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Abstract. The quadratic-phase Fourier transform (QPFT) is a neoteric addition to the
class of Fourier transforms and embodies a variety of signal processing tools including the
Fourier, fractional Fourier, linear canonical, and special affine Fourier transform. In this
paper, we generalize the quadratic-phase Fourier transform to quaternion-valued signals,
known as the quaternion QPFT (Q-QPFT). We initiate our investigation by studying
the QPFT of 2D quaternionic signals, then we introduce the Q-QPFT of 2D quater-
nionic signals. Using the fundamental relationship between the Q-QPFT and quaternion
Fourier transform (QFT), we derive the inverse transform and Parseval and Plancherel
formulas associated with the Q-QPFT. Some other properties including linearity, shift
and modulation of the Q-QPFT are also studied. Finally, we formulate several classes
of uncertainty principles (UPs) for the Q-QPFT, which including Heisenberg-type UP,
logarithmic UP, Hardy’s UP, Beurling’s UP and Donoho-Stark’s UP. It can be regarded
as the first step in the applications of the Q-QPFT in the real world.

Keywords: Quaternion Quadratic-phase Fourier transform; Parseval’s formula; Inver-

sion; Modulation; Uncertainty principle; Donoho-Stark.
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1. Introduction

In time-frequency analysis, the most recent signal processing tool is the quadratic-phase
Fourier transform (QPFT) introduced by Castro et al.[1] which provides a unified treat-
ment of both the transient and non-transient signals in a simple and insightful fashion.
The QPFT has five real parameters with exponential kernel. With a slight modification
in [1], we define the QPFT as

Qµ[f ](w) =

∫

R

f(x)Λµ(x, w)dx, (1.1)

where Λµ(x, w) is a quadratic-phase kernel and is given by

Λµ(x, w) =

√

bi

2π
e−i(ax2+bxw+cw2+dx+ew) (1.2)

and the corresponding inversion formula is given by

f(x) =

∫

R

Qµ[f ](w)Λµ(x, w)dw, (1.3)

where a, b, c, d, e ∈ R, b 6= 0. These arbitrary real parameters present in (1.2) are of great
importance as their choice sense of rotation as well as shift can be inculcated in both the
axis of time and frequency domain. Hence can be used in better analysis of non-transient
signals which are employed in radar and other communication systems. Due to its global
kernel and extra degrees of freedom, the QPFT has arrived an efficient tool in solving
several problems arising in diverse branches of science and engineering, including har-
monic analysis, image processing, sampling, reproducing kernel Hilbert spaces and so on
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[2, 3, 4, 5].

The generalization of integral transforms from real and complex numbers to the quater-
nion setting is popular nowadays for the study of higher dimension viz: the quaternion
Fourier transform (QFT) [6, 7], the quaternion linear canonical transform (QLCT) [8, 9],
the fractional quaternion Fourier transform (Fr-QFT) [10, 11], the quaternion offset linear
canonical transform (QOLCT) [12, 13, 14, 15]. In past decades, quaternion algebra has be-
come a leading area of research with its applications in color image processing, image filter-
ing, watermarking, edge detection and pattern recognition(see [16, 17, 18, 19, 20, 21, 22]).
The Fourier transform (FT) in quaternion setting i.e.the quaternion Fourier transform
(QFT) [23] plays a significant role in the representation of hyper-complex signals in signal
processing which is believed to be the substitute of the commonly used two- dimensional
Complex Fourier Transform (CFT). The QFT has wide range of applications see([24, 25]).
On the other hand the uncertainty principle (UP) plays a vital role in various scientific
fields such as mathematics, quantum physics, signal processing and information theory
[26, 27, 28]. The UPs like Heisenberg’s, Hardy’s, Beurling’s associated with QFT are
given in [29, 30, 31, 32] and the extension of UPs in the domains of QLCT,QOLCT are
given in [33, 34, 35, 36, 37]. These UPs have many applications in the analysis of optical
systems, signal recovery and so on see([38, 39, 40, 41]). Therefore modern era of informa-
tion processing is in dire need of quaternionic valued signals and therefore is a very hot
area of research. Since the QPFT is a five parameter class of linear integral transform and
has more degrees of freedom and is more flexible than the FT, the FRFT, the LCT but
with similar computation cost as the conventional FT. Due to the mentioned advantages,
it is natural to generalize the classical QPFT to the quaternionic algebra.

To the best of our knowledge, the generalization of the QPFT to quaternion algebra,
and the study of the properties and UPs associated with Q-QPFT have not been carried
out yet. So motivated and inspired by the merits of QPFT and QFT, we in this paper
propose the novel integral transform coined as the quaternion quadratic-phase Fourier
transform (Q-QPFT), which provides a unified treatment for several existing classes of
signal processing tools. Therefore it is worthwhile to rigorously study the Q-QPFT and
associated UPs which can be productive for signal processing theory and applications.

1.1. Paper Contributions.

The contributions of this paper are summarized below:

• To introduce a novel integral transform coined as the quaternion quadratic-phase
Fourier transform.

• To establish the fundamental relationship between the proposed transform (Q-
QPFT) and the quaternion Fourier transform (QFT).

• To study the fundamental properties of the proposed transform, including the par-
seval’s formula, inversion formula, shift and modulation.

• To formulate several classes of uncertainty principles, such as the Heisenberg UP
and the logarithmic UP associated with the quaternion quadratic-phase Fourier
transform.



• To formulate the Hardy’s, Beurling’s and Donoho-Stark’s uncertainty principles
for the Q-QPFT.

1.2. Paper Outlines.

The paper is organized as follows: In Section 2, we give a brief review to the quaternion
algebra and summarize some definitions and results of two-sided QFT useful in the sequel.
The definition and the properties of the novel Q-QPFT are studied in Section 3. In Section
4, we establish some different forms of uncertainty principles (UPs) for the two-sided Q-
QPFT which including Heisenberg-type UP, logarithmic UP, Hardy’s UP, Beurling’s UP,
and Donoho-Stark’s UP . Finally, a conclusion is drawn in Section 5.

2. Preliminary

In this section, we give a brief review to the quaternion algebra and summarize some
definitions and results of two-sided QFT which will be needed throughout the paper.

2.1. Quaternion.

Hamilton introduced the 4-D quaternion algebra in 1843 denoted by H in his honor,

H = {q = [q]0 + i[q]1 + j[q]2 + k[q]3, [q]i ∈ R, i = 0, 1, 2, 3},

which has three imaginary units {i, j, k} and obey Hamilton’s multiplication rules: i2 =
j2 = k2 = ijk = −1, ij = −ji = k. Let [q]0 and q

¯
= i[q]1 + j[q]2 + k[q]3 be the real

scalar part and the vector part of quaternion number q ∈ H. The conjugate of quaternion
number q ∈ H is given by

q = [q]0 − i[q]1 − j[q]2 − k[q]3

and its norm is defined as

|q| =
√

qq =
√

[q]20 + [q]21 + [q]22 + [q]23.

Also it is easy to check that

|pq| = |p||q|, p, q ∈ H.

Moreover the real scalar part has a cyclic multiplication symmetry

[pqr]0 = [qrp]0 = [rpq]0, ∀p, q, r ∈ H. (2.1)

The inner product of quaternion functions f, g on R2 with values in H is defined as follows:

〈f, g〉 =
∫

R2

f(x)g(x)dx, dx = dx1dx2,

with symmetric real scalar part

〈f, g〉 = 1

2
[(f, g) + (g, f)] =

∫

R2

[

f(x)g(x)
]

0
dx. (2.2)

And for f = g, we obtain the L2(R2,H)−norm:

‖f‖ =

(
∫

R2

|f(x)|2dx
)1/2

. (2.3)



2.2. Quaternion Fourier transform.

The QFT plays a vital role in signal processing and color imaging. There are three
different types of QFT, the left-sided QFT, the two-sided QFT and the right-sided QFT.
Here our focus will be on two-sided QFT (in the rest of paper QFT means two-sided
QFT).

Definition 2.1 (QFT [29]). The two-sided QFT of a quaternion signal f ∈ L1(R2,H) is
defined by

FH[f ](w) =

√

1

(2π)2

∫

R2

e−ix1w1f(x)e−jx2w2dx, (2.4)

and corresponding inverse QFT is given by

f(x) =

√

1

(2π)2

∫

R2

eix1w1FH[f ](w)ejx2w2dw, (2.5)

where x = (x1, x2) and w = (w1, w2).

Lemma 2.1 (QFT Parseval [7]). The quaternion product of f, g ∈ L1(R2,H)∩L2(R2,H)
and its QFT are related by

〈f, g〉L2(R2,H) = 〈FH[f ],FH[g]〉L2(R2,H). (2.6)

In particular if f = g we get the quaternion version of the Plancherel formula; that is,

‖f‖2L2(R2,H) = ‖FH[f ]‖L2(R2,H). (2.7)

Lemma 2.2. [36] If 1 ≤ p ≤ 2 and letting 1
p
+ 1

q
, for all f ∈ Lp(R2,H), then it holds

‖FH‖q ≤ (2π)
1
q
− 1

p‖f‖p. (2.8)

3. Quaternion Quadratic-Phase Fourier Transform

In this section we extend the definition of QPFT (1.1) to the 2D quaternionic signals
and then based on the definition of the QFT (2.1), we define the novel quaternion QPFT
of 2D quaternionic signals and establish several fundamental properties associated with
the proposed Q-QPFT.

3.1. QPFTs and Q-QPFT of 2D Quaternionic Signals.

Definition 3.1 (QPFTs of 2D Quaternionic Signals). Let µs = (as, bs, cs, ds, es), as, bs, cs, ds, es ∈
R and bs 6= 0 for s = 1, 2. Then the left-sided and right-sided QFTs of 2D quaternion
signals f ∈ L2(R2,H) are defined by

Qi
l,µ[f ](w1, x2) =

∫

R2

Λi
µ1
(x1, w1)f(x1, x2)dx1, (3.1)

Qj
r,µ[f ](x1, w2) =

∫

R2

f(x1, x2)Λ
j
µ2
(x2, w2)dx2, (3.2)

where the kernels are given by

Λi
µ1
(x1, w1) =

√

b1i

2π
e−i(a1x2

1+b1x1w1+c1w2
1+d1x1+e1w1), (3.3)

Λj
µ2
(x2, w2) =

√

b2j

2π
e−j(a2x2

2+b2x2w2+c2w2
2+d2x2+e2w2), (3.4)

respectively.



Theorem 3.1 (Plancherel Theorem for right-sided QPFT). Let f, g ∈ L1 ∩ L2(R2,H),
then

〈f, g〉L2(R2,H) = 〈Qj
r[f ],Q

j
r[g]〉L2(R2,H). (3.5)

And for f = g, we get the Parseval theorem as

‖f‖2L2(R2,H) = ‖Qj
r[f ], ‖2L2(R2,H). (3.6)

Proof. Proof of the above theorem follows from the one-dimensional case. �

Now, we introduce the quaternionic quadratic-phase Fourier transforms (Q-QPFTs).
Due to the noncommutative property of multiplication of quaternions, there are many
different types of Q-QPFTs: two-sided Q-QPFTs, left-sided Q-QPFTs, and right-sided
Q-QPFTs.

Definition 3.2 (Q-QPFTs of 2D Quaternionic Signals). Let µs = (as, bs, cs, ds, es),
as, bs, cs, ds, es ∈ R and bs 6= 0 for s = 1, 2. Then the two-sided Q-QPFT, right-sided
Q-QPFT and left-sided Q-QPFT of signals f ∈ L1(R2,H) are defined by

Q
i,j
T,µ1,µ2

[f ](w) =

∫

R2

Λi
µ1
(x1, w1)f(x)Λ

j
µ2
(x2, w2)dx, (3.7)

Q
i,j
R,µ1,µ2

[f ](w) =

∫

R2

f(x)Λi
µ1
(x1, w1)Λ

j
µ2
(x2, w2)dx, (3.8)

Q
i,j
L,µ1,µ2

[f ](w) =

∫

R2

Λi
µ1
(x1, w1)Λ

j
µ2
(x2, w2)f(x)dx, (3.9)

respectively. Where w = (w1, w2) ∈ R2, x = (x1, x2) ∈ R2 and Λi
µ1
(x1, w1) and Λj

µ2
(x2, w2)

are quaternion kernel signals given by (3.3)and (3.4).

The following lemma gives the relationship between various types of Q-QPFTs.

Lemma 3.1. For f ∈ L1(R4,H), the two-sided Q-QPFT of a signal f can be written as
sum of the two right-sided or left-sided Q-QPFT as:

Q
j,i
T,µ1,µ2

[f ] = Q
j,i
L,µ1,µ2

[fp] +Q
j,−i
L,µ1,µ2

[fq]j, (3.10)

Q
i,j
T,µ1,µ2

[f ] = Q
i,j
R,µ1,µ2

[fp] +Q
i,j
R,µ1,µ2

[fq]j, (3.11)

where f = fp + fqj, fp = f0 + if1, f0, f1 ∈ R.

Proof. Proof of above lemma follows by the procedure of Lemma 2.3 in [42]. �

Remark 3.2. The Lemma 3.1 assures that it is sufficient to study two-sided Q-QPFT, as
the analogue results for left-sided Q-QPFT or right-sided Q-QPFT can be deduced from
(3.10) and (3.10).

3.2. Two-sided Q-QPFT. In this subsection we study the two-sided Q-QPFT (for sim-
plicity of notation we write the Q-QPFT instead of the two-sided Q-QPFT). First we
recall the definition of Q-QPFT (3.7) and present an example for the lucid illustration
of the proposed transform, then we show that Q-QPFT can be reduced to the two-sided
QFT. Finally, we conclude this subsection with the properties of the Q-QPFT which are
vital for signal processing.

Definition 3.3 (Q-QPFT). Let µs = (as, bs, cs, ds, es) for s = 1, 2, then the two-sided
Q-QPFT of signals f ∈ L1(R2,H) is denoted by QH

µ1,µ2
[f ] and defined as

QH
µ1,µ2

[f ](w) =

∫

R2

Λi
µ1
(x1, w1)f(x)Λ

j
µ2
(x2, w2)dx, (3.12)



where w = (w1, w2) ∈ R2, x = (x1, x2) ∈ R2 and Λi
µ1
(x1, w1) and Λj

µ2
(x2, w2) are quater-

nion kernel signals given by (3.3)and (3.4), respectively.
Where as, bs, cs, ds, es ∈ R, bs 6= 0 and s = 1, 2.

Remark 3.3. By appropriately choosing parameters in µs = (as, bs, cs, ds, es), s = 1, 2 the
Q-QPFT(3.12) includes many well-known linear transforms as special cases:

• For µs = (0,−1, 0, 0, 0), s = 1, 2, the Q-QPFT (3.12) boils down to the Quaternion-
Fourier Transform [29].

• As a special case, when µs = (as, bs, cs, 0, 0), s = 1, 2 the Q-QPFT (3.12)can be
viewed as the Quaternion Linear Canonical Transform [33].

• For µs = (cot θ,− csc θ, cot θ, 0, 0), s = 1, 2 the the Q-QPFT (3.12) leads to the
two-sided FrQFT [36].

We now present an example for the lucid illustration of the proposed quaternion
quadratic-phase Fourier transform (3.12)

Example 3.1. Consider a 2D Gaussian quaternionic function f(x) = e−(k1x2
1+k22), with

k1, k2 ≥ 0.

Then by definition of Q-QPFT, we have

QH
µ1,µ2

[f ](w)

=

∫

R2

√

b1i

2π
e−i(a1x2

1+b1x1w1+c1w2
1+d1x1+e1w1)e−(k1x2

1+k22)

×
√

b2j

2π
e−j(a2x2

2+b2x2w2+c2w2
2+d2x2+e2w2)dx

=

√

b1i

2π

∫

R

e−i(a1x2
1+b1x1w1+c1w2

1+d1x1+e1w1)e−k1x2
1dx1

×
√

b2j

2π

∫

R

e−j(a2x2
2+b2x2w2+c2w2

2+d2x2+e2w2)e−k2x2
2dx2

=

√

b1i

2π
e−i(c1w2

1+e1w1)

∫

R

e−i(a1x2
1+b1x1w1+d1x1)e−k1x2

1dx1

×
√

b2j

2π
e−j(c2w2

2+e2w2)

∫

R

e−j(a2x2
2+b2x2w2+d2x2)e−k2x2

2dx2

=

√

b1i

2π
e−i(c1w2

1+e1w1)

∫

R

e−i[a1x2
1+(b1w1+d1)x1]e−k1x2

1dx1

×
√

b2j

2π
e−j(c2w2

2+e2w2)

∫

R

e−j[a2x2
2+(b2w2+d2)x2]e−k2x2

2dx2

=

√

b1i

2π
e−i(c1w2

1+e1w1)

∫

R

e
−(k1+ia1)

[

x1+i
b1w1+d1
2(k1+ia1)

]2

dx1e
− (b1w1+d1)

2

4(k1+ia1)

×
√

b2j

2π
e−j(c2w2

2+e2w2)

∫

R

e
−(k2+ja2)

[

x2+j
b2w2+d2
2(k2+ja2)

]2

dx2e
− (b2w2+d2)

2

4(k2+ja2) .



Using
∫

R
e−z(x+z′)2dx =

√

π
z
, for z, z′ ∈ C(Gaussian integral) in above equation ,we im-

mediately obtain

QH
µ1,µ2

[f ](w)

=

√

b1i

2π
e−i(c1w2

1+e1w1)

√

π

k1 + ia1
e
− (b1w1+d1)

2

4(k1+ia1)

×
√

b2j

2π
e−j(c2w2

2+e2w2)

√

π

k2 + ja2
e
− (b2w2+d2)

2

4(k2+ja2)

= e−i(c1w2
1+e1w1)

√

b1i

2(k1 + ia1)
e
− (b1w1+d1)

2

4(k1+ia1)

×e−j(c2w2
2+e2w2)

√

b2j

2(k2 + ja2)
e
− (b2w2+d2)

2

4(k2+ja2) .

Now we gave the fundamental relationship between the proposed Q-QPFT and the
QFT.

Theorem 3.4. The Q-QPFT (3.12) of a quaternion signal f ∈ L1(R2,H) can be reduced
to the QFT

FH[Gf ](w) =
1

√

(2π)2

∫

R2

e−ix1w1Gf(x)e
−jx2w2dx, (3.13)

where

FH[Gf ](w) = F
(w

b

)

,

Gf(x) =
√

b1if̃(x)
√

b2j, (3.14)

f̃(x) = e−i(a1x2
1+d1x1)f(x)e−j(a2x2

2+d2x2)

with

F (w) =
1

√

(2π)2

∫

R2

e−ix1b1w1Gf(x)e
−jx2b2w2dx,

F (w) = ei(c1w
2
1+e1w1)QH

µ1,µ2
[f ](w)ej(c2w

2
2+e2w2) (3.15)

Proof. From Definition 3.3, we obtain

QH
µ1,µ2

[f ](w)

=

∫

R2

√

b1i

2π
e−i(a1x2

1+b1x1w1+c1w2
1+d1x1+e1w1)f(x)

×
√

b2j

2π
e−j(a2x2

2+b2x2w2+c2w2
2+d2x2+e2w2)dx

=

√

b1i

2π
e−i(c1w2

1+e1w1)

∫

R2

e−ix1b1w1 f̃(x)dxe−jx2b2w2

√

b2j

2π
e−j(c2w2

2+e2w2)



Then, multiplying both sides of the above equation by ei(c1w
2
1+e1w1)ej(c2w

2
2+e2w2), yields

ei(c1w
2
1+e1w1)QH

µ1,µ2
[f ](w)ej(c2w

2
2+e2w2)

=

√

b1i

2π

∫

R2

e−ix1b1w1 f̃(x)dxe−jx2b2w2

√

b2j

2π

=
1

√

(2π)2

∫

R2

e−ix1b1w1Gf(x)dxe
−jx2b2w2

1
√

(2π)2

= FH[Gf ](bw),

where bw = (b1w1,b2w2). This leads to the desired result.
�

Theorem 3.5 (Inversion formula). Let QH
µ1,µ2

[f ] ∈ L1(R2,H), then every signal f ∈
L1(R2,H) can be reconstructed back by the formula

f(x) =

∫

R2

Λ(x1, w1)Q
H
µ1,µ2

[f ](w)Λ(x2, w2)dw. (3.16)

Proof. By the application of the inversion formula of QFT, we have

Gf (x) =
1

√

(2π)2

∫

R2

eix1w1FH[Gf ](w)ejx2w2dw

=
1

√

(2π)2

∫

R2

eix1w1F
(w

b

)

ejx2w2dw

On setting w = bw, above equation yields

Gf(x) =
b1b2

√

(2π)2

∫

R2

eix1b1w1F (w)ejx2b2w2dw (3.17)

=
b1b2

√

(2π)2

∫

R2

eix1b1w1ei(c1w
2
1+e1w1)QH

µ1,µ2
[f ](w)ej(c2w

2
2+e2w2)ejx2b2w2dw.

Which implies
√

b1ie
−i(a1x2

1+d1x1)f(x)e−j(a2x2
2+d2x2)

√

b2j

=
b1b2

√

(2π)2

∫

R2

ei(b1x1w1+c1w2
1+e1w1)QH

µ1,µ2
[f ](w)ej(b2x2w2+c2w2

2+e2w2)dw. (3.18)

On further simplifying, we have

f(x)

=

∫

R2

√

b1
2πi

ei(a1x
2
1+b1x1w1+c1w2

1+d1x1+e1w1)QH
µ1,µ2

[f ](w)

×
√

b2
2πj

ej(a2x
2
2b2x2w2+c2w2

2+d2x2+e2w2)dw

=

∫

R2

Λ(x1, w1)Q
H
µ1,µ2

[f ](w)Λ(x2, w2)dw.

Which completes the proof. �



Theorem 3.6 (Parseval’s formula). Let f, g ∈ L1(R2,H) ∩ L2(R2,H), be two quaternion
signals, then we have

〈f, g〉L2(R2,H) =
〈

QH
µ1,µ2

[f ],QH
µ1,µ2

[g]
〉

L2(R2,H)
. (3.19)

For f = g, we have

‖f‖2L2(R2,H) = ‖QH
µ1,µ2

[f ]‖2L2(R2,H). (3.20)

Proof. By the Parseval’s formula for the QFT and (2.1), we have

〈Gf , Gg〉 = 〈FH[Gf ],FH[Gg]〉

=

[
∫

R2

FH[Gf ](w)FH[Gg](w)dw

]

0

= |b1b2|
[
∫

R2

FH[Gf ](bw)FH[Gg](bw)dw

]

0

= |b1b2|
[
∫

R2

ei(c1w
2
1+e1w1)QH

µ1,µ2
[f ](w)ej(c2w

2
2+e2w2)

× ei(c1w
2
1+e1w1)QH

µ1,µ2
[g](w)ej(c2w

2
2+e2w2)dw

]

0

= |b1b2|
[
∫

R2

QH
µ1,µ2

[f ](w)QH
µ1,µ2

[g](w)dw

]

0

. (3.21)

Again, we have

〈Gf , Gg〉 =

[
∫

R2

Gf (x)Gg(x)dx

]

0

=

[
∫

R2

√

b1if̃(x)
√

b2j
√

b1ig̃(x)
√

b2jdx

]

0

=

[
∫

R2

|b1b2|f̃(x)g̃(x)dx
]

0

= |b1b2|
[
∫

R2

e−i(a1x2
1+d1x1)f(x)ej(a2x

2
2+d2x2)e−i(a1x2

1+d1x1)g(x)ej(a2x
2
2+d2x2)dx

]

0

= |b1b2|
[
∫

R2

f(x)g(x)dx

]

0

. (3.22)

On comparing (3.21) and (3.22), we get the desired the result.
�

Theorem 3.7 (Linearity property). Let f, g ∈ L2(R2,H), then Q-QPFT is a linear op-
erator namely

QH
µ1,µ2

[αf + βg](w) = QH
µ1,µ2

[αf ](w) +QH
µ1,µ2

[βg](w), (3.23)

for arbitrary real constants α and β.

Proof. We omit proof as it follows from Definition 3.3. �



Theorem 3.8 (Shift property). For any quaternion signal f ∈ L2(R2,H) and for k ∈ R2,
we have

QH
µ1,µ2

[f(x− k)](w)

= e
−i

[

a1k21+d1k1+b1k1w1−4
a21c1

b21
k21−4

a1
b1

c1w1k1−2
a1
b1

k1

]

QH
µ1,µ2

[f ]
(

w + 2
a

b
k
)

×e−j

[

a2k22+d2k2+b2k2w2−4
a22c2

b2
2

k22−4
a2
b2

c2w2k2−2
a2
b2

k2

]

(3.24)

Proof. We have from (3.12)

QH
µ1,µ2

[f(x− k)](w)

=

∫

R2

√

b1i

2π
e−i(a1x2

1+b1x1w1+c1w2
1+d1x1+e1w1)f(x− k)

×
√

b2j

2π
e−j(a2x2

2+b2x2w2+c2w2
2+d2x2+e2w2)dx

By making the change of a variable x− k = y, above equation yields

QH
µ1,µ2

[f(x− k)](w)

=

∫

R2

√

b1i

2π
e−i[a1(y1+k1)2+b1(y1+k1)w1+c1w2

1+d1(y1+k1)+e1w1]f(y)

×
√

b2j

2π
e−j[a2(y2+k2)2+b2(y2+k2)w2+c2w2

2+d2(y2+k2)+e2w2)dy

=

∫

R2

√

b1i

2π
e
−i

[

a1y21+b1
(

w1+2
a1
b1

k1
)

y1+c1
(

w1+2
a1
b1

k1
)2

+d1y1+e1
(

w1+2
a1
b1

k1
)

]

×e−i

[

a1k21+d1k1+b1k1w1−4
a21c1

b2
1

k21−4
a1
b1

c1w1k1−2
a1
b1

k1

]

f(y)

×
√

b2j

2π
e
−j

[

a2y22+b2
(

w2+2
a2
b2

k2
)

y2+c2
(

w2+2
a2
b2

k2
)2

+d2y2+e2
(

w2+2
a2
b2

k2
)

]

×e−j

[

a2k22+d2k2+b2k2w2−4
a22c2

b2
2

k22−4
a2
b2

c2w2k2−2
a2
b2

k2

]

dy

= e
−i

[

a1k21+d1k1+b1k1w1−4
a21c1

b2
1

k21−4
a1
b1

c1w1k1−2
a1
b1

k1

]

×
∫

R2

√

b1i

2π
e
−i

[

a1y21+b1
(

w1+2
a1
b1

k1
)

y1+c1
(

w1+2
a1
b1

k1
)2

+d1y1+e1
(

w1+2
a1
b1

k1
)

]

f(y)

×
√

b2j

2π
e
−j

[

a2y22+b2
(

w2+2
a2
b2

k2
)

y2+c2
(

w2+2
a2
b2

k2
)2

+d2y2+e2
(

w2+2
a2
b2

k2
)

]

dy

×e−j

[

a2k22+d2k2+b2k2w2−4
a22c2

b22
k22−4

a2
b2

c2w2k2−2
a2
b2

k2

]

= e
−i

[

a1k21+d1k1+b1k1w1−4
a21c1

b2
1

k21−4
a1
b1

c1w1k1−2
a1
b1

k1

]

×QH
µ1,µ2

[f ]

(

w1 + 2
a1
b1
k1, w2 + 2

a2
b2
k2

)

×e−j

[

a2k22+d2k2+b2k2w2−4
a22c2

b2
2

k22−4
a2
b2

c2w2k2−2
a2
b2

k2

]

.



Which completes the proof. �

Theorem 3.9 (Modulation property). The quaternion quadratic-phase Fourier transform
(3.12) of a modulated quaternion signal Mw0

f(x) = eix1u0f(x)ejx2v0 ,w0 = (u0, v0) is
given by

QH
µ1,µ2

[Mw0
f ](w) = e

i

[

c1u
2
0−2b1c1u0w1−b1e1u0

b21

]

QH
µ1,µ2

[f ]
(

w − w0

b

)

×ej
[

c2v
2
0−2b2c2v0w2−b2e2v0

b22

]

. (3.25)

Proof. From Definition 3.3, we get

QH
µ1,µ2

[Mw0
f ](w) =

∫

R2

√

b1i

2π
e−i(a1x2

1+b1x1w1+c1w2
1+d1x1+e1w1)eix1u0f(x)ejx2v0

×
√

b2j

2π
e−j(a2x2

2+b2x2w2+c2w2
2+d2x2+e2w2)dx

=

∫

R2

√

b1i

2π
e
−i

[

a1x2
1+b1x1

(

w1−u0
b1

)

+c1
(

w1−u0
b1

)2
+d1x1+e1

(

w1−u0
b1

)

]

×ei
[

c1
u20
b2
1
−2c1

u0
b1

w1−e1
u0
b1

]

f(x)e
j

[

c2
u20
b2
2
−2c2

u0
b2

w2−e2
u0
b2

]

√

b2j

2π
e
−j

[

a2x2
2+b2x2

(

w2−u0
b2

)

+c2
(

w2−u0
b2

)2
+d2x2+e2

(

w2−u0
b2

)

]

dx

= e
i

[

c1
u20
b2
1
−2c1

u0
b1

w1−e1
u0
b1

]

×
∫

R2

√

b1i

2π
e
−i

[

a1x2
1+b1x1

(

w1−u0
b1

)

+c1
(

w1−u0
b1

)2
+d1x1+e1

(

w1−u0
b1

)

]

f(x)

×
√

b2j

2π
e
−j

[

a2x2
2+b2x2

(

w2−u0
b2

)

+c2
(

w2−u0
b2

)2
+d2x2+e2

(

w2−u0
b2

)

]

dx

×ej
[

c2
u20
b2
2
−2c2

u0
b2

w2−e2
u0
b2

]

= e
i

[

c1
u20
b2
1
−2c1

u0
b1

w1−e1
u0
b1

]

QH
µ1,µ2

[f ]

(

w1 −
u0
b1
, w2 −

v0
b2

)

×ej
[

c2
u20
b2
2
−2c2

u0
b2

w2−e2
u0
b2

]

.

Which completes the proof. �

We omit properties like Reflection, Conjugation and Scaling as they directly follows
from Definition 3.3.

Theorem 3.10 (Hausdorff-Young). Let 1 ≤ p ≤ 2 and 1
p
+ 1

q
= 1, then for all f ∈

Lp(R2,H) following inequality holds

‖QH
µ1,µ2

[f ]‖q ≤ (2π)
1
q
− 1

p |b1b2|
1
2
− 1

q ‖f(x)‖p. (3.26)

Proof. From Lemma 2.2, we have

‖FH[f ](w)‖q ≤ (2π)
1
q
− 1

p‖f(x)‖p.
Replacing f by Gf , we have from above equation

‖FH[Gf ](w)‖q ≤ (2π)
1
q
− 1

p‖Gf(x)‖p.



With the help of equations present in Theorem 3.4, above yields
∥

∥

∥
F
(w

b

)
∥

∥

∥

q
≤ (2π)

1
q
− 1

p‖
√

b1if̃(x)
√

b2j‖p.

On substituting w = bw, we get

|b1b2|
1
q ‖F (w)‖q ≤ (2π)

1
q
− 1

p

√

b1b2‖f̃(x)‖p.
Again using Theorem 3.4, we obtain

|b1b2|
1
q

∥

∥QH
µ1,µ2

[f ](w)
∥

∥

q
≤ (2π)

1
q
− 1

p

√

b1b2‖f(x)‖p.

Further simplification yields
∥

∥QH
µ1,µ2

[f ](w)
∥

∥

q
≤ (2π)

1
q
− 1

p |b1b2|
1
2
− 1

q ‖f(x)‖p.

Which completes the proof. �

4. Uncertainty Principles Associated with the Quaternion-QPFT

In this section based on the fundamental relationship between Q-QPFT and QFT, we
investigate some different forms of UPs associated with Q-QPFT including Heisenberg
UP, logarithmic UPs, Hardy’s UP, Beurling’s UP, and Donoho-Stark’s UP.

Lets begin with the Heisenberg type uncertainty principle for the proposed transform
(Q-QPFT), which is a generalization of the corresponding Heisenberg’s uncertainty prin-
ciple for the QFT.

Theorem 4.1 (Heisenberg UP for the Q-QPFT). Let QH
µ1,µ2

[f ] be the quaternion quadratic-

phase Fourier transform of signal f, then for f ∈ L1(R2,H) ∩ L2(R2,H), ∂f/∂xs ∈
L2(R2,H) and QH

µ1,µ2
[f ], wsQ

H
µ1,µ2

[f ] ∈ L2(R2,H), s = 1, 2. The following inequality holds:

∫

R2

x2s |f(x)|2 dx
∫

R2

w2
s |QH

µ1,µ2
[f ](w)|2dw ≥ 1

4b2s

(
∫

R2

|f(x)|2
)2

, s = 1, 2. (4.1)

Proof. The classical Heisenberg uncertainty principle in the QFT domain is given by [43]
∫

R2

x2s|f(x)|2dx
∫

R2

w2
s |FH[f ](w)|2dw ≥ 1

4

(
∫

R2

|f(x)|2
)2

, s = 1, 2. (4.2)

Replacing f by Gf in (4.2), we have
∫

R2

x2s|Gf(x)|2dx
∫

R2

w2
s |FH[Gf ](w)|2dw ≥ 1

4

(
∫

R2

|Gf(x)|2
)2

. (4.3)

On substituting w = bw, (4.3) yields
∫

R2

x2s|Gf(x)|2dx
∫

R2

b2sw
2
s |b1b2||FH[Gf ](bw)|2dw ≥ 1

4

(
∫

R2

|Gf(x)|2
)2

. (4.4)

Using equations present in Theorem 3.4 in (4.4), we get
∫

R2

x2s|
√

b1if̃(x)
√

b2j|2dx
∫

R2

b2sw
2
s |b1b2||ei(c1w

2
1+e1w1)QH

µ1,µ2
[f ](w)ej(c2w

2
2+e2w2)|2dw

≥ 1

4

(
∫

R2

|
√

b1if̃(x)
√

b2j|2
)2

, (4.5)



Which implies
∫

R2

|b1b2|x2s|f̃(x)|2dx
∫

R2

b2sw
2
s |b1b2||QH

µ1,µ2
[f ](w)|2dw ≥ |b1b2|2

4

(
∫

R2

|f̃(x)|2
)2

.

Hence,

|b1b2|2
∫

R2

x2s

∣

∣

∣
e−i(a1x2

1+d1x1)f(x)e−j(a2x2
2+d2x2)

∣

∣

∣

2

dx

∫

R2

b2sw
2
s |QH

µ1,µ2
[f ](w)|2dw

≥ |b1b2|2
4

(
∫

R2

∣

∣

∣
e−i(a1x2

1+d1x1)f(x)e−j(a2x2
2+d2x2)

∣

∣

∣

2
)2

.

Equivalently

|b1b2|2
∫

R2

x2s |f(x)|2 dx
∫

R2

b2sw
2
s |QH

µ1,µ2
[f ](w)|2dw ≥ |b1b2|2

4

(
∫

R2

|f(x)|2
)2

. (4.6)

Simplifying (4.6), we obtain
∫

R2

x2s |f(x)|2 dx
∫

R2

w2
s |QH

µ1,µ2
[f ](w)|2dw ≥ 1

4b2s

(
∫

R2

|f(x)|2
)2

.

Which completes the proof.
�

The directional uncertainty principle for the Q-QPFT takes the following form

Theorem 4.2. Let f ∈ L1(R2,H)∩L2(R2,H) and for QH
µ1,µ2

[f ], |w|2QH
µ1,µ2

[f ] ∈ L2(R2,H),
we have, the following inequality:

∫

R2

|x|2 |f(x)|2 dx
∫

R2

|w|2|QH
µ1,µ2

[f ](w)|2dw ≥ 1

|b|2
(
∫

R2

|f(x)|2
)2

. (4.7)

Proof. The directional uncertainty principle in the QFT domain reads [Theorem 16 [42]]

∫

R2

|x|2 |f(x)|2 dx
∫

R2

|w|2|FH[f ](w)|2dw ≥
(
∫

R2

|f(x)|2
)2

. (4.8)

Now using the machinery of previous theorem in (4.8), we will get the desired result (4.7).
�

Next, using Logarithmic uncertainty principle for the QFT, we establish Logarithmic
uncertainty principle for the proposed Q-QPFT.

Theorem 4.3 (Logarithmic UP for the Q-QPFT). Let QH
µ1,µ2

[f ] be the quaternion quadratic-

phase Fourier transform of signal f ∈ S(R2,H)[Schwartz space]. Then we have the fol-
lowing logarithmic inequality

∫

R2

ln |x| |f(x)|2 dx+

∫

R2

ln |w|
∣

∣QH
µ1,µ2

[f ](w)
∣

∣

2
dw ≥ (D − ln |b|)

∫

R2

|f(x)|2 dx. (4.9)

Proof. For any f ∈ S(R2,H), the logarithmic uncertainty principle for the two-sided
quaternion Fourier transform reads [Lemma 3.1 [36]]

∫

R2

ln |x||f(x)|2dx+

∫

R2

ln |w|
∣

∣FH[f ](x)
∣

∣

2
dw ≥ D

∫

R2

|f(x)|2dx, (4.10)



where D = ln(2π2)− 2ψ(1/2), ψ = d
dt
(ln(Γ(x))) and Γ(x) is a Gamma function.

Replacing f by Gf defined in Theorem 3.4 on both sides of (3.1), we have
∫

R2

ln |x||Gf(x)|2dx+

∫

R2

ln |w|
∣

∣FH[Gf ](w)
∣

∣

2
dw ≥ D

∫

R2

|Gf(x)|2dx. (4.11)

On substituting w = bw, (4.11) yields
∫

R2

ln |x||Gf(x)|2dx+ |b1b2|
∫

R2

ln |bw|
∣

∣FH[Gf ](bw)
∣

∣

2
dw ≥ D

∫

R2

|Gf(x)|2dx. (4.12)

By the equations present in Theorem 3.4, (4.12) yields
∫

R2

ln |x|
∣

∣

∣

√

b1if̃(x)
√

b2j
∣

∣

∣

2

dx

+|b1b2|
∫

R2

ln |bw|
∣

∣

∣
ei(c1w

2
1+e1w1)QH

µ1,µ2
[f ](w)ej(c2w

2
2+e2w2)

∣

∣

∣

2

dw

≥ D

∫

R2

∣

∣

∣

√

b1if̃(x)
√

b2j
∣

∣

∣

2

dx (4.13)

Further simplifying (4.13), we obtain

|b1b2|
∫

R2

ln |x| |f(x)|2 dx+ |b1b2|
∫

R2

ln |bw|
∣

∣QH
µ1,µ2

[f ](w)
∣

∣

2
dw

≥ D|b1b2|
∫

R2

|f(x)|2 dx.

Which implies
∫

R2

ln |x| |f(x)|2 dx+

∫

R2

ln |b|
∣

∣QH
µ1,µ2

[f ](w)
∣

∣

2
dw

+

∫

R2

ln |w|
∣

∣QH
µ1,µ2

[f ](w)
∣

∣

2
dw ≥ D

∫

R2

|f(x)|2 dx. (4.14)

By applying Parseval’s identity (3.20) to (4.14), we obtain
∫

R2

ln |x| |f(x)|2 dx+

∫

R2

ln |w|
∣

∣QH
µ1,µ2

[f ](w)
∣

∣

2
dw

≥ (D − ln |b|)
∫

R2

|f(x)|2 dx.

Which completes the proof.
�

In continuation, we shall derive the Hardy’s uncertainty principle for the quaternion
quadratic-phase Fourier transform (3.12). We first recall Hardy’s uncertainty principle
for the QFT.

Lemma 4.1 (Hardy’s UP for the two-sided QFT [30] ). Let α and β be positive constants.
For f(t) ∈ L2(R2,H), if

f(x) ≤ ce−α|x|2 and |FH[f ](w)| ≤ c′e−β|w|2, u,w ∈ R2

with some positive constants c,c’.Then, there are the following three cases to occur:
(1)if αβ > 1

4
, then f(x) ≡ 0;

(2)if αβ = 1
4
, then f(x) = ke−α|x|, for any constant k

(3)if αβ < 1
4
, then there are many infinite such functions f(x).



Motivated and inspired by Hardy’s UP for the two-sided QFT, we establish Hardy’s
UP for the Q-QPFT.

Theorem 4.4 (Hardy’s UP for the Q-QPFT). Let α and β be positive constants. For
f(t) ∈ L2(R2,H), if

f(x) ≤ Ce−α|x|2 and
∣

∣QH
µ1,µ2

[f ](w
b
)
∣

∣ ≤ C ′e−β|w|2, u,w ∈ R2

with some positive constants C,C’.Then, there are the following three cases to occur:
(1)if αβ > 1

4
, then f(x) ≡ 0;

(2)if αβ = 1
4
, then f(x) = ei(a1x

2
1+d1x1)Ke−α|x|ej(a2x

2
2+d2x2), for any constant K;

(3)if αβ < 1
4
, then there are many infinite such functions f(x).

Proof. Assuming f = Gf defined in Theorem 3.4, it follows that

|Gf(x)| ≤ ce−α|x|2 x ∈ R2 (4.15)

and

|FH[Gf ](w)| ≤ c′e−β|w|2 w ∈ R2. (4.16)

Thus by Lemma 4.1,there are the following three cases to occur:
(1)if αβ > 1

4
, then Gf(x) ≡ 0;

(2)if αβ = 1
4
, then Gf(x) = ke−α|x|, for any real constant k

(3)if αβ < 1
4
, then there are many infinite such functions Gf(x).

Now it is clear from Theorem 3.4 and equations (4.15),(4.16) that

|Gf(x)| =
√

b1|f(x)|
√

b2 ≤ ce−α|x|2 x ∈ R2 (4.17)

and

|FH[Gf ](w)| =
∣

∣

∣
QH

µ1,µ2
[f ](

w

b
)
∣

∣

∣
≤ c′e−β|w|2 w ∈ R2. (4.18)

From (4.17)and (4.18), we have

|f(x)| ≤ Ce−α|x|2 u ∈ R2 and
∣

∣QH
µ1,µ2

[f ](w
b
)
∣

∣ ≤ C ′e−β|w|2, w ∈ R2

where C = c√
b1b2

and C = c′. Thus we have following conclusions:

(1)if αβ > 1
4
, then f(x) ≡ 0 for Gf (x) ≡ 0;

(2)if αβ = 1
4
, it yields f(x) = ei(a1x

2
1+d1x1)Ke−α|x|ej(a2x

2
2+d2x2), where K = 1√

b1i
k 1√

b2j
owing

to Theorem 3.4.
(3)if αβ < 1

4
, then it is clear there are many infinite such functions f(x). �

Which completes the proof.

Now, using the relationship between the proposed transform (Q-QPFT) and QFT, we
obtain Beurling’s uncertainty principle for the Q-QPFT. First we recall the Beurling’s
uncertainty principle for the QFT.

Lemma 4.2 (Beurling’s UP for the two-sided QFT [31]). Let f(x) ∈ L2(R2,H) and d ≥ 0
such that

∫

R2

∫

R2

|f(x)|
∣

∣FH[f ](w)
∣

∣

(1 + |x|+ |w|)d e|x||w|dx
¯
dw <∞,

then f(x) = P (x)e−k|x|2, where k > 0 and P is a polynomial of degree < d−2
2
. In

particular,f = 0 when d ≤ 2.

By applying Theorem 3.4 and Lemma (4.2) , we extend the validity of Beurling’s UP
for the Q-QPFT.



Theorem 4.5 (Beurling’s UP for the Q-QPFT ). Let f(x) ∈ L2(R2,H) and d ≥ 0
satisfying

∫

R2

∫

R2

|f(x)|
∣

∣QH
µ1,µ2

[f ](w)
∣

∣

(1 + |x|+ |bw|)d e|x||bw|dxdw <∞,

then f(x) = ei(a1x
2
1+d1x1)P ′(x)e−k|x|2ej(a2x

2
2+d2x2), where k > 0 and P ′(x) = 1√

b1i
P (x) 1√

b2j

is a polynomial of degree < d−2
2
. In particular,f = 0 when d ≤ 2.

Proof. If we take f = Gf as defined in Theorem 3.4, then it follows that

∫

R2

∫

R2

|Gf(x)|
∣

∣FH[Gf ](w)
∣

∣

(1 + |x|+ |w|)d e|x||w|dxdw

=

∫

R2

∫

R2

√

b1b2
|f(x)|

∣

∣QH
µ1,µ2

[f ](w
b
)
∣

∣

(1 + |x|+ |w|)d e|x||w|dxdw <∞.

Hence by Lemma 4.2, we must have Gf(x) = P (x)e−k|x|2. Now,

∫

R2

∫

R2

|Gf(x)|
∣

∣FH[Gf ](w)
∣

∣

(1 + |x|+ |w|)d e|x||w|dx
¯
dw

=

∫

R2

∫

R2

√

b1b2
|f(x)|

∣

∣QH
µ1,µ2

[f ](w
b
)
∣

∣

(1 + |x|+ |w|)d e|x||w|dxdw

= (b1b2)
3
2

∫

R2

∫

R2

|f(x)|
∣

∣QH
µ1,µ2

[f ](w)
∣

∣

(1 + |x|+ |bw|)d e|x||bw|dxdw

<∞.

As b1, b2 are finite real numbers, therefore we can write
∫

R2

∫

R2

|f(x)|
∣

∣QH
µ1,µ2

[f ](w)
∣

∣

(1 + |x|+ |bw|)d e|x||bw|dxdw <∞.

Since Gf(x) =
√
b1if̃(x)

√
b2j =

√
b1ie

−i(a1x2
1+d1x1)f(x)e−j(a2x2

2+d2x2)
√
b2j, which implies

f(x) = ei(a1x
2
1+d1x1)P ′(x)e−k|x|2ej(a2x

2
2+d2x2). In particular,f = 0 on account Gf(x) = 0

when d ≤ 2. �

Which completes the proof.

Towards the end of this section, we establish Donoho-Stark’s uncertainty principle for
the Q-QPFT by considering relationship between the proposed transform (Q-QPFT) and
QFT. Let us begin with the definition.

Definition 4.1. [45]A quaternion function f ∈ L2(R2,H) is said to be ε−concentrated
on a measurable set E ⊆ R2, if

(
∫

R2\E
|f(x)|2dx

)1/2

≤ ε‖f‖2.

Lemma 4.3 (Donoho-Stark’s UP for the two-sided QFT [44, 45]). Let f ∈ L2(R2,H)
with f 6= 0 be εE1−concentrated on E1 ⊆ R2 and FH[f ] be εE2−concentrated on E2 ⊆ R2.
Then

|E1||E2| ≥ 2π(1− εE1 − εE2)
2.



Theorem 4.6 (Donoho-Stark’s UP for the Q-QPFT). Assuming that non-zero signal f
in L2(R2,H) is a εE1−concentrated on E1 ⊆ R2 and QH

µ1,µ2
[f ](w) is εE2−concentrated on

E2 ⊆ R2. Then

|E1||E2| ≥
2π

b
(1− εE1 − εE2)

2.

Proof. By Theorem 3.4, we have
∣

∣

∣
QH

µ1,µ2
[f ](

w

b
)
∣

∣

∣
=

∣

∣FH[Gf ](w)
∣

∣ (4.19)

Since QH
µ1,µ2

[f ](w) is εE2−concentrated on E2 ⊆ R2, therefore (4.19) implies FH[Gf ] is

εE2−concentrated on bE2 ⊆ R2.
Also from (3.14), we have

|Gf(x)| =
√

b1b2|f(x)|. (4.20)

By the given condition f is εE1−concentrated on E1 ⊆ R2,i.e.

(
∫

R2\E1

|f(x)|2dx
)1/2

≤ ε‖f‖2. (4.21)

From (4.20) and (4.21), we obtain
(
∫

R2\E1

|Gf(x)|2dx
)1/2

≤ ε‖Gf‖2.

Which implies Gf ∈ L2(R2,H) is εE1−concentrated on E1 ⊆ R2. Hence we proved that
the function Gf (x) and its QFT FH[Gf ](w) are εE1−concentrated on E1 ⊆ R2 and
εE2−concentrated on bE2 ⊆ R2, respectively. Therefore by Lemma 4.3, we have

|E1||bE2| ≥ 2π(1− εE1 − εE2)
2,

so that

|E1||E2| ≥
2π

|b|(1− εE1 − εE2)
2,

Which completes the proof. �

5. Conclusion

In the study, we have accomplished three major objectives: first, we have introduced the
notion of quaternion quadratic-phase Fourier transform (Q-QPFT). Second, we establish
the fundamental properties of the proposed transform, including the parseval’s formula,
inversion formula, shift and modulation by using the fundamental relationship between
Q-QPFT and QFT. Third, we investigate some different forms of UPs associated with
Q-QPFT including Heisenberg UP, logarithmic UPs, Hardy’s UP, Beurling’s UP, and
Donoho-Stark’s UP. In our future works we shall study the short-time quadratic-phase
Fourier transform in the quaternion setting.
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