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Abstract—DDoS attacks bring serious economic and technical
damage to networks and enterprises. Timely detection and
mitigation are therefore of great importance. However, when flow
monitoring systems are used for intrusion detection, as it is often
the case in campus, enterprise and backbone networks, timely
data analysis is constrained by the architecture of NetFlow and
IPFIX. In their current architecture, the analysis is performed
after certain timeouts, which generally delays the intrusion
detection for several minutes. This paper presents a functional
extension for both NetFlow and IPFIX flow exporters, to allow
for timely intrusion detection and mitigation of large flooding
attacks. The contribution of this paper is threefold. First, we
integrate a lightweight intrusion detection module into a flow
exporter, which moves detection closer to the traffic observation
point. Second, our approach mitigates attacks in near real-time
by instructing firewalls to filter malicious traffic. Third, we filter
flow data of malicious traffic to prevent flow collectors from
overload. We validate our approach by means of a prototype
that has been deployed on a backbone link of the Czech national
research and education network CESNET.

Index Terms—Internet measurements, Denial of service, Intru-
sion detection, NetFlow, IPFIX, Flow monitoring.

I. INTRODUCTION

Massive DDoS attacks are starting to become a new type
of warfare, in which networks and servers are overwhelmed
by network traffic. For example, the Spamhaus Project [1] has
been targeted by attacks of more than 300 Gbps of bandwidth
in early 2013 [2], large enough to overload Internet exchanges
[3]. Other large flooding attacks that gained media attention
were targeted at U.S. financial institutions in late 2012, where
compromised Web servers were used as bots for creating a
mixture of high-volume TCP, UDP, ICMP and other IP-based
traffic [4]. All these DDoS attacks are usually volume-based,
and therefore suitable for detection in a flow-based manner.

Flow export technologies, such as NetFlow [5] and IPFIX
[6], provide a means for monitoring high-speed networks in
a passive and scalable manner by aggregating packets into
flows. Flows are defined in [7] as sets of IP packets passing
an observation point in the network during a certain time
interval, such that all packets belonging to a particular flow
have a set of common properties. A typical deployment of
flow export technologies is shown in Fig. 1. Flow exporters
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Fig. 1: Typical flow monitoring system deployment.

receive raw packets and aggregate them into flows, which
is commonly referred to as flow metering. They can be part
of forwarding devices (e.g. switches and routers), or separate
devices that are dedicated to the task of flow export, as shown
in Fig. 1. After a flow is considered to have terminated,
flow data is exported to flow collectors for storage and pre-
processing. Finally, analysis applications, such as intrusion
detection systems (IDSs), retrieve flow data and analyze it [8]–
[10], and potentially send out alerts or instruct firewalls.

Due to the design of NetFlow and IPFIX, flow-based IDSs
are subject to delays during flow metering and collection [11].
These delays are in particular a consequence of timeouts for
expiring flow records as part of the flow metering process, and
processing times of flow collectors. Considering the default
idle timeout applied by several vendors and the processing
times of state-of-the-art flow collectors, this usually results in
IDS detection delays in the order of minutes. Nevertheless, it
is important to detect and mitigate as early as possible to limit
the potential damage brought by large attacks, such as device
overload and link capacity exhaustion. Our intuition tells us
that moving parts of the detection process closer to the source
may reduce detection times drastically. Given that a timely
detection allows for timely mitigation, we propose a functional
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Fig. 2: Flow-Based DDoS Attack Metrics.

extension for flow exporters that integrates intrusion detection
into the flow metering process. This avoids the delays incurred
in typical flow monitoring systems and has the following
advantages:

1) Mitigation of DDoS flooding attacks by blocking mali-
cious traffic before it reaches the LAN (as illustrated by
(1) in Fig. 1).

2) Mitigation of DDoS flooding attacks by filtering mali-
cious flow data before it reaches and potentially over-
loads a flow collector (as illustrated by (2) in Fig. 1). We
know from our operational experience that DDoS attacks
often cause flow data loss due to collector overload
[12]. Moreover, European backbone operators have also
confirmed this problem in discussions we had with them.

Typical values for the idle timeout applied for expiring
flow records range from 15 seconds (default value applied
in Cisco’s IOS [13]) to 60 seconds (default value applied
in Juniper’s Junos [14]). In addition, flow collectors often
work based on time slots, which causes flow data to become
available to analysis application only after the next time slot
has started. For example, the state-of-the-art flow collector
NfSen uses time slots of 5 minutes, resulting in an average
delay of 150 seconds (2.5 minutes). The average delay between
the moment in which a packet is metered and the time at
which flow data is made available to analysis applications, is
therefore at least 165 seconds, considering an idle timeout of
15 seconds. In this paper, we analyze whether our approach
can reduce the delay up to 10% of this value. Besides this
requirement, we target an intrusion detection module that
is lightweight, having a minimal performance footprint of
10% in terms of CPU usage and memory consumption on
a flow exporter. This is important since exporter operation is
considered time-critical. Last, the accuracy of our intrusion
detection module should be high enough, to ascertain a low
number of false positives/negatives.

This paper is structured as follows. We start by analyzing
flow-level characteristics of flooding attacks, mainly conside-
ring metrics that can be monitored in a lightweight manner
(i.e. with a minimal performance footprint) on a flow exporter.
Based on these findings, which are presented in Section II, we
study existing flooding attack detection algorithms that can
be modified to support the previously found metrics. These
algorithms are presented in Section III. In Section IV, we

present both the prototype that is used to validate whether
all identified requirements have been fulfilled, and the utilized
datasets. Validation results are presented in Section V, together
with an example of the prototype in operation on a backbone
link. The feasibility of this work in terms of deployability
on various high-end forwarding platforms is discussed in
Section VI. Finally, we draw our conclusions in Section VII.

II. DDOS ATTACK METRICS

Flooding attacks are a type of (D)DoS attack that aim at
exhausting targets’ resources by overloading them with large
amounts of traffic or (incomplete) connection attempts. As
every connection attempt uses a different source port number
and therefore results in a new flow, large numbers of flow
records are exported to flow collectors, effectively canceling
out the data aggregation advantage provided by flow export
technologies. In case a target replies to a connection attempt,
two flow records are exported per attempt. The same charac-
teristics may apply to (large) network scans. Flow collectors
need to process all resulting records, consisting of only a few
packets and bytes, which may be more than they can handle.

In this section, we analyze which flow-level traffic metrics
are suitable for lightweight detection of attacks on a flow
exporter. Sadre et al. have previously identified four traffic
metrics that change significantly during a DDoS flooding
attack: flow record creations per second, average flow duration,
average number of bytes per flow, and average number of
packets per flow [12]. All but the average flow duration can be
monitored on a flow exporter by using only counters, without
the need to access and process each individual flow record after
expiration. This makes these metrics particularly interesting
for this work, in which we aim at designing a lightweight
intrusion detection module for detecting large flooding attacks.

Time-series of the three considered metrics are shown in
Fig. 2. The subfigures show data from one of the backbone
links of the Czech national research and education network
CESNET in November 2012. The number of flow record
creations per second is shown in Fig. 2a. The diurnal pattern is
clearly identifiable and several peaks can be observed. Given
the flow-level characteristics of flooding attacks, we assume
the peaks labeled with a number to indicate the presence of
such attacks. We have validated this assumption by manually
verifying the presence of scanning and flooding attacks in the
flow data.
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Fig. 3: Detection Workflow.

The number of bytes per flow (BPF) and packets per flow
(PPF) are shown in Fig. 2b and Fig. 2c, respectively. Although
the attacks identified in Fig. 2a can be observed as negative
peaks here as well, the figures also show many other peaks,
which make these metrics noisy. What can be confirmed from
these figures, however, is that the attacks identified in Fig. 2a
consist of many small flows with few and small packets.

Out of the three presented metrics in Fig. 2, the number of
flow record creations (Fig. 2a) appears to be the most suitable
metric for our purposes for the following reasons. First, it
shows the least amount of noise, peaks are clearly identifiable,
and the identified peaks have been confirmed to be attacks, as
substantiated by the other metrics. Second, this metric is the
best to fulfill the requirement of being lightweight, as only
a single counter is needed that has to be reset after every
measurement interval.

Although we have shown only day-long time-series in
Fig. 2, we have verified that our conclusions are valid for the
whole dataset. We will therefore use the number of flow record
creations for our traffic measurements, as shown in Fig. 3.
These measurements are performed in a continuous fashion
and used as input for a detection algorithm, which on its turn
classifies a measurement (sample) as benign or malicious. Two
detection algorithms are discussed in the next section.

III. DETECTION ALGORITHMS

In this paper we consider an anomaly-based intrusion detec-
tion approach. One method for performing anomaly detection
based on the analysis of time-series is forecasting, which
uses previous measurements for forecasting the next value.
If the measured value does not lie within a certain range
of the forecasted value, a measurement sample is considered
malicious and an anomaly has been detected. In this paper, we
consider the following two algorithms:

Algorithm 1: Exponentially weighted moving average
(EWMA) for mean calculation, extended by thresholds
and a cumulative sum (CUSUM) [15]. We consider this
our basic algorithm.

Algorithm 2: Algorithm 1, extended by seasonality mo-
deling.

Although the second algorithm may intuitively be conside-
red more accurate, it is likely to have a larger performance
footprint in terms of memory consumption and processing
complexity than the first algorithm, since more data needs
to be stored and processed. Whether the larger performance

footprint justifies the use of Algorithm 2 in terms of accuracy,
will be investigated later in this paper.

Both algorithms rely on EWMA for calculating the mean
over past values, which we use for forecasting the next value.
Previous works have shown that EWMA can be used for
anomaly detection (e.g. [15], [16]). It is defined as follows:

x̄t = α · xt + (1− α) · x̄t−1 (1)
x̂t+1 = x̄t , (2)

where xt is the measured value, x̄t is the weighted mean over
current and past values at time t, x̂t+1 the value forecasted for
time t + 1, and α ∈ (0, 1) a parameter which determines the
rate in which previous values are discarded. When the value
of xt becomes known, both the forecasting error et and an
upper threshold Tupper,t can be calculated:

et = xt − x̂t (3)
Tupper,t = x̂t +max(cthreshold · σe,t,Mmin) , (4)

where cthreshold is a constant and σe,t the standard deviation
of previous forecasting errors. Mmin is a margin that is
added to the measurement x̂t to avoid instability in case
cthreshold · σe,t is small. This solution prevents small peaks
during quiet periods to be considered anomalous. Note that we
do only consider an upper threshold and no lower threshold,
since flooding attacks result, by definition, in a greater input
value in terms of flow record creations than the forecasted
value (as discussed in Section II).

Reporting an anomaly every time the upper threshold
has been exceeded might cause a large number of false
positives. To overcome this problem, we use a cumulative
sum (CUSUM), which is widely used in anomaly detection
algorithms [15], [17], [18]. The differences between the mea-
surement and the upper threshold are summed (St), and an
anomaly is detected when the sum exceeds threshold Tcusum,t:

St = max(St−1 + (xt − Tupper,t), 0) (5)
Tcusum,t = ccusum · σe,t , (6)

where ccusum is a constant. A measurement is flagged anoma-
lous every time Tcusum,t has been exceeded. To improve the
precision of anomaly end time detection, we use an upper
bound on St to let St decrease faster after xt has decreased.

The presented algorithm relies only on the forecasted value
and the measured value. Due to the daily periodicity of
network traffic and the quick rises and falls of network utiliza-
tion during mornings and evenings, respectively, the detection
algorithm may benefit from a longer history. Our second
considered detection algorithm uses the Holt-Winters Additive
forecasting method for modeling seasonal components [19]:
By adding a linear and a seasonal component to a base signal,
the next value is forecasted. As a consequence of the daily
periodicity of network traffic, we use day-long seasons. Since
we do not identify a significant linear trend in network traffic
at this timescale, we disregard the linear component. The
weighted mean (EWMA) of the base component is calculated
based on previous measurements on the same day, while the
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mean of the seasonal component is calculated over values
at the same time in previous days. We define these two
components as follows:

bt = α · (xt − st−m) + (1− α) · bt−1 (7)
st = γ · (xt − bt) + (1− γ) · st−m (8)

x̂t+1 = bt + st , (9)

where bt and st are the base and seasonal components
of the forecasted value x̂t+1, respectively, m is the season
length (i.e. number of measurement intervals per day, since
network traffic shows daily periodicity), and γ ∈ (0, 1) a
parameter which determines the rate in which previous values
are discarded. The previous values in this case are not from
the previous measurement interval, but from the same interval
in the previous season (i.e. day). The initial base value is set
to the average of all measurement values in the first season.
Therefore, a training period of one season is needed.

The use of day-long seasons and small measurement in-
tervals results in a large number of measurement values per
season. To support our requirement of being lightweight,
we only store seasonal values every hour and interpolate
between those. This also reduces measurement noise, which
would otherwise imprint in the seasonal values. Besides that,
precautions need to be taken to not let measurements during
anomalies influence the forecasts, which can be accomplished
by not updating st, bt and et during an anomaly. This is be-
cause we aim at forecasting non-anomalous network behavior.
Another improvement made to the algorithm is to separate
algorithm states for weekdays and weekends, since the traffic
behavior usually varies significantly between these types of
days. As such, forecasting of weekend days is done based
on the traffic behavior of the previous weekend, instead of
working days. Analogously for weekdays.

Siris et al. have shown that an interval between 5 and
20 seconds yields best results for detecting flooding attacks
using the CUSUM method [15]. Our measurements have
shown that an interval of 5 seconds indeed results in the
most accurate detection results, but an extensive comparison
of various interval lengths is out of the scope of this paper.

IV. VALIDATION SETUP

This section describes the setup used for validating our
work. We start by discussing the developed prototype in
Section IV-A, after which we provide details on the two
datasets used for validating our requirements in Section IV-B.

A. Prototype

Our prototype implements both the traffic measurements
based on the metric chosen in Section II (i.e. number of flow
records creations) and the detection algorithms presented in
Section III. It has been developed as a plugin for INVEA-
TECH’s FlowMon platform, which has been selected both
because we have full control over it in our networks, and
because of its highly customizable architecture based on
plugins for data input, flow record processing, filtering, and
export. The prototype has been designed as a hybrid processing
and filtering plugin. Default input and export plugins from
INVEA-TECH are used for packet capturing and NetFlow and
IPFIX data export. Information gathered by the prototype, such
as detected anomalies, are sent to a console. The complete
architecture is depicted in Fig. 4.

The intrusion detection module has been implemented as
a processing plugin. After every measurement interval, the
algorithm is run and the measurement sample is classified
as benign or malicious. This result is then passed on to a
filter plugin, which is used for attack mitigation. When mea-
surement samples are classified as benign, the corresponding
flow records are passed on to the export plugin. Otherwise,
the filter plugin identifies attackers as soon as an attack has
been detected. Attackers are identified by counting the number
of exported flow records per source IP address. When more
than F flow records per second with less than 3 packets and
identical source IP address have been exported, the address is
added to a blacklist. Measurements have shown that F = 200
is high enough to ascertain that a blacklisted host was flooding
a network or host, and that benign hosts should never become
blacklisted. In the case of attacks with spoofed IP addresses,
one could also consider blacklisting destination addresses. We
have measured the effects of this approach as well, but source
address blacklisting has yielded slightly better results.

After identification of the attackers, the filter plugin per-
forms two actions, which correspond to the contributions
identified in Section I:

1) Firewall rules are composed and sent to a firewall to
block the attackers’ traffic. This corresponds to (1) in
Fig. 1.

2) Flow records with the attackers’ IP addresses are filtered
to reduce the stream of flow records sent to the collector.
This corresponds to (2) in Fig. 1.

When an anomaly has ended, the composed rule is removed
from the firewall, counting of exported flow records is stopped,
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Fig. 5: Receiver Operating Characteristics (ROC) for Algorithm 1.

TABLE I: Datasets

Dataset 1 Dataset 2

Duration 14 days 10 days

Period August/September 2012 October/November 2012

Flows 10.0 G (717.0 M per day) 6.7 G (668.9 M per day)

Packets 257.1 G (18.4 G per day) 186.7 G (18.7 G per day)

Bytes 134.5 T (9.6 T per day) 128.5 T (12.8 T per day)

Anomalies 131 11

Anomaly
Minimum: 5s Minimum: 5s

duration
Average: 5m, 55s Average: 15m, 55s

Maximum: 2h, 41m, 50s Maximum: 2h, 48m, 55s

and all counters are reset. The filtering of flow records is
stopped after Tidle seconds, where Tidle is the idle timeout
of the flow exporter, to make sure that flow records in the
exporter’s flow cache that still belong to the attack are filtered.

B. Dataset

The dataset used for validating the detection algorithms has
been captured on a backbone link of the CESNET network
in August/September 2012. This link has a wire-speed of 10
Gbps with an average throughput of 3 Gbps during working
hours. The dataset comprises 14 days of measurements, com-
posed of the number of flow record creations, packets and
bytes per measurement interval (details are listed in Table I,
Dataset 1). To establish a ground truth for validation, we
have manually identified anomalies that show a high intensity
in the number of flow records. Samples belonging to an
anomalous interval are labeled malicious. Other samples are
labeled benign.

V. VALIDATION RESULTS

In this section we validate whether our approach meets the
requirements identified in Section I. We start by validating the
accuracy in Section V-A, mainly because of the fact that an
intrusion detection module with a poor accuracy would be use-
less in any setup. After choosing the algorithm that performs
best in terms of accuracy, we validate the response time and
performance footprint of this algorithm in Section V-B and
Section V-C, respectively.

A. Accuracy

The accuracy of both detection algorithms is visualized by
the Receiver Operating Characteristics (ROC) curves shown
in Fig. 5 and 6. The curves show the impact of the constant
cthreshold on the Detection Rate (DR) and the False Posi-
tive Rate (FPR). The DR is a measure for the number of
attacks that have been detected correctly and is defined as
follows [20]:

DR =
#{detected attacks}

#{attacks}
(10)

The total number of attacks is determined by considering
consecutive malicious samples to belong to the same attack.
An anomaly is considered detected if approximately 50% of
the samples is flagged malicious. The FPR is the ratio between
the number of samples incorrectly flagged malicious and the
number of samples labeled benign. In contrast to the more
common practice of plotting the True Positive Rate (TPR, ratio
between the number of samples correctly flagged malicious
and the number of samples labeled malicious) versus the FPR,
we plot the DR versus the FPR. This is because we do not
require our algorithm to flag all samples of an anomaly, as
long as the ones with a high intensity are catched. Each curve
in the plots shows the accuracy for a different combination of
span and ccusum. Span represents the length in seconds of the
history considered by the detection algorithm. As the algorithm
is only aware of the number of measurement intervals and not
of durations, we convert this time window to measurement
intervals by dividing it by the length of a measurement interval.
As such, it is used for calculating α (α = 2

N+1 , where N is
the number of intervals [16]) and for determining the number
of values considered in calculating the standard deviation of
forecasting errors σe,t. Besides span and ccusum, all other
parameters have been fixed: Mmin = 7000 (Algorithm 1
and 2), γ = 0.4 (Algorithm 2).

Several observations can be made regarding the performance
of Algorithm 1 in Fig. 5. First, it is clear that the difference
in ccusum has little impact on the DR and FPR. Each pair
of curves with the same span shows very similar growth.
Second, increasing the span has little impact on the DR as
well, but it increases the FPR significantly. This is because
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Fig. 7: Response Times of Algorithm 2.

the forecast adapts slower to network traffic changes, such as
diurnal patterns, and small deviations in the measurements are
(incorrectly) flagged as malicious. Third, increasing cthreshold
affects the DR negatively: The highest DRs in the figure
are achieved when the lowest cthreshold is used. This is
because the resulting higher upper threshold Tupper,t will
cause certain anomalies to stay below the threshold, resulting
in a higher number of FNs. In the case of Fig. 5, cthreshold ∈
{1.5, 2, 3, 5}. In our experiments, a span of 900 seconds and
a cthreshold of 3 yield the most optimal combination of a high
DR (92%), while maintaining a low FPR (6%). In a typical
deployment scenario as shown in Fig. 1, however, this FPR is
unacceptable as benign hosts may be blocked erroneously by
our approach.

The ROC curve for various combinations of parameter
values for Algorithm 2 is shown in Fig. 6. Similar parameter
values as for Algorithm 1 yield similar DRs, while the FPR
is significantly lower, namely between 0% and 0.01%. Higher
values of cthreshold yield lower DRs, for the same reason as
described for Algorithm 1. Again, cthreshold ∈ {1.5, 2, 3, 5}.
When a span > 3600 seconds is used, the FPR increases
slightly for small values of cthreshold, although still being very
small (0.1%).

In general, we conclude that Algorithm 2 is more suitable
as a detection algorithm in our situation than Algorithm 1,
since the FPRs are much lower while similar (high) DRs are

maintained. We therefore conclude that the higher accuracy
of this algorithm should excuse the additional performance
footprint on the flow exporter. In the remainder of this section,
we will therefore only consider Algorithm 2.

B. Response Time

The main goal of this paper is to perform flow-based
intrusion detection in near real-time. An important metric in
the validation is therefore the response time. We define the
response time as the time between the moment in which
the algorithm detects an anomaly and the beginning of the
anomaly. A scatter plot showing response times for various
attack intensities is shown in Fig. 7a, where we define the
relative attack intensity as the fraction between the forecasting
error (see (3)) and the forecasted number of flow records:

et
x̂t+1

(11)

The response time is always a multiple of 5 seconds, as this
is the length of our measurement intervals. A response time
of 5 seconds means that an anomaly has been detected within
the same sample as the anomaly has started. As shown in
the figure, most anomalies with a relative intensity larger than
0.3 are detected within 10 seconds. Outliers are the result of
attacks that do not reach their full intensity right from the start.
Anomalies with a relative intensity < 0.3 are mostly detected
within 40 seconds. However, these anomalies are not the main
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target of our work as their potential damage to networks and
hosts will be limited. Another view on the response times of
the algorithm is shown in Fig. 7b, where the CDF is plotted
for each potential response time. It can be observed that 68%
of all anomalies is detected within 5 seconds and 90% of the
anomalies within 15 seconds. Note that these response times
are even lower than typical idle timeouts of flow exporters, as
shown in Section I.

An example of the prototype in operation is shown in Fig. 8.
The figure shows the number of flow record creations, as
measured by the processing plugin per measurement interval
of 5 seconds, and the number of flow records dropped by the
filter plugin per measurement interval, over a period of 36
hours. This measurement period is a subset of Dataset 2 (see
Table I). Several large anomalies can be identified, labeled as
(1)-(6). The anomalies (1), (5) and (6) are clearly smaller
than the others and are dropped largely or completely by the
filter plugin. However, the main focus of our work is on very
large anomalies, such as the anomalies marked as (2), (3) and
(4). Anomaly (2) consists of 755k flow records per 5 seconds,
while roughly 40k flow records have been forecasted. Out of
these 755k flow records, our prototype is able to mitigate 715k.
Anomaly (3) and (4) are both part of one longer anomaly,
which is dropped partly throughout the duration of the attack.
Anomaly (3) is mitigated completely, as the number of passed
flow records roughly equals the forecasted number of flow
records for measurement intervals during the attack (23k).
Anomaly (4) is mitigated partially, where about 50% of the
total number of flow records is dropped. When anomalies have
not been dropped completely, one or more attackers generated
less flows than the threshold of F = 200 per second. We
do not consider this problematic since the number of passed
flow records (40k per measurement interval) is in principle
not causing collector overload, as this number equals the
number of benign flow records at midday. Anomalies outside
the visualized part of Dataset 2 (i.e. anomalies that are not
shown in Fig. 8) have been detected and mitigated similarly
to the presented anomalies.

C. Performance Footprint

The last identified requirement for our intrusion detection
module is that it is lightweight, as the operation of an exporter
is considered time-critical. To verify whether our prototype
fulfills this requirement, we have run the exporter process on
our flow exporter both with and without our prototype. On
average, the exporter process consumes less than 5% more
CPU time when the processing and filter plugins are loaded.
The memory footprint of the plugins depends on the size of
an attack, as the number of flow records per IP address are
counted under such circumstances. Our measurements have
shown that the plugins never consume more than 20 MB of
memory when the network is under attack.

VI. FEASIBILITY

In this paper we have used INVEA-TECH’s FlowMon plat-
form for validating all identified requirements for our intrusion
detection module. This dedicated flow export platform has
been chosen both because we have full control over it in our
networks and because of its highly customizable architecture.
An alternative approach would have been to use a high-end
forwarding device with flow export capabilities.

Several platforms could have been chosen for implementing
this, as long as they support some form of scripting for
implementing the algorithm and retrieving statistics from the
flow cache of the exporter. One option is Cisco’s IOS, which
supports scripting based on the Tool Command Language
(TCL) as of version 12.3(2)T and 12.2(25)S. This provides
administrators both a means to automate CLI command
sequences and perform processing on information gathered
from CLI commands and SNMP MIBs. Another option is
Juniper’s Junos, which is a specific command shell on top
of a BSD-based kernel. It provides a full UNIX-level shell
to administrators. Normal UNIX commands can therefore be
used, which makes it straightforward to run customizations on
a high-end device.

Although our approach could already be implemented for
these platforms, performing intrusion detection based on our
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approach may be rather intrusive to a forwarding device.
Before deployment in a production network, its behavior under
load needs to be monitored carefully in a testing environment.
This is because the scripts are processed in software by a
generic CPU, which might become the bottleneck of the
system as soon as the system load increases.

VII. CONCLUSIONS

This paper has presented an extension for NetFlow and
IPFIX flow exporters that detects and mitigates malicious
network traffic in a near real-time fashion. Our results show
that we can detect flooding attacks within seconds, effectively
overcoming the detection delays incurred in traditional flow-
based monitoring systems. In addition, we can instruct other
security systems (e.g. firewalls) to block malicious traffic, and
filter flow data of malicious traffic to prevent flow collector
overload. Deployment of a prototype in the CESNET back-
bone network has proved both the applicability and successful
operation of our approach.

Validation of our work has shown that response times as
short as 5 seconds can be achieved, which easily fulfills our
design target of reducing detection delays to at least 10%.
This is the smallest possible value for our prototype, as it
is based on measurement intervals of 5 seconds. On the
one hand, related work has shown that smaller measurement
intervals result in measurements with too much noise, reducing
the accuracy of anomaly detection algorithms. On the other
hand, larger measurement intervals result in higher detection
delays and again reduced accuracy. Another requirement for
our intrusion detection module has been a limited performance
footprint, which has been targeted to be no more than 10%.
Our prototype has shown never to consume more than 5%
additional CPU time and that the additional memory usage
is negligible. Finally, our prototype has a high detection rate,
while maintaining a very low number of false positives. This
shows that our approach is accurate.

As future work, we plan to implement this work on high-
end forwarding devices, such as switches and routers. Our
feasibility study has shown that this is possible, although
practical implications have to be studied. In addition, we
consider specifying and implementing a meta-flow record.
When malicious flow data is filtered before it arrives at a
flow collector, this special flow record should fill the gap of
missing data. It should contain aggregated flow data, such as
the number of flow records, packets and octets that have been
filtered out by the flow exporter.
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