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Towards quantum thermodynamics in
electronic circuits
Jukka P. Pekola

Electronic circuits operating at sub-kelvin temperatures are attractive candidates for studying classical and quantum
thermodynamics: their temperature can be controlled and measured locally with exquisite precision, and they allow
experiments with large statistical samples. The availability and rapid development of devices such as quantum dots, single-
electron boxes and superconducting qubits only enhance their appeal. But although these systems provide fertile ground
for studying heat transport, entropy production and work in the context of quantum mechanics, the field remains in its
infancy experimentally. Here, we review some recent experiments on quantum heat transport, fluctuation relations and
implementations of Maxwell’s demon, revealing the rich physics yet to be fully probed in these systems.

Thermodynamics and statistical physics have attracted
renewed interest in recent years, largely owing to an
improvement in the experimental control of small structures,

all the way down to the nanoscale. Phenomena on these scales can
be described using stochastic thermodynamics1, which includes
the influence of fluctuations inherent in such small systems, and
applies to non-equilibrium processes far beyond the linear response
regime. Until recently, experiments on molecules and soft matter
at ambient temperatures have dominated the field2,3. But such
experiments cannot be easily extended into the quantum regime,
which presents an exciting frontier in this area of research. Electrical
circuits at low temperatures, on the other hand, are suitable for
thermodynamic studies in both classical and quantum regimes.
The ‘quantumness’ of these circuits has been widely demonstrated
over the past decade by the vigorous activity on the coherent
properties of both superconducting and semiconducting qubits at
low temperatures.

Dissipation and entropy production in electronic circuits
Electrons in a metal form a Fermi distribution in equilibrium with
a phonon bath. These electrons can easily be driven out of equi-
librium, for example, by applying Joule heating4. A key feature of
these circuits, which operate at sub-kelvin temperatures, is a striking
separation of timescales, together with the possibility of controlling
them. For example, relaxation between electrons and phonons at
low temperatures is orders of magnitude slower than their internal
relaxation rates. This means that subsystems with differing but well-
defined temperatures can exist within the same system. The phonon
system is typically assumed to be the ‘true’ bath, with constant
temperature provided by the macroscopic thermostat (or cryostat).
Adapting this typical scenario can give rise to an ideal platform
from which to study the statistical physics and thermodynamics of
nanostructures at sub-kelvin temperatures (Fig. 1a).

A biased tunnel barrier between two conductors with a chemical
potential difference of1µ=eV , where e is the electronic charge and
V is the voltage drop (Fig. 1b,c), forms the basic unit for studies
of fluctuations and non-equilibrium physics in a circuit. Consider
a single tunnelling event, depicted in the figure as the creation of
a hole-like and particle-like excitation in the left and right leads,
respectively. For this event, the transition rateΓ is determined by the
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Figure 1 | Dissipation and relaxation in electronic circuits at low
temperatures. a, A generic thermal model. A system, for example, a charge
state in a single-electron experiment or qubit, is driven by a source of work.
The system interacts with the Fermi-distributed electrons, which, in turn,
tend to thermalize with the bath of phonons through electron–phonon
coupling. The state of the system and/or the temperature of the electrons
Te are measured in real time. b, A biased tunnel junction, formed of two
metal leads to the left and right of the overlap area where the two
conductors are attached by an oxide barrier. c, Dissipation in a tunnelling
event through a barrier. An excitation is created on both sides of the barrier.

barrier itself,1µ, together with the temperatures T1,T2 of the leads,
and the type and density of the carriers. Tunnelling is a stochastic
Poisson process, which obeys the principle of detailed balance,
Γ (−1µ)= e−1µ/kBTΓ (1µ), with kB the Boltzmann constant, for
equilibrium leads (T1 = T2 = T ). For a tunnelling electron with
energy E, the energy deposition to the source lead is given by
1E1 =µ1 − E and the entropy production is 1S1 = (µ1 − E)/T1,
where µ1 is the chemical potential of the lead. Correspondingly, for
the drain lead, we have an energy deposition of 1E2=E−µ2 and
an entropy production of 1S2= (E−µ2)/T2. In general, the total
energy dissipation in this event is thus 1E =1E1 +1E2 =µ1 −

µ2=eV , determined by the chemical potential difference only.
If fluctuations are ignored, and there are tunnelling events

occurring at an average rate of f = I/e, where I is the mean
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Figure 2 | Testing the fluctuation theorem in equation (1) experimentally. a, A double quantum-dot (DQD) circuit19. The physical positions of the dots for
(n1, n2) electrons between source and drain are indicated by white circles. A quantum point contact (QPC) reads the charge state on the dots. b, A time
trace of the QPC conductance indicating whether there is an electron on the left (L) or right (R) dot, or if both dots are empty (0). c,d, Histograms of the
net number n of charges that have passed from source to drain (c) at zero chemical potential di�erence and (d) at finite bias. The experiment is performed
at T=330 mK.

electric current through the barrier, the average power dissipated
is P= f1E= IV . This result is quite general, independent of the
type of the conductors at the junction. Although this total (average)
power in a tunnel contact is positive, meaning there is net heating,
one can engineer structures, for example, by applyingmaterials with
a gap in the density of states, where heat is distributed unequally
between the two electrodes of the junction. In this way, evaporative
cooling of electrodes can be achieved in both superconducting4,5 and
semiconducting6 hybrid structures.

Quantum heat transport
Let us first take a look at some experiments in which steady-state
quantum heat transport has been investigated in a circuit. Based
on information-theoretic arguments, John Pendry predicted in 1983
that a single quantum channel could conduct heat only up to a
universal maximum value, determined by the quantum of thermal
conductance GQ=πk2BT/(6~) at temperature T (ref. 7), where ~ is
the Planck constant. Theoretical predictions of quantized thermal
conductance for various types of carriers, phonons, photons and
electrons were tested in nanostructures at sub-kelvin temperatures
in the years following this claim. The development of nanosized
circuits moved things forward, as the ability to create different
local temperatures over nanoscale distances at low temperatures
allowed precise measurements of the thermal conductance Gth of
small conductors. In 2000, a beautiful experiment demonstrated
that phonons in a nanobridge indeed carry heat at a rate of
GQ1T per conduction channel, where 1T is the differential
temperature bias around T , applied across the bridge8. The same
effect was later seen in experiments in a superconducting circuit
with two normal metal resistors interacting through thermal noise
(or photons)9,10. A classical analogue of these experiments was
recently implemented in a measurement with macroscopic resistors
around room temperature, by detecting the thermal noise voltage
across them11. In that experiment, the full distribution of heat
transport was also measured. A recent experiment12 provided a
precision measurement of GQ of electrons across a semiconducting
quantum point contact. These measurements8–10,12 demonstrate the
power of hybrid micro- and nanocircuits at low temperatures as
an arena for experiments on quantum thermodynamics and non-
equilibrium thermal physics.

Fluctuation relations
The importance of fluctuations in small systems with just a few
degrees of freedom has also led to an upsurge of experimental
and theoretical activity in the stochastic thermodynamics and

statistical mechanics of circuits. The classical version of the linear
fluctuation–dissipation theorem (FDT) for heat current Q̇ is SQ̇=
2kBT 2Gth, in analogy with SI =2kBTG for the noise of an electrical
current I of a scatterer with conductance G (see, for example,
ref. 13). Unlike that for the electrical current, the corresponding
quantum version of the FDT for heat is still under debate14–16.
More recently, non-equilibrium fluctuations far from equilibrium
beyond the linear FDTs have attracted interest. The non-equilibrium
fluctuation theorem1,17 governing entropy S production can be cast
generically in the form

P(1S)/P(−1S)=e1S/kB (1)

stating that the probabilities P for either increasing or decreasing
the entropy by an amount1S are related by this general equality in
a given process. This relation leads to

〈e−1S/kB〉=1 (2)

by employing the definition 〈e−1S/kB〉 =
∫
d1SP(1S)e−1S/kB . The

expectation value 〈·〉 is to be understood as the average outcome of
many repeated measurements, each under the same protocol.

Electrical circuits at low temperatures provide an interesting
realization of non-equilibrium phenomena, and a well-controlled
test bed for the fluctuations and dissipation that occur within
them. The basic fluctuation theorem in equation (1) has been
tested in experiments on a double quantum dot (DQD; refs 18,19).
Although it is a quantum-dot structure, the experiment itself is
in the classical single-electron tunnelling regime and thus probes
the classical fluctuation relations. The set-up for this experiment
is shown in Fig. 2. There are two dots between the source and
drain leads at the left and right, respectively. The extra number
of electrons on each dot, governed by the Coulomb energy of the
small structure, is monitored by a quantum point contact (QPC).
This QPC is asymmetrically coupled to the dots and therefore
its electrical conductance is sensitive to the occupations (nL, nR),
where nL (nR) is the number of extra electrons on the left (right)
dot. At low enough temperatures, only three charge states are
possible: (0, 0), (0, 1), (1, 0). The QPC can resolve between these
three states, and can then be used to perform full counting statistics
of charge—that is, to determine the full distribution of the number
of charges traversed through the structure.

The drain–source voltage supply biased at voltage VDQD does
the work that leads to dissipation when n charges tunnel between
these leads down in the potential. More precisely, the change of
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Figure 3 | Experimental realization of the Jarzynski fluctuation relation.
a, A schematic diagram of a metallic single-electron box (SEB; ref. 29). The
box is connected capacitively to its environment by CL and CR, and the two
metallic electrodes are connected through a tunnel junction with
capacitance Cj. The extra charge can dwell on either the left (n=0) or the
right (n= 1) island and the transition between the two states is indicated by
the blue arrow. The current Idet of the voltage-biased single-electron
transistor (SET) coupled capacitively to one of the islands of the SEB reads
the charge state n. b, A time trace of the SET, where transitions between
(n=0, lower value of Idet) and (n= 1, higher value of Idet) are monitored in
time and tagged with the driving field ng∝Vg. c, The distributions of
dissipated work measured on the SEB at T=200 mK at three di�erent
driving rates: 1 Hz (black), 2 Hz (red) and 4 Hz (blue). The solid lines are
exact theoretical predictions using independently determined sample
parameter values. The distributions become increasingly non-Gaussian
with increasing rate. Each distribution is composed of more than 105

repetitions of the driving protocol. The Jarzynski equality 〈e−βWd 〉= 1,
where Wd≡W−1F, is satisfied within 3% uncertainty for all
three distributions.

entropy when n electrons (n can be positive or negative) tunnel
from source to drain is neVDQD/T , where T is now the common
temperature of the two leads. For measuring times τ that are
long enough such that one can neglect the contribution of the
internal charge state configuration on the dots at the beginning
and the end of the experiment, one may then write equation (1) in
the form P(n, τ)/P(−n, τ)= eneVDQD/kBT . Under these fixed voltage
bias conditions, the fluctuation relation then boils down to a
measurement of electron counting statistics under detailed-balance
conditions at temperature T .

These experiments serve as a beautiful demonstration of the
principles of a fluctuation theorem in a well-characterized set-up.
Yet the fluctuation theorem was not fully satisfied in this study (20–
30% discrepancy in logarithmic ratio of the probabilities), owing
to the measurement back-action and low bandwidth (‘slowness’) of
the QPC detector20,21. Non-equilibrium (nonlinear) fluctuations of
electrical current have also been highlighted in experiments on a
semiconducting quantum conductor in the form of an Aharonov–
Bohm ring22.

The non-equilibrium fluctuation relations can also be written for
systems under time-dependent driving conditions. In this context,
the work and, in particular, the so-called dissipated work become
important concepts. A key fluctuation relation is then the Jarzynski
equality23 for a system coupled to a single heat bath, which takes a
form similar to equation (2),

〈e−β(W−1F)
〉=1 (3)

Here β = (kBT )−1 is the inverse temperature of the bath, W is
the work done on the system of interest, and 1F is the change
of its equilibrium free energy between the beginning and end
points of the protocol. The Jarzynski equality is valid only for a
system that is initially in thermal equilibrium with the bath, but
it applies for driving protocols far from equilibrium. Comparing
equations (2) and (3), we see that (W −1F)/T is the entropy
produced in the driven process. Based on elementary mathematical
arguments, the equality implies that 〈W 〉≥1F . That is, the second
law of thermodynamics holds in the thermodynamic limit (in the
sense of many realizations of the experiment). The counterpart of
equation (1) for dissipated work in reversed protocols is called the
Crooks relation24.

The practical importance of the Jarzynski equality is considered
to be its ability to extract equilibrium properties of the system
(1F) from non-equilibrium measurements. This quality has been
harnessed in experiments on molecules and soft matter2,3. By
contrast, the equilibrium properties of basic electronic circuits can
generally be determined by other means, so the Jarzynski equality
and the Crooks relation are superfluous to a large extent, as the
relevant Hamiltonian including the coupling to the bath is typically
known with high accuracy.

As a basic example, we consider a single-electron box (SEB;
refs 25–28), which is tangentially related to the quantum-dot circuit
discussed above.However, herewe focus on ametallic system,where
the only energy relevant for the systemHamiltonian is the Coulomb
energy, and ‘particle-in-box’ quantum effects can be fully ignored.
We are thus dealing with a system that is typically composed of
about 109 free electrons. However, owing to the single-electron
capacitive charging energy, the precise number of electrons in each
conductor at a sufficiently low temperature is fixed at two possible
values, say n= 0 and n= 1. In the SEB drawn in Fig. 3, the total
number of electrons on the two islands to the left and right of the
tunnel junction in the middle (illustrated as a divided rectangle) is
furthermore strictly constant, owing to the fact that each island is
connected to the leads only with capacitors. The Hamiltonian of the
box reads simply

H=EC(n−ng)
2 (4)

Here EC= e2/(2C6) is a constant for a particular box, determined
by the total capacitance C6 of the SEB. The control parameter ng is
the source of work, and is proportional to the gate voltage Vg shown
in Fig. 3.

A basic experiment on this type of system involves repeated
ramps of the voltage from, say, ng = 0 to ng = 1 (ref. 29).
The dissipation under non-equilibrium driving is associated with
tunnelling events between the two islands that take place away
from the energy degeneracy ng = 1/2—that is, with non-zero
1µ=2EC(ng−1/2). Sweeps with the identical protocol—at an
equal rate and over this same interval—are then measured to
find the corresponding averages to test the Jarzynski equality and
the Crooks relation. The entropy production and dissipated work,
which in this case are equal (when the latter is divided by the
bath temperature), are measured by a single-electron transistor
(SET) that can detect the tunnelling events in the same way
that the QPC can in the semiconductor circuits. Each tunnelling
event is time-tagged to account for the instantaneous chemical
potential difference, which is responsible for dissipation. In this
way, this experiment goes beyond basic charge counting when
measuring dissipation.

The results of this experiment satisfy the Jarzynski equality and
the Crooks relation within about 3% uncertainty. Here, and in
refs 18,19, it is worth noting that a large number of experiments
is possible—up to millions of repetitions—meaning that sufficient
statistics can be collected, unlike in typical experiments on
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Figure 4 | Experimental implementation of Maxwell’s demon. a, The principle and the protocol of the experiment on a single-electron box34. Initially, the
two-level (in this case, classical) system is positioned such that the system is in one of the charge states. The control parameter ng is then ramped
quasi-statically to the degeneracy point, indicated by a change in the energy levels, from being largely unequal to fully equal. This leads to heat transport of
kBT ln2 from the bath to the two-level system. Based on the outcome of the measurement by the Maxwell’s demon of the state of the system (the
conditional route in the text), the control parameter is quickly moved to one of the definite charge states. After this ‘feedback’ stage, the cycle repeats.
b, The distribution of heat deposited in the bath, Q, based on about 3,000 cycles. The average heat extracted, 〈−Q〉, is about 75% of kBT ln2. c, Illustration
of how the histogram in b splits into two peaks. The two sections of parabolas in each case correspond to the positions of the energy levels in a. When ng is
moved quickly from 1/2 to 1/2−1ng, the state of the system can be n=0 (success) or n= 1 (failure, with dissipation). Successful and unsuccessful fast
ramps are also indicated on the right-hand side of a by the horizontal blue and crossing red arrows, respectively.

molecules2,3. In another experiment, more general fluctuation
relations under time-dependent driving conditions were tested with
the two islands in the SEB at unequal temperatures30. In the case
with two baths, the Jarzynski equality fails naturally, but fluctuation
relations based on trajectory entropy31 and thermodynamic entropy
recover equations (1) and (2).

The role of information
Information-to-energy conversion, embodied by Maxwell’s demon,
has recently become a topic of increased activity in nanosystems.
One of the pioneering experiments in this field involved a micro-
bead in an electric field32. Several proposals for nanoelectronic
circuits have been put forward since then (see, for example, ref. 33).
But experimentally, Maxwell’s demon was realized in such a circuit
only very recently34,35. Here we briefly discuss the principle of
the demon, and the results of the experiments performed on an
SEB (Fig. 4).

The aim of the experiment is to extract heat from a bath using
information gathered by the SET detector, which senses the charge
state of the SEB as in Fig. 3a. Initially, the driving field ng is set
to a value ng,0 = (1/2)−1ng, which is sufficiently far from the
degeneracy value ng=1/2 of the two charge states (equation (4)). At
ng,0, the SEB is almost certainly in one of the two charge states, and

owing to the symmetry of the Hamiltonian in equation (4),1ng>0
and n= 0 can be chosen without loss of generality. Thereafter, ng
is swept quasi-statically to ng = 1/2. At this degeneracy point, n
can take the value n=0 or n=1 with equal probability, p(n)=1/2.
This process thus increases the entropy of the charge system
S=−kB

∑
n=0,1 p(n) lnp(n) by 1S= kB ln 2. Because the process is

quasi-static, this entropy change is equal to the decrease of entropy
in the bath, and therefore the heat absorbed by the charge system
from the electron bath is1Q=T1S=kBT ln2 in this ramp.

One might imagine completing such a cycle in many ways:
either deterministically, without using the demon’s information, or
conditionally, depending on the outcome of themeasurement—that
is, by using the information. If the measurement and feedback were
missing, as in the first, deterministic case, the average dissipation in
the system would have been non-negative in repeated experiments.
At best, one could move the driving field ng quasi-statically back
to the original position ng,0, and inject the same heat kBT ln 2 back
into the bath. This process as a whole would then be reversible. The
returning leg from the degeneracy point to the original position
bears in this case a close relation to the Landauer principle of
minimum heat kBT ln 2 generated in the erasure of a bit36, which
was recently demonstrated experimentally using a colloidal particle
trapped in a modulated double-well potential37. On the other hand,
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one could move ng quickly back to the original position. Then, with
some luck the system would be in the n= 0 state at the moment
of this abrupt change, and there would be no electron transitions
and no heat exchange between the charge system and the bath.
‘Lucky’ here implies that the system happened to be in state n= 0
at the moment of this quick change of the control parameter to
ng=ng,0. In that case, one would have cooled the bath by kBT ln 2
even after completing this closed cycle. But by gambling without
knowing the actual value of n before the quick ramp, one is lucky
only 50% of the time. And in the case that the system happened
to be in the opposite state, n= 1, initially, it would make the n :
1→ 0 transition at ng = ng,0 after the abrupt change, dissipating
heat 2EC1ng, according to equation (4). This heat is much larger
than kBT , according to our initial premise that the n=1 state was
very unlikely in equilibrium at this value of the driving field. Thus
repeating such a cycle many times, one would inevitably inject
heat to the bath. Owing to symmetry, the results above do not
depend whether one moves to ng=ng,0 or to ng=1−ng,0 from the
degeneracy point.

But it is precisely here that our demon comes to the rescue, in
the second, conditional route for completing the cycle. Instead of
deterministically jumping ng : 1/2→ng,0 in each cycle, the demon
measures the charge state at degeneracy and, based on the outcome
of this measurement, the driving field is moved to ng,0 if n= 0, or
to its symmetric point 1− ng,0 if n= 1. In both cases, one would
successfully extract kBT ln2 in the whole cycle, if the measurement
and feedback are error free. Being at ng = ng,0 or ng = 1− ng,0,
one then starts another quasi-static ramp towards the degeneracy
point, which makes the process cyclic and extracts ideally kBT ln 2
heat from the bath in each round. This heat ends up in the
detector circuit.

Figure 4b presents a typical outcome of a measurement, similar
to those obtained in ref. 34. It is the histogram of heat dissipated
into the bath in about 3,000 cycles. This histogram can be split into
two main components: those cycles in which the demon has been
successful, and the heat is Q≈−kBT ln 2, and those in which the
demon makes a mistake, and the heat dissipated is about+2EC1ng.
As long as the latter type of cycle is sufficiently rare, as in Fig. 4b,
the average heat dissipated to the bath,Qave, is negative—the demon
effectively cools the bath. For the measurement in Fig. 4b, we
obtain Qave≈−0.75kBT ln 2, such that the fidelity of the demon is
about 75%. The measurement thus represents a refrigerator of an
electron gas, powered by information. The repetition frequency of
the cycle at present is, however, far too slow to achieve observable
cooling of the electron system in terms of a measurable temperature
drop. In ref. 35, the influence of measurement errors of the demon
were considered using the concept of mutual information I . The
measurement on an SEB demonstrated that under the feedback
conditions the histograms of the type shown in Fig. 4b are governed
by the Sagawa–Ueda equality, which reads 〈e−β(W−1F)−I

〉=1 (ref. 38).

Open questions and future directions
Inmost of the examples presented so far, quantum coherence effects
do not play a role: the circuits operate essentially in the classical
regime, apart from making use of quantum phenomena such as
superconductivity and transport by tunnelling. It is often noted that
the real challenge is to describe the dissipation in true quantum
systems39–42. One way of putting it is that work is not an operator but
instead a quantity that depends on a particular trajectory. The only
‘simple’ case is a closed quantum system that evolves in a unitary
way39,40. Thus, if one could ‘measure the whole Universe’, then work
could be determined as well. This is naturally not possible. Yet,
in superconducting quantum circuits, for example, in qubits, it is
possible to describe the system and its environment in a controlled
way43,44. If one could then measure the system (qubit) and its
environment, it would be at least a partial solution to the problem.

Suppose an on-chip resistive element is coupled to the
superconducting quantum circuit in such a way that the energy
relaxation of the system is taking place largely by photon exchange
with this absorber45. A sensitive thermometer, at present being
developed in several laboratories46–48, could then detect the
temperature variations of the absorber that has minimal heat
capacity. First estimates show that the present realizations are
only about one order of magnitude away from single-photon
resolution48. Such a measurement would be a major step forward,
as the experiments described so far, apart from the measurements
of average heat current8–10,12, rely on charge counting, rather than
detecting the heat input directly. An alternative scheme might
involve interferometric detection49,50, which could be applicable in
circuit QED experiments51.

Where do we go from here? At this time, non-equilibrium fluctu-
ation relations have not yet been probed in open quantum systems.
Issues of incomplete measurements, non-Markovian systems and
detector back-action in relation to fluctuation relations would be
similarly interesting directions to take—and they can probably all
be directly probed in superconducting or semiconducting circuits.
A Brownian refrigerator, directly powered by thermal noise, is also
an interesting concept yet to be demonstrated in experiment52,53.

Another relevant question is naturally: what is it all good
for? Aside from purely satisfying our curiosity, studies of
(quantum) non-equilibrium relationsmay prove useful in designing
refrigerators and heat engines in which the role of fluctuations
cannot be ignored. They may also help us to identify optimal
driving schemes for maximizing work extraction or minimizing
heat production in these devices1. Furthermore, Maxwell’s demon,
although at present providing a very tiny power output, may in the
future decrease dissipation locally with the help of feedback.
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