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Abstract. Recent works have demonstrated the experimental feasibility
of real-time gene expression control based on deterministic controllers.
By taking control of the level of intracellular proteins, one can probe
single-cell dynamics with unprecedented flexibility. However, single-cell
dynamics are stochastic in nature, and a control framework explicitly ac-
counting for this variability is presently lacking. Here we devise a stochas-
tic control framework, based on Model Predictive Control, which fills
this gap. Based on a stochastic modelling of the gene response dynam-
ics, our approach combines a full state-feedback receding-horizon con-
troller with a real-time estimation method that compensates for unob-
served state variables. Using previously developed models of osmostress-
inducible gene expression in yeast, we show in silico that our stochastic
control approach outperforms deterministic control design in the regu-
lation of single cells. The present new contribution leads to envision the
application of the proposed framework to wetlab experiments on yeast.

1 Introduction

Gene expression plays a central role in the orchestration of cellular processes.
The use of inducible promoters to change the expression level of a gene from
its physiological level has significantly contributed to the understanding of the
functioning of regulatory networks. Whereas the precise time-varying perturba-
tion of the level of a target protein has the potential to be highly informative
on the functioning of cellular processes, so far inducible promoters have been
used for either static perturbations or simple dynamic perturbations with lim-
ited accuracy (see [14] for a notable exception). Alternative solutions, based on
real-time control, have recently been proposed [11, 12, 16, 18]. In real-time, the
level of the protein is observed and gene induction is modulated based on the dis-
tance to the objective. Thanks to the implementation of such external feedback
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loops, one can maintain the mean level of a fluorescent protein at some tar-
get value over extended time durations (set point experiments) and even follow
time-varying profiles with good quantitative accuracy (tracking experiments).
However, because of the significant cell-to-cell variability and the stochasticity
of gene expression, even if the mean level of the protein follows precisely the
objective, the performance of the controller is significantly worse when applied
and measured at the single cell level. Yet if one wants to understand the effect of
a perturbation of the level of a protein on a given process, one needs to control
the level of this protein at the single cell level, that is, one needs to perform
single cell control.

In [18] we have shown that single cell control is indeed effective: we have
obtained better control performances when controlling single cells individually
than when controlling the mean of the cell population. This slightly improved
performance has been obtained by controlling the level of a particular, randomly-
chosen cell using a deterministic model of gene expression. Given the stochastic-
ity of cellular processes, one might wonder whether better control performances
can be obtained by using a more appropriate stochastic model of gene expres-
sion. This question is actually not trivial: while the stochastic model is supposed
to be closer to reality, it requires the use of complex controller architectures and
the solution of computationally challenging optimization problems under tight
time constraints.

In this work we investigate to what extent stochastic control techniques out-
perform more traditional deterministic control approaches. To do so, we con-
sider a stochastic model of gene expression at the single cell level, alongside its
deterministic counterpart, and develop state estimators and controllers for de-
terministic and stochastic control. We then compare the efficiency of the two
approaches for set point regulation and tracking control in in silico experiments.
Methodologically, in this work we introduce a stochastic receding horizon design
approach of broad applicability, and a generalizable hybrid approach to state
estimation. To our knowledge this is the first work on single cell control that
accounts for gene expression noise.

The paper is structured as follows. In Section 2, we present the biologi-
cal system, alongside the control platform used in [18] that has motivated this
work, as well as the models used, inspired from [8, 21]. In Section 3 we present
control algorithms for deterministic and stochastic control assuming full state
observability, whereas in Section 4 we present a state estimation approach for
stochastic models. The performances of deterministic and stochastic controllers
are compared in Section 5 on two in silico control experiments.

2 Osmostress-induced gene expression in yeast

2.1 Hyper-osmotic stress response in yeast

In the budding yeast S. cerevisiae, an increase of the environmental osmolarity
creates a water outflow and a cell shrinkage. The adaptation response to such
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an osmotic shock is mainly mediated by the high osmolarity glycerol (HOG)
signal transduction pathway, leading to an increase of the cellular glycerol level
via various mechanisms, one of which is the upregulation of genes involved in
glycerol production. In [18], we have used the promoter of the osmoresponsive
gene STL1 to drive the expression of a yellow fluorescent protein, yECitrine,
so as to monitor the gene expression response of the cells to repeated osmotic
stresses (Fig. 1(a)).
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Fig. 1: The experimental setup. (a) Hyperosmotic shocks trigger the activation of the
Hog1 protein and the intracellular accumulation of glycerol via short- and long-term
adaptation responses (grayed). This system can be used to induce the production of
a protein of interest, here a yellow fluorescent protein (YFP), by repeatedly apply-
ing hyperosmotic stresses. (b) Real-time control platform: single-cell and population
control problems are defined respectively as controlling the fluorescence of a single
randomly-chosen cell and the mean fluorescence of all the cells.

2.2 Platform for control of osmostress-induced gene expression

Using microfluidic devices one can grow yeast cells in monolayers over extended
time durations. Because cells can be trapped in imaging chambers, their response
can be tracked by fluorescence microscopy and their environment can be rapidly
changed, thus enabling the repeated application of osmotic shocks (Fig. 1(b)).
The addition of software for image analysis and for state estimation, and the
computation of a control strategy closes the feedback loop. Experiments typically
last 10-15 hours, with fluorescence measurements every 5-10 minutes.

2.3 Modeling osmostress-induced gene expression

We describe the osmostress induced gene expression by the reactions [21]

pSTL1 off c1u−−⇀↽−−
c2

pSTL1 on

pSTL1 on + CR
c3−⇀↽−
c4

CR.pSTL1 on

CR.pSTL1 on
c5−→ CR.pSTL1 on + mRNA

mRNA
c6−→ mRNA + YFP

YFP
c7−→ φ

mRNA
c8−→ φ

(1)
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Here pSTL1 off and pSTL1 on represent the inactive and the active states of the
pSTL1 promoter, respectively. Furthermore, the interaction of pSTL1 on with
chromatin remodeling complexes (CR) enables the formation of the CR.pSTL1 on

complex and the effective transcription of mRNA, and the subsequent produc-
tion of the fluorescent protein YFP. The degradations of the mRNA and the
YFP protein follow first order kinetics. A change in the valve status from OFF
to ON leads to an increase in the osmolarity of the cells environment, in the
activation of the Hog1 protein, and in the increase of the effective input function
u affecting promoter transition rates. The modeling of these processes is detailed
in Appendix A.1, whereas the initial concentrations and the rate coefficients are
listed in Table 2 in Appendix A.2.

A stochastic interpretation of the above reactions leads to a Chemical Mas-
ter Equation (CME) model [6], characterized by a distribution accounting for
the probability that the state of the system (represented by variables denoting
molecular count) at time instant t ∈ R+ is x(t), given its initial state x(0) and
an input signal u(s), s ∈ [0, t]. These stochastic semantics will be employed for
testing the behavior of the model in in silico control experiments: in particu-
lar, we will use (a discrete-time version of) the Stochastic Simulation Algorithm
(SSA) [6] to simulate the model. The dynamics can be approximated by a sys-
tem of coupled deterministic dynamical equations, known as the Reaction Rate
Equations (RRE) [6], operating over the concentrations x of the species as:

ẋ[i](t) =

M∑
j=1

vijaj(x(t), u(t)), i = 1, . . . , N. (2)

Here the quantity M is the total number of reactions and N is the total number
of species (x[i] being the ith). The vector vj := (vij)

N
i=1 is the state change vector

for each reaction Rj : in particular vij represents the stoichiometry coefficients,
defined as the change in the molecular population of a species Si caused by the
reaction Rj . Finally, the coefficients aj(·) are the reaction rates, derived from
the law of mass-action applied to (1): the control input in particular directly
affects the affinity term a1. The model in (2) is employed to synthetise a deter-
ministic controller that will be used as a reference to assess the performances of
the stochastic controller newly developed in this work. For the latter objective,
a second approximation of the CME dynamics is introduced in Section 4, in
order to derive an efficient state estimation scheme developed in the context of
noisy partial observations, which combines the original CME semantics with a
Chemical Langevin Equation (CLE) approximation.

3 Single-cell control with full state information

The control of gene expression is treated as a model-based optimal control prob-
lem. The goal of the control synthesis problem is to track a given profile of
protein concentration over a finite time horizon T . As in [18], we require that
the controller complies with particular timing constraints: the valve should re-
main ON at least 5 minutes and at most 8 minutes, and two stress inputs must
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be separated by at least 20 minutes (see Appendix A.1 for more details). These
constraints are imposed in order to prevent cell adaptation to hyperosmotic en-
vironments.

In this section, the availability of full-state information (namely, knowledge of
the values of all the variables) is assumed. Above we have formulated two models:
a stochastic discrete-state one and a deterministic continuous-state one. For both
cases, a control synthesis architecture based on the classical dynamic program-
ming (DP) paradigm is proposed. As the classical DP suffers from the curse of
dimensionality, we employ an approximate DP method called Fitted Q-Iteration
(FQI) [4, 9], tailored here to the finite-horizon setting. The FQI algorithm applies
the idea of value iteration to the so-called Q-functions: a Q-function approxi-
mation is used in place of a value function approximation, and it allows for an
immediate computation of the optimal actions at each optimisation stage. The
FQI algorithm offers the possibility to employ powerful regression algorithms
from supervised learning to interpolate the Q-function computed over a finite
set of states to cover the entire state space [9].

Optimal controller synthesis via DP For the controller synthesis problem,
we will adopt a discrete time simulation framework. Let us denote the state space
by X, the action space by U , and the space supporting the noise term by W . For
each x ∈ X we denote by U(x) ⊆ U the set of actions enabled at x. A stochastic
discrete-time dynamical system is described by the following difference equation:

xk+1 = f(xk, uk, wk), k = 1, . . . , T − 1, (3)

where xk ∈ X is the state of the system at time k, uk ∈ U(xk) is the action
taken at time k, and wk ∈W is the noise variable with a specified distribution:
let us remark that the recursive dynamics in (3) can be equivalently expressed
by a conditional distribution xk+1 ∼ P (·|xk, uk) [10], which in our instance can
be derived from a discrete-time version of the CME that we have discussed in
the previous section.

A control policy is a sequential decision rule π = (πk)T−1k=0 , where πk : X → U
has to be chosen over admissible controls only: πk(x) ∈ U(x) for all x ∈ X.
The instantaneous cost ck(xk, uk) is comprised within an (expected) additive
performance criterion over a finite time horizon, which for a fixed policy π is
given by

Qπ0 (x0, u0) := E

[
cT (xT ) +

T−1∑
k=0

ck(xk, πk(xk))

]
. (4)

Notice that the terminal cost, cT , depends only on the state variable. In the
following, we shall employ the cost function ck(xk, uk) = |YFPk −YFPref ,k|,
which penalises deviations from the reference profile YFPref ,k, and a null ter-
minal cost cT . We are interested in the policy π∗ that minimizes the cost:

Q∗0(x, u) := inf
π
Qπ0 (x, u) = Qπ

∗

0 (x, u).
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This cost can be obtained via DP by the backward recursion, initialised at the
value cT and propagated as:

Q∗k(x, u) = T Q∗k+1(x, u), (5)

where T is an operator acting on functions H : X × U → R as follows:

T H(x, u) := c(x, u) + inf
u′∈U

EH(f(x, u, w), u′). (6)

An optimal policy can be computed as

π∗k(x) ∈ arg min
u∈U

Q∗k+1(x, u), k = 0, . . . , T − 1. (7)

The Q-iteration in (5)-(7) is computationally unfeasible for problems with ex-
tended state spaces, and in particular with the single-cell control problem we
are dealing with: we approximate its solution by means of a stochastic FQI [9].

FQI for the stochastic model The FQI is a batch-mode algorithm computed
offline, which fits an approximation architecture to the Q-function defined over
X × U using a set of tuples

F = (xi, ui, cij , zij), i = {1, . . . ,mx}, j = {1, . . . ,mz}, (8)

where xi ∈ X is the instance of the current (or reference) state, ui ∈ U(xi) is
the corresponding action, zij ∈ X is a possible successor state under the action
ui, cij is the cost associated with a transition of the state from xi to zij , mx

is the number of current states, mz is the number of successor states that are
needed for the evaluation of the expectation operator in (6) using Monte-Carlo
integration.

We adopt an offline approach, owing to the computational complexity of the
optimisation problem and to the stringent online time requirements. Using the
batch of samples in (8), Algorithm 1 (in the Appendix) computes an approxi-
mation of the Q-function through a backward recursion from time instant T to
1. Each iteration of the algorithm consists of the following two steps:

– In the first step, the backward recursion for the Q-function at time k + 1 is
evaluated using a Monte-Carlo integration. The operator T is approximated
by an empirical operation T̂F as shortly defined in (9): namely the value of
T Q̂k+1 is estimated as T̂F Q̂k+1, for all xi, i = 1, . . . ,mx.

– The second step involves fitting the approximation function Q̂k to T̂F Q̂k+1:
the optimal fit Q̂k is achieved by means of a regression algorithm.

The overall performance and computational complexity of the FQI method
heavily hinges on the choice of the regression algorithm. The supervised learning
paradigm offers a wide range of algorithms that can be used for regression [3].
We have made use of the Fixed-Size Least-Squares Support Vector Machine
(LS-SVM) [5], due to its computational efficiency and its powerful capability
of generalisation. The LS-SVM model provides two parameters for tuning: the
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squared bandwidth σ2 and the regularization parameter γ, which have here been
tuned manually through trial and error (but could be as well be optimised over
with a more sophisticated alternative). These parameters are crucial to determine
the trade-off between the training error minimization, the smoothness and the
generalization. Algorithm 1 is detailed in the Appendix: there, we assume that
the regression algorithm is fixed, and denote by G the corresponding space of
test functions G : X × U → R. For a given tuple F we denote

T̂FH(xi, ui) := inf
u′∈U(xi)

1

mz

mz∑
j=1

[
cij +H(zij , u′)

]
(9)

and the corresponding 2-norm as ‖H ′−H ′′‖F :=
∑mx

i=1

∣∣H ′(xi, ui)−H ′′(xi, ui)∣∣2.

FQI for the deterministic model A discrete-time deterministic model is a
special case of (3) where the update law f does not depend on the noise variable
w. In our work, we refer to the deterministic dynamics discussed in (2), after
time discretization. For this simpler setup, the DP operator takes the form

T H(x, u) = c(x, u) + inf
u′∈U

H(f(x, u), u′),

and no expectation evaluations are needed. Thus, we have mz = 1, so that only
one successor state is needed for each instance of the state. As a result,

T̂FH(xi, ui) = inf
u′∈U(xi)

[
ci +H(zi, u′)

]
.

One can therefore directly tailor Algorithm 1 to the deterministic case.

Practical implementation of the stochastic FQI via receding horizon
strategy Although the FQI for the deterministic model works well within our
setup, the FQI algorithm for the stochastic model over the entire experimental
duration (denoted by the time horizon T ) has been found to be computationally
infeasible, since parameters achieving a good generalisation for the regression
algorithm over the complete time horizon T are not easily found, and because
of the Monte-Carlo computations that are instead absent in the deterministic
case. In order to overcome this issue, we have embedded the FQI algorithm into
a receding horizon strategy, resulting in a stochastic receding horizon scheme
(see Algorithm 2 in the Appendix) [1]. In short, over a finite prediction horizon
Tp � T , the Q-functions are approximated offline using Algorithm 1. After the
computation of the optimal control sequence and the application of the current
control action, the horizon is shifted by one sample and the optimisation is
performed again, until the whole horizon T is covered.

4 Partial information case: estimation of system states

Typically not all state variables of a biological model are observed directly. This
is in particular the case for the yeast osmotic shock response system, where only
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protein levels are observable via noisy measurements:

yk = YFPk + ek, ek = (ea + eb ·YFPk)ηk, (10)

where for k = 1, . . . , T , yk is the measurement at time k for a given cell, and ηk
are i.i.d. standard normal random variables, whereas ea and eb are the intensity
of the additive and multiplicative parts of the measurement noise.

In practice, the state-feedback control must rely on estimates of the state that
are generated online from the available measurements. Here we develop a strat-
egy for real-time state estimation with reference to yeast osmotic shock response.
We observe that the strategy can be applied to other biological scenarios.

We start from the continuous-time stochastic Markov model of the CME,
which is expressed in terms of discrete-valued state variables x. One possible
approach for estimating state x from measurements yk is particle filtering [2]. In
particle filtering, N hypothetical evolutions of the system state are randomly
simulated up to the next measurement. When the latter becomes available,
state estimates are produced by weighting the simulated trajectories, where the
weights quantify the relevance of every simulated trajectory to the new (partial)
state measurement. Since particles have to explore a large (possibly infinite)
state space, in practice particle filtering requires many (e.g. N > 1000) simula-
tions of the system, which makes it poorly suited for online applications. In [2],
we have proposed an alternative approach using Unscented Kalman Filtering
(UKF) [19] and based on the CLE, a continuous-valued approximation of the
CME model [7]. In the current context, this approach is partly inappropriate,
since the promoter state variables are inherently discrete (they take values 0 or
1 only). In order to combine the flexibility of particle filtering with the compu-
tational advantages of UKF, we propose to limit the Langevin approximation to
the mRNA and protein dynamics.

We first note that promoter dynamics do not depend on mRNA and protein
abundance. Let us partition the state variables as x = (xd, xc), where

xd = (pSTL1 off , pSTL1 on , CR · pSTL1 on), xc = (mRNA,YFP).

Consider a model where the dynamics of xd (not depending on xc) are left
unchanged (i.e., follow the original CME), while for any given trajectory of xd,
the dynamics of xc are approximated by the Langevin equation

dxc[i] =

M∑
j=1

vcijaj(x
c, xd)dt+

M∑
j=1

vcij

√
aj(xc, xd)dWj , i = 1, 2. (11)

Here, for j = 1, . . . ,M , Wj are independent Wiener processes and vc·j is the
subvector of vj corresponding to xc. The relevance of the Langevin approxima-
tion to mRNA and protein dynamics has been discussed in [7] and, for filtering
applications, it has been assessed on a different but relevant system in [2]. Note
that, while xd remains discrete-valued, xc may now take continuous values.

Based on this hybrid model, a filtering procedure iterating over subsequent
measurement indices k combining importance (particle) filtering with UKF is ob-
tained as follows. At time tk−1, let x̂ck−1|k−1 be the estimate of the current state
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xc based on measurements y0, . . . , yk−1, and let x̂d,ik−1|k−1, with i = 1, . . . , N , be

N putative values of the current state xd (with N small, see below). For every i,

a hypothetical discrete-state trajectory x̂d,ik−1(t), with t ∈ [tk−1, tk), is generated

by stochastic simulation of the discrete-state dynamics starting from x̂d,ik−1|k−1.

Over the same time horizon, for every i, mRNA and protein state predictions
x̂c,ik−1(t) are computed along trajectory x̂d,ik−1(t) via UKF. When the next protein
measurement yk becomes available, based on measurement model (10), an im-
portance weight wi, proportional to the likelihood of yk given the hypothetical
state value x̂c,ik−1(tk), is computed for every particle i. Note that weights wi play
the role of a-posteriori probabilities of the different particles. Also, continuous-
state predictions x̂c,ik−1(tk) are updated to estimates x̂c,ik|k of the current state

xc by integrating the new piece of information provided by y(tk), in accordance
with the so-called measurement-update step of UKF. At this stage, the ensemble
(Conditional Expectation) estimate x̂ck|k as well as an ensemble (Maximum-A-

Posteriori) estimate x̂dk|k for the discrete state are computed as

x̂dk|k = arg max
z∈{0,1}3

∑
i

1z
(
x̂d,ik−1(tk)

)
· wi, x̂ck|k =

∑
i

x̂c,ik|k · wi, (12)

where 1z(·) is the indicator function. For control purposes, these are the estimates
that are passed to the controller with entries of x̂ck|k rounded to the nearest
integers. To proceed for the next iteration of the algorithm, the new putative
values of the discrete state x̂d,jk|k, with j = 1, . . . , N , are set equal to the result ofN

independent random extractions from the pool of particles {x̂d,ik−1(tk)}i=1,...,N ,
with sampling probabilities equal to wi (resampling step of particle filtering).
The whole procedure is summarized in Algorithm 3 in the Appendix.

The initialization of the procedure at the starting time k = 0 is performed
based on the a priori statistics of xd and xc. Given the small (finite) discrete
state space of xd, a number of particles N much smaller than traditional particle
filter implementations is expected to suffice. Empirical evaluation (not reported
here) has led to select N = 50, a value above which no significant improvement
of filtering performance has been observed. The implementation of the UKF pro-
cedure is analogous to that of [2] and is omitted for brevity. We just note that,
at every step k and for every particle i, UKF requires the numerical solution
of 2nc + 1 ODEs over the time span [tk−1, tk), with nc = 2 being the number
of continuous states. The solution of these ODEs can be carried on in paral-
lel with the simulation of x̂d,ik−1. Contrary to the control module, resorting to
time discretization is not needed, although it can be considered towards higher
computational efficiency.

5 Results

5.1 Deterministic and stochastic control in the full information case

In this section we present the results of the control of gene expression to track
time-homogeneous and time-varying target profiles, using the deterministic and
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stochastic controllers detailed in Section 3. In order to test the effectiveness of
the proposed algorithms, the controller trained using the deterministic FQI was
first tested over the deterministic RRE model. As expected in this case, the
controller has successfully been able to track the signals (see Appendix A.4 for
implementation details). To test the control performance in a realistic biological
context, this controller has then been used over the stochastic CME model. At
the maximum, the controller is able to track the reference signal to within a
deviation of 10% as shown in Fig. 2(a)(b). The deterministic controller has then
been replaced with the stochastic controller (see Appendix A.3 for implementa-
tion details) and it has been found that the stochastic controller is able to track
the reference signal to within a deviation of 5% from the reference trajectory
(Fig. 2(d)(e)).
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Fig. 2: Comparison of stochastic and deterministic control schemes in the full infor-
mation case, run over the probabilistic model. (a)(b) Deterministic controller tracking
the desired profiles with a shown deviation of 10% from reference trajectories. (d)(e)
Stochastic controller showing improved performance with a deviation of 5%. (c)(f)
Monte-Carlo simulations validating the superior performance of the stochastic con-
troller over its deterministic counterpart: the histogram plots the number of closed-loop
trajectories falling within specific error bounds from the reference trajectory.

In order to get a quantitative comparison of the performance of the stochastic
controller over the deterministic controller, 100 runs of each algorithm have been
performed using Monte-Carlo simulations. To measure the quality of the control,
we have used ε := 1

T−T0

∑T
k=T0

|Y FP k − Y FP ref,k| /Y FP ref,k, where T0 is the
time it takes the system to reach the desired trajectory. In practice, we have
chosen T0 = 400 and T0 = 300 minutes for the set point and signal tracking
experiments, respectively. These results are presented in Fig. 2(c)(f). It is evident
from the figure that the controller developed considering the stochastic nature
of the gene expression yields superior performance than the controller developed
ignoring it.
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5.2 Stochastic control with partial information

The control laws obtained in the full information case are functions of the current
state xk: at each time k it is supposed that the controller observes the exact value
of the full current state xk and that it applies the appropriate action. In reality
the measurements yk are limited to the fluorescent protein. The hybrid filter
detailed in Section 4 has been used to extract information about the states of
the gene expression network using 50 particles. The filter does not succeed to
accurately track the switching of the discrete states of the promoter but is able to
track the mRNA and YFP protein concentrations fairly accurately (Fig. 3(a)).
The filter has then been used in conjunction with the stochastic controller: the
simulation results presented in Figure 3(b)(c) show that the controller is robust
to state estimation errors and is able to successfully track the reference profiles.
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Fig. 3: Results of the stochastic control scheme run with the hybrid filter in the partial
information case. (a) State estimation shows accurate results for mRNA and YFP,
whereas the filter faces difficulties estimating the switching action of the promoter.
(b)(c) Controller robustness over state estimation errors and ability to track reference
signals to within a deviation of 5%.

6 Discussion and conclusions

The main contribution of this paper is the development of a complete model-
based control framework adapted to stochastic models of gene expression. Al-
though the identification of stochastic models of gene expression has recently
been extensively studied, the control of gene expression using stochastic models
has been barely addressed so far. This goal requires the non-trivial development
of integrated stochastic state estimators and controllers. We have demonstrated
in silico that stochastic control has the potential to deliver superior performances
in comparison to a deterministic counterpart explored in earlier literature. This
work paves the way for the development of an experimental platform for single-
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cell control based on optogenetics solutions, which enable the independent stim-
ulation of live single cells in real-time [16, 20].
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A Appendix

A.1 Implementation constraints on the control of gene expression

In order to limit cell adaptation to hyperosmotic environments, we delimit the
duration of hyperosmotic shocks to 8 minutes and impose at least a 20 minute
time lag between two successive shocks. We also require that shocks last at
minimum 5 minutes.

As shown in [18], there is a known lag between the valve actuation and the
actual change of osmolarity of the cellular environment in the imaging chamber.
Formally, for a given osmotic shock, we denote by ton and toff the times at which
the valve switches to ON and to OFF positions, respectively, and represent the
osmolarity h in the imaging chamber as follows (see Figure 4).

h(t) =



0 if t < ton + 2,

t− (ton + 2) if ton + 2 < t < ton + 3,

1 if ton + 3 < t < toff + 2,

1− (t− (toff + 2))/4 if toff + 2 < t < toff + 6,

0 otherwise.

(13)

As in [8, 13, 17], we assume that the activity s of the Hog1 protein depends
on the osmolarity of the environment h as follows.

ṡ(t) = κh(t)− Γs(t), (14)
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Fig. 4: Temporal evolution of the osmolarity of the cellular environment h, of the
Hog1 activity s, and of the promoter activation stochastic rate u, as a function
of the position of the microfluidic valve (0/1: normal/hyper-osmotic medium).

with s(0) = 0; we further assume that the pSTL1 promoter activation stochastic
rate u is a function of the Hog1 activity s, following Hill-type kinetics as

u(t) =
(s(t) + a0)

nH

Kd
nH + (s(t) + a0)

nH
. (15)

Note that we assume here that there is no significant stochasticity in sig-
nal transduction. The rate parameters used for model simulation are listed in
the table below. Also in practice, because the controller uses a discrete time
representation, we refer to the input at instant k as uk = u(tk).

Parameter Value Parameter Value

κ 0.3968 (a.u.) Γ 0.9225 (a.u.)
Kd 0.34906 (a.u.) a0 0.0027998 (a.u.)
nH 2.1199 (a.u.)

Table 1: Rates of the activation function.

A.2 Parameters employed in the simulation and analysis of the
model

The rate parameters and initial concentrations used for the simulation of the
model are listed in the two tables below.

A.3 Implementation details of the FQI algorithm over the
stochastic CME model

For the stochastic receding horizon control approach, the samples xi have been
drawn corresponding to a single system trajectory. The trajectory has been gen-
erated by simulating the system using a discrete time version of the stochastic
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Parameter Value Parameter Value

(pSTL11off )0 1 (a.u.) (pSTL11on)0 0 (a.u.)
CR0 102.51 (a.u.) (CR · pSTL11on)0 0 (a.u.)
mRNA0 0 (a.u.) Y FP0 0 (a.u.)

c1 23.604 (min)−1 c5 12.256 (min)−1

c2 180.03 (min)−1 c6 0.36113 (min)−1

c3 0.024559 (min)−1 c7 0.025091 (min)−1

c4 0.9384 (min)−1 c8 0.003354 (min)−1

Table 2: Initial concentrations and rates of the stochastic gene expression net-
work.

Parameter Value Parameter Value

ea 1.0115 (min)−1 eb 0.0037 (min)−1

Table 3: Parameters of the measurement model.

simulation algorithm. The intrinsic variability results from the stochasticity of
the CME.

For each xi, 250 tuples (mx = 250) of the form (xi, ui) have been generated.
For each tuple, the system has been simulated 100 times (mz = 100) to obtain
the next state zij to evaluate the Monte-Carlo integration. The cost cij has
been computed as explained in main text and a single batch of 25000 tuples
(Fs = 25000) has been obtained. The optimization has been performed for a
prediction horizon Tp of 8 minutes and for a time horizon T of 700 minutes. The
discretization interval ∆t has been set to 0.008 min. The squared bandwidth σ2

and the regularization parameter γ of the regression algorithm have been tuned
by a trial and error method and the final parameters have been reported below.

Squared Bandwidth (σ2) Regularization Parameter (γ)

600000 500

Table 4: Tuned LS-SVM parameters to track time varying and time constant
profiles using the controller trained on the stochastic CME model.

The stochastic FQI and receding horizon algorithms respectively are detailed
below.

Algorithm 1 Stochastic Finite Horizon FQI (T , F)

1: Initialize the parameters of the regression algorithm σ2 and γ and set Q̂T to 0
2: for k := T − 1 to 0 do
3: Estimate T̂F Q̂k+1.
4: Find the fit that minimizes the 2-norm loss by means of a regression algorithm

Q̂k(x, u) = arg min
G∈G
‖G− T̂F Q̂k+1‖F .

5: end for
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Algorithm 2 Stochastic Receding Horizon Control (T , Tp, F)

1: for k:=1 to T do
2: Initialize the parameters of the regression algorithm σ2 and γ and set QT to 0
3: for l := k + Tp to k do
4: Estimate T̂F Q̂l+1.
5: Find the fit minimizing the 2-norm loss by means of a regression algorithm

Q̂l(x, u) = arg min
G∈G
‖G− T̂F Q̂l+1‖F .

6: end for
7: end for

A.4 Implementation details of the FQI algorithm over the
deterministic RRE model

For the deterministic control approach presented in Section 3, 400 tuples have
been generated corresponding to a single trajectory. The trajectory has been
obtained by simulating reactions of the gene expression network using the RRE.
A time horizon of 700 minutes has been considered and the regression algorithm
has been implemented using the LS-SVM MATLAB toolbox in [15]. The Fixed-
Size LS-SVM model provides two parameters for tuning: the squared bandwidth
σ2 and the regularization parameter γ. The parameters have been tuned manu-
ally using a trial-and-error method, and the selected ones are reported in Tables
5 and 6 below.

Time Horizon (T ) Squared Bandwith (σ2) Regularization Parameter (γ)

700 - 651 40000 10−1

650 - 601 40000 10−2

600 - 551 40000 10
550 - 501 40000 200
500 - 451 40000 1
450 - 401 40000 200
400 - 351 40000 100
350 - 301 40000 200
300 - 251 40000 100
250 - 201 40000 300
200 - 151 40000 100
150 - 1 40000 100

Table 5: Tuned LS-SVM parameters to track a set-point of 1500 (a.u.) using the
controller trained on the deterministic RRE model.

For the deterministic control approach, the deterministic version of the FQI
algorithm has been trained and implemented over the RRE model. The simu-
lation results in Figure 5 show that the system is able to track the reference
profiles within a maximum deviation of 5%.
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Time Horizon (T ) Squared Bandwith (σ2) Regularization Parameter (γ)

700 - 651 400000 50
650 - 601 40000 9
600 - 551 20000 1
550 - 501 400000 30
500 - 451 40000 596
450 - 401 40000 800
400 - 351 40000 300
350 - 301 100000 1
300 - 251 100000 11
250 - 201 100000 5
200 - 1 100000 4000

Table 6: Tuned LS-SVM parameters to track the sinusoidal reference signal using
the controller trained on the deterministic RRE model.
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Fig. 5: Results for the deterministic control scheme in the full information case. The
deterministic controller tracks time-varying and constant profiles within a deviation of
5% from the reference trajectory.

A.5 Hybrid Estimation Algorithm

Algorithm 3 Hybrid Filter for Estimation of the Model States

1: Initialize x̂d,i0|−1(0), x̂i,c0|−1(0), and wi, with i = 1, . . . , N , s.t.
∑

i wi = 1
2: for k = 0, 1, 2, . . . do
3: Acquire new measurement yk
4: Compute and normalize weights wi ∝ log p

(
yk|x̂c,ik−1(tk)

)
, with i = 1, . . . , N

5: Compute UKF estimate x̂i,ck|k from x̂i,ck−1(tk) and yk, with i = 1, . . . , N

6: Compute and provide ensemble estimates (12)
7: Define N new particles x̂i,dk|k by resampling particles {x̂i,dk−1(tk)} with prob. {wi}
8: Simulate x̂i,dk (t), t ∈ [tk, tk+1), from x̂i,dk (tk) = x̂i,dk|k, with i = 1, . . . , N

9: Compute UKF prediction x̂i,ck (t) along x̂i,dk (t), t ∈ [tk, tk+1), with i = 1, . . . , N
10: end for


