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Abstract 
One of the main scientific goals of the international ITER experiment is to provide 

understanding of burning plasmas, including the behavior of fusion-born alpha particles. These 
particles form both a potential risk for the first wall and a massive source of free energy in the 
plasma. Such free energy can drive a multitude of MHD modes, most notably the Alfvénic ones, 
that can lead to increased transport and even losses of fast ions. 

 
In this work, the alpha particle physics has been studied using kinetic orbit-following Monte 
Carlo code ASCOT. The code was enhanced with two new physics models. The first model 
relaxes the usual guiding center (GC) approximation used to save computation time. In some 
cases, this approximation is not valid and the full gyro motion (FO) has to be resolved. The 
second model is for fast ion relevant MHD modes and its implementation allows taking into 
account electromagnetic fields due to these modes. 
 
When the MHD model was used to simulate ITER plasmas, the wall power loads due to fast 
particles were not found to exceed the design limits of the wall materials even for 
unrealistically large perturbations. However, redistribution of fast ions was observed to alter 
the alpha particle heating profile and neutral beam ion (NBI) driven current profile. 
 
Fusion alphas were simulated for the ITER 15 MA scenario using different integration 
methods. Following the full gyro motion gave slightly larger alpha particle wall power loads 
than the GC method. Since the FO method uses more than 50 times more CPU than GC 
integration, a third method was introduced as a compromise between the speed and accuracy: 
the GC method is used in the plasma core and FO integration is activated in the vicinity of the 
wall. 
 
Finally, alpha-driven current and torque in ITER were studied using different magnetic field 
configurations. It was found that, independent of the magnetic configurations, the alpha-driven  
current is less than 1% of the total plasma current for both 9 MA and 15 MA baseline scenarios. 
On the contrary, the alpha-driven torque depends on the magnetic field configuration. While 
in the axisymmetric case the total torque was found to be close to zero, with realistic 3D effects 
the alpha particles produced substantial torque, about one tenth of that driven by the NBI 
particles, but in direction opposite to it. 
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Tiivistelmä 
Maailman ensimmäisessä fuusioreaktorissa, ITERissä, on tarkoitus oppia ymmärtämään 

palavien plasmojen fysiikkaa ja siten valmistella tietä kaupalliselle fuusioenergialle. 
Fuusioreaktioissa syntyvät nopeat alfahiukkaset sekä neutraalisuihkukuumennuksesta (NBI) 
syntyneet nopeat ionit aiheuttavat riskin ensiseinämän kestävyydelle. Hiukkasten sisältämä 
vapaa energia mahdollistaa monenlaiset magnetohydrodynaamiset (MHD) epästabilisuudet. 
Nämä MHD-häiriöt voivat aiheuttaa nopeiden hiukkasten kulkeutumista jopa ulos plasmasta. 
 
Tässä työssä on tutkittu alfa- ja NBI-hiukkasten fysiikkaa käyttäen apuna kineettistä Monte-
Carlo menetelmään perustuvaa radanseurantaohjelmistoa nimeltään ASCOT. Koodia on 
täydennetty numeerisilla malleilla, joista ensimmäinen mahdollistaa johtokeskusmenetelmän 
(GC) testaamisen ja tarvittaessa korvaa sen. Menetelmässä ratkaistaan hiukkasen gyroliike 
magneettikentän ympäri (FO). Toinen malli ottaa huomioon tiettyihin MHD ilmiöihin 
liittyvien sähkömagneettisten häiriöiden vaikutuksen nopeisiin hiukkasiin. 
 
Ensimmäistä mallia sovellettiin ITER:n perusplasmalle (15 MA) ja havaittiin, että FO 
menetelmällä laskettu alfahiukkasten aiheuttama seinäkuorma on suurempi kuin käytettäessä 
GC menetelmää. Koska FO menetelmä vaati noin 50 kertaa enemmän laskenta-aikaa, esiteltiin 
uusi hybridimenetelmä, joka siirtyy käyttämään FO radanseurantaa vain seinämien lähistöllä. 
 
MHD-mallia käytettiin useissa erilaisissa ITER-simuloinneissa. MHD-häiriöt eivät 
aiheuttaneet missään tapauksessa merkittävää lisäystä nopeiden hiukkasten tuottamiin 
seinäkuormiin. Sen sijaan MHD-häiriöt vaikuttavat nopeiden hiukkasten jakaumaan plasman 
sisällä. Tämä uudelleen jakautuminen aiheutti muutoksia sekä alfahiukkasten 
kuumennusprofiilissa että NBI-hiukkasten ajamassa virtaprofiilissa. 
 
Työssä laskettiin myös alfahiukkasten aiheuttama sähkövirta ja vääntömomentti erilaisten 
magneettikentän häiriöiden läsnäollessa. Alfahiukkasten synnyttämä virta oli kaikissa 
tapauksissa alle 1% kokonaisplasmavirrasta. Alfahiukkasten ajaman väännön puolestaan 
havaittiin riippuvan ulkoisista häiriöistä: aksiaalisesti symmetrisessä tapauksessa väännön 
komponentit summautuivat nollaan, mutta 3D häiriöiden läsnäollessa alfavääntö oli nollasta 
poikkeava. Alfaväännön suuruus on kuitenkin kertaluokkaa pienempi kuin NBI-hiukkasten 
aiheuttama vääntö ja lisäksi vastakkaissuuntainen. 
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1. Introduction

1.1 Fusion as energy source

Rapidly increasing demand for a clean and safe energy combined with

the increasing energy consumption per person [1] poses an serious issue

for mankind. All stones should be turned in order to solve this global

problem. Thermonuclear fusion, using deuterium (D) and tritium (T) as

a fuel and a tokamak design for the reactor, is one of the most promising

solutions to the above mentioned problem. It may, however, turn out that

fusion will not solve the energy problem but potentially it can cover a

major fraction of the needed energy with a clean and safe solution. In any

case, fusion is simply too big stone not to look underneath.

Mankind – literally, countries covering more than a half of the world’s

population are involved – has unified its know-how and economical forces

to build and operate the experimental thermonuclear fusion reactor ITER

– a tokamak currently been build in Cadarache, France [2]. So far, the

scientific feasibility of nuclear fusion is considered to be on a solid basis

whereas the main objective of ITER is to assess the technological feasi-

bility. The work towards commercial fusion does not, however, end at the

ITER project. At the same time as ITER is proving the technological fea-

sibility for nuclear fusion, the DEMO reactor will be introduced [3]. The

objective of DEMO is to prove the economical feasibility of nuclear fusion,

i.e. to show that the price of the electricity produced in the fusion power

plant can compete with other energy production methods in the future.
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Introduction

1.2 From fusion reactions to reactors

Even though there are no fusion reactors available on Earth, already to-

day basically all the electricity produced on Earth, omitting fission energy,

can be backtracked to fusion reactions in the Sun. These reactions pro-

vide the radiation that is used by, e.g., solar cells and by all hydro power

plants.

Mimicking the Sun on Earth is, unfortunately, extremely challenging.

In the Sun, fusion is taking place with a rather complicated chain of reac-

tions summing up to

4 · 1H + 2 · e− −→ 4He + 6 · γ + 2 · νe, (1.1)

where e− is an electron, γ is a photon and νe is an electron neutrino. The

conditions in the core of the Sun, where these reactions take place, cannot

be reached on Earth. Consequently, other fusion reactions have to be

considered to enable fusion on Earth.

The first requirement is that the fusion reaction has to have high enough

cross-section, i.e. sufficiently high probability for it to happen at achiev-

able temperatures. More stringent requirement is brought in by the so-

called Lawson criterion [4] for plasma to ignite, i.e. to keep the fusion

conditions without an auxiliary power input. The simplified Lawson cri-

terion reads

nTτE ≤
12kBT

2

EF 〈σv〉
, (1.2)

where n is the density, T the temperature, 〈σv〉 the fusion reaction rate,

τE the energy confinement time and EF the energy of the charged fusion

product responsible for maintaining the fusion-relevant temperatures (neu-

trons will escape the magnetically confined plasma). This criterion sug-

gests that when the tripple product of nTτE increases above a tempera-

ture dependent threshold value, the plasma ignites.

According to figure 1.1, the most convenient reaction to enable fusion on

Earth is the one with deuterium and tritium fusing to helium:

2H + 3H = D + T −→ 4He (3.5 MeV) + n (16.1 MeV). (1.3)

This reaction has the minimum of the Lawson criterion at the lowest tem-

perature of around 14 keV, and also the value of the tripple product is

several magnitudes lower than with the competing reactions. For the DT

reaction, nτE needs to be around 2 · 1014 cm−3s at the temperature of 15

keV to ignite the plasma.
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Figure 1.1. The fusion tripple product as a function of the temperature showing the Law-

son criterion for fusion for DD, DT and DHe fusion reactions. According to

the figure, DT provides the best conditions to obtain fusion on Earth. The

data for cross sections is from [5].

Deuterium is found from the sea water and will not cause problems for

neither the adundancy nor the equal distribution among the mankind.

Tritium, on the other hand, is more complicated case, being a radioactive

isotope with a half-life of 12 years. The strategy is to breed tritium inside

the reactor from lithium with the breeding reactions

n+ 6Li −→ T + 4He + (4.8 MeV) (1.4)

n+ 7Li −→ T + 4He + n− (2.5 MeV). (1.5)

Hence, for the tritium breeding both neutrons with suitable energy and

lithium are needed. A neutron is already generated by every DT reaction

but the number of neutrons is sufficient only after multiplication reactions

as some of the neutrons do not undergo the breeding reaction. Moreover,

the energy of the neutrons, without a moderator to slow them down, is too

high for optimal tritium breeding. Lithium is abundant in the soil, and

also very equally distributed world wide.

The tokamak reactor fuel concept can be summarized as follows: The

fuel transported to the power plant consists of deuterium and lithium.

In the reactor core, the fuel consists of deuterium and tritium. On the

first wall, there will be a blanket containing lithium for the tritium breed-

ing. The blanket also contains circulating water, or other fluid, to both

11
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slow the 16 MeV neutrons down to energies where the tritium breeding is

maximized and to convert the fusion energy to heat in the water. Eventu-

ally, the pressurized hot water is used like in the traditional power plants

to generate electricity, i.e. it is first steamed and then led to turbines.

1.3 Reactor relevant fast particle physics

Fusion using deuterium and tritium was selected as the most promising

option. However, this reaction leads to activation of wall materials by

high-energy neutrons. Therefore, the DT reaction is replaced by the DD

mock-up reaction as the basic fusion research.

One of the most important features of DT physics, not present in DD

mock-up plasmas, is the vast number of fusion-born alphas present in DT

plasmas. These particles have a crucial role in ensuring a sufficiently

high temperature in the plasma. Alpha particles are born with a 3.5 MeV

energy and are expected to transfer the majority of their energy to the

plasma fuel. In a burning plasma, this energy is sufficient to ensure self-

sustained heating of the plasma [4,6].

The transport of these alpha particles must be understood in the realis-

tic burning plasma conditions. If this is not the case, not only is part of the

alpha power lost but, even worse, these high-energy particles may lead to

serious damage of the first wall. Furthermore, these alpha particles pro-

vide free energy source in the plasma. It has been shown [7] that this

free energy can excite several magnetohydrodynamical (MHD) instabili-

ties. The situation is even more complicated as the MHD instabilities act

back to alpha particles potentially redistributing them or leading them to

orbits that intersect with the first wall (lost orbits) [8,9].

Predicting the fusion alpha behaviour in burning plasma is, thus, very

important for successful operation of ITER. Computer simulations are a

way to obtain such predictions without unrealistic assumptions such as

very simplistic magnetic field or absence of MHD modes and limiting ma-

terial surfaces. In order to be reliable, these computer simulations need

to be validated using the experimental data from existing experiments.

In addition to fusion alphas, also 1 MeV deuterons from NBI heating pose

similar problems and have to be understood. These fast particles are the

topic of this thesis.

12
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1.4 Introduction into kinetic fast ion orbit-following theory and

simulations

One method to understand fast ion behaviour in tokamaks is to numer-

ically solve the kinetic equation of these particles. As a solution of this

equation, the distribution function, i.e. the probability of finding fast par-

ticles at the given phase-space location, is obtained. This function con-

tains all essential information about the fast particles.

The first step towards the modern simulations was the application of

a so-called guiding center approximation, where the fast gyration of the

particles around the magnetic field line was replaced by the movement

of the particles’ guiding center. This work was initiated by the father

of the plasma physics, Hannes Alfvén, who discovered in his paper from

1940 [10] that the magnetic moment µ =
mv2

⊥

2B
is an adiabatic invariant,

and that this invariant is associated with the particle motion around the

magnetic field line. This result is essential for the later work with the

guiding center theory. Alfvén also derived the guiding center equations of

motion by averaging over the fast gyration and his results were later on

reviewed by Northrup [11].

Later on, it was noticed that the Hamiltonian nature of the system was

broken in the averaging procedure. This had dramatic consequences: e.g.

the total energy of the particle was not conserved. The problem was solved

in early 1980s, mainly by Littlejohn [12–14]. In his treatment of the non-

canonical Hamiltonian guiding center theory, the obvious increment was

to carry the guiding center approximation in such a way that the Hamil-

tonian nature of the system was conserved. This work was reviewed by

Cary and Brizard [15]. This review can be considered as the basis for the

modern guiding center particle tracing applications.

Along the development of the guiding center tracing, the transport pro-

cesses in a hot plasma were considered [16]. To zeroth order, it is appro-

priate to assume that the Hamiltonian motion dominates the transport of

fast particles. However, when the particles are followed long enough, com-

pared to the slowing-down time of the particles, the collisions between the

fast ions and the thermal background plasma become equally important.

As a result, neoclassical transport of the traced particles is solved.

Already in the 1980s, the interaction of the fast ions with electromag-

netic waves was realized to affect the fast ion transport and, thereby, the

kinetic equation of fast particles [17]. In burning plasmas, these interac-
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tions seem to play a key role and, therefore, the research for this wave-

particle interaction has recently been the topic for several studies.

It is known that microturbulence is the main reason for the increased

transport of the bulk plasma. However, microturbulent transport of fast

ions [18] is shown, in Publication VI, to be of the order of the statisti-

cal error in the simulations. Therefore, it is justified to omit turbulent

transport from the fast ion simulations.

In 1990s, it was realized that the shape of the magnetic field has a clear

effect on the solution of the kinetic equation of fast particles [19, 20]. At

first stage, realistic 2D models were created to take into account the shape

of the tokamak plasmas. As a result, analytical magnetic field models

were replaced by tabulated data. In 2000s, the 3D geometry of the mag-

netic field was found to further affect the fast ions leading to additional

transport processes, and thereby, changed the solution of the kinetic equa-

tion of fast particles [21–23].

1.5 Content of this thesis

The coupling of the different transport processes were, hence, not done in

the most general way. The guiding center approximation was often used,

even though in some cases the guiding center approximation is not valid.

The simplest example being a case of strongly changing magnetic field

within the gyration radius of the fast particle. The natural solution for

this case is to follow the actual particle instead of its guiding center.

Having a tool with options to both follow guiding centers and full or-

bits is beneficial as the validity of the guiding center approximation can

always be checked. Therefore, the option to trace full orbits was imple-

mented and applied using the ASCOT code [24]. While the full orbit fol-

lowing has already been considered by various codes, e.g., GOURDON,

SPIRAL [25], and LOCUST [26, 27], these codes do not have the capa-

bility to follow guiding centers. Investigations of full orbit fast particle

motion versus guiding center approximation is described in the first half

of the thesis.

The standard guiding center formalism can not explain the interac-

tions of fast particles with the various MHD modes that are routinely

observed in various experimental devices [28, 29]. The modes are accom-

panied with a perturbation in the electromagnetic fields that affect the

particle motion. The motion due to these perturbations compete with the
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Hamiltonian motion assuming MHD quiescent plasma, e.g. when there

are many modes overlapping with each other or when strong enough sin-

gle mode appears. Therefore, accurate guiding center simulations should

take these perturbations into account.

There were a few dedicated codes to investigate wave-particle interac-

tions, such as HAGIS [30] and ORBIT [17]. However, the effects of the

3D magnetic field perturbations due to TF ripple, TBMs or ELM miti-

gation coils were neglected, without a necessity, in these codes. To this

end, the second half of this thesis is dedicated to inclusion of MHD modes

in ASCOT code, where 3D magnetic field is inherently present together

with several other 3D effects like the first wall as illustrated in figure 1.2.

This model, coupling the 3D neoclassical transport with the wave-particle

interaction, is presented and applied in this thesis for ITER plasmas.

Figure 1.2. An artistic view of the fast ion orbits (red and blue lines) in the magnetic

field containing Alfvénic perturbation. The magnetic field perturbation due

to Alfvénic mode is shown in the left cross-section. Full 3D design for both the

magnetic field and the wall of ITER tokamak are used. c© Jyrki Hokkanen,

CSC.

For the simulations, two ITER baseline scenarios are considered. An

inductive scenario with Q=10, where Q stands for fusion gain defined by

the ratio of the thermonuclear power to the external heating power ap-

plied, and 15 MA plasma current was selected as the main ITER project

mission to study the technological feasibility of the thermonuclear fusion.

Steady-state scenario with Q=5 and 9 MA plasma current was selected as

it is the primary aim for ITER and, at the moment, the best candidate for

the fusion power plant operation.
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1.6 Organization of the thesis

This thesis is organized as follows. After the introduction presented above,

the most important tool used in the thesis, the ASCOT suite of codes, is

presented in chapter 2. Only the key aspects related to this thesis are dis-

cussed. In the chapter 3, the numerical development within the context

of this thesis is summarized. The energy conservation properties missing

from the papers attached to the thesis, are presented here. The results of

numerical simulations are summarized in the chapter 4. In each section

of this chapter, a separate physics study is described. The whole thesis

is discussed, summarized, and an outlook is presented in the chapter 5.

After the compilation part of the thesis, the publications are attached.
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2. Numerical tools - the ASCOT code

This chapter presents the numerical tool to solve the kinetic equation of

fast ions in tokamaks. As an introduction, the tokamak environment and

the coordinate systems to be used later on in the thesis will be presented.

2.1 Background for the simulation model

2.1.1 The tokamak

The tokamak is the leading branch to obtain the burning plasma condi-

tions. The main competitors are stellarators like Wendelstein 7X [31] and

laser ignited fusion experiments like NIF [32]. Tokamaks and stellara-

tors belong to the magnetically confinement fusion experiments while the

plasma in a laser fusion experiment is confined only by the inertia of the

plasma particles. Only tokamaks are considered within this thesis.

The tokamak principle is to maximize the energy confinement time to

ignite the plasma. Sufficient energy confinement is obtained by large

and properly oriented magnetic fields that keep the charged plasma par-

ticles inside the vessel walls. The main component of the magnetic field is

toroidal and it is generated by poloidally oriented, D-shaped toroidal field

(TF) coils. To keep the plasma stable, a helical total field is needed. It is

obtained inductively, by driving a toroidal plasma current that creates a

poloidal magnetic field component.

Tokamak plasmas are heated by self-heating provided by the fusion

products such as alpha particles from the DT reaction, by Ohmic heat-

ing [33], by neutral beam injection (NBI) heating [34], and with radio

frequency (RF) heating [35]. The Ohmic heating is present intrinsically,

while NBI and RF heating power and deposition profiles can be controlled,

with technological boundary conditions related to, e.g., available power.

17



Numerical tools - the ASCOT code

The Ohmic heating becomes less efficient when the temperature rises, so

these external heating mechanisms are needed to reach the fusion rele-

vant temperatures.

To obtain fusion-relevant plasma discharges, a plasma with low density

of the impurity particles are needed. Hence, the tokamak plasmas are

operated in high vacuum conditions [36]. Gas puffing, pellet injection

and pumping are main tools to fuel the plasma [37, 38] and to control

the plasma density. Besides the TF coils, several other coils, both with

poloidal and toroidal orientation, are used to control the plasma shape

and stability.

The geometrical shape of the tokamak provides a symmetry along the

toroidal or axial direction. Furthermore, the magnetic field forms concen-

tric flux surfaces. From the first principles of plasma physics, it is known

that many quantities such as the density, temperature and the pressure

of the plasma are constant along these flux surfaces enabling, thereby,

yet another symmetry. This reduces dimensions to only one, i.e. the flux

surface.

In many cases, this 1D approximation is insufficient. For example, ITER

has only 16 toroidal field coils. This breaks the toroidal symmetry and

makes the magnetic field and the plasma genuine 3D objects. This is en-

hanced when the perturbations due to test blanket modules (TBMs) [39],

neutral beam ports [40], ferritic inserts (FIs) [21], and ELM coils [41] are

taken into account. Therefore, numerical models needed for realistically

simulate fast ions in ITER require a full 3D description of the magnetic

field.

2.1.2 Coordinate systems for a tokamak

Quantities, such as fast ion density or fast ion driven current density, are

often given in the poloidal plane, illustrated in figure 2.1. In this figure,

the plasma flux surfaces and the first wall of the ITER tokamak are shown

as a function of the most important geometrical quantities, i.e. the major

radius R and the vertical coordinate z. The flux surface coordinate for the

1D model is defined as the label for each surface with constant poloidal

(toroidal) flux ψp (ψt), given by

ψt =

∫

B · daφ (2.1)

ψp =

∫

B · daθ, (2.2)
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Figure 2.1. Plasma poloidal plane showing the flux surfaces and first wall of ITER toka-

mak.

where daθ and daφ are the differential area vectors with normals in the

poloidal and toroidal directions, respectively. A Cartesian system of (x, y, z)

can be used, while cylindrical coordinate system (R,φ, z) is more often

utilized, here φ being the toroidal angle. The positive direction of the φ

coordinate in this thesis is defined counter-clockwise when viewed from

the top.

For theoretical considerations, and sometimes also for simulations, other

coordinate systems are utilized. One of the examples is the so-called

Boozer coordinate system [42], in which one of the coordinates is the

poloidal flux and the two other coordinates are angular coordinates, i.e.

(ψ, θB, ξB). With these field-aligned coordinates the field line becomes

straight in the (θB,ξB)-plane. Moreover, the particle motion is very slow

in the ψp direction compared to direction parallel to the magnetic field.

Thus, particle orbits are generally faster to integrate using this coordi-

nate system than with the Cartesian or cylindrical coordinate systems.
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The drawback of this coordinate system is a divergence at the plasma

separatrix, i.e. at the last closed flux surface the coordinate system is ill-

defined. Therefore, this coordinate system cannot be used, e.g., to trace

the particles crossing the separatrix or moving in the scrape-off layer.

2.2 Simulation model of the ASCOT code

Modern plasma physics is closely related to the computational physics.

For example, to solve the Fokker-Planck equation [43] in a realistic 3D

geometry, a numerical Monte Carlo scheme has to be utilized. The code

used in this thesis, ASCOT [24], solves exactly this problem. It has been

developed since 1990s within the research group at Helsinki University

of Technology, nowadays Aalto University, and in VTT technological Re-

search Center Finland. The code has been used earlier on for both fast

ion related studies, e.g. [44–51], and, more recently, for impurity studies

as well [52,53].

ASCOT is a kinetic orbit-following guiding center code based on Monte

Carlo method. Starting from the kinetic, the kinetic Fokker-Planck equa-

tion is solved, i.e.

∂fs
∂t

+ v · ∇fs + as · ∇vfs = Cs (f) , (2.3)

where fs = fs (r,v, t) is the distribution function in the particle phase-

space for species s, as =
qs
ms

(E + v ×B) is the acceleration, and Cs is the

collision operator in the particle phase-space.

A Monte Carlo method is applied because of the geometry of the system

is complicated enough to motivate solving the equation by the test particle

method and the fact that the collision operator is written in a Monte Carlo

form. Each test particle trajectory is governed by the equations of motion,

i.e. the orbits of the test particles are followed as discussed in [54].

Finally, the full Fokker-Planck equation, i.e. with the collision opera-

tor, is transformed from the particle phase-space to the guiding center

phase-space, (r,v) ⇒
(

R, v‖, µ, χ
)

. Hence, reduced guiding center kinetic

equation is obtained

∂F

∂t
+ Ṙ ·

∂F

∂R
+ v̇‖

∂F

∂v‖
= CGC (F ) . (2.4)

Here, instead of the particle distribution function f , we have introduced

the reduced guiding center distribution function F . The collision operator
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is transformed to the reduced guiding center phase-space and properly

averaged over the gyro angle [54]. ’Reduced’ here means that the guiding

center transformed kinetic equation is further simplified by removing the

fast gyro angle, χ, dependency from the equation. The resulting reduced

guiding center phase-space is
(

R, v‖, µ
)

, where R is the guiding center po-

sition, µ the magnetic moment and v‖ the guiding center velocity parallel

to the magnetic field.

The code is solving the kinetic equation rather than single particle tra-

jectories. This is motivated by the connection of the kinetic equation with

the stochastic differential equation [55]. These describe both the Hamilto-

nian motion and the drag/diffusion by the collisions with the background

plasma for each phase-space coordinate. The kinetic equation is then

solved by following the test particles according to stochastic differential

equations, and constructing the distribution function from the test par-

ticle orbits. This procedure produces the solution to the kinetic equa-

tion (2.4). Distributions obtained this way are essentially velocity inte-

grals of the reduced guiding center distribution function. More details

can be found in the references [24,54,56].

2.2.1 Equations of motion

At the heart of any particle tracing code are the equations of motion de-

scribing the temporal evolution of the phase-space of the particle. To ob-

tain statistically relevant results, large number of particles, up to several

millions, has to be traced. Moreover, these high-energy particles are often

followed until they are slowed down by the collisions with the background

plasma. Hence, a guiding centre approximation is often applied to ease

computational resources needed for the study.

The current ASCOT implementation is based on noncanonical Hamilto-

nian formulation derived from the Lie-transformed Lagrangian [15]

L = (qA+mv‖b) · Ṙ+
mµ

q
χ̇−H, (2.5)

where b = B

B
is the magnetic field unit vector, χ is the gyro angle, and the

Hamiltonian, H, is given by

H =
1

2
mv2‖ + µB + qΦ. (2.6)

The guiding centre equations of motion are obtained by applying the Euler-

Lagrange equation to the Lagrangian (2.5). This procedure yields the fol-
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lowing set of equations [15]

χ̇ =
qB

m
, (2.7)

µ̇ =0, (2.8)

v̇‖ =
q

m

B
⋆

B⋆
‖

·E⋆, (2.9)

Ṙ =v‖
B

⋆

B⋆
‖

+E
⋆ ×

b

B⋆
‖

, (2.10)

where B⋆
‖ = B

⋆ · b, and the effective fields (E⋆ = −∂A⋆/∂t − ∇Φ⋆, B⋆ =

∇×A
⋆) in Eqs. (2.9) and (2.10) are defined by the effective potentials

Φ⋆(R, µ, t) = Φ +
µB

q
, (2.11)

A
⋆(R, v‖, t) = A+

mv‖b

q
. (2.12)
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Figure 2.2. Examples of passing and trapped alpha particle orbits in the ITER geometry.

The orbits are solved by the Runge-Kutta integration method.

To ensure solutions of high numerical accuracy, the integration scheme

used to solve the equations of motion in ASCOT is the fourth order Runge-

Kutta with a fifth order error prediction. The accuracy to which order

the equations are solved is given as an input, and the implementation
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takes care of adapting the time step to fulfill that accuracy. The guiding

center motion is mathematically not a very stiff problem and it is solved

by standard integrators with a high accuracy. In figure 2.2, a passing orbit

and a trapped one are shown in ITER magnetic geometry.

The equations of motion are written in vector form and, hence, they are

valid for all electromagnetic fields and integrable using any coordinate

system. The crucial feature of ASCOT is the capability to use fully 3D

magnetic field for particle tracing. As large data tables are needed for the

magnetic data, the interpolation of this data becomes important. Firstly,

the interpolation routine uses most of the CPU time and, therefore, an

optimization of this part of the code is a very effective way to optimize the

entire code. Secondly, any error in the magnetic field interpolation causes

an error in the fast ion orbit tracing. Therefore, the interpolation scheme

has stringent requirements for both speed and accuracy. In ASCOT, the

field is interpolated using a free spline package PSPLINES [57].

2.2.2 Coulomb interactions and wall collision model

The Hamiltonian motion presented in the previous section does not de-

scribe the collisions between the traced guiding centers and other plasma

particles. This effect is very important to take into account when study-

ing phenomena with long temporal scales, e.g. in the simulations of wall

power loads due to fast ions, or when the collisionality of fast ions is high.

In ASCOT, the collision operator is implemented in a Monte Carlo form

and this operator acts on the guiding center phase-space coordinates. It

is actually well-known that not only the velocity of the guiding center but

also the position is changed in the collisions. The collisions are evaluated

between the time steps and the guiding center phase-space is changed

according to equations (32-33) and (42) shown in reference [24]. After

each collision evaluation, a check is made to ensure that the collisions do

not change the particle properties more than the user have defined in the

input file. In case too large change is observed, the current time step is

canceled and the next iteration is tried with halved time step.

To evaluate collisions, plasma kinetic profiles are needed. The standard

set consists of temperature and density profiles, as shown in figures 2.3

and 2.4 for the 9 MA ITER scenario. The profiles are as a function of ρp,

the normalized poloidal flux given by ρp =
√

(ψ − ψa) / (ψs − ψa), where

ψa/ψs are poloidal flux values at the magnetic axis/separatrix, respec-

tively. In more advanced cases, 2D (R, z) profiles for the temperature and
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Figure 2.3. Plasma densities as a function of ρp for the 9 MA ITER scenario. Deuterium

and tritium density lie on top of each other.

Figure 2.4. Electron and ion temperature as a function of ρp for the 9 MA ITER scenario.

density can be used. Optionally, the plasma rotation can be taken into ac-

count in the evaluation of the collisions. This is essential for the impurity

studies, but not that important for the fast particles. The plasma rotation

profile is, thus, an optional input for the code.

One of the crucial features of the ASCOT code is the fully 3D wall de-
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sign allowing to study the wall loading in a realistic geometry with ports

and protruding elements in the first wall. ASCOT uses a modified com-

puter graphics implementation [58] to find an intersection of a line and

a planar element, i.e. the particle orbit and the first wall. The accurate

location together with the index of the wall tile in which the collision took

place, is saved and stored for later use. The implementation has been

found extremely reliable making sure that no particles are leaking from

the region where the magnetic data is provided.

2.2.3 Running ASCOT on a (super)computer

Figure 2.5. The scaling test of ASCOT in HELIOS supercomputer. As is shown, ASCOT

scales nearly ideally as the test particles can be simulated independent of

each other.

ASCOT source code is written in FORTRAN90 and can be compiled ei-

ther on standard desktop machine or in supercomputer clusters, such as

HELIOS [59] and CSC [60]. The only library needed for the compilation,

besides the commonly available libraries for MPI routines, is HDF5 [61]

and it is routinely available on major supercomputers. In case ASCOT is

operated in the supercomputer environment, batch scripts are available

to define the job configuration to be sent to the batch queue and later on

to the computing cores.
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As each test particle in an ASCOT simulation is independent from the

other test particles, the code scales nearly perfectly with the number of

cores as shown in figure 2.5. In a typical run of 300 000 alpha particles

traced for roughly a second in ITER lasts up to 20 hours on the HELIOS

supercomputer using up to 4096 processes, or 256 cores.

The generation of ASCOT input data is usually done using a set of MAT-

LAB routines that construct separate ASCII-files for the magnetic field,

the kinetic plasma profiles and the first wall. The ASCOT toolbox contains

a separate program to evaluate and produce a file for the initial locations

of the test particles, whether guiding centers or full orbit particles. The

program includes a neutral beam particle model [62] for various toka-

maks, fusion product model for the most common fusion reactions, and a

simplified model for ICRH particles (see reference [24]). The ASCOT run

is controlled by an input file defining the simulation parameters, e.g., the

end criteria and the output that is produced during the run.
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3. Development of numerical models

This chapter presents the development of numerical models. First, an al-

ternative particle tracing method, dubbed full orbit tracing, to the guiding

center following was introduced. This new method can be used to both en-

sure that the guiding center approximation is valid and to substitute the

guiding center formalism in situations where it cannot be applied.

The second half of the development provided ASCOT with a model for

the interaction of fast particles with MHD instabilities like NTMs and

TAEs. In this chapter, the most important numerical development is sum-

marized. Some additional tests, not included in the related publications,

are presented here for the first time.

3.1 Full orbit particle tracing

As derived in section 2.2.1, the guiding center transformation is often used

to ease the computational effort. It is, however, applicable only when the

following criteria are met

ρL
∇B

B
≪ 1 (3.1)

Ω

B

∂B

∂t
≪ 1, (3.2)

where Ω = qB/m and ρL are the characteristic temporal and spatial

scales, respectively, of the charged particle gyration around the magnetic

field line. Hence, the criteria reads that the magnetic field cannot change

too much within a Larmor radius ρL or within the time it takes for a parti-

cle to complete a single Larmor gyration. The same applies to all the other

fields needed for particle tracing, e.g. the electric field or kinetic profiles

needed for the evaluation of the collisions with the background plasma.

If the criteria are not met, the gyro motion of the particle must be re-

solved in order to get reliable results. A good example of this is the fusion
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Figure 3.1. The Larmor radius of 3 MeV fusion protons in the magnetic field of the MAST

tokamak. The usage of the guiding center approximation is very ambiguous

for this plasma.

products in Mega Ampere Spherical Tokamak (MAST) for which the Lar-

mor radius in the poloidal plane is shown in figure 3.1. It is concluded that

the guiding center approximation can not be very accurate in this case as

the Larmor radius can be close to a half of the minor radius. To address

such plasmas and to assess how large of an error is done using the guiding

center approximation, an option to trace the full particle orbits was intro-

duced to ASCOT code as described in Publication I. Moreover, periodic TF

ripple perturbations may cause additional transport only seen in the full

particle orbits as explained in [63].

It was noticed that, for time scales relevant for the energetic particle

in ITER, following the full particle motion is a significant computational

task for two reasons. Firstly, the problem is mathematically stiff and,

therefore, special attention must be paid in the way the equations of mo-

tions are solved. Secondly, even with valid numerical implementation the

computational task can be 50-100 times more demanding than with the

guiding center approximation, as was explained in Publication II. Despite

the computational costs, the model presented in Publication I has already

been used in many studies [48–51,64].

The motion of a charged particle in a general electromagnetic field is
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described by the equations of motion

v̇ =
q

m
(E+ v ×B) , (3.3)

ṙ =v. (3.4)

To solve these equations for non-trivial electromagnetic fields, a numeri-

cal integration algorithm must be introduced. The standard integration

method to solve differential equations is Runge-Kutta. Routinely, the

fourth order Cash-Karp Runge-Kutta with fifth order error monitoring

is used for particle tracing applications. The well-known disadvantage of

using Runge-Kutta for this problem is the energy conservation, i.e., the

integration method does not conserve the test particle energy. The error

is proportional to the length of the integration time step. Hence, the user

is forced to limit either the length of the time steps or the simulation time.

However, using a modified one step Leap Frog scheme instead of higher

order Runge-Kutta methods, and given by

vi+1 = vi +∆t
q

m

(

Ei +
vi+1 + vi

2
×Bi

)

(3.5)

ri+1 = ri +∆tvi (3.6)

as suggested in Publication I and [65], ensures the conservation of the

total energy in the absence of electric field. This can be shown by a direct

calculation: first, the equation (3.5) is solved for vi+1 by taking a cross

product with B and rearranging the terms to arrive with an expression

vi+1 = −vi + 2
vi + vi × B̃+

(vi·B̃)B̃
4

1 + B̃2

4

, (3.7)

where B̃ = ∆tqB
m

. This equation is dotted with itself giving

v2i+1 = vi+1 · vi+1 (3.8)

= v2i − 4
vi · vi +

(vi·B̃)
2

4

1 + B̃2

4

(3.9)

+ 4
vi · vi + 2

(vi·B̃)
2

4
+

(vi×B̃)·(vi×B̃)
4

+
(vi·B̃)B̃2

16
(

1 + B̃2

4

)2
, (3.10)

where the term (3.10) can be decomposed according to (a× b) · (a× b) =

a2b2 − (a · b)2.
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Hence, (3.10) reads as

4
vi · vi + 2

(vi·B̃)
2

4
+

vi·viB̃
2−(vi·B̃)

2

4
+

(vi·B̃)B̃2

16
(

1 + B̃2

4

)2
(3.11)

= 4
vi · vi

(

1 + B̃2

4

)

+
(vi·B̃)B̃2

4

(

1 + B̃2

4

)

(

1 + B̃2

4

)2
(3.12)

= 4
vi · vi +

(vi·B̃)
2

4

1 + B̃2

4

. (3.13)

Using this result, expression (3.8) can be simplified to v2i+1 = v2i , i.e. the

energy of the particle is explicitly conserved using this scheme. This en-

ables longer time steps and longer simulation times.

Another major advantage of the Leap Frog method comes from the faster

evaluation of the equations of motion. Using, e.g., fifth order Runge-Kutta

method as is used in ASCOT, the electromagnetic fields need to be interpo-

lated five times more often than in the Leap Frog implementation. Hence,

the calculation becomes rapidly much more CPU time consuming.

To demonstrate this, ASCOT was used to calculate the full orbit motion

of a 3.5 MeV alpha particle in an axisymmetric magnetic field of ITER

using both Leap Frog and Kash-Karp Runge-Kutta methods. The particle

was followed in both cases for 10 ms and the time step was selected to be

on the average 0.5 µs. Using a standard desktop computer, the evaluation

took roughly 22 minutes and 36 seconds with Leap Frog method, while

the computing time was 36 minutes and 39 second when Runge-Kutta

was used, i.e. the computation time increased by 62 %. Changing to a

3D magnetic field, where the interpolation becomes heavier, the comput-

ing times were 27 minutes, 19 seconds for Leap Frog and 52 minutes, 52

seconds for Runge-Kutta. Thus Runge-Kutta took almost twice the CPU

time required by Leap Frog.

The energy is conserved within 1 % when the test particle was traced

by Runge-Kutta integration for 10 ms. Increasing the time step leads to a

situation where the test particle energy starts to rapidly drift, eventually

leading to also a spatial drift and lost orbit. Hence, the time step used

for Runge-Kutta solution was close to the maximum value that can be

used for an acceptable solution. For Leap-Frog method, the time step can

be safely increased to 5 µs with the orbit unchanged within the numer-

ical accuracy, giving even more edge for the Leap Frog method over the

Runge-Kutta. The kinetic energy conservation using different methods

and different time steps is demonstrated in Figure 3.2.
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Figure 3.2. The change of the kinetic energy of the alpha particle, from the initial 3.5

MeV, using different full orbit methods and time steps. With Leap Frog

(LF), the energy is explicitly conserved but with Runge-Kutta (RK) the en-

ergy starts to drift in case a too large time step is used. Therefore, the time

stepping for Runge-Kutta has to be small enough to conserve the energy of

the particle for the needed simulation time.

3.2 Magnetohydrodynamical instabilities

In the presence of MHD activities, the traditional guiding center simu-

lations can not explain the observed losses of fast ions nor the confined

fast ion density in the plasma. Moreover, in many experiments [66–71], a

large number of different MHD instabilities have been observed and they

are expected to be present in the future burning plasmas as well. Hence,

running fast ion simulations to model these cases, the effect of MHD in-

stabilities have to be taken into account. Therefore, several fast ion codes,

e.g. SPIRAL [25] and HAGIS [30], have been developed to include the

effects of MHD modes on fast ions.

MHD modes generate a perturbation to the electromagnetic fields that

affect the particle motion. The particle motion itself can be a substantial

driver for the modes and, hence, particles act back to the modes result-

ing in a complex nonlinear wave-particle interaction. Taking into account

the full interaction is not possible without either using approximations

or coupling many simulation tools together. An example of the former is

HAGIS code that takes into account the interaction of the particles and
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waves with the approximation that the wave mode structure is fixed, i.e.

the fast ion drive alters only the amplitude of the prescribed eigenstruc-

ture of the waves. This eigenstructure is usually calculated by a separate

code. A more consistent approach includes coupling of the eigenstructure

solver to the kinetic solver enabling to solve the non-linear saturation of

both the amplitude and the structure of the waves.

In ASCOT, the wave-particle interaction is modeled by the electromag-

netic perturbations affecting the particle motion and neglecting the effect

of the fast particles to the waves. This means that the non-linear mode

evolution is not calculated and essentially only a single time slice with

predetermined mode structure is simulated. However, the ASCOT model

provides inclusion of the modes together with an arbitrary 3D magnetic

field, the realistic vacuum region and a fully 3D wall design. These are

often neglected in more self-consistent approaches. With these approxi-

mations, ASCOT provides a tool to estimate the fast ion response to pre-

scribed MHD perturbation in a realistic magnetic configuration.

The model for the MHD modes is based on adding the perturbation to

the magnetic and electric potentials. The structure of the modes is helical

in field-aligned coordinates (θB, ξB), i.e.

α =
∑

nm

αnm(ψp) sin (nξB −mθB − ωnmt), (3.14)

Φ̃ =
∑

nm

Φ̃nm(ψp) sin (nξB −mθB − ωnmt), (3.15)

where the magnetic part of the perturbation is B̃ = αB and the electric

part is given by Φ̃.

The novel part of the model is that one can use any coordinate system

for the particle tracing and evaluate the perturbations using coordinate

transformations from these coordinates to the field-aligned ones. Hence,

there is actually no restriction on the coordinate system for the particle

following as long as coordinate transformations are available. Moreover,

the particle crossing the separatrix can be simulated using this approach.

The equations of motion (2.7-2.10) remain the same but the effective po-

tentials are slightly modified by the perturbations

Φ⋆⋆(R, µ, t) = Φ⋆ + Φ̃, (3.16)

A
⋆⋆(R, v‖, t) = A

⋆ + αB. (3.17)

Thus in the numerical implementation, evaluation of α, ∇α, Φ̃ and ∇Φ̃ are

needed in the coordinate system the particle orbits are solved in. In AS-
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COT, the coordinate transformations from cylindrical/toroidal coordinates

to field-aligned coordinates and back are used.

This model is valid as long as the symmetry is helical and the approxi-

mation for the parallel magnetic vector potential can be used. This is gen-

erally true for all low-β MHD modes such as toroidal Alfvén eigenmodes

(TAEs) and neoclassical tearing modes (NTMs). For NTMs, the αnm pa-

rameter can be given by theory-motivated parametrization(s) [72, 73] or

by external MHD calculations. For the Alfvénic modes, either αnm or Φ̃nm

can be given and the other is calculated from the condition of vanishing

parallel electric field as electrons rapidly smooth out any potential gradi-

ents along the magnetic field. Vanishing E‖ yields the connection between

α and Φ̃

E‖ = ωBαnm cos (nξB −mθB − ωt)−
B · ∇Φ̃

B
= 0 (3.18)

⇒ αnm =
(nq −m)

ω (gq − I)
Φnm, (3.19)

where the functions g and I are known coefficients of the covariant repre-

sentation of B, i.e.

B = g (ψp)∇ξB + I (ψp)∇θB + δ∇ψp (3.20)

and q is the safety factor. The parallel electric field vanishes due to rapid

mobility of the electrons along the field line. In case this assumption is

not valid due to, e.g., very intense local heating, both αnm and φ̃nm must

be given as input.

In the ASCOT implementation, the MHD modes are included as follows.

The axisymmetric part of the magnetic field is used to generate the coor-

dinate transformation from field-aligned coordinates to cylindrical coordi-

nates and back. In the same process the functions g, q and I are tabulated

and converted to spline objects. Thereafter, the particles are followed and

during every time step, α, ∇α, Φ̃ and ∇Φ̃ are evaluated using the splines.

The guiding center equations of motion are solved in the presence of the

fully 3D magnetic field. The implementation is discussed in more detail

in Publication IV.
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4. Results of numerical simulations

This chapter discusses the results of numerical simulations carried out

using the new numerical models introduced to ASCOT. In section 4.1, the

ITER wall power loads, calculated with full orbit following, are presented,

while section 4.2 reports on the current and torque driven by fusion al-

phas in ITER. Section 4.3 presents detailed benchmarking, verification

and validation studies that have not been reported earlier. In section 4.4,

the effect of MHD modes on fast ions is addressed.

4.1 ITER wall power loads with full orbit tracing

In ITER, the approximation of axisymmetry for the magnetic field is bro-

ken at several levels. The 18 toroidal field coils break the axisymmetry

while retaining 18-fold symmetry. This periodic perturbation is referred

to as TF ripple. The remaining pieces of symmetry are broken by the per-

turbations caused by the ferritic materials, such as neutral beam ports

and TBMs. Due to these asymmetries in the magnetic field, the guiding

center theory is only an approximation. Figure 4.1 represents the Lar-

mor radius for 3.5 MeV alpha particles in the realistic magnetic field of

ITER. The Larmor radii are evaluated at the toroidal location φ = 0 as-

suming the velocity is purely perpendicular to the magnetic field. From

this figure, it is not obvious whether there is any difference to use full

orbit following instead of guiding center following. Therefore, numerical

simulations investigating this issue are needed.

This was done for the case where ITER wall power load by alphas was

simulated using both full orbit and guiding center integration methods. A

set of simulations was carried out for the 9 MA advanced scenario with

central reversed shear using different models for particle tracing. Not

only pure guiding center (pure GC) and pure full orbit tracing (pure FO)
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Figure 4.1. The Larmor radius of 3.5 MeV alpha particles in the 3D magnetic field of

ITER containing TF ripple and perturbations due to TBMs, neutral beam

ports and ELM coils. The validity of the guiding center theory needs to be

checked with numerical simulations.

were used, but also a hybrid model (GC+FO) was considered. In this

model the guiding centers are simulated away from the walls and full

orbit solution is used only in the vicinity of the walls. In the simulations,

110 000 test alpha particles with an energy of 3.5 MeV were followed until

they hit a wall element or slow down to 100 keV. The magnetic data to-

gether with the corresponding kinetic plasma profiles were imported from

the ITER database (IDM reference number 27JSKQ).

The simulated wall power loads as a function of the toroidal angle are

shown in figure 4.2. Pure FO results in a higher wall load compared to

guiding center based methods. The GC+FO method estimates the wall

loads much more accurately, statistically, than pure GC method while

keeping the computational costs very limited compared to those of pure

FO.

For guiding center methods, the error bars for the wall loads are shown.

The errors are estimated from statistically independent samples, in this

case six different ensembles of 110 000 alphas were used, and calculating

the variance of the sample mean. Hence, an estimate for the Monte Carlo

errors made in the simulations with 68 % confidence level are obtained.

The uncertainty for the pure GC case at the peak heat power load location

around the outer midplane (poloidal angle of 0 ◦) is below 5 %. The total
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Quantity Pure GC GC + FO Pure FO

Total power (kW) 8.51 18.20 20.00

Peak power (kW/m2) 2.54 5.17 12.55

Loss fraction (%) 0.033 0.056 0.064

Table 4.1. The total power to the wall, the peak power load and the alpha loss fraction

for ITER scenario 4 from three different orbit-following methods.

power to the wall, the peak power and the loss power fraction for the three

different orbit-following options are given in table 4.1. It is observed that

pure GC produce lower total power load while the two other methods are

very close to each other. The main reason why pure GC differs so drasti-

cally from the other two is the fact that the GC center path is a distance

of Larmor radius further away from the wall. The difference between the

GC+FO and pure FO methods is explained by the additional transport

induced by the FO following, e.g. the enhanced TF ripple diffusion [63].

Figure 4.2. Toroidally averaged wall power loads for ITER scenario 4 alpha particles. The

heat loads are obtained for pure GC simulation (black dotted line), hybrid

simulation (red dashed line) and pure FO simulation (blue solid line).

In Publication II, it was also concluded that, in the case studied, the

full orbit following is on the average 70-100 times more CPU intensive

than the ordinary guiding center following. Moreover, the hybrid method

was found to produce very similar results as the guiding center follow-

ing while retaining the computation time effectively at the guiding center

level. Even in the case when pure FO method was used, the wall loads

stayed well within the design limits of ITER.
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4.2 Alpha particle current and torque drive in ITER

The tokamak principle is based on the inductively driven plasma current

to obtain the poloidal component of the helical magnetic field. For a fu-

sion power plant, the pulsed operation is not feasible to maintain a high

duty cycle and, hence, several non-inductive methods to drive the plasma

current have been proposed.

The friction between passing particles and precessing trapped particles

leads to a toroidal net current, called the bootstrap current [74–78]. De-

pending on the equilibrium and the kinetic plasma profiles, the bootstrap

current can add up to 70 % [79] of the total plasma current needed for

steady-state operation. It is important to note the intrinsic nature of this

process.

The fusion-born alpha particles can also generate bootstrap current via

this mechanism. The energy (and, thus, the speed) of alphas is roughly

350 times higher than for the thermal particles, but their density is lower.

As with the fuel ions, the alpha particle bootstrap current depends very

strongly on the equilibrium conditions. In the presence of a so-called cur-

rent hole, the alpha particle current can be up to 20 % of the total plasma

current [80].

In addition to non-inductively driven current, plasma rotation is con-

sidered very important as it has several beneficial effects on tokamak

plasmas, for example sheared flows has been observed to suppress the

turbulence and plasma rotation is observed to stabilize external MHD

modes [81–84]. Rotation can be driven by inducing a torque to the plasma.

Conventionally, this is accomplished by toroidally directed neutral parti-

cle injection.

The total torque is composed of two components. Collisions change the

momentum of the particles and, therefore, contribute as a collisional com-

ponent. Secondly, the fast ions are leaking from the plasma into the

scrape-off layer, resulting in a radial current. The thermal plasma re-

sponds to this current with an inward return current to cancel the charge

separations. As a result, there is a j ×B -component for the total torque.

Only the toroidal component of the torque vector is considered.

The alpha particle driven current and torque have previously been es-

timated by analytical calculations [85] and by numerical simulations [80,

86, 87] with consistent outcome: the alpha particle current will be small

compared to the total plasma current, and the alpha-driven torque is ef-
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Figure 4.3. The alpha particle net toroidal current density in the 9 MA scenario. Four dif-

ferent magnetic configurations are considered. The current density is roughly

independent of the magnetic configuration.
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Figure 4.4. The alpha particle total torque density in the 9 MA scenario. Four different

magnetic configurations are considered. The torque is nonzero only for 3D

magnetic configurations.

fectively zero as the collisional and j × B components cancel. However,

all these studies have assumed axisymmetric magnetic field which is not

the case for ITER with the ripple magnitude of 0.5-2%, depending on the
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magnetic configuration.

To assess the impact of non-axisymmetry on additional fast ion trans-

port, ASCOT simulations were carried out for four different magnetic con-

figurations and two of the ITER baseline scenarios. The magnetic field

configurations include axisymmetric case (2D) for comparison and bench-

marking with the earlier work, 3D versions including the TF ripple and

ferritic inserts both with (TBM) and without (no TBM) a perturbation due

to test blanket modules. Finally, the TBM configuration was further mod-

ified by the resonant magnetic perturbation due to ELM coils (RMP).

The RMP case was calculated using the vacuum approximation. In this

magnetic field even the thermal plasma is not confined [51]. The idea

to introduce this partially unphysical magnetic field configuration was

to study the effect of significant alpha particle losses on the current and

torque densities. These four configurations were considered for both the

9 MA advanced reversed shear and the 15 MA standard Q=10 H-mode

ITER scenario.

In the simulations, 300 000 alphas were followed until their energy

slowed down to local thermal temperature, they hit a wall element or

slowed down below 1 keV. Essential part of the work was the update of the

electron shielding model that is described in Publication V. This enabled

to evaluate the net current density from the gathered fast ion current

density.
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Figure 4.5. The alpha particle net toroidal current density in the 15 MA scenario.
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Figure 4.6. The alpha particle total torque density in the 15 MA scenario.

The net alpha particle current for both scenarios is by most parts in-

dependent on the 3D nature of the magnetic configuration, while for the

total torque density the non-axisymmetry plays a significant role. This is

illustrated in figures 4.3 and 4.4 for the 9 MA scenario and in figures 4.5

and 4.6 for the 15 MA scenario. For the axisymmetric cases, the torque

components are found to cancel each other, as suggested by the earlier

works. For the non-axisymmetric cases, the increased fast ion transport

leads to a non-zero torque density. The alpha particle torques peak ra-

dially inward compared to peaks of the 3D perturbations. The reason for

this is, that there are only limited amount of alpha particles at the plasma

edge, where the perturbations peak. However, there are much more par-

ticles in the core region and the lower perturbation amplitude still results

in larger transport and, thus, torque in the core region.

According to tables 4.3 and 4.3, all integrated alpha particle currents

are below one percent of the total plasma current. As for the case of the

induced torques, the numbers for alpha particles are opposite in sign com-

pared to the NBI particles, and order of magnitude smaller. As majority

of the beam ions has the same initial direction, the guiding centers of

the beam ions are all located inwards from the initial particle positions.

This contribution, negative in sign, has a major effect on the NBI torque,

while for alphas the guiding centers are both inward and outward from

the initial particle positions and the net effect averages to zero.
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Configuration Net fast-ion current (kA) Total fast ion torque (Nm)

alpha TBM -61 3.2

alpha no TBM -62 2.0

alpha 2D -74 0.11

alpha RMP -59 6.0

on-axis NBI TBM -520 -6.5

off-axis NBI TBM -470 -4.3

on-axis NBI no TBM -520 -6.1

off-axis NBI no TBM -470 -3.9

on-axis NBI 2D -520 -6.1

off-axis NBI 2D -470 -3.7

on-axis NBI RMP -520 -8.7

off-axis NBI RMP -470 -6.5

Table 4.2. Integrated fast ion torques and currents using different magnetic configura-

tions for alpha particles and NBI particles in the 9 MA ITER scenario. Nega-

tive sign implies co-current direction.

Configuration Net fast-ion current (kA) Total fast ion torque (Nm)

alpha TBM -48 2.9

alpha no TBM -47 2.0

alpha 2d -50 0.31

alpha RMP -47 33

on-axis NBI TBM -570 -16

off-axis NBI TBM -470 -15

on-axis NBI no TBM -570 -16

off-axis NBI no TBM -470 -15

on-axis NBI 2D -560 -17

off-axis NBI 2D -460 -16

on-axis NBI RMP -540 6.6

off-axis NBI RMP -460 6.5

Table 4.3. Integrated fast ion torques and currents using different magnetic configura-

tions for alpha particles and NBI particles in the 15 MA ITER scenario. Neg-

ative sign implies co-current direction.
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4.3 Benchmarking, verification and validation of the MHD model in

ASCOT

The effect of the MHD instabilities on the fast particles is important be-

cause of these modes may induce additional fast ion losses to the walls.

Moreover, possible redistribution of fast particles inside the plasma due to

MHD modes may cause unwanted behaviour in the main plasma, e.g. the

current drive and energy deposition profiles might be redistributed which

then leads to a change in the plasma heating.

The fast particles act as a driver for certain MHD instabilities, such as

TAEs, and the interplay between the modes and the particles must be un-

derstood to control the burning plasmas. ITER will be the first tokamak

in which the burning plasma conditions are achieved and, therefore, these

issues will be experimentally faced for the first time. Self-consistent al-

pha particle physics is not studied in this thesis. However, the effect of

MHD perturbations on the fast ion distribution function and the fast ion

induced wall power loads in the presence of a realistic 3D magnetic field

have been investigated.

In this section, the usage of the MHD model in ASCOT for the predic-

tive simulations in ITER is motivated by testing the model. For the most

parts, this material have not been published in a peer-reviewed paper.

The MHD model in the ASCOT code was benchmarked against the HAGIS

code, that is mature enough to be considered as a reference, [30] for the

transport of the fast particles in the presence of MHD modes, in this case

a neoclassical tearing mode. The HAGIS code has been used in this kind

of studies earlier on. To be able to benchmark single particle trajectories

with high accuracy, attention must be paid to ensure that both of the codes

are using the very same magnetic field for the particle tracing.

In this case, both codes were able to read in same file format, so using

the same file was possible. The data is, however, processed inside HAGIS

before it is used for the particle tracing. To make sure that the data for

particle tracing is the same for both codes, the poloidal flux difference

between the two codes was evaluated and is shown in figure 4.7. As seen,

the poloidal flux is found to be identical to fractions of promille in the

plasma region, which guarantees that the poloidal magnetic field is the

same. The toroidal component was checked separately using the flux-

function F = RBφ.

As a first step, the particle orbits were compared in MHD-quiescent
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Figure 4.7. The difference in the poloidal magnetic flux seen by the ASCOT and HAGIS

codes. As a conclusion, the codes are using the same magnetic field.

Figure 4.8. Comparison of a particle orbit calculated by the ASCOT and HAGIS codes.

There is no essential difference between the two.

plasma, as shown in figure 4.8. The orbits are not identical but within

less than a millimeter from each other. The small discrepancy comes from

the fact that the two codes solve the noncanonical Hamiltonian equations

of motion in different coordinate systems. In ASCOT, the cylindrical co-
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ordinates are used, whereas HAGIS uses the field-aligned coordinates.

Moreover, the interpolation of the magnetic data is handled differently.

Both orbits seems to be stable, which should be the case in a 2D magnetic

field.

A (3,2) NTM perturbation was applied in both of the codes and the trace

of the test particle in poloidal cross-section was compared. As shown in

figure 4.9, under the influence of a NTM perturbation the orbits start to

differ more than in axisymmetric case, but still less than a centimeter. As

even a small discrepancy between the orbits leads to a different pertur-

bations at the particle positions, these small discrepancies tend to grow.

This explains why the perturbed orbits are not matching as good as the

unperturbed ones.

Also definition of the mode differs between the codes: ASCOT uses αnm (ψp)

as an input and HAGIS φnm (ψp). Even though effort was put to make sure

the perturbations seen by the two codes were the same, some small dis-

crepancies rising from, e.g., the interpolation schemes were not possible

to resolve.

A similar procedure was done also for TAEs, as presented in Publication

IV. There not only the single particle orbits, but also the kinetic energy

was compared as the electric field perturbation changes the test particle

kinetic energy. Correspondence within less than a percent was obtained

between the two codes. As a conclusion, the MHD model in ASCOT has a

correct form for the perturbation fields and the code produce very similar

orbits as HAGIS code does.

In order to validate the codes, both codes were used to simulate real

experimental results from AUG tokamak. In the shot # 20853, ECE mea-

surements with modulated beam power suggested a depletion of up to

60 % of the beam ion density at the resonance surface of a (3,2) NTM

mode. This conclusion was reached by assuming that the beam particles

transfer their energy via collisions to electrons and thus the modulation

in the beam power is reflected to the electron temperature. ASCOT and

HAGIS codes were then used to analyze the case.

As HAGIS does not have Coulomb collisions, 200 000 collisionless deu-

terium beam particles were used by both codes to gather the radial density

profile with and without the effect of the (3,2) NTM perturbation. In fig-

ure 4.10, the relative change of the beam density is compared. Both codes

produce similar density depletion but much smaller than expected from

the measurements, i.e. of the order of 5 % rather than 60 %. However,
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Figure 4.9. Comparison of particle orbits with (3,2) NTM perturbation calculated using

ASCOT and HAGIS codes, and MHD queiescent particle orbit calculated by

ASCOT.

the profile of the relative density difference has a dip at the location of

the resonance surface around ρp = 0.4, as was also indicated by the mea-

surements and the shape of the density profiles are very similar for both

codes.

Regarding all the differences between the two codes, the correspondence

found here was agreed to be sufficient for benchmarking. From the val-

idation point of view, it was agreed with the experimental team that the

interpretation of the experimental measurements is wrong, i.e. simula-

tions carried out here do not support the massive beam density depletion.

It was left for future work to study whether, e.g., the heat transport in

the presence of the NTM could explain the missing piece from the puzzle.

As a result, it was concluded that the validation of the codes needs to be

carried out using different experimental set-up, and it was left as a future

work. Knowing that HAGIS has been used successfully to model the effect

of MHD modes on fast particles, this analysis was considered sufficient to

carry on with the predictive NTM simulations for ITER using the NTM

model in ASCOT.

Further verification studies were done for the TAE wave-particle reso-
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Figure 4.10. Comparison of relative change in beam ion density with and without the

(3,2) NTM perturbation. The simulations by ASCOT and HAGIS agree well

qualitatively, and decently quantitatively.

nances. The AUG shot #25491 at t = 0.78 s was selected as an equilibrium.

At this time slice, a f = 140 kHz TAE mode with n = 6 was observed by

the magnetics, and associated losses of beam ions were measured by the

fast ion loss detector (FILD) [88], see figure 13 in [89].

To locate the wave-particle resonances, ASCOT simulations were car-

ried out. In the simulations, 1 000 000 test particles from NBI source

#8 were followed for 1 ms and collisions were turned off. The resulting

velocity-space of the guiding center particles was compared with and with-

out TAE perturbations in figure 4.11. This figure is from spatial location

(R = 1.69 m, z = −0.23 m). A wave-particle resonance is observed just

below E = 93 keV and around ξ = 0. The wave-particle resonance is

associated with a change in the test particles energy.

A condition for the wave-particle resonances can be written as

Ωnp = ω − nωt − pωp ≈ 0, (4.1)

here Ωnm is the resonance width, ω is the frequency of the mode (ω =

2 ∗ π ∗ f ), ωt is the toroidal frequency of the particle, and ωp is the poloidal

orbit frequency. To find possible resonances from the given equilibrium,

a suitable ensemble of particles can be launched and the toroidal and
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Figure 4.11. Relative difference of the beam ion density with and without n=6 TAE as a

function of energy and pitch angle. The figure is zoomed to the full energy

of the beams and region of wave-particle interaction is highlighted.

Figure 4.12. Logarithm of the inverse wave-particle resonance width, i.e. log (|1/Ωnp|),

identifies resonances from the shown velocity space and associates them

with the wave-particle interaction seen in the ASCOT simulations.

poloidal frequencies can be calculated from the particle orbits. The res-

onances are determined by plotting log (|1/Ωnp|) as a function of the se-

lected phase-space.

For the above mentioned case, the frequency calculation was done at

the same spatial location, changing the energy and pitch of the particle

around the observed resonance. The result is shown in figure 4.12, where

two possible resonances are identified with poloidal mode numbers p =

2, 3. Both of these may cause the energy exchange seen in figure 4.11.

This verifies that the resonance found from the analytical expression for

the resonance condition can be found from the full ASCOT simulation

with the interaction of particles with the TAE waves.

The wave-particle interaction can be associated with a spatial redistri-

bution of the particles. This spatial redistribution can be connected with
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a change in the particles energy [90] as

dψp

dt
= −

mg − nI

ωD

dE

dt
, (4.2)

where D = gq + I + ρ‖ (gI
′ − Ig′), g and I are flux functions calculated

from the magnetic field, and primes indicate differentiation with respect

to ψp. The spatial redistribution corresponding to figure 4.11 is shown in

figure 4.13. Measuring this redistribution experimentally is challenging

as usually the mode perturbation amplitudes are small and the level of

redistribution is below 10 %, which typically is a limit for measuring con-

fined fast ions by, e.g. fast-ion D-alpha (FIDA) [91] or collective Thompson

scattering (CTS) measurements [92]. However, were the redistribution to

happen close to the plasma edge, it would be associated with the fast ion

losses and measurable by the FILD detector.

For this particular case, the losses were measured and the result is

shown in figure 13 of reference [89]. Using ASCOT, a synthetic FILD

diagnostic can be used. For this case, the particle number was rather lim-

ited and only a few particles hit the synthetic detector plate in its actual

position. Hence, instead of selecting particles that hit the real FILD loca-

tion, all lost particles were used to build the figure 4.14. The dominating

spot in the FILD detector plate is seen also in the ASCOT simulations at

around (ρL = 3 cm , v‖/v = 40◦). More detailed analysis, with the colli-

sions turned on, will be carried out in the future for a shot with better

diagnostic coverage enabling possible even to measure the confined fast

ions by means of tomography [93,94].

4.4 The effect of NTMs and TAEs on fast ions in ITER

The effect of several MHD instabilities, including NTMs and TAEs, on

fast particles have been studied numerically in great detail in the recent

years [66, 68, 73, 95, 96]. In all of these studies, the magnetic field is ei-

ther assumed axisymmetric or an analytical approximation of the real

3D field has been used. However, more recently serious concerns regard-

ing the effect of non-axisymmetric magnetic fields on fast particle trans-

port [41, 47, 97, 98] have been expressed. Therefore, ASCOT simulations

with both MHD instabilities and non-axisymmetric realistic 3D magnetic

fields included in the simulations were carried out for ITER. The results

of these simulations for alpha particles are reported in detail in Publica-

tion III, while the NBI particle simulations are published here for the first
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Figure 4.13. The spatial redistribution of the beam ions in the presence of n = 6 TAE

mode in the ASDEX Upgrade tokamak.

time but they have been presented, e.g., in the ITPA meeting.

The simulations for NTMs were carried out for the 15 MA baseline ITER

scenario using a realistic 3D magnetic field and kinetic plasma profiles

from the ITER database (IDM reference number 27JSKQ). In the simula-

tions, 100 000 alpha particles with initial energy of 3.5 MeV were followed

until they were slowed down to the local temperature, hit a wall element

or until their energy dropped below 1 keV. Both (2,1) and (3,2) NTMs were

simulated and the radial profile used in the simulations is described in de-

tail in Publication III. In the simulations, the NTMs were assumed static.

As the amplitude of the NTMs was increased, an increase in the wall

power loads was observed, see figure 4.15. However, even using island

widths exceeding the mitigation threshold of 10 cm and even above locked-

mode threshold of 20 cm [99, 100], the wall power load stayed within the

design limit of 0.5 MW/m2 (for the main wall) [101]. Assuming that the

NTMs will be mitigated to widths below 10 cm, the wall power loads are

insignificant.

As for the neutral beam ions, the beam deposition in ITER is quite deep

in the plasma, while for the 15 MA scenario the q-profile is such that

the most important NTMs (2,1) and (3,2) are located further out in the
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Figure 4.14. The velocity space distribution of lost particles calculated from the ASCOT

simulation with n = 6 TAE mode. The gyroradius is a measure of the par-

ticle energy. The definition of the pitch angle ξ is modified to 180◦ − ξ to

ease the comparison with the experimental FILD measurements that use

this definition.

Figure 4.15. Total alpha particle power to the first wall as a function of the amplitude of

(3,2) and (2,1) NTM perturbations. The perturbations related to the island

width of locked modes and the threshold for NTM mitigation are indicated.

plasma. Hence, no drastic effect on wall power loads, energy deposition

nor current drive was observed.

For TAEs, the advanced 9 MA reversed shear ITER scenario was stud-
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Figure 4.16. (a) The simulated relative change in the alpha density, brought about by

the n = 5 TAE modes, as a function of ρp. (b) The simulated relative power

deposition difference from alpha particles to electrons between the case with

the TAE present and the case with no TAE.

ied, motivated by [96] were TAE activity was found more severe for this

scenario compared to the 15 MA scenario. The eigenstructure of the

modes was calculated by the LIGKA code [102] and the most unstable

mode with f = 51.5 kHz and n = 5 was considered in the simulations.

The eigenstructure is shown in figure 6 of Publication III. As these TAE

modes are rotating, this need to be taken into account when initializing

the particles. This is done in ASCOT by assigning a random phase for

each test particle. To address this 200 000 test particles were followed

with the same end conditions as was used for the NTM case.

For both alphas and NBI particles, no drastic effect on the wall power

loads was found, while redistribution inside the plasma was observed.

The redistribution for alphas was found to alter both the density and the

heat deposition profiles by 10 % in figure 4.16. Moreover, changes in the

fast ion velocity space were reported in Publication III. For NBI particles,

the current drive profile was modified by the TAE mode and resulted in a

drop in the current density around ρp ≈ 0.2− 0.3, see figure 4.17.
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Figure 4.17. The current density from NBI ions as a function of ρp for the cases with and

with out n=5 TAE. Current density redistribution is clearly seen.
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5. Summary, discussion and outlook

5.1 Summary and discussion

The goal of this thesis work was to bring the orbit-following simulations of

fast ions in tokamaks two steps closer to reality. The first half of the thesis

dealt with the full orbit motion and the validity of the guiding center ap-

proximation. Publication I describes the upgrade of the ASCOT code with

an option to follow full orbits. The latter part of the thesis is dedicated to

the effect of MHD modes on fast particles. A numerical model to asses the

effect of MHD modes on fast particles in a realistic 3D magnetic field was

implemented in the ASCOT code in Publication IV.

Different orbit-following models were applied in standard ASCOT sim-

ulations calculating the alpha particle wall load in ITER. It was found

that the guiding center approximation holds well enough and the full or-

bit effects can be introduced by a hybrid method following guiding centers

in the core of the plasma and switching to full orbit following only in the

vicinity of the walls. This hybrid method allows both statistically accu-

rate and acceptable wall clock time for the simulation in the same pack-

age. Based on the work presented in Publication I and Publication II, this

option has been used in the majority of ASCOT simulations.

The new model for MHD modes in ASCOT was carefully verified against

theory and a benchmark was carried out against the HAGIS code as dis-

cussed in 4.3. The model was applied to study the effect of NTMs and

TAEs on fast particles in ITER resulting in Publication III and Publica-

tion IV.

For NTMs with realistic amplitudes, the effect to fast ion spatial profile

was found to be insignificant. Moreover, the fast ion wall loads remained

within the design limits for the first wall even with unrealistically large
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mode amplitudes. For TAEs, a 10% response was found for the fast ion

spatial profile, leading to roughly 10 % changes in the alpha particle en-

ergy deposition profile, the alpha particle density profile and the neutral

beam driven current density profile.

While for NTMs the results can be considered general, the case of TAEs

is more complex. Even a slight change in the plasma equilibrium can

change the eigenstructure, and thereby the induced transport. There-

fore, further studies are presently carried out to fully understand how

the TAEs affect the fast ion transport in the whole operational regime of

ITER. The results obtained in this thesis for TAEs should, for the above

mentioned reasons, be considered more an exploratory result than a gen-

eral result.

Last but not least, in Publication V, the ASCOT simulation model was

used to understand the alpha particle driven current and torque in ITER

baseline scenarios with realistic 3D magnetic field. It was found that the

alpha driven current will be below one percent of the total plasma current

in all simulated cases, while the alpha particle driven torque was found

to not to vanish in the presence of a 3D magnetic field. The alpha particle

torque was found to be in opposite direction and an order of magnitude

smaller than the torque induced by the neutral beam particles. There-

fore, unfortunately, alpha particles are predicted not to drive significant

amount of rotation.

5.2 Outlook

Even though many issues were studied in this thesis, further work fo-

cuses, for example, on the validation of the MHD model is yet to be car-

ried out. An effort to that direction has already been initiated. ASCOT

has recently been used to explain the expulsion of fast ions from the core

of ASDEX Upgrade in the presence of a (1,1) kink mode. These experi-

ments have been carried out in ASDEX Upgrade, and their results will be

presented in future publications. FIDA-measurements clearly show that

the fast ion density is depleted at the resonance surface of the kink mode.

Guiding center simulations by TRANSP/NUBEAM [103,104] and ASCOT

simulations without the MHD modes can not explain this depletion. With

the kink mode included in ASCOT simulations, however, a clear depletion

of fast ions from the resonance surface is observed. Using the simulation

results, a synthetic diagnostic signal using FIDASIM code [105] will be

56



Summary, discussion and outlook

obtained and compared to the actual FIDA signal.

When high-n or high-m number TAE modes are simulated, the valid-

ity of the guiding center approximation needs to be assessed. For these

situations, an improved method for the particle tracing needs to be ap-

plied. The part of the Lagrangian that breaks down the guiding center

approximation has to be separated and perturbation theory needs to be

used. As a result, equations of motion will reflect the ones obtained by

the gyro kinetic theory, i.e. the rapidly changing part of the Lagrangian

has to be evaluated by taking averages along the gyro orbit. Models of

gyro-averaged TAE modes will be implemented to ASCOT code, allow-

ing simulations for high-n TAE modes which are expected to dominate in

burning plasmas.

In the simulations described in this thesis, the vanishing parallel elec-

tric field approximation has been used for all Alfvénic simulations. A set

of simulations investigating the validity of this approximation will be car-

ried out in the future. In these simulations, the approximation is relaxed

by taking both the electric and magnetic part of the perturbation as input,

i.e. αnm and Φ̃nm.

Moreover, the interplay between the fast ion transport due to Alfvénic

modes and neoclassical transport will be investigated by carrying out sim-

ulations with and without Coulomb collisions. Previously the collisional

transport has often been neglected from the MHD induced transport sim-

ulations, e.g. [89, 106]. The collisions is expected to feed particles to the

wave-particle resonances, and thus increase the fast ion transport.

Finally, the rotation of NTMs and kink modes will be implemented in

ASCOT as described in [107]. The effect of induced electric field on the

fast ion transport will be studied using cases presented in this thesis,

allowing existing data points for non-rotating NTMs to compare with the

rotating ones.
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