexed by a finite set K, where each Hk is a function from Fp2 to the message
space {0, 1}w.

Key generation: Choose two random elements mA, nA ∈R Z/ℓeAA Z, not both divisible by ℓA. Com-
pute EA, φA(PB), φA(QB) as above, and choose a random element k ∈R K. The public key is the
tuple (EA, φA(PB), φA(QB), k) and the private key is (mA, nA, k).

2An alternative solution, that intuitively leaks less information on φ, would be to publish random generators of 〈R〉 and
〈φ(R)〉. However, it is not clear that this idea would considerably improve the security of the protocol, and we will not pursue
it further for coherence with the protocols that will follow.
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A B
Input: A,B, sID Input: B
mA, nA ∈R Z/ℓeAA Z mB , nB ∈R Z/ℓeBB Z
φA := E0/〈[mA]PA + [nA]QA〉 φB := E0/〈[mB ]PB + [nB ]QB〉

A,sID
φA(PB),
φA(QB),

EA−−−−−→
B,sID

φB(PA),
φB(QA),

EB←−−−−−
EAB := EBA :=
EB/〈[mA]φB(PA)+[nA]φB(QA)〉 EA/〈[mB ]φA(PB)+[nB ]φA(QB)〉

Output: j(EAB), sID Output: j(EBA), sID

E0

EA

ke
r(φA

)=
〈[m

A
]PA

+[nA
]QA

〉

φA
(PB

),φA
(QB

)

EB

ker(φ
B )=〈[m

B ]P
B +[n

B ]Q
B 〉

φ
B (P

A ),φ
B (Q

A )

EAB

ker
(φ

′
A
)=〈[mA

]φB
(PA

)+[nA
]φB

(QA
)〉

EBA

ker(φ′
B )=〈[m

B ]φ
A (P

B )+[n
B ]φ

A (Q
B )〉

‖

Figure 1. Key-exchange protocol using isogenies on supersingular curves.

Encryption: Given a public key (EA, φA(PB), φA(QB), k) and a message m ∈ {0, 1}w, choose two
random elements mB , nB ∈R Z/ℓeBB Z, not both divisible by ℓB , and compute

h = Hk(j(EAB)),

c = h⊕m.
The ciphertext is (EB , φB(PA), φB(QA), c).

Decryption: Given a ciphertext (EB , φB(PA), φB(QA), c) and a private key (mA, nA, k), compute the
j-invariant j(EAB) and set

h = Hk(j(EAB)),

m = h⊕ c.
The plaintext is m.

4. Algorithmic aspects

We now give specific algorithms to implement the aforementioned steps efficiently.

4.1. Parameter generation. For any fixed choice of ℓeAA and ℓeBB , one can easily test random values of f
(of any desired cryptographic size) until a value is found for which p = ℓeAA ℓeBB · f − 1 or p = ℓeAA ℓeBB · f +1 is
prime. The prime number theorem in arithmetic progressions (specifically, the effective version of Lagarias
and Odlyzko [24]) provides a sufficient lower bound for the density of such primes.

Once the prime p = ℓeAA ℓeBB · f ± 1 is known, Bröker [6] has shown that it is easy to find a supersingular
curve E over Fp2 having cardinality (p ∓ 1)2 = (ℓeAA ℓeBB · f)2. Starting from E, one can select a random
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Algorithm 1 Three-point ladder to compute P + [t]Q.

Input: t, P,Q;
1: Set A = 0, B = Q,C = P ;
2: Compute Q− P ;
3: for i decreasing from |t| to 1 do

4: Let ti be the i-th bit of t;
5: if ti = 0 then

6: A = 2A, B = dadd(A,B,Q), C = dadd(A,C, P );
7: else

8: A = dadd(A,B,Q), B = 2B, C = dadd(B,C,Q− P );
9: end if

10: end for

Output: C = P + [t]Q.

supersingular curve E0 over Fp2 by means of random walks on the isogeny graph (cf. Proposition 2.1);
alternatively, one can simply take E0 = E. In either case, E0 has group structure (Z/(p∓ 1)Z)2. To find a
basis for E0[ℓ

eA
A ], choose a random point P ∈R E0(Fp2) and multiply it by (ℓeBB · f)2 to obtain a point P ′ of

order dividing ℓeAA . With high probability, P ′ will have order exactly ℓeAA ; one can of course check this by
multiplying P ′ by powers of ℓA. If the check succeeds, then set PA = P ′; otherwise try again with another
P . A second point QA of order ℓeAA can be obtained in the same way. To check whether QA is independent of
PA, simply compute the Weil pairing e(PA, QA) in E[ℓeAA ] and check that the result has order ℓeAA ; as before,
this happens with high probability, and if not, just choose another point QA. Note that the choice of basis
has no effect on the security of the scheme, since one can convert from one basis to another using extended
discrete logarithms, which are easy to compute in E0[ℓ

eA
A ] by [46].

4.2. Key exchange and other protocols. The key exchange is performed in two rounds. In each round
Alice and Bob do the following operations on each side:

(1) Compute 〈R〉 = 〈[m]P + [n]Q〉 for some points P,Q;
(2) Compute the isogeny φ : E → E/〈R〉 for a curve E;
(3) In the first round (only), compute φ(R) and φ(S) for some points R,S;

where the curve E and the points P,Q,R, S depend on the round and the player, as shown in Figure 1.
Similar operations are needed by the other protocols of Section 3. We demonstrate how to implement
efficiently each of these steps.

4.2.1. Computing 〈[m]P + [n]Q〉. We first observe that any generator of 〈[m]P + [n]Q〉 will do. Without
loss of generality we can assume that m is invertible modulo the order of the group, in which case R′ =
P +[m−1n]Q is one such generator. Computing R′ by a standard double-and-add approach requires half the
effort of computing [m]P + [n]Q naively (see [13, 38, 1], though, for better ways of computing the latter).

However, computing P + [m−1n]Q by double-and-add has one major drawback: it is trivially vulnerable
to simple power analysis (SPA) [22]. To avoid SPA, one can use a Montgomery ladder [28] to compute
[m−1n]Q, and then add P , but this is significantly slower.

Instead, we propose in Algorithm 1 a much more efficient ladder, computing P + [m−1n]Q directly. The
idea behind it is simple: at each iteration the registers A,B and C contain respectively the values [x]Q,
[x+1]Q and P + [x]Q, for x equal to the leftmost bits of m−1n. The function dadd(A,B,C) is a differential
addition: it computes the sum A + B knowing C = A − B. Montgomery curves have a very efficient
differential addition [28], making the implementation of our ladder as efficient as the naive double and add
on twisted Edwards curves (see Section 4.3).

4.2.2. Computing smooth degree isogenies. It remains to describe how Alice and Bob can compute and
evaluate the isogenies. Let E be an elliptic curve, and let R be a point of order ℓe. Our goal is to compute
the image curve E/〈R〉 and to evaluate the isogeny φ : E → E/〈R〉 at some points of E.
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R0

R1

R2

R3

R4

R5

[ℓ1]R0

[ℓ2]R0

[ℓ3]R0

[ℓ4]R0

[ℓ5]R0

φ0

φ0

φ0

φ0

φ0

φ1

φ1

φ1

φ1

φ2

φ2

φ2

φ3

φ3 φ4

[ℓ]

[ℓ]

[ℓ]

[ℓ]

[ℓ]

[ℓ4]R1 [ℓ3]R2 [ℓ2]R3 [ℓ1]R4

•

• •

• • •

• • • •

• • • • •

• • • • • •

Figure 2. Computational structure of the construction of φ = φ5 ◦ · · · ◦ φ0.

Since the degree of φ is smooth, it is best to decompose it as a chain of ℓ-isogenies. Set E0 = E, R0 = R
and, for 0 ≤ i < e, let

Ei+1 = Ei/〈ℓe−i−1Ri〉, φi : Ei → Ei+1, Ri+1 = φi(Ri).

Then E/〈R〉 = Ee and φ = φe−1 ◦ · · · ◦ φ0.
The curve Ei+1 and the isogeny φi can be computed using Vélu’s formulas [48], once the ℓ-torsion subgroup

〈Ri〉 of Ei is known. This immediately suggests two strategies having quadratic complexity in e, as described
in [19].

However, we can do much better. Figure 2 summarizes the computational structure of the problem for
e = 6. Bullets represent points, with points on the same horizontal level having the same order, and points
on the same left diagonal belonging to the same curve. Dashed edges are directed and go from top to bottom;
leftward edges represent multiplication by ℓ, and rightward edges represent evaluation of an ℓ-isogeny.

At the beginning of the algorithm, only the point R0 is known. Our goal is to compute all the points on
the bottom line. Indeed, from the knowledge of the point [ℓe−i−1]Ri we can compute the kernel of φi using
O(ℓ) point additions. We then apply Vélu’s formulas to compute φi and Ei+1. From this point on, we can
forget about the number theoretic nature of the problem and purely focus on its combinatorial structure.
Lemma 4.2 guarantees that any solution to the combinatorial problem yields a valid strategy to compute φ.
Before stating it, we first formally rephrase the picture in Figure 2.

Definition 4.1. Let Tn be the portion of the unit triangular equilateral lattice contained between the x-axis,
the line y =

√
3x and the line y = −

√
3(x − n + 1). We call Tn the discrete equilateral triangle (DET) of

side n.
An edge is any segment of unit length directed downwards to the x-axis connecting two points of Tn. We

say an edge is a left edge if it has positive slope, a right edge otherwise. This definition yields a directed
acyclic graph (DAG) structure on Tn.

We equip the points of any directed graph G with the ordering →G defined by: x→G y if, and only if,
there exists a path in G from x to y. We use → as a shorthand for →Tn

. The leaves of G are the final
points, and the roots of G are the initial points. The graph Tn has the n points on the x-axis as leaves and
the top-most point as its unique root. We write |G| for the number of leaves of G.

For any two points y, y′ of Tn, there exists a most final point x such that x→ y and x→ y′. We
write x = y ∧ y′.

A strategy S is a sub-graph of Tn having a unique root. It is full if its leaves contain those of Tn; in this
case, the root of S is the same as that of Tn. The fork of S is the final-most point x of S that is comparable
(for the ordering →S) to all points of S.
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Lemma 4.2. Any full strategy yields a valid algorithm to compute the isogeny φ = φn−1◦· · ·◦φ0 by decorating
the DET as shown in Figure 2.

Proof. Travel the graph in depth-first left-first order. Upon reaching the bottom, apply Vélu’s formulas
before going right. �

At this point it should be clear that a strategy that passes twice through an interior point does unnecessary
computations. Another waste of resources is a strategy having a leaf distinct from the leaves of Tn.

·
· ·
· · ·
· · · ·

·
· ·
· · ·
· · · ·

Figure 3. Two ill-formed strategies

We define a well-formed strategy to be one that has no such useless edge3. Figure 4 shows all the seven
well-formed full strategies for n = 4, the leftmost and the rightmost ones corresponding respectively to the
isogeny-based and the multiplication-based algorithms from [19].

·
· ·
· · ·
· · · ·

·
· ·
· · ·
· · · ·

·
· ·
· · ·
· · · ·

·
· ·
· · ·
· · · ·

·
· ·
· · ·
· · · ·

·
· ·
· · ·
· · · ·

·
· ·
· · ·
· · · ·

Figure 4. The seven well-formed full strategies for n = 4.

It is clear that some strategies are computationally better than others. From the figures, we see that the
multiplication-based and isogeny-based strategies have a number of edges quadratic in n, whereas the middle
stategy in Figure 4 extends to a family of balanced strategies with asymptotically 1

2 log 2n log n left and right

edges.
We are thus interested in computing the “best” full strategy, according to some measure of computational

effort. We first observe that any well-formed strategy has a binary tree topology, obtained by forgetting the
internal nodes of out-degree less than two and by keeping the same connectivity structure. Conversely, to
any binary tree A with n leaves one can canonically associate a strategy S on Tn as follows: if n = 1, then
S = T1; else, let S

′ be the strategy associated to the left branch of A, S′′ be the translated to the right
by |S′| of the strategy associated to the right branches of A, and r′, r′′ be their roots. Then r′ ∧ r′′ is the
root of Tn and we define S = rr′ ∪ rr′′ ∪ S′ ∪ S′′, where rr′ and rr′′ are the (unique) paths from r to r′

and r′′ in Tn.
For example, in Figure 4 the three middle strategies share the same tree topology, and the middle one is

the canonical one.
In our original problem, left edges are multiplications by ℓ, while right edges are ℓ-isogeny evaluations,

and these steps have different costs. Thus it makes sense to assign different weight to left and right edges.
We fix a measure on Tn, i.e., a pair (p, q) of positive real numbers, where p represents the weight of a left

edge (i.e., a point multiplication) and q represents the weight of a right edge (i.e., an isogeny). For any set
of edges S of Tn, we write (S) for the sum of the weights of all edges of S.

If x→ y, then all paths going from x to y in Tn have the same measure; we write (xy) for this measure. For
all x, y, y′, y′′ such that x→ y, y→ y′′ and y→ y′′, we have the inequality (xy)+(yy′)+(yy′′) ≤ (xy′)+(xy′′).

We find optimal strategies in two steps. The first step (Lemma 4.3) shows that, for any measure, only
canonical strategies are interesting. Then we determine the optimal full strategy for a given measure (Propo-
sition 4.6).

3We do not know much about well-formed full strategies. One remarkable fact is that they are in one-to-one correspondence
with certain instances of Gelfand-Tsetlin patterns [29].
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Lemma 4.3. The canonical strategy is minimal, with respect to any measure, among all the strategies sharing
the same tree topology.

Lemma 4.3 follows from Lemma 4.4.

Lemma 4.4. Let S be a strategy with root r. Let Ŝ be the canonical strategy associated to S and r̂ be the

root of Ŝ. Then r→ r̂, and (rr̂) + (Ŝ) ≤ (S).

Proof. We prove this by induction on S. Let t be the fork of S. If t has no children in S, then it is the
unique leaf of S and the lemma is obviously true. Therefore, we may assume that t has two children in S.

S′ S′′

r

t

Ŝ′ Ŝ′′

r

t

r̂

r̂′

r̂′′

Figure 5. Proof of Lemma 4.4.

Let S′, S′′ be the right and left sub-strategies of S with root t. We apply the induction hypothesis on S′

and S′′ and use r̂ = r̂′ ∧ r̂′′ to derive the following (in)equalities:

(4)

(S′) + (S′′) + (rt) = (S) (definition of (S)),

(tr̂′) + (Ŝ′) ≤ (S′) (induction hypothesis on Ŝ′),

(tr̂′′) + (Ŝ′′) ≤ (S′′) (induction hypothesis on Ŝ′′),

(tr̂) + (r̂r̂′) + (r̂r̂′′) ≤ (tr̂′) + (tr̂′′) (definition of r̂),
(rr̂) = (rt) + (tr̂) (path r→ t→ r̂),

(Ŝ) = (r̂r̂′) + (r̂r̂′′) + (Ŝ′) + (Ŝ′′) (definition of Ŝ).

By summing all of these and cancelling all extra terms, we obtain the desired result. �

Now that we have ruled out non-canonical strategies, we proceed to determine the best ones. From this
point on, we are only interested in full strategies. Thus, we shall call optimal a strategy that is minimal,
among all full strategies with n leaves, with respect to a measure (p, q).

In practice, we can compute optimal strategies using the fact that, for a fixed measure, optimality is a
local property. For a full canonical strategy S 6= T1, having i leaves to the left of its root, we define its left
branch as S ∩ Ti. We also define its right branch as S ∩ T ′, where T ′ is T|S|−i translated by i to the right.
Because S is full and canonical, both branches are full canonical strategies too.

Lemma 4.5. Let S be an optimal strategy. Let S′ and S′′ be, respectively, its left and right branch. Then
S′ and S′′ are optimal strategies.

Proof. By Lemma 4.3, we know that S is a canonical strategy. Hence, S′ and S′′ are well defined. Now,
suppose that S′ were not optimal. By substituting an optimal strategy for S′ inside S, we obtain a strategy
with weight lower than (S). The same argument holds for S′′. �

Define Cp,q(n) to be the cost of the optimal strategies with n leaves. Lemma 4.5 says that

(5) Cp,q(n) = min
i=1,...,n−1

(
Cp,q(i) + Cp,q(n− i) + (n− i)p+ iq

)
.

This equality suggests a dynamic-programming algorithm that, given p and q, computes C(n) in time O(n2).
A straightforward Python implementation computes the optimal strategies for n = 1024 in less than one



TOWARDS QUANTUM-RESISTANT CRYPTOSYSTEMS FROM ISOGENIES 11

Figure 6. Optimal strategy for n = 512, p = 4.6, q = 2.8.

second, indicating that the dynamic-programming approach is very satisfying in practice. Figure 6 shows an
optimal strategy for n = 512, p = 4.6, q = 2.8.

However, it is also possible to mathematically characterize the optimal strategies. Since the optimal
strategies for (p, q) are symmetrical to those for (q, p), we may assume that p < q. For simplicity, we will
also assume that p and q are integers: the generalization to the case of rational p and q is straightforward.

Let (um) be the sequence defined by up+1 = · · · = up+q = 1 and um = um−p + um−q, and f(n) be the
function defined by f(1) = 0, f(n) = f(um) +m(n − um) for all n ∈ [um, um+1]. We check that f satisfies
the recurrence relation

(6) f(um) = f(um−p) + f(um−q) + pum−p + qum−q.

Proposition 4.6. A full strategy S is optimal if, and only if, it is canonical, both its left and right branches S′

and S′′ are optimal, and

um−q ≤ |S′| ≤ um−q+1, um−p ≤ |S′′| ≤ um−p+1,

where m is such that um ≤ |S| < um+1. In this case, the weight of S is f(|S|).

For example, in the case where p = 1 and q = 2, the sequence (um) is the sequence of Fibonacci numbers,
starting at u2 = 1, u3 = 1, u4 = 2..., and a strategy S with um ≤ |S| < um+1 is optimal if, and only if, the
left and right branches S′ and S′′ verify um−2 ≤ |S′| ≤ um−1 and um−1 ≤ |S′′| ≤ um.

Proof. We prove this by induction on n = |S|. Let n = n′ + n′′ with n′, n′′ > 0 and let S = Sn′,n′′ be
any canonical full strategy with optimal left and right branches S′, S′′, such that |S′| = n′ and |S′′| = n′′.
Then any optimal strategy is one of the Sn′,n′′ . Therefore, we find them by looking at the sign of δn =
(Sn′+1,n′′−1)− (Sn′,n′′).

Let m′,m′′ be such that um′ ≤ n′ < um′+1 and um′′ ≤ n′′ < um′′+1. Using the induction hypothesis on S′

and S′′, we have (Sn′,n′′) = f(n′) + f(n′′) + n′q + n′′p, and therefore

(7) δn =

{
(m′ + q)− (m′′ + p), if n′′ ≥ um′′ + 1,

(m′ + q)− (m′′ + p) + 1, if n′′ = um′′ .

We find that δn ≤ 0 exactly when n′ < um−q+1 and n′′ > um−p, and δn ≥ 0 exactly when n′ ≥ um−q

and n′′ ≤ um−p+1. The optimality condition follows from this. It remains only to check that (S) = f(|S|):
this results from relation (6). �
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In particular, there are in general several optimal strategies of a given size. Moreover, with z being the
(unique) root in [0, 1] of the equation zp + zq − 1 = 0, this gives the asymptotic equivalents

|S′| ∼ zq |S| ,(8)

Cp,q(n) = (S) ∼ − 1

log z
n log n.(9)

The relative cost of an optimal stategy is therefore asymptotically equivalent to − 2 log 2
log(zp+q) times the cost

of the balanced strategy. In the case where (p, q) = (4.6, 2.8), as in Table 1 with ℓ = 2, this gives an
improvement of 2.1% over the balanced strategy.

4.3. Choice of the models. At each phase of the key generation it is important to use models for elliptic
curves that offer the fastest formulas for doubling, addition, isogeny computation and evaluation, etc.

To measure efficiency, we count the number of elementary operations in Fp2 : we write I,M, S for the
costs of one inversion, multiplication and squaring respectively, and we make the assumption S ≤ M ≤ I.
We neglect additions, subtractions and comparisons. We refer to the Explicit Formulas Database (EFD) [4]
for operation counts of elliptic point addition, doubling, etc. in various models and coordinate systems.
Contrary to the convention taken in the EFD, we count multiplications by constants (other than small
integers) as ordinary multiplications.

Any curve used in our cryptosystem has group structure (Z/(p∓ 1)Z)
2
. Hence either the curve or its

twist has a point of order 4. Consequently, it is isomorphic to a twisted Edwards curve and to a Montgomery
curve [3].

Twisted Edwards curves [3] have equation

(10) Ea,d : ax2 + y2 = 1 + dx2y2.

They have many interesting properties, but what interests us most is their very efficient addition and doubling
formulas. Using projective coordinates, one point addition costs 12M + 1S and one point doubling costs
4M + 4S. When one of the points is scaled to have Z-coordinate equal to 1, these costs drop to 11M + 1S
and 3M + 4S respectively.

Montgomery curves [28] have equation

(11) MB,A : By2 = x3 +Ax2 + x.

They have very efficient arithmetic on their Kummer line, i.e., by representing points by the coordinates
(X : Z) where x = X/Z. Using this representation, a point can be doubled using 3M + 2S, or 2M + 2S
when it is scaled to have Z-coordinate equal to 1.

The Kummer line identifies P with −P ; thus it is not possible to add two distinct points. However it
is still possible to perform what is called differential addition, i.e., adding points P and Q for which the
difference P −Q is known. One differential addition can be computed using 4M +2S, or 3M +2S when the
difference P −Q is scaled to have Z-coordinate equal to 1.

By using doublings and differential additions, it is possible to compute any scalar multiple of a point using
a Montgomery ladder [28]. Also observe that since P and −P generate the same subgroup, isogenies can be
defined and evaluated correctly on the Kummer line. We shall give formulas for this operation later.

It is shown in [3] that the twisted Edwards curve Ea,d is birationally equivalent to the Montgomery curve
MA,B where

(12) A =
2(a+ d)

a− d , B =
4

a− d ,

and where the transformation is given by the following maps (in affine coordinates)

(13)

ψ : Ea,d →MA,B ,

(x, y) 7→
(
1 + y

1− y ,
1 + y

(1− y)x

)
,

ψ−1 : MA,B → Ea,d,

(x, y) 7→
(
x

y
,
x− 1

x+ 1

)
.
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Hence, after the models Ea,d and MA,B are computed, points in projective coordinates can be moved from
one model to the other at a cost of a few multiplications (and no inversions).

Now we detail the cost of each step of the key generation algorithm.

4.3.1. Computing 〈[m]P + [n]Q〉. We have already mentioned two algorithms to compute the value of P +
[m−1n]Q. One solution is to express the points P and Q in projective Edwards coordinates and perform a
double and add followed by an addition. If we scale Q to have Z-coordinate equal to 1, computing [m−1n]Q
costs 9.5M + 4.5S per bit on average.

Because addition by P is performed last, this approach cannot be used with points on the Montgomery
curve in Kummer coordinates, but we can use the ladder given in Figure 1 instead. We first compute P −Q
using point addition in full projective coordinates (either by using the standard chord-and-tangent law, or
by using the equivalence with twisted Edwards curves). Then we scale P , Q and P −Q to have Z-coordinate
equal to 1. We can now discard the Y coordinate and work on the Kummer line. At each iteration we
perform one doubling and two differential additions (with one of the scaled points P , Q and P − Q). The
total cost of one iteration is thus 9M + 6S.

In general the cost of one squaring is close to the cost of one multiplication. Thus the ladder algorithm
is slightly slower than double-and-add. However the advantages of the ladder are SPA resistance and an
implementation simplified by not using Edwards coordinates at all for key generation.

4.3.2. Isogenies of Montgomery curves. The literature on efficient formulas for evaluating small degree iso-
genies is much less extensive than for point multiplication. We now give explicit formulas for isogenies of
Montgomery curves, and optimize the degree 2 and 3 cases. Our goal is to obtain the most efficient formu-
las for isogeny evaluation, and thus we seek to avoid inversions and square root computations as much as
possible.

Let E be the Montgomery curve defined by Eq. (11). It has a point of order two P2 = (0, 0), and a point

of order four P4 = (1,
√

(A+ 2)/B)—eventualy defined over a quadratic extension—such that [2]P4 = P2.
Montgomery curves have twists of the form ỹ =

√
cy; these are isomorphisms when c is a square. The change

of coordinates x̃ = x/B, ỹ = y/B brings the curve E to the Weierstrass form

(14) ỹ2 = x̃3 +
A

B
x̃2 +

1

B2
x̃,

and the point P4 to P ′
4 = (1/B, . . .). Conversely, given a Weierstrass curve with equation ỹ2 = x̃3+ax̃2+ bx̃,

together with a point P4 = (1/β, . . .)—with its ordinate possibly lying in a quadratic extension—such
that [2]P4 = (0, 0), the change of variables x̃ = x/β, ỹ = y/β brings the curve to the Montgomery form
βy2 = x3 + aβx2 + x.

Given a point P 6= ±P4 of order 4, we will need to compute the isomorphism of Montgomery curves
that brings [2]P in (0, 0) and P in (1, . . .). Let X be the abscissa of P and X0 the abscissa of [2]P ; by a
straightforward calculation, we find that this isomorphism is given by the map

(15)

ι : E → E′,

(x, y) 7→
(
x−X0

X −X0
,

y

X −X0

)
,

and the new curve has equation

E′ :
B

X −X0
y2 = x3 +

3X0 +A

X −X0
x2 + x.

By precomputing 1/(X −X0), and sharing common subexpressions, the above map can be evaluated on
a point in full projective coordinates using 3M operations, or 2M using Kummer coordinates.

Let G be a subgroup of the Montgomery curve E of odd cardinality ℓ and let h be the degree (ℓ − 1)/2

polynomial vanishing on the abscissas of G. With a twist y = ỹ/
√
B, we can put E in the form

E : ỹ2 = x̃3 +Ax̃2 + x̃,
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and this does not change the abscissas of G nor the polynomial h. Now, composing the twist with Vélu’s
formulas gives an isogeny

φ : E → E/G,

(x, y) 7→
(
g(x)

h(x)2
, y
√
B

(
g(x)

h(x)2

)′
)
.

We now need to express E/G in Montgomery form. Because ℓ is odd, the point (0, 0) of E is sent to a
point of order two in E/G, and the change of variables x̃ = x− g(0)/h(0)2 brings this point to (0, 0).

Now, φ(P4) is a point of order four lying above (0, 0) (possibly in a quadratic extension). Its abscissa is
rational and is given by

(16)
1

β
=

g(1)

h(1)2
− g(0)

h(0)2
,

so we further apply the change of variables x̃ = x̄/β, ỹ = x̄/β to obtain a Montgomery curve. Finally, we

have to twist back the model in order to obtain a curve isogenous over the base field: the twist ȳ = y
√
B

cancels with the first one and leaves us with square-root-free formulas.
Given h as input, the cost of evaluating the whole path is O(ℓ) operations in the base field, using the

formula in [5, Proposition 4.1] to evaluate g/h.
Let now P be a 3-torsion point, let G = {0, P,−P} and let X be the abscissa of P (and −P ). If we

specialize the formula to the case ℓ = 3, we have h = x−X and

(17)

φ : E → E/G,

(x, y) 7→
(
x
(
x− 1

X

)2

(x−X)2
X2, y

(
x− 1

X

) ((
x− 1

X

)
(x−X) + 2x

(
1
X −X

))

(x−X)3
X2

)
,

and the curve E/G has equation

E/G : BX2y2 = x3 +

(
A+

6

X
− 6X

)
X2x2 + x.

By precomputing X and X2, and sharing common subexpressions, the above isogeny can be evaluated on
a point in full projective coordinates using 11M + 2S operations, or 4M + 2S using Kummer coordinates.

When ℓ is even, things get more complicated. Recall that P2 = (0, 0) and P4 = (1,
√
(A+ 2)/B). The

isogeny of degree 2 vanishing on P2 and mapping P4 to (0, 0) is readily seen as being

F : By2 = x3 + (A+ 6)x2 + 4(2 +A)x,(18)

φ : E → F,

(x, y) 7→
(
(x− 1)2

x
, y

(
1− 1

x2

))
.

(19)

It is not immediately evident how to put F in Montgomery form without computing square roots. If P8 is
a point satisfying [2]P8 = P4, then φ(P8) = (2

√
2 +A, . . .), and F can be put in the form

B

2
√
2 +A

y2 = x3 +
A+ 6

2
√
2 +A

x2 + x,

with the point (1, . . .) being the image of P8. Any other isogeny of degree 2 can be treated by applying
Eq. (15) to move the generator of the kernel in (0, 0).

By precomputing 1/φ(P8), and sharing common subexpressions, the above isogeny can be evaluated on
a point in full projective coordinates using 5M + 3S operations, or 2M + S using Kummer coordinates.
Unfortunately, this formula takes no square roots only if an 8-torsion point above P2 is known.
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Alternatively, φ and F being as before, we consider the isogeny ψ : F → F/〈(0, 0)〉 given by

G :
B

2−Ay
2 = x3 − 2

A+ 6

2−Ax
2 + x,(20)

ψ : F → G,

(x, y) 7→
(

1

2−A
(x+ 4)(x+ (A+ 2))

x
,

y

2−A

(
1− 4(2 +A)

x2

))
.

(21)

Then φ4 = ψ ◦ φ is an isogeny of degree four φ4 : E → E/〈P4〉, and the point
(
1,
√
−4(A+ 2)/B

)
of G

generates the kernel of the dual isogeny φ̂4. Any other isogeny of degree 4 can be treated by applying Eq. (15)
to move the kernel point to (1, . . .).

By precomputing 1/(2 − A), and sharing common subexpressions, the isogeny φ4 can be evaluated on a
point in full projective coordinates using 10M + 4S operations, or 4M + S using Kummer coordinates.

Unfortunately, this formula cannot be applied twice to obtain a degree 16 cyclic isogeny: indeed, a double
application yields the multiplication-by-4 isogeny. If a chain of degree 4 isogenies is wanted, as for the
algorithm in Subsection 4.2.2, this formula must be combined with the isomorphism in Eq. (15).

Isogenies of composite smooth degree are computed by composing small degree isogenies as discussed in
Subsection 4.2.2. We focus on the fine tuning of this algorithm when the small isogenies have degrees 2, 3
and 4.

It is important to remark that, after a generator R of the kernel of the isogeny has been computed, the
algorithm does not use its ordinate at all: indeed, all the previous formulas for small degree isogenies only
use the abscissas of the kernel points. Hence, we can throw away the ordinate of R altogether and only use
scalar multiplication and isogeny evaluation formulas for points in Kummer coordinates.

As usual, some more care must be taken when computing cyclic isogenies of degree 2e. In principle, one
could compose either degree 2 (Eq. 18) or degree 4 (Eq. 20) isogenies; however we have already pointed out
some caveats:

• Both equations require the kernel point to be moved to some specific coordinates. This can be
achieved using the isomorphism in Eq. (15).

• After the first change of variables, Eq. (18) can be repeatedly chained with itself; however, from
a point of order 2e only e − 2 degree 2 isogenies can be computed this way, because the formula
requires the knowledge of a point of order 8.

• Eq. (20) cannot be directly chained with itself to compute a cyclic isogeny of degree 4e. It must be
composed, instead, with Eq. (15) at each step.

Having this in mind, two obvious strategies to compute degree 2e isogenies are:

(1) Use degree 2 isogenies as much as possible; use one degree 4 isogenies for the last two steps.
(2) Use one degree 2 isogeny if e is odd, then use only degree 4 isogenies composed with isomorphisms.

We argue that, given the current parameters, both approaches are likely to take roughly the same com-
putational effort. We only have used the first one in our tests.

Finally, it should be noted that both approaches, if implemented as described above, leak two bits of
security. Indeed, the point (1, . . .) of the image curve is a point of order 4 in the kernel of the dual of the
computed isogeny (the secret). It is easy to mask this by taking a random change of coordinates; however,
we found this more costly than simply adding two bits of security and letting the information leak.

Table 1 summarizes the costs of the isogeny evaluation and scalar multiplication formulas in light of these
remarks. Because squaring in Fp2 is faster than multiplication, we also report the cost obtained by taking
S = 0.8M (a factor that roughly approximates the fact that squaring requires 2 multiplications in Fp instead
of 3).

Table 2 compares the total cost of isogeny evaluations and scalar multiplications in a balanced and an
optimal strategy for ℓ = 2, 3, 4, based on the costs given in Table 1, at the classical 256-bit security level
(see Section 5 for our complexity assumptions). We make the following observations, backed up by the
benchmarks in Section 7:
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Table 1. Comparative costs for multiplication and isogeny evaluation in projective Kum-
mer coordinates, in number of multiplications and squarings, and assuming S = 0.8M .

ℓ 2 3 4
Isogeny 2M + S 4M + 2S 6M + S

2.8 5.6 6.8
Multiplication 3M + 2S 7M + 4S 6M + 4S

4.6 10.2 9.2

Table 2. Comparative costs of the balanced and the optimal strategies for computing a
degree 2514 (ℓ = 2, 4) or 3323 (ℓ = 3) isogeny, assuming S = 0.8M .

optimal strategy balanced strategy
ℓ 2 3 4 2 3 4
Isogenies 2741 1610 1166 2323 1430 1033
Multiplications 1995 1151 921 2307 1288 1025
Total cost 16851.8 20756.2 16402.0 17116.6 21145.6 16454.4

• There may be a small advantage (less than 2%) in using isogenies of degree 4 instead of 2;
• The gain in using an optimal strategy instead of a balanced one is consistent with the predictions of
Subsection 4.2.2;

• The difference between 2e and 3e isogenies is more significant (about 20%), suggesting that degree
2e isogenies may be preferable for constrained devices.

5. Complexity assumptions

As before, let p be a prime of the form ℓeAA ℓeBB · f ± 1, and fix a supersingular curve E0 over Fp2 together
with bases {PA, QA} and {PB , QB} of E0[ℓ

eA
A ] and E0[ℓ

eB
B ] respectively. In analogy with the case of isogenies

over ordinary elliptic curves, we define the following computational problems, adapted for the supersingular
case:

Problem 5.1 (Decisional Supersingular Isogeny (DSSI) problem). Let EA be another supersingular curve
defined over Fp2 . Decide whether EA is ℓeAA -isogenous to E0.

Problem 5.2 (Computational Supersingular Isogeny (CSSI) problem). Let φA : E0 → EA be an isogeny
whose kernel is 〈[mA]PA + [nA]QA〉, where mA and nA are chosen at random from Z/ℓeAA Z and not both
divisible by ℓA. Given EA and the values φA(PB), φA(QB), find a generator RA of 〈[mA]PA + [nA]QA〉.

We remark that given a generator RA = [mA]PA + [nA]QA, it is easy to solve for (mA, nA), since E0 has
smooth order and thus extended discrete logarithms are easy in E0 [46].

Problem 5.3 (Supersingular Computational Diffie-Hellman (SSCDH) problem). Let φA : E0 → EA be an
isogeny whose kernel is equal to 〈[mA]PA + [nA]QA〉, and let φB : E0 → EB be an isogeny whose kernel is
〈[mB ]PB + [nB ]QB〉, where mA, nA (respectively mB , nB) are chosen at random from Z/ℓeAA Z (respectively
Z/ℓeBB Z) and not both divisible by ℓA (respectively ℓB). Given the curves EA, EB and the points φA(PB),
φA(QB), φB(PA), φB(QA), find the j-invariant of E0/〈[mA]PA + [nA]QA, [mB ]PB + [nB ]QB〉.

Problem 5.4 (Supersingular Decision Diffie-Hellman (SSDDH) problem). Given a tuple sampled with
probability 1/2 from one of the following two distributions:

• (EA, EB , φA(PB), φA(QB), φB(PA), φB(QA), EAB), where EA, EB , φA(PB), φA(QB), φB(PA), and
φB(QA) are as in the SSCDH problem and

EAB
∼= E0/〈[mA]PA + [nA]QA, [mB ]PB + [nB ]QB〉,
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• (EA, EB , φA(PB), φA(QB), φB(PA), φB(QA), EC), where EA, EB , φA(PB), φA(QB), φB(PA), and
φB(QA) are as in the SSCDH problem and

EC
∼= E0/〈[m′

A]PA + [n′
A]QA, [m

′
B ]PB + [n′B ]QB〉,

where m′
A, n

′
A (respectively m′

B , n
′
B) are chosen at random from Z/ℓeAA Z (respectively Z/ℓeBB Z) and

not both divisible by ℓA (respectively ℓB),

determine from which distribution the tuple is sampled.

The ordinary case analogue of the following problem is trivially solvable in polynomial time. Its supposed
difficulty in the supersingular case is at the hearth of the security of our identification scheme.

Problem 5.5 (Decisional Supersingular Product (DSSP) problem). Given an isogeny φ : E0 → E3 of degree
ℓeAA and a tuple sampled with probability 1/2 from one of the following two distributions:

• (E1, E2, φ
′), where the product E1×E2 is chosen at random among those ℓeBB -isogenous to E0×E3,

and where φ′ : E1 → E2 is an isogeny of degree ℓeAA , and
• (E1, E2, φ

′), where E1 is chosen at random among the curves having the same cardinality as E0, and
φ′ : E1 → E2 is a random isogeny of degree ℓeAA ,

determine from which distribution the tuple is sampled.

We conjecture that these problems are computationally infeasible, in the sense that for any polynomial-
time solver algorithm, the advantage of the algorithm is a negligible function of the security parameter log p.
The resulting security assumptions are referred to as the DSSI assumption, CSSI assumption, etc.

5.1. Hardness of the underlying assumptions. Given a CSSI (respectively, SSCDH) solver, it is trivial
to solve SSCDH (respectively, SSDDH). It is also trivial to solve SSDDH given a DSSI solver. There are
no known reductions in the other direction, and given that the corresponding question of equivalence for
discrete logarithms and Diffie-Hellman has not yet been completely resolved in all cases, it is reasonable
to assume that the question of equivalence of CSSI, SSCDH, and SSDDH is at least hard to resolve. For
the purposes of this discussion, we will presume that DSSI and CSSI are equivalent to SSDDH. Concerning
DSSP, there is an evident reduction to DSSI. However, it is reasonable to assume that DSSP is easier than
the latter.

In the context of cryptography, the problem of computing an isogeny between isogenous supersingular
curves was first considered by Galbraith [15] in 1999. The first published cryptographic primitive based on
supersingular isogeny graphs is the hash function proposal of Charles et al. [9], which remains unbroken
to date (the cryptanalysis of [30] applies only to the LPS graph-based hash function from [9], and not to
the supersingular isogeny graph-based hash functions). The fastest known algorithm for finding isogenies
between supersingular curves in general takes O(

√
p log2 p) time [9, §5.3.1]; however our problem is less

general because the degree of the isogeny is known in advance and is smooth. In addition, the distribution of
isogenous curves obtained from taking kernels of the form 〈[mA]PA + [nA]QA〉 is not quite uniform: a simple
calculation against Proposition 2.1 indicates that a sequence of eA isogenies of degree ℓA falls short of the
length needed to ensure uniform mixing, regardless of the value of p. Since we are the first to propose using
isogenies of this type, there is no existing literature addressing the security of the isogenies of the special
form that we propose.

There are easy exponential attacks against DSSI and CSSI that improve upon exhaustive search. To
find an isogeny of degree ℓeAA between E and EA, an attacker builds two trees of all curves isogenous to E

(respectively, EA) via isogenies of degree ℓ
eA/2
A . Once the trees are built, the attacker tries to find a curve

lying in both trees. Since the degree of the isogeny φA is ∼ √p (much shorter than the size of the isogeny
graph), it is unlikely that there will be more than one isogeny path—and thus more than one match—from
E to EA. Given two functions f : A → C and g : B → C with domain of equal size, finding a pair (a, b)
such that f(a) = g(b) is known as the claw problem in complexity theory. The claw problem can obviously
be solved in O(|A| + |B|) time and O(|A|) space on a classical computer by building a hash table holding

f(a) for any a ∈ A and looking for hits for g(b) where b ∈ B. This gives a O(ℓ
eA/2
A ) = O( 4

√
p) classical attack



18 LUCA DE FEO, DAVID JAO, AND JÉRÔME PLÛT

against our cryptosystems. With a quantum computer, one can do better using the algorithm in [44], which

has complexity O( 3
√
|A||B|), thus giving an O(ℓ

eA/3
A ) = O( 6

√
p) quantum attack against our cryptosystems.

These complexities are optimal for a black-box claw attack [49].
We consider the question of whether the auxiliary data points φA(PB) and φA(QB) might assist an

adversary in determining φA. Since (PB , QB) forms a basis for E0[ℓ
eB
B ], the values φA(PB) and φA(QB)

allow the adversary to compute φA on all of E0[ℓ
eB
B ]. This is because any element of E0[ℓ

eB
B ] is a (known)

linear combination of PB and QB (known since extended discrete logarithms are easy [46]). However, there
does not appear to be any way to use this capability to determine φA. Even on a quantum computer, where
finding abelian hidden subgroups is easy, there is no hidden subgroup to find, since φA has degree ℓeAA , and
thus does not annihilate any point in E0[ℓ

eB
B ] other than the identity. Of course, if one could evaluate φA on

arbitrary points of E0[ℓ
eA
A ], then a quantum computer could easily break the scheme, and indeed in this case

the scheme is also easily broken classically by using a few calls to the oracle to compute a generator of the

kernel of the dual isogeny φ̂A. However, it does not seem possible to translate the values of φA on E0[ℓ
eB
B ]

into values on E0[ℓ
eA
A ].

For both ordinary and supersingular curves, there is a natural bijection between isogenies (up to iso-
morphism) and (left) ideals in the endomorphism ring. In the ordinary case the endomorphism ring is
commutative, and ideal classes form a finite abelian group. This property has been used by Childs et al. [10]
to solve the ordinary analogue of CSSI in quantum subexponential time. It is natural to ask whether their
algorithm can be adapted to the supersingular setting, but, in this case, the endomorphism ring is a maximal
order in a noncommutative quaternion algebra, and the left ideal classes do not form a group at all (they
form a groupoid, though). Since the algorithm of Childs et al. depends crucially on the properties of abelian
groups, we believe that no reasonable variant of this strategy would apply to supersingular curves.

The same correspondence between isogenies and ideals can be applied to DSSP. Indeed, deciding DSSP
amounts to decide whether the ideals S, S′ associated to φ, φ′ are conjugated, i.e., whether there exists a
left ideal R ∈ End(E0) such that S = RS′R−1. Although it can be hoped that deciding conjugacy of ideal
classes in the quaternion algebra Qp,∞ is feasible, we are still faced with the problem that the best known
algorithms to compute the endomorphism rings of supersingular curves are exponential in log p [23, 8, 2].
Hence, we deem DSSP secure given the current knowledge.

The fact that it is possible to obtain a zero-knowledge identification scheme from CSSI comes as no
surprise, since it is well known that a zero-knowledge protocol can be obtained from any problem in NP [18].
Nevertheless, the generic construction is not very efficient, and many efforts have been made to obtain efficient
ad-hoc schemes from NP-complete problems [36, 40, 41, 33]. While the security of most of these schemes
is based on two solid assumptions, namely that P 6= NP and that secure commitment schemes exist, our
identification scheme stands on a much weaker ground: the CSSI and DSSP problems. As performances go, it
is reasonable to assume that our scheme will be some orders of magnitude slower than the best zero-knowledge
protocols. We can thus conclude that our scheme is of a purely theoretical and pedagogical interest. Yet it
is remarkable that an efficient identification scheme based on graphs of supersingular isogenies simply exists,
while the analogous construction for ordinary curves is trivially broken and no other identification scheme
is currently known to work in that case [43].

6. Security proofs

In this section we state formal security reductions relating the security of our protocols to the hardness of
the appropriate underlying isogeny computation problem. The security proofs are routine, but tedious, and
contain little original contribution on our part. For this reason, we only prove a representative selection of
our theorems.

The statements of the theorems are as follows:

Theorem 6.1. Under the SSDDH assumption, the key-agreement protocol of Section 3.2 is session-key
secure in the authenticated-links adversarial model of Canetti and Krawczyk [7].

Theorem 6.2. If the SSDDH assumption holds, and the hash function family H is entropy-smoothing, then
the public-key cryptosystem of Section 3.3 is IND-CPA.
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Theorem 6.3. Under the CSSI and DSSP assumptions, the identification scheme of Section 3.1 is zero-
knowledge.

6.1. Proof of Theorem 6.1. The proofs of Theorems 6.1 and 6.2 are easily adapted from the corresponding
proofs given by Stolbunov [42]. As an illustration of the proof techniques, we provide a proof of Theorem 6.1.

We recall the definition of session-key security in the authenticated-links adversarial model of Canetti and
Krawczyk [7]. We consider a finite set of parties P1, P2, . . . , Pn modeled by probabilistic Turing machines.
The adversary I, also modeled by a probabilistic Turing machine, controls all communication, with the
exception that the adversary cannot inject or modify messages (except for messages from corrupted parties
or sessions), and any message may be delivered at most once. Parties give outgoing messages to the adversary,
who has control over their delivery via the Send query. Parties are activated by Send queries, so the adversary
has control over the creation of protocol sessions, which take place within each party. Two sessions s and s′

are matching if the outgoing messages of one are the incoming messages of the other, and vice versa.
We allow the adversary access to the queries SessionStateReveal, SessionKeyReveal, and Corrupt. The

SessionStateReveal(s) query allows the adversary to obtain the contents of the session state, including any
secret information. The query is noted and s produces no further output. The SessionKeyReveal(s) query
enables the adversary to obtain the session key for the specified session s, so long as s holds a session key.
The Corrupt(Pi) query allows the adversary to take over the party Pi, i.e., the adversary has access to all
information in Pi’s memory, including long-lived keys and any session-specific information still stored. A
corrupted party produces no further output. We say a session s with owner Pi is locally exposed if the
adversary has issued SessionKeyReveal(s), SessionStateReveal(s), or Corrupt(Pi) before s is expired. We say s

is exposed if s or its matching session have been locally exposed, and otherwise we say s is fresh.
We allow the adversary I a single Test(s) query, which can be issued at any stage to a completed, fresh,

unexpired session s. A bit b is then picked at random. If b = 0, the test oracle reveals the session key, and
if b = 1, it generates a random value in the key space. I can then continue to issue queries as desired, with
the exception that it cannot expose the test session. At any point, the adversary can try to guess b. Let
GoodGuessI(k) be the event that I correctly guesses b, and define

AdvantageI(k) = max

{
0,

∣∣∣∣Pr[GoodGuessI(k)]− 1

2

∣∣∣∣
}
,

where k is a security parameter.
The definition of security is as follows:

Definition 6.4. A key exchange protocol Π in security parameter k is said to be session-key secure in the
authenticated-links adversarial model of Canetti and Krawczyk if for any polynomial-time adversary I,

(1) If two uncorrupted parties have completed matching sessions, these sessions produce the same key
as output;

(2) AdvantageI(k) is negligible.

Proof of Theorem 6.1. The proof is based on the proof given by Canetti and Krawczyk [7, §5.1] for two-party
Diffie-Hellman over Z∗

q . A similar strategy was used by Stolbunov [42] in the case of ordinary elliptic curves.
It has been shown in Section 3 that two uncorrupted parties in matching sessions output the same session

key, and thus the first part of Definition 6.4 is satisfied. To show that the second part of the definition is
satisfied, assume that there is a polynomial-time adversary I with a non-negligible advantage ε. We claim
that Algorithm 2 forms a polynomial-time distinguisher for SSDDH having non-negligible advantage.

To prove the claim, we must show that Algorithm 2 has non-negligible advantage (it is clear that it runs
in polynomial time). We consider separately the cases where the r-th session is (respectively, is not) chosen
by I as the test session. If the r-th session is not the test session, then Algorithm 2 outputs a random bit,
and thus its advantage in solving the SSDDH is 0. If the r-th session is the test session, then I will succeed
with advantage ε, since the simulated protocol provided to I is indistinguishable from the real protocol.
Since the latter case occurs with probability 1/k, the overall advantage of the SSDDH distinguisher is ε/k,
which is non-negligible. �
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Algorithm 2 SSDDH distinguisher

Input: EA, EB , φA(PB), φA(QB), φB(PA), φB(QA), E

1: r
R← {1, . . . , k}, where k is an upper bound on the number of sessions activated by I in any interaction.

2: Invoke I and simulate the protocol to I, except for the r-th activated protocol session.
3: For the r-th session, let Alice send A, i, EA, φA(PB), φA(QB) to Bob, and let Bob send B, i, EB ,
φB(PA), φB(QA) to Alice, where i is the session identifier.

4: if the r-th session is chosen by I as the test session then

5: Provide I as the answer to the test query.
6: d← I’s output.
7: else

8: d
R← {0, 1}.

9: end if

Output: d

6.2. Proof of Theorem 6.3. Using classical techniques from [18, 14], the theorem is proved in three steps,
known by the names of completeness, soundness and zero-knowledge.

Proof of Theorem 6.3 (sketch). Completeness is obvious: using the algorithms of Section 4, Peggy can always
compute the diagram (3) in polynomial time and make Vic accept.

To prove soundness, we let Charles be any polynomially bounded adversary capable of convincing Vic
with a non-negligible probability. We use Charles as a black-box of which we can control the random coin
tosses: by restarting it a polynomial number of times with the same random input, and by asking each time
a different set of questions, we learn with overwhelming probability a diagram

(22)

E E/〈S〉

E/〈R〉 E/〈S,R〉

ψ ψ′

φ′

It is then straightforward to compute the secret. Let R be a generator of the kernel of φ′. Using the

theorem of the dual isogeny it is easy to compute ψ̂, then 〈ψ̂(R)〉 is the kernel of an isogeny E → E/〈S〉 of
degree ℓeaA . This contradicts the CSSI assumption.

To prove zero-knowledge, we use a cheating verifier (CV) as a black-box to construct a simulator (S). At
each iteration, S makes a (uniformly) random guess at what the next question by V will be.

If S guesses b = 0, it chooses a random primitive ℓeBB -torsion point R ∈ E and computes φ(R) (recall that
the action of φ on E[ℓeBB ] is part of the public data). Then it constructs the isogenies ψ : E → E/〈R〉 and
ψ′ : E/〈S〉 → E/〈S,R〉

(23)

E E/〈S〉

E/〈R〉 E/〈S,R〉

φ

ψ ψ′

and sends E1 = E/〈R〉 and E2 = E/〈S,R〉 to CV.
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If S guesses b = 1, it chooses a random supersingular curve E′ having the same cardinality as E, and a
random primitive ℓeAA -torsion point R ∈ E′. Then, it constructs the isogeny φ′ : E′ → E′/〈R〉

(24)

E E/〈S〉

E′ E′/〈R〉

φ

φ′

and sends E1 = E′ and E2 = E′/〈R〉 to CV.
If CV does not ask the expected question, S simply discards the attempt and restarts. If CV asks the

expected question, S writes (E1, E2, b, R) on its output. S stops whenever CV rejects, or after m successful
interactions with CV.

To prove zero-knowledge, we must show that S runs in polynomial time and that its output is polynomially
indistinguishable from the transcript of a conversation between CV and Peggy.

To show that S runs in polynomial time, it is enough to show that, at any iteration, for any guess b made
by S, the probability that CV asks question 1 − b is exponentially close to 1/2. Suppose this were not the
case, then CV can be used as an oracle for DSSP.

To prove indistinguishability, using the hybrid technique of [18, Claim 4.2], it is enough to prove that no
polynomial-time distinguisher exists for a single round of the identification scheme. It is obvious that no
such distinguisher can exist for questions of type b = 0, because the outputs of S and Peggy are identical
in this case. Suppose, now, that there exists a distinguisher D which, on input φ′ : E1 → E2, can tell with
non-negligible probability whether it comes from S or from a conversation between CV and Peggy, then D
can be used as an oracle for DSSP. �

7. Implementation results and example

We implemented the key exchange protocol in the computer algebra system Sage [39] using a mixed
C/Cython/Sage architecture. This allows us to access the large palette of number theoretic algorithms
distributed with Sage, while still permitting very efficient code in C/Cython for the critical parts such as
the algorithms of Section 4.2. The source code can be downloaded from De Feo’s web page.

Arithmetic in Fp2 is written in C. We use the library GMP for arithmetic modulo p. The field Fp2 is
implemented as Fp2 [X]/(X2+1) (this requires p = 3 mod 4); using this representation, one multiplication in
Fp2 requires three multiplications in Fp, one squaring requires two multiplications in Fp, and one inversion
requires one inversion, two squarings, and two multiplications in Fp. Our experiments show that, for the
sizes we are interested in, I = 10M and S = 0.8M .

The computation of the optimal strategies as described in Section 4.2.2 is done in pure Python, using a
dynamic programming algorithm.

We implemented the key exchange algorithm in C for ℓ = 2, 3, and in Cython for any ℓ. Our experiments
show that, in the C implementation, the ratio between scalar multiplications and isogeny evaluations is
about 2, which is consistent with the predictions made in Table 1. We used this ratio to tune the optimal
strategies for ℓ = 2, 3: starting from 768 bits, a gain over the balanced strategy, comprised between 1%
and 3%, starts getting noticeable. The performances of 3-isogenies are comparable to those of 2-isogenies,
thus contradicting the prediction made by Table 2; this is explained by the operations not accounted for
in Table 2, such as the computation of the isogenies and of the isogenous curves (3-isogenies gain a factor
of about log3 2 on these operations). This suggests that well optimized 4-isogeny formulas may eventually
outperform 2-isogenies.

Finally, the parameter generation is implemented in plain Sage. Because Sage is a collection of many open
source mathematical systems, various of its subsystems are involved in this last part. Of these, Pari [47]
plays an important role because it is used to compute Hilbert class polynomials and to factor polynomials
over finite fields.
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Table 3. Benchmarks for various key sizes. Alice uses ℓ = 2, Bob uses ℓ = 3.

tuned 2/1 balanced
512 bits 768 bits 1024 bits 768 bits 1024 bits

Alice round 1 28.1 ms 65.7 ms 122 ms 66.8 ms 123 ms
Alice round 2 23.3 ms 54.3 ms 101 ms 55.5 ms 102 ms
Bob round 1 28.0 ms 65.6 ms 125 ms 67.1 ms 128 ms
Bob round 2 22.7 ms 53.7 ms 102 ms 55.1 ms 105 ms

All tests ran on a 2.4 GHz Opteron running in 64-bit mode. The results are summarized in Table 3. At
the quantum 128-bit security level (768-bit p), our numbers improve upon Stolbunov’s reported performance
figures [43, Table 1] by over three orders of magnitude (.066 seconds vs. 229 seconds). This is the highest
security level appearing in [43, Table 1], so comparisons at higher levels are difficult. Nevertheless, it seems
safe to assume that the improvement is even greater at the 256-bit security level. Our results demonstrate
that the proposed scheme is practical.

7.1. Example. As a convenience, we provide an example calculation of a key-exchange transaction. Let
ℓA = 2, ℓB = 3, eA = 63, eB = 41, and f = 11. We use the starting curve E0 : y2 = x3 + x. For the torsion
bases, we use

PA = (2374093068336250774107936421407893885897i + 2524646701852396349308425328218203569693,

1944869260414574206229153243510104781725i + 1309099413211767078055232768460483417201)

PB = (1556716033657530876728525059284431761206i + 1747407329595165241335131647929866065215,

3456956202852028835529419995475915388483i + 1975912874247458572654720717155755005566)

and QA = ψ(PA), QB = ψ(PB), where i =
√
−1 in Fp2 and ψ(x, y) = (−x, iy) is a distortion map [21]. The

secret values are

mA = 2575042839726612324, nA = 8801426132580632841,

mB = 4558164392438856871, nB = 20473135767366569910

The isogeny φA : E0 → EA is specified by its kernel, and thus the curve EA is only well defined up
to isomorphism; its exact value may vary depending on the implementation. In our case, the curve is
EA : y2 = x3 + ax+ b where

a = 428128245356224894562061821180718114127i + 2147708009907711790134986624604674525769

b = 3230359267202197460304331835170424053093i + 1577264336482370197045362359104894884862

and the values of φA(PB) and φA(QB) are

φA(PB) = (1216243037955078292900974859441066026976i + 1666291136804738684832637187674330905572,

3132921609453998361853372941893500107923i + 28231649385735494856198000346168552366)

φA(QB) = (2039728694420930519155732965018291910660i + 2422092614322988112492931615528155727388,

1688115812694355145549889238510457034272i + 1379185984608240638912948890349738467536)

Similarly, in our implementation EB : y2 = x3 + ax+ b is the curve with

a = 2574722398094022968578313861884608943122i + 464507557149559062184174132571647427722

b = 2863478907513088792144998311229772886197i + 1767078036714109405796777065089868386753

and the values of φB(PA) and φB(QA) are

φB(PA) = (2519086003347973214770499154162540098181i + 1459702974009609198723981125457548440872,

2072057067933292599326928766255155081380i + 891622100638258849401618552145232311395)

φB(QA) = (53793994522803393243921432982798543666i + 3698741609788138685588489568343190504844,

2853868073971808398649663652161215323750i + 1869730480053624141372373282795858691139)

The common j-invariant of EAB
∼= EBA, computed by both Alice and Bob, is equal to

j(EAB) = 1437145494362655119168482808702111413744i + 833498096778386452951722285310592056351.
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8. Conclusion

We propose a new family of conjecturally quantum-resistant public-key cryptographic protocols using iso-
genies between supersingular elliptic curves of smooth order. In order to compensate for the noncommutative
endomorphism rings that arise in this setting, we introduce the idea of providing the images of torsion bases
as part of the protocol. Against the fastest known attacks, the resulting key exchange scheme improves upon
all previous isogeny-based schemes by orders of magnitude in performance at conventional security levels,
making it the first practical isogeny-based public-key cryptosystem. Unlike prior such schemes, our proposal
admits no known subexponential-time attacks even in the quantum setting.
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