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Abstract—A main design issue in a wireless data broadcasting
system is to choose between push-based and pull-based logic: The
former is used as a low-cost solution, while the latter is preferred
when performance is of utmost importance. Therefore, the most
significant advantage of a push system is the minimal cost. This fact
implies that hardware limitations do exist in the case of push sys-
tems. As a consequence, every related proposed algorithm should
primarily be cost-effective. This attribute, however, has been over-
looked in related research. In this paper, popular broadcast sched-
uling approaches are tested from an implementation cost aspect,
and the results render them only conditionally realizable. More-
over, a new, cost-effective, adaptivity oriented schedule constructor
is proposed as a realistic, minimal-cost solution.

Index Terms—Adaptivity, analysis, CPU-memory cost, data se-
rialization, push systems.

1. INTRODUCTION

ECENT years have witnessed the wide-spreading use of

wireless push-based systems. Simple in architecture and
implementation, lightweight and energy efficient—especially
from the client’s point of view and both hardware- and soft-
ware-wise—the push-based approach has been adopted for use
in a variety of information dissemination applications and has
been incorporated in almost every single mobile telecommuni-
cations device. Popular uses include airport and hospital infor-
mation systems, instant messaging services, and multimedia on
demand over the Internet or cellular networks. Consequently,
the on-growing interest of the telecommunications industry has
spurred the research on the performance optimization of these
systems.

Pure push-based systems typically employ a central server
continuously transmitting data through a channel, while the
clients simply retrieve useful data from the stream, without
being able to perform any kind of queries. Pull-based systems
on the other hand adhere to the classical client—server scheme,
where the server transmits only the data that have been re-
quested by a client, and only on the event of a request. While
the functionality separation is clear, a common misconception
lies to the reasons that render a pull or a push choice more
suitable for a telecommunications system case. It must be
clarified that a typical pull-based scheme generally performs
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better, response time-wise. However, the push-oriented systems
have one unique advantage: very low implementation cost with
regard to scalability.

The reader is encouraged to visualize a push server as a de-
vice of the scale of a standard, mainstream computer at most.
It is therefore obvious that such a device has limited computa-
tional power and caching capabilities. Thus, the computational
power and required memory should be attributes of the highest
impact factor when designing broadcasting-related algorithms.
Network congestion minimization—high due to the continuous
data emission scheme of push systems—should also be a major
concern. However, to the best of our knowledge, this has not
been the case so far in related research.

A. Related Work

Research on the field of broadcast systems can be roughly
split into two main categories: the mathematical foundation
and analysis attempts of the broadcast problem in general,
and algorithmic approaches that tend to provide simplified,
algorithmically applicable solutions of the general problem
and/or examine other advanced aspects. In the definition of
the data broadcast problem, each to-be-broadcasted item is
assigned a generic “broadcast weight,” which abstractedly
represents the impact of broadcasting on system resources. The
classic problem is then to find a schedule over an infinite-time
horizon so that the mean client waiting time as well as the mean
broadcast weight are minimized. In this context, the problem is
proved to be NP-hard [1]. [2] discusses the generalized mainte-
nance problem (a known NP-hard problem) and proves that the
broadcasting of equally sized items is a subcase of it. A lower
bound for the client’s mean waiting time is also provided. [3]
proves the existence of a possible solution for teletext systems
and also defines a lower bound for the client’s mean waiting
time in this case.

From this point on, related research ignores broadcast
weights. In this case, uniform and nonuniform item sizes are
discussed. [4] and [5] present the lower bound for the client
mean waiting time in the case of both uniform and nonuniform
sizes. A scheduling algorithm is also defined, which even today
achieves the minimum client waiting times. The lower bound
in the nonuniform case is not tight though, and this case is
further analyzed in [1]. [6] introduces a “reservation” system
that favors client waiting time in the case of big-sized items.

Retaining the no-broadcast weights consideration, several
algorithmic approaches have been proposed to simplify the
data broadcasting problem, the most influential of all being
the Broadcast Disks model [7], which is also discussed in this
paper. A great deal of work has been done based on this model,
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studying data prefetching, caching [8] and indexing [9], [10],
hybrid data broadcasting [11], as well as scheduling strategies
and noise interference [12], [13].

Another branch studies data broadcasting from a higher level,
transaction aspect (e.g., queries that must be answered in a lim-
ited amount of time [14], among other limitations) and was in-
troduced in [15]. This approach has since been extended with
fail-over tactics [16] and techniques [17] that increase the con-
currency of transactions.

Finally, other recent studies deal with the case of correlated
client queries, e.g., complex queries requesting multiple single
dataitems [18]. [19] deals with the case of requesting successive
single items, while [20] and [21] examine the case of random
access order of single items. [22] and [23] present algorithms
that achieve the lower bounds of average access time in the case
of broadcasting a pair of files.

B. Authors’ Related Work

The authors have so far contributed in both analytical and al-
gorithmic approaches. In [24], an effort to combine clustering
techniques with the broadcast disks model was made, with sat-
isfactory results. The analytical approach of [25] added means
of projecting the optimal parameters required to construct the
broadcast schedule. The cost parameter was introduced in [26],
targeting the cost efficiency of the scheduling procedure. More-
over, research on adaptive push systems has been carried out in
[24] and [27]-[29].

C. Contribution

As it is evident from the brief presentation of the related work
on the field, every study focuses on a specific subject of data
broadcasting without however taking the implementation cost
into consideration. Thus, a good amount of algorithms have
been proposed, which may be hard to be implemented in the
real world. Moreover, the classic system model of [7] employed
by all related studies is simulation oriented and does not claim
any effectiveness in cost assessment tasks.

In the present paper, a more realistic system model is pre-
sented, designed to augment the network’s functionality through
the addition of Web connectivity, distinction between broadcast
schedulers and beacons, and broadcast schedule lifespan param-
eters. The new model is then used to perform cost assessment
studies of broadcast scheduling techniques, aiming at the fol-
lowing:

1) the demonstration of the fact that implementation cost as-
sessments are critical for algorithms related to push sys-
tems;

2) the testing of adaptivity capabilities of popular broadcast
scheduling approaches;

3) the presentation and testing of a new cost-effective, adap-
tivity-oriented broadcast schedule constructor algorithm.

The proposed scheduling scheme is compared to the analyti-
cally optimal [5] and modern, broadcast disks-based scheduling
algorithms. Results indicate that the novel scheme combines op-
timal performance and minimal cost, while the compared algo-
rithms are even conditionally realizable in several cases.
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Fig. 1. Novel broadcasting model.

D. Summary of Contents

Section II provides the basics for understanding the
push system’s model, terms, architecture, and operation.
In Section III, the broadcast scheduling procedure is theo-
retically analyzed. In Section IV, the proposed scheduling
algorithm is presented. Performance assessment configurations
and results are given in Section V. Our conclusion is given in
Section VI.

II. BROADCASTING BASICS

A. Network Topology and Operation: Advancing the Classic
Model

The proposed topology for a realistic push-based system is
depicted in Fig. 1. A set of clients receives a common broadcast
schedule emitted from a central source.

Concerning the clients, the following is commonly assumed.

* They share common information needs and preferences
with regard to their topological distribution [28].

* Their number is large enough to rule out a point-to-point-
based style of communication from being a viable option
with regard to implementation cost.

The broadcast source emits series of data items—better
known as “pages’—according to a schedule that minimizes
the clients’ mean waiting time. In the classic system model,
the server is standalone, i.e., unplugged from any network
and self-sustaining regarding the origin of the broadcast data
[1]-[23]. However, this scheme was introduced mostly for
conceptual purposes [7] and is of limited practical use. It is
safer to assume that the data originates from independent and
distributed Web sources, as shown in Fig. 1.

The classic model also considers the scheduling service to
be located at the beacon. While a beacon-local cache may be
useful, placing the scheduler at the beacon would require costly
changes at the totality of the base stations of a modern cellular
network, which tend to act as simple terminals. It is thus more
practical to consider the broadcast beacon and scheduling ser-
vice being at separate locations.

In any case, however, the scheduling service is assumed to
know [1]-[23]:
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» which pages the clients need;

* the popularity of each data item.

This knowledge can be attributed to timely speculations, fore-
casting, client feedback, or data advertising.

Once constructed, the broadcast schedule has limited
lifespan. After a certain time interval, it must be renewed
to match the clients’ demands. At this point, the scheduling
service must:

* schedule data fetching over the Web;

* schedule storage at the beacon-local cache;

* enter a state of client preference monitoring in order to

prepare for the next renewal.

B. Entry Point of the Present Work

The present work assumes that the system has just entered a

renewal state and aims to produce the optimal schedule:

* as fast as possible on mainstream hardware;

* minimizing the caching needs at the beacon-local point;

* minimizing the required communication lifetime between
the scheduling service and the data sites, thus limiting the
required operational bandwidth and the dependence on net-
work congestion.

As it will be shown, these goals can be effectively reached

through the minimization of the broadcast schedule size.

C. Theoretical Overview: Ideal Scheduling

Input of the Ideal Schedule Constructor (ISC) are the pairs
pi + {li,u;}, ¢ = 1...N, where p; denotes the ¢th page of
the server’s database (arbitrarily enumerated), /; the page’s size,
and u; the page’s speed (i.e., the the number of occurrences of p;
inside the broadcast schedule, BS). /N denotes the total number
of pages eligible for broadcasting. The length of the broadcast
schedule is denoted by L, and it stands that

N
L= Z’U,i -li. (1)
=1

The objective of the ISC is simple: arrange the occurrences of
each page so as to achieve the minimum mean client waiting
time. It has been shown that this criterion is satisfied only when
the time interval between same page occurrences is steady, i.e.,
periodic schedule [7].

For arbitrary page speeds u; and access probabilities 7;, the
mean client waiting time is

I

The optimal page speeds are strictly defined through analysis
(51

N

: Q)

[
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Fig. 2. Example of conflicting page spacings d; .

which result into a minimal waiting time of

N 2
) )
Difiel = ~=— )

where (2)—(4) are only valid when lf ~ lfj Vi, 7 [5].

D. Forced Deviations From Ideality

Two factors hinder strict appliance of the ideal scheduling
scheme.
* A forced deviation stems from (4), which promises inde-
pendence from the BS length L. However, as shown in [5],
(3) yields noninteger results, and thus a form of rounding
must be applied. The page speeds are thus altered, and the
real mean waiting time is given by (2), which shows de-
pendence from L.
* Creating a periodic broadcast schedule with constant d; =
UL spacings [5] between consecutive occurrences of a page
Iﬁay be impossible due to collisions. For example, consider
a BS comprising three pages, p1.. 3, with corresponding
speeds w13 = {7,3,1} and l; = lo = I3 = 1. The ideal
spacings should then be di’**! = L = L, difee! = L =
A and di**! = L =11, given that I, = Z?:l w -l =
11. The problem of integer divisions is evident, but suppose
that in order to overcome it, we choose varying spacing
values. For example, u; = {d; x3+d} x4}, where d; = 1
and d] = 2; ug = {dy x 1+ dfy x 2}, where ds = 3 and
dy = 4;and uz = {11 x 1}, where d§ = 11. As shown in
Fig. 2, the spacings collide at the ninth position.

III. IMPACT OF DEVIATIONS FROM IDEALITY

In this section, the form of deviation that has the smallest
impact on the performance of a scheduling algorithm is studied.

A. Altering the BS Length: Cost-Efficiency and Performance
Issues

As described in Section II-D, the real mean waiting time of
the clients is deleendent on the BS length L.

Let Ly = ) ;. u; be the BS length measured in pages, Ly €
[N, L], Lt € Z, N be the total number of pages, and L'?*
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Fig. 3. Mean waiting time D as a function of the broadcast schedule length L ;
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is assumed with & = [0, 0.3, 0.6, 0.9]. Number of items is NV = 10.

be the maximum examined value. For L; = N, the BS is flat,
and the speed of each page unary. For every L; > N, exactly

P=L;—N (5)

unary speed increments must take place. The objective is to dis-
tribute the P increments optimally among the pages.
Since the ideal speeds u14°2! are given by (3), a serial distribu-
tion of increments can be employed, where the next unary raise
affects the page p; for which it holds that

uj — uit > |u; — | £ (6)
The procedure is formulated as Algorithm 1. Implementa-
tion with strict weak ordered maps [30] provides O(log V)
complexity.

Algorithm 1 Calculating Optimal w; for Given L;

Input: The pages p; : {m;}, i = 1... N and the BS length
L; > N.

Output: The optimal page speeds u;®".
1: SetP =1L;—N.
2: Setu® =1,i=1...N.
3: Setwldel i = 1...N by (3).
4: for::=1to P do
5 Calculate page index j by (6).
6 u‘;-pt = u‘;pt’ +1

7: end for

While the serial distribution is not analytically optimal, it
typically achieves 99%—100% of the best possible performance.
To demonstrate this fact, in Fig. 3, Algorithm 1 is compared
D-wise to the optimal results produced by brute force, i.e.,
trying all possible combinations of speeds and choosing the
one achieving the minimum D. The results coincide, with
insignificant exceptions.

An interesting remark stems from the fact that the system
quickly reaches a point (I; ~ 3 - N), where 95%-100% of
the possible waiting time has been achieved. This holds for
any number of pages and any pdf[ "pr obabzhty dens lty
function "? Pls deﬁne]: results are identical to that of
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Fig.4. Analogy of the BS length minimization with the optimal vehicle routing
problem. A vehicle traverses a series of checkpoints C;, ¢ = 1--- N, located
at S; = m; normalized distance units away from each other. Starting at C'; with
fuel L, the vehicle must reach C'x ‘as soon as possible with the available fuel,
making proper speed choices along the way. For simplicity, the fuel consump-
tion is assumed to be proportional (1:1) to the chosen speed.

Fig. 3. The system then tends to oscillate around the minimum
of (4). The oscillation fades as pdf skewness and L; increases.

The aforementioned remark has a direct impact on the

overall cost of the system. The generic consequences can be
better understood if we map the scheduling problem to the
case of optimal vehicle routing described in Fig. 4. Mini-
mizing L essentially translates to reaching Cn at minimal
delay D = 2711 At; = Zf\;l “._notice the similarity to
(2)—with only a fraction of the requffed fuel. Further increasing
Ly is an ineffective waste of resources.

The broadcasting-specific cost-related consequences include

the following.

e The smaller the BS, the less computing time/processing
power is required to construct it.

* A minimal BS has a higher probability of being calculated

and sent from the scheduler to the beacon in one pass. A
large BS must be calculated and forwarded in chunks, thus
being constantly dependent on network congestion and re-
quiring extra operational bandwidth.
A small BS favors the implementation of cheap, dumb
beacons that simply cache the binary data of the whole
schedule without need for added complexity imposed
by databases, data organization, and indexing/caching
techniques.

* A BS small enough to be disclosed to the beacon in one
brief pass in the form of indexes enables better scheduling
of data fetching from the Web sites to the beacon.

* Minimal schedules may enable direct storage to RAM.
Such a scheme is far less hardware-intensive than constant
hard-disk accesses.

B. Page-Spacing Deviations: Altering the Pages’ Speeds

The next form of deviation from ideality is that of
page-spacing collisions. A purely theoretical way of over-
coming this problem would be to alter the page speeds.
However, as first shown in [5], the ideal page speeds already
need to be tampered with in order to revert to an integer form.
Moreover, as shown in Fig. 3, slight BS length alterations
that can be caused by page-speed manipulation may degrade
the mean waiting time. Thus, further tampering with the
page speeds must be avoided as ineffective and performance
degrading.



LIASKOS et al.: TOWARDS REALIZABLE, LOW-COST BROADCAST SYSTEMS FOR DYNAMIC ENVIRONMENTS 5

C. Impact of Local Concentrations of Single-Page Occurrences
in the BS on the Client Waiting Time

As a next step, we examine whether the optimal scheduling
algorithm should incline toward slight but distributed or major
but local deviations of page spacings from their ideal values.

Consider a BS with fixed length L, in which a page p; is
repeated u; times in total, with spacings

dij = di - a7t {j=1...u; a>1} @)
where j denotes the spacing between the jth and (j — 1)th page
occurrence. If ’f — 0, it will hold that

= at —1
L= dij=dq —
=1

The mean delay time attributed to this page will be

®)

u;

dZ: . (M 1 a? —1
D(pi)_z2]i E 2Ld’21——1 &)

7j=1

and because of (8)

L(a—1)(a% +1)
2

PP S

(10)

It is trivial to show that (10) is a strictly rising function of a.
Thus for

d >as D, (d)> D, (a) (11)

Since higher values of a indicate more major and local
spacing deviations (L is fixed, and (7) represents a geometric
progression), we conclude through (11) that slight, distributed,
global spacing deviations should be preferred over sharp devi-
ations of distinct page speeds.

D. Slight Page-Spacing Deviations versus Zero Padding

So far, it has been proved that tampering with the page
speeds, in order to overcome the problems posed by the forced
deviations from ideality, is ineffective and potentially per-
formance-degrading. Instead, slight and distributed spacing
deviations should be preferred. Introduced in [7], however,
zero padding has been adopted to produce periodic BS with
steady page spacings. The logic behind this approach is simple:
Increase the BS length by a sufficient number of “dummy”
pages in order to overcome the deviations problem, and then
substitute them with e.g., the most popular of pages. Thus,
the new question posed is whether zero padding should be
preferred over distributed slight spacing deviations.

To this end, we consider a single page with spacings d; =

LWJ and d} = { -‘ similarly to the case depicted in Fig. 2.
Should we define o = modulo(u_l ), o € [1,u1), then:

1) dy will be used exactly (u; — o) times;

2) while d will be used exactly o times;
over a BS of fixed length L. It is obvious that

= dy + 1. (12)

Then, if & — 0, it will hold that

wq

L= dy
j=1

eq. (12 L —
:d1X(U1—U)—|—d,1XO' qéu) dy = " (13)
1
while the mean client waiting time for this page is
d3 x (uy — ) +d X 0 eq. (12,13)
D(p;) = 1 1 ,
(pi) b, =
L o? ouy
Dip))=— - —— ) 14
(pi) 2uy 2Lu;  2Lwug 14

On the the other hand, should zero padding be used, L should be
increased by (u1 — o). Then, L' = L + u1 — o, and the spacing
becomes steady and equal to d; = -~. The mean client waiting
time in this case is

L L 1 o

Dz(p;) = =—4+-- 15
Z(p ) 21 ATE] + 2 2uy (15)
It is now easy to show that
L—-o)(ui—0o
Dz(pi) — D(pi) = Loa=0) sy

2Luy

since o € [1, uy). Therefore, D z(p;) > D(p;) in any case.

Even though this analysis proves the inferiority of zero
padding, it does not take into account the spacing conflicts
described in Section II-D. Yet, the zero padding method in-
troduced in [7] is known to overcome this problem as well.
However, this method has severe weaknesses that can become
evident through a simple example.

1) Brief Method Description: Begin by sorting the pages
in descending request probability fashion. Perform grouping
by page speed. Calculate the least common multiple (LCM) of
the page groups’ speeds. Split each group of pages into LOM
chunks, employing zero padding in the process where neces—
sary. Finally, broadcast the chunks in a round-robin manner.

Consider the following example. Three pages have request
probabilities w13 = {%7 %, %} For an I, = 20-pages-long
BS, their approximate optimal speeds are w3 = {11, 5, 4},
the least common multiple of which is 220. Thus, we have the
following:

1) Group 1 (i.e., page p;) must be split into 110 chunks (i.e.,

109 dummy pages must be added to it).
2) Groups 2 and 3 are similarly expanded by 43 and 54
dummy pages correspondingly.
The new BS has length L/ = 209 instead of the original L = 20
and corresponds to a mean client waiting time of D’/ = 11.55
(2) instead of D = 1.22 (4). Thus, the system’s performance is
reduced to a mere 10% of its ideal value.

In conclusion, zero padding should be avoided in data broad-

casting due to serious performance penalties.

E. On the Necessity of Data Segmentation

It is interesting to examine the limitations of the analysis of
[5], an overview of which has been given in Section II. [5] is
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considered the analytically optimal state of the art in the field of
broadcast scheduling.

In the event of uneven page-occurrence spacings, the mean
client waiting time is given by

£

i g2
d;;
™ -

2L

1 j=1

D =

N
(17)

k2

where d;; is the spacing between the jth and (j — 1)th oc-
currence of page p; in the BS. Spacings are measured from
one page-occurrence start (i.e., header) to the next. It has been
proven [1] that (17) is minimized when the spacings of each
page are constant, d;; = # Vj. Equation (17) is then reduced
to the form of (2). However, UL spacings can be impossible in
the event of uneven page sizes .

Consider three pages p1.3 : [{ur = 3, I1 = 1}, {us =
2, Iy = 1}, {uz = 1, I3 = 3000}]. The corresponding constant
spacings would be d; = 292 & 1000, dy = 1501, d3 = 3002.
However, p3 fits nowhere between the occurrences of either p;
or p2. The analysis of [5] is then essentially invalidated, yielding
D(p1) = % = 500, D(p2) = 750.5, D(p3) = 1501 instead
of the real values D(p1)” = 1501, D(p2)" = 1501, D(p3)” =
1501 produced by (17).

The scheduling algorithm of [5] attempts to tackle this defi-
ciency by increasing L infinitely, effectively incorporating thou-
sands of redundant copies of pages p1, p2 in the BS. Moreover,
simulations run in [5] consider page sizes I; € [1,10] while
L — oo. This affects the ratio lT — 0, essentially reducing the
scenario to that of equally sized pages. Indeed, the results of the
scheduling algorithm in simulations of [5] are almost identical
for both unevenly and evenly sized pages.

A better approach would be to segment pages to smaller
packets. Large pages then become “filling material” between
occurrences of small pages. Thus, L is unaffected, and spacings
of UL become possible. Notice that the client waiting time
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is not affected either: The page headers are placed at their
optimal positions. The technique is essentially an application
of time multiplexing. The channel bandwidth is divided among
the clients with better temporal granularity. While the present
paper does not aim at introducing novel multiplexing schemes,
a safe packet size limit can be set as

Mmin = min{l;} (18)
while a less segmentation-greedy packet size is obviously
1
IT = — min{d;}. (19)

N

Packet sizes do not have an impact on waiting time, provided
that the aforementioned problem is avoided, but do affect client
data receival rate, smoothness, and noise resilience. Optimizing
packet size for these purposes goes beyond the scope of the
present work.

E. Priorities Over Conflict

Data segmentation and slight spacing deviations have been
proven to be beneficial to the performance of a push system.
However, the problem posed by conflicting spacings discussed
in Section II-D has not yet been resolved.

As it has already been stated, conflicting spacings are un-
avoidable when zero padding is not used. Thus, measures must
be taken to prioritize pages in the event of conflict. Equation (2)
states that pages with higher :— value have heavier impact on
the mean waiting time. Thus, the impact factor of a page p; can
be defined as

5

I = (20)

U; :
Therefore, it is logical that in the event of conflicting page or
packet spacings, items with higher impact factor should take
priority and be handled accordingly.

G. Theoretical Summary

Through the analysis and remarks of the preceding sections,

the following has become evident.

1) An optimal scheduler should provide optimal client
waiting times with minimal BS length.

2) Each page-spacing value in the BS must deviate as little
as possible from its ideal values in a uniform, distributed
way. If not possible due to excessive lT ratio, big pages
should be split into smaller packets. Zero padding should
be avoided.

3) Finally, on the event of spacing conflicts, pages or packets
should be prioritized according to their impact factor de-
fined by (20).

IV. COST-EFFECTIVE, ADAPTIVITY-ORIENTED BROADCAST
SCHEDULER

Having defined its optimal characteristics, the corresponding
scheduler can be easily formulated.

The proposed Cost-effective, Adaptivity-oriented Broadcast
Scheduler (CABS) employs a rotating disks scheme, depicted
in Fig. 5.

We consider pages p; : {m;, l;}, ¢ = 1...N. The optimal
page speeds u?pt and L are set by Algorithm 1. The pages are
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clustered by thelr
with ending cr1ter10n

= ratio through hierarchical clustering [31]

Vp; € C 21

where C' denotes the cluster owning page p;, [. indicates the
page length of the corresponding centroid, and 11 is the packet
size of (19). Each formed cluster is then divided into group
of pages with equal speeds. Each group has its contents seg-
mented and is placed on the periphery of a circle with unary
radius. The disks are set to rotate around a common axis with
their corresponding speeds, and a set of stationary heads de-
tects the start/end of pages or packets as shown in Fig. 5. In the
event of the detection of a page/packet start/end, the page/packet
is immediately broadcast. Should two or more pages conflict,
they are sorted by descending impact factor I; and are broad-
cast in that order. To minimize the probability of a conflict oc-
curring, the starting angle of each disk is randomized in the
range [0, 2r]. The procedure lasts for a time interval of 7' =

2z B T min{u;} = 2r R = 27, at which point a BS of exactly

min{u; ;
L= Zf\zl u; - [; has been produced.
The procedure is formulated as Algorithm 2.

Algorithm 2 The CABS Schedule Constructor

Input: The pages p; : {m;,l;},i=1...N.
Output: The broadcast schedule.
1:  Set u{®" by Algorithm 1.

2: Perform Hierarchical Clustering of pages by and
criterion of (21).
3:  Group pages in the clusters by u;.
4:  Set NoD as the number of produced groups.
5:  Segment pages by (19).
6:  Set initial position of heads:
S¢ = random{[0, 27}, i = 1. N()D
7:  Set At = min{DiSks#ju, i1=1...NoD}.
8: Set1l = 2w.
Create the broadcast schedule
9: fort:= Atto1, step by At do
10: Calculate current head positions:
Si=Si4+wu;-t,i=1...NoD
11: Collect pages/segments whose boundaries have
been crossed in [t,t — At], in array B.
12: Sort BB by descending impact factors /;.
13: Broadcast items of 5.
14:  end for

As an extra feature, CABS can also easily set custom speeds
for any custom group (i.e., disk), e.g., when advertising certain
pages with a guaranteed client waiting time variance [32].

V. PERFORMANCE AND COST ASSESSMENT

Even though the proposed algorithm adheres to the guidelines
of the theoretical analysis, it is imperative that its performance
be assessed and compared to other approaches.

To this end, the CABS algorithm is compared to the analyti-
cally optimal scheduling algorithm introduced in [5] (SOA) and
the latest advancement (BDISK-SOA) of the Broadcast Disks

TABLE 1
FEATURE SUPPORT OF SCHEDULING ALGORITHMS

Feature | SOA*!  BDISKS, BDISKS-SOA*?  CABS
Periodic BS no yes yes
Varying page size yes no yes
Data segmentation no no yes
Page advertising no no yes

*1: The analytically optimal algorithm presented in [5]
*2: The algorithms of [7, 25] respectively

family of algorithms [7] (BDISK-CLASSIC). The former,
though introduced in 1999, still represents the top-performing
algorithm client waiting-time-wise. BDISK-CLASSIC rep-
resents a very popular scheduling approach, as discussed in
Section I-A. BDISK-SOA was presented by the authors in
[25] and [26], where it surpassed the previous state of the art.
Performance of the ideal scheduler of Section II-C (IDEAL) is
given where applicable.

The performance assessment is twofold.

1) The classic criteria, i.e., the mean client waiting times
achieved by all three algorithms are compared for a variety
of different client probabilistic configurations.

2) The length of the produced broadcast schedules and the
CPU times required to construct them are compared as
a metric of the system’s implementation and operational
cost, as described in Section III-A.

Notice that to the best of our knowledge, the second criterion
is overlooked in the totality of the research on push systems.
As the results prove, though, it is exactly these criteria that de-
termine whether an algorithm can be implemented in the real
world: Push systems are de facto used as a minimal-cost solu-
tion. Should an algorithm require exquisite, powerful, and ex-
pensive hardware to run or excessive operational resources, it
would be wise to abandon the push logic altogether and resort
to classic client—server architectures that are bound to perform
better.

A. Simulation Setup and Results

As shown in Table I, not all compared algorithms support
all the features discussed in the theoretical analysis. Thus, two
comparisons take place: All algorithms are initially compared
in an evenly sized pages scenario. Then, only SOA and CABS
are compared in the varying-page-sizes case.

The comparison is simulation-based, and the corresponding
parameters are presented in Table II. The parameter values used
are typically used in similar papers. Worthy of special note are
the total number of pages N and the client probabilistic model.

A typical 3.5 G telephony cell can typically handle 10000
P2P client connections. For the broadcasting scenario to make
sense, a logical and feasible number of clients would thus be
30 000. Assuming that the clients share a common interest for a
good 60% of the available pages—broadcasting would have du-
bious meaning otherwise—and their access patterns are com-
prised of 10 pages each, the total number of items is N =
30000 -10- (1 —0.6) = 120000.

The only client pdf used in all related work is the Zipf model.
This global choice has a sound basis: All pages are typically
sorted by descending popularity ;. Should this be applied to



TABLE II
SIMULATION PARAMETERS

Parameter | Value

TOPOLOGY | STAR {1 node-server: n wireless clients}
Y

Client Query p.d.f ZIPF: 7r; = ii;@lfe,i =1...N

0 {[02:0.1:18}n{1}

SYSTEM STATE | BS Renewal triggered (see Section II-B)

PAGE SPEEDS
DEFINITION

SOA: round(uﬁde“l)

CABS: Algorithm 1
BDISKS-SOA: Procedure of [26]
BDISKS: round(udea!)

N = 120,000
600, 000 client queries
2 page segments

Number of pages
Simulation Duration
ThinkTime*

* Introduced in [7]: upon receiving a wanted page, the client halts
queries for this time interval.

any of the other popular distributions, e.g., Pareto, Gaussian,
they can precisely be substituted by a Zipf pdf with a proper
value. To this end, the authors maintain the Zipf convention and
examine a wide set of § values. As a side note, analysis of this
paper is pdf-independent.

Concerning the calculation of the CPU time required by each
algorithm, two approaches are most popular:

1) calculate and compare the complexity O(.) of each
algorithm;

2) implement each algorithm in assembly and count CPU cy-
cles required by each one.

In the present case, the first option is not a choice since the
complexity for SOA is not provided [5], and the complexity
of CABS cannot be calculated since the algorithm employs
grouping of pages by their speed w;, which is function of their
access probabilities (i.e., random). The assembly implementa-
tion choice also has severe weaknesses.

1) Any assembly implementation is too hardware-specific to
be verifiable.

2) A few decades of higher language code typically corre-
spond to several thousands lines of assembly code. Thus,
implementation optimization is a problem that is bound to
be more influential in the case of assembly.

3) Handwritten assembly code is obviously much less reliable
than the corresponding one produced by a well-known and
globally trusted compiler or interpreter.

Thus, all algorithms were implemented in MATLAB as stand-
alone functions. The CPU time spent in each one was then mea-
sured [33], [34] by the MATLAB Code Profiler tool. The rea-
sons for this choice were the following.

1) Each algorithm has typically an implementation of 10 or
less lines of MATLAB code, leaving little, if any, room for
implementation issues to be considered.

2) The MATLAB interpreter and profiler are popular and
well-known in the scientific community globally.

3) Only one official MATLAB interpreter exists, as opposed
to other programming languages like C/C + + or Fortran.
The results are thus more verifiable and trustworthy.
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TABLE III
CPU TIME ASSESSMENT SPECIFICATIONS

Parameter

Test CPU model

| Value

x86 Family 6 model 15 Stepping 11
Genuinelntel

4% 2672MHz

4GB DDR?2 800 MHz

Windows XP Professional
5.1.2600 SP3 Build 2600

Single-threaded MATLAB M-code

Number of cores
Test RAM

Operating System
Version

Programming language

Environment MATLAB R2009b
CPU Usage during Steady 100% on one dedicated core®
execution

Application Priority 13 (“High”)

*: Measured by means of Windows Task Manager

4) The MATLAB version used supports JIT compiling,
providing execution times comparable to corresponding
C/C + + implementation.

Throughout the execution time, great care was taken to keep
the CPU usage steady at 100% and dedicated to the MATLAB
interpreter. Specification details are given in Table III.

Results are displayed in Figs. 68, depicting achieved D, L,
and CPU times of the compared algorithms.

For the unevenly-sized-pages scenario, we assume
N = 50 pages with sizes uniformly distributed in [0.5, 1.5].
One large page with index I € [1, 50] is selected, and its size is
set to 50 000. The ratio m refers to the size of a typical 2-kB
HTML page divided by the size of a streaming video file of
100 MB. Zipf distribution of page popularity is assumed once
more, with the §-parameter ranging again in [0.2, 1.8]. Results
for this scenario are displayed in Fig. 9, depicting achieved D
of the algorithms supporting unevenly sized pages (SOA and
CABS).

B. Remarks

The waiting times achieved by the compared algorithms
(Figs. 6 and 9) indicate that CABS is the only algorithm
achieving ideality in both evenly- and unevenly-sized-pages
scenarios. Notice that apart from CABS, only SOA supports
unevenly sized pages, and in accordance with the remarks of
Section III-E, fails to achieve optimal results even by a differ-
ence of 2.7-107 length units. SOA tends to perform better as the
large page becomes less popular either by increasing the large
page index or the #-parameter of the Zipf pdf. Its performance,
however, is not satisfactory in the majority of the cases.

In the evenly-sized-pages scenario, CABS and SOA achieve
ideality (Fig. 6). However, CABS requires ~ 20 s on the test
machine to calculate the required BS in one pass, while SOA
requires an aggregate amount of days (Fig. 8). This effectively
means that to answer merely 20 queries for each of the 30 000
clients (thus the total of 600000 queries of the simulation),
SOA would require several days of optimization, thus creating
a major bottleneck. The only possible solution would be to run
SOA on specialized, powerful, and expensive hardware. Notice
that SOA cannot be divided to threads.

BS sizes achieved by SOA and CABS (Fig. 7) denote a
difference of a factor of 10°. CABS achieves a value of one
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Fig. 6. Mean client waiting times achieved by the competing algorithms in the
evenly-sized-pages scenario.
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Fig. 8. CPU time required by each algorithm on the test machine.

to three times the database size. SOA, requiring 10° times
greater BS, nullifies all cost-effective advantages mentioned in
Section III-A.

BDISKS-CLASSIC and BDISKS-SOA only refer to the
evenly-sized-pages scenario. They both offer suboptimal per-

16 g

Index of large page 50 1 s

Fig. 9. Deviation of mean client waiting times achieved by SOA from the
IDEAL scheduler unevenly-sized-pages scenario. CABS achieves &~ 0 devi-
ation in all cases.

formance, with BDISKS-SOA being the only one performing
acceptably (Fig. 6). BDISKS-CLASSIC performs well only
for § € [0.2,0.4], where the optimal schedule is nearly flat
with no need for exquisite optimization. For greater § values,
both the CPU times and BS sizes of BDISKS-CLASSIC render
it nonrealizable. BDISKS-SOA greatly outperforms SOA in
terms of resources (Figs. 7 and 8), but not CABS. Finally, the
least common multiple employed by the BDISKS-x algorithms
may sporadically yield conveniently small values. In this case,
the required CPU time is minimized as shown in Fig. 8. How-
ever, this only happens for small # values where the algorithms
achieve the performance of a nearly flat broadcast schedule
(Fig. 6).

VI. CONCLUSION

This paper focused on the real-world implementation per-
spectives of algorithms designed to construct the schedule of
broadcast-based (or push-based) systems. Push systems are pri-
marily designed as a cheap telecommunications solution, and
their applications typically include hospital and airport infor-
mative systems, instant messaging services, interactive televi-
sion, and more. However, the main research on the field has fo-
cused on performance optimization, disregarding the most vital
characteristic a push system should possess: low implementa-
tion cost.

By theoretically analyzing many aspects of the broadcast
scheduling procedure, a new broadcast scheduler constructor
algorithm, the Cost-effective Adaptivity-oriented Broadcast
Scheduler (CABS) has been proposed. CABS was compared
in terms of broadcast schedule size and CPU cost with the
current state-of-the-art SOA algorithm, and algorithms of the
Broadcast Disks model family. The results have proven that
these algorithms have neglected the cost attributes to the point
that may be only conditionally realizable.

As a general paper conclusion, it is shown that any push-re-
lated study should take the implementation cost into account,
apart from waiting-time-based performance. Successful com-
pliance with the aforementioned criteria results in realistic and
practically useful systems.
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Abstract—A main design issue in a wireless data broadcasting
system is to choose between push-based and pull-based logic: The
former is used as a low-cost solution, while the latter is preferred
when performance is of utmost importance. Therefore, the most
significant advantage of a push system is the minimal cost. This fact
implies that hardware limitations do exist in the case of push sys-
tems. As a consequence, every related proposed algorithm should
primarily be cost-effective. This attribute, however, has been over-
looked in related research. In this paper, popular broadcast sched-
uling approaches are tested from an implementation cost aspect,
and the results render them only conditionally realizable. More-
over, a new, cost-effective, adaptivity oriented schedule constructor
is proposed as a realistic, minimal-cost solution.

Index Terms—Adaptivity, analysis, CPU-memory cost, data se-
rialization, push systems.

1. INTRODUCTION

ECENT years have witnessed the wide-spreading use of

wireless push-based systems. Simple in architecture and
implementation, lightweight and energy efficient—especially
from the client’s point of view and both hardware- and soft-
ware-wise—the push-based approach has been adopted for use
in a variety of information dissemination applications and has
been incorporated in almost every single mobile telecommuni-
cations device. Popular uses include airport and hospital infor-
mation systems, instant messaging services, and multimedia on
demand over the Internet or cellular networks. Consequently,
the on-growing interest of the telecommunications industry has
spurred the research on the performance optimization of these
systems.

Pure push-based systems typically employ a central server
continuously transmitting data through a channel, while the
clients simply retrieve useful data from the stream, without
being able to perform any kind of queries. Pull-based systems
on the other hand adhere to the classical client—server scheme,
where the server transmits only the data that have been re-
quested by a client, and only on the event of a request. While
the functionality separation is clear, a common misconception
lies to the reasons that render a pull or a push choice more
suitable for a telecommunications system case. It must be
clarified that a typical pull-based scheme generally performs
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better, response time-wise. However, the push-oriented systems
have one unique advantage: very low implementation cost with
regard to scalability.

The reader is encouraged to visualize a push server as a de-
vice of the scale of a standard, mainstream computer at most.
It is therefore obvious that such a device has limited computa-
tional power and caching capabilities. Thus, the computational
power and required memory should be attributes of the highest
impact factor when designing broadcasting-related algorithms.
Network congestion minimization—high due to the continuous
data emission scheme of push systems—should also be a major
concern. However, to the best of our knowledge, this has not
been the case so far in related research.

A. Related Work

Research on the field of broadcast systems can be roughly
split into two main categories: the mathematical foundation
and analysis attempts of the broadcast problem in general,
and algorithmic approaches that tend to provide simplified,
algorithmically applicable solutions of the general problem
and/or examine other advanced aspects. In the definition of
the data broadcast problem, each to-be-broadcasted item is
assigned a generic “broadcast weight,” which abstractedly
represents the impact of broadcasting on system resources. The
classic problem is then to find a schedule over an infinite-time
horizon so that the mean client waiting time as well as the mean
broadcast weight are minimized. In this context, the problem is
proved to be NP-hard [1]. [2] discusses the generalized mainte-
nance problem (a known NP-hard problem) and proves that the
broadcasting of equally sized items is a subcase of it. A lower
bound for the client’s mean waiting time is also provided. [3]
proves the existence of a possible solution for teletext systems
and also defines a lower bound for the client’s mean waiting
time in this case.

From this point on, related research ignores broadcast
weights. In this case, uniform and nonuniform item sizes are
discussed. [4] and [5] present the lower bound for the client
mean waiting time in the case of both uniform and nonuniform
sizes. A scheduling algorithm is also defined, which even today
achieves the minimum client waiting times. The lower bound
in the nonuniform case is not tight though, and this case is
further analyzed in [1]. [6] introduces a “reservation” system
that favors client waiting time in the case of big-sized items.

Retaining the no-broadcast weights consideration, several
algorithmic approaches have been proposed to simplify the
data broadcasting problem, the most influential of all being
the Broadcast Disks model [7], which is also discussed in this
paper. A great deal of work has been done based on this model,
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studying data prefetching, caching [8] and indexing [9], [10],
hybrid data broadcasting [11], as well as scheduling strategies
and noise interference [12], [13].

Another branch studies data broadcasting from a higher level,
transaction aspect (e.g., queries that must be answered in a lim-
ited amount of time [14], among other limitations) and was in-
troduced in [15]. This approach has since been extended with
fail-over tactics [16] and techniques [17] that increase the con-
currency of transactions.

Finally, other recent studies deal with the case of correlated
client queries, e.g., complex queries requesting multiple single
dataitems [18]. [19] deals with the case of requesting successive
single items, while [20] and [21] examine the case of random
access order of single items. [22] and [23] present algorithms
that achieve the lower bounds of average access time in the case
of broadcasting a pair of files.

B. Authors’ Related Work

The authors have so far contributed in both analytical and al-
gorithmic approaches. In [24], an effort to combine clustering
techniques with the broadcast disks model was made, with sat-
isfactory results. The analytical approach of [25] added means
of projecting the optimal parameters required to construct the
broadcast schedule. The cost parameter was introduced in [26],
targeting the cost efficiency of the scheduling procedure. More-
over, research on adaptive push systems has been carried out in
[24] and [27]-[29].

C. Contribution

As it is evident from the brief presentation of the related work
on the field, every study focuses on a specific subject of data
broadcasting without however taking the implementation cost
into consideration. Thus, a good amount of algorithms have
been proposed, which may be hard to be implemented in the
real world. Moreover, the classic system model of [7] employed
by all related studies is simulation oriented and does not claim
any effectiveness in cost assessment tasks.

In the present paper, a more realistic system model is pre-
sented, designed to augment the network’s functionality through
the addition of Web connectivity, distinction between broadcast
schedulers and beacons, and broadcast schedule lifespan param-
eters. The new model is then used to perform cost assessment
studies of broadcast scheduling techniques, aiming at the fol-
lowing:

1) the demonstration of the fact that implementation cost as-
sessments are critical for algorithms related to push sys-
tems;

2) the testing of adaptivity capabilities of popular broadcast
scheduling approaches;

3) the presentation and testing of a new cost-effective, adap-
tivity-oriented broadcast schedule constructor algorithm.

The proposed scheduling scheme is compared to the analyti-
cally optimal [5] and modern, broadcast disks-based scheduling
algorithms. Results indicate that the novel scheme combines op-
timal performance and minimal cost, while the compared algo-
rithms are even conditionally realizable in several cases.
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Fig. 1. Novel broadcasting model.

D. Summary of Contents

Section II provides the basics for understanding the
push system’s model, terms, architecture, and operation.
In Section III, the broadcast scheduling procedure is theo-
retically analyzed. In Section IV, the proposed scheduling
algorithm is presented. Performance assessment configurations
and results are given in Section V. Our conclusion is given in
Section VI.

II. BROADCASTING BASICS

A. Network Topology and Operation: Advancing the Classic
Model

The proposed topology for a realistic push-based system is
depicted in Fig. 1. A set of clients receives a common broadcast
schedule emitted from a central source.

Concerning the clients, the following is commonly assumed.

* They share common information needs and preferences
with regard to their topological distribution [28].

* Their number is large enough to rule out a point-to-point-
based style of communication from being a viable option
with regard to implementation cost.

The broadcast source emits series of data items—better
known as “pages’—according to a schedule that minimizes
the clients’ mean waiting time. In the classic system model,
the server is standalone, i.e., unplugged from any network
and self-sustaining regarding the origin of the broadcast data
[1]-[23]. However, this scheme was introduced mostly for
conceptual purposes [7] and is of limited practical use. It is
safer to assume that the data originates from independent and
distributed Web sources, as shown in Fig. 1.

The classic model also considers the scheduling service to
be located at the beacon. While a beacon-local cache may be
useful, placing the scheduler at the beacon would require costly
changes at the totality of the base stations of a modern cellular
network, which tend to act as simple terminals. It is thus more
practical to consider the broadcast beacon and scheduling ser-
vice being at separate locations.

In any case, however, the scheduling service is assumed to
know [1]-[23]:
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» which pages the clients need;

* the popularity of each data item.

This knowledge can be attributed to timely speculations, fore-
casting, client feedback, or data advertising.

Once constructed, the broadcast schedule has limited
lifespan. After a certain time interval, it must be renewed
to match the clients’ demands. At this point, the scheduling
service must:

* schedule data fetching over the Web;

* schedule storage at the beacon-local cache;

* enter a state of client preference monitoring in order to

prepare for the next renewal.

B. Entry Point of the Present Work

The present work assumes that the system has just entered a

renewal state and aims to produce the optimal schedule:

* as fast as possible on mainstream hardware;

* minimizing the caching needs at the beacon-local point;

* minimizing the required communication lifetime between
the scheduling service and the data sites, thus limiting the
required operational bandwidth and the dependence on net-
work congestion.

As it will be shown, these goals can be effectively reached

through the minimization of the broadcast schedule size.

C. Theoretical Overview: Ideal Scheduling

Input of the Ideal Schedule Constructor (ISC) are the pairs
pi + {li,u;}, ¢ = 1...N, where p; denotes the ¢th page of
the server’s database (arbitrarily enumerated), /; the page’s size,
and u; the page’s speed (i.e., the the number of occurrences of p;
inside the broadcast schedule, BS). /N denotes the total number
of pages eligible for broadcasting. The length of the broadcast
schedule is denoted by L, and it stands that

N
L= Z’U,i -li. (1)
=1

The objective of the ISC is simple: arrange the occurrences of
each page so as to achieve the minimum mean client waiting
time. It has been shown that this criterion is satisfied only when
the time interval between same page occurrences is steady, i.e.,
periodic schedule [7].

For arbitrary page speeds u; and access probabilities 7;, the
mean client waiting time is

I

The optimal page speeds are strictly defined through analysis
(51

N

3 2)

[

. 7 1 .
uédeal:L' 7;_]\/'—7 71=1...N (3)
' Z VT li
i=1

|1 2 3 4 5 -] T 8 9 10
Page index

Fig. 2. Example of conflicting page spacings d; .

which result into a minimal waiting time of

N 2
) )
Difiel = ~=— )

where (2)—(4) are only valid when lf ~ lfj Vi, 7 [5].

D. Forced Deviations From Ideality

Two factors hinder strict appliance of the ideal scheduling
scheme.
* A forced deviation stems from (4), which promises inde-
pendence from the BS length L. However, as shown in [5],
(3) yields noninteger results, and thus a form of rounding
must be applied. The page speeds are thus altered, and the
real mean waiting time is given by (2), which shows de-
pendence from L.
* Creating a periodic broadcast schedule with constant d; =
UL spacings [5] between consecutive occurrences of a page
Iﬁay be impossible due to collisions. For example, consider
a BS comprising three pages, p1.. 3, with corresponding
speeds w13 = {7,3,1} and l; = lo = I3 = 1. The ideal
spacings should then be di***! = L = L, difeel = L =
4 and di'**! = L =11, given that I, = Z?:l w -l =
11. The problem of integer divisions is evident, but suppose
that in order to overcome it, we choose varying spacing
values. For example, u1 = {d; x3+d} x4}, where d; = 1
and d] = 2; ug = {da x 1+ dfy x 2}, where ds = 3 and
dy = 4;and uz = {11 x 1}, where d§ = 11. As shown in
Fig. 2, the spacings collide at the ninth position.

III. IMPACT OF DEVIATIONS FROM IDEALITY

In this section, the form of deviation that has the smallest
impact on the performance of a scheduling algorithm is studied.

A. Altering the BS Length: Cost-Efficiency and Performance
Issues

As described in Section II-D, the real mean waiting time of
the clients is deleendent on the BS length L.

Let Ly = ) ;. u; be the BS length measured in pages, Ly €
[N, L], Lt € Z, N be the total number of pages, and L'?*
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Fig. 3. Mean waiting time D as a function of the broadcast schedule length L ;
measured in pages, as produced by brute force (BF) and Algorithm 1. Zipf pdf
is assumed with & = [0, 0.3, 0.6, 0.9]. Number of items is NV = 10.

be the maximum examined value. For L; = N, the BS is flat,
and the speed of each page unary. For every L; > N, exactly

P=L;—N (5)

unary speed increments must take place. The objective is to dis-
tribute the P increments optimally among the pages.
Since the ideal speeds u14°2! are given by (3), a serial distribu-
tion of increments can be employed, where the next unary raise
affects the page p; for which it holds that

uj — uit > |u; — | £ (6)
The procedure is formulated as Algorithm 1. Implementa-
tion with strict weak ordered maps [30] provides O(log V)
complexity.

Algorithm 1 Calculating Optimal w; for Given L;

Input: The pages p; : {m;}, i = 1... N and the BS length
L; > N.

Output: The optimal page speeds u;®".
1: SetP =1L;—N.
2: Setu® =1,i=1...N.
3: Setwldel i = 1...N by (3).
4: for::=1to P do
5 Calculate page index j by (6).
6 u‘;-pt = u‘;pt’ +1

7: end for

While the serial distribution is not analytically optimal, it
typically achieves 99%—100% of the best possible performance.
To demonstrate this fact, in Fig. 3, Algorithm 1 is compared
D-wise to the optimal results produced by brute force, i.e.,
trying all possible combinations of speeds and choosing the
one achieving the minimum D. The results coincide, with
insignificant exceptions.

An interesting remark stems from the fact that the system
quickly reaches a point (I; ~ 3 - N), where 95%-100% of
the possible waiting time has been achieved. This holds for
any number of pages and any pdf[ "pr obabzhty dens lty
function "? Pls deﬁne]: results are identical to that of
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Fig.4. Analogy of the BS length minimization with the optimal vehicle routing
problem. A vehicle traverses a series of checkpoints C;, ¢ = 1--- N, located
at S; = m; normalized distance units away from each other. Starting at C'; with
fuel L, the vehicle must reach C'x ‘as soon as possible with the available fuel,
making proper speed choices along the way. For simplicity, the fuel consump-
tion is assumed to be proportional (1:1) to the chosen speed.

Fig. 3. The system then tends to oscillate around the minimum
of (4). The oscillation fades as pdf skewness and L; increases.

The aforementioned remark has a direct impact on the

overall cost of the system. The generic consequences can be
better understood if we map the scheduling problem to the
case of optimal vehicle routing described in Fig. 4. Mini-
mizing L essentially translates to reaching Cn at minimal
delay D = 2711 At; = Zf\;l 2._notice the similarity to
(2)—with only a fraction of the requffed fuel. Further increasing
Ly is an ineffective waste of resources.

The broadcasting-specific cost-related consequences include

the following.

e The smaller the BS, the less computing time/processing
power is required to construct it.

* A minimal BS has a higher probability of being calculated

and sent from the scheduler to the beacon in one pass. A
large BS must be calculated and forwarded in chunks, thus
being constantly dependent on network congestion and re-
quiring extra operational bandwidth.
A small BS favors the implementation of cheap, dumb
beacons that simply cache the binary data of the whole
schedule without need for added complexity imposed
by databases, data organization, and indexing/caching
techniques.

e A BS small enough to be disclosed to the beacon in one
brief pass in the form of indexes enables better scheduling
of data fetching from the Web sites to the beacon.

* Minimal schedules may enable direct storage to RAM.
Such a scheme is far less hardware-intensive than constant
hard-disk accesses.

B. Page-Spacing Deviations: Altering the Pages’ Speeds

The next form of deviation from ideality is that of
page-spacing collisions. A purely theoretical way of over-
coming this problem would be to alter the page speeds.
However, as first shown in [5], the ideal page speeds already
need to be tampered with in order to revert to an integer form.
Moreover, as shown in Fig. 3, slight BS length alterations
that can be caused by page-speed manipulation may degrade
the mean waiting time. Thus, further tampering with the
page speeds must be avoided as ineffective and performance
degrading.
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C. Impact of Local Concentrations of Single-Page Occurrences
in the BS on the Client Waiting Time

As a next step, we examine whether the optimal scheduling
algorithm should incline toward slight but distributed or major
but local deviations of page spacings from their ideal values.

Consider a BS with fixed length L, in which a page p; is
repeated u; times in total, with spacings

dij = di - a7t {j=1...u; a>1} @)
where j denotes the spacing between the jth and (j — 1)th page
occurrence. If ’f — 0, it will hold that

= at —1
L= dij=dq —
=1

The mean delay time attributed to this page will be

®)

u;

dZ: . (M 1 a? —1
D(pi)_z2]i E 2Ld’21——1 &)

7j=1

and because of (8)

L(a—1)(a% +1)
2

PP S

(10)

It is trivial to show that (10) is a strictly rising function of a.
Thus for

d >as D, (d)> D, (a) (11)

Since higher values of a indicate more major and local
spacing deviations (L is fixed, and (7) represents a geometric
progression), we conclude through (11) that slight, distributed,
global spacing deviations should be preferred over sharp devi-
ations of distinct page speeds.

D. Slight Page-Spacing Deviations versus Zero Padding

So far, it has been proved that tampering with the page
speeds, in order to overcome the problems posed by the forced
deviations from ideality, is ineffective and potentially per-
formance-degrading. Instead, slight and distributed spacing
deviations should be preferred. Introduced in [7], however,
zero padding has been adopted to produce periodic BS with
steady page spacings. The logic behind this approach is simple:
Increase the BS length by a sufficient number of “dummy”
pages in order to overcome the deviations problem, and then
substitute them with e.g., the most popular of pages. Thus,
the new question posed is whether zero padding should be
preferred over distributed slight spacing deviations.

To this end, we consider a single page with spacings d; =

LWJ and d} = { -‘ similarly to the case depicted in Fig. 2.
Should we define o = modulo(u_l ), o € [1,u1), then:

1) dy will be used exactly (u; — o) times;

2) while d will be used exactly o times;
over a BS of fixed length L. It is obvious that

= dy + 1. (12)

Then, if & — 0, it will hold that

wq

L= dy
j=1

eq. (12 L —
:d1X(U1—U)—|—d,1XO' qéu) dy = " (13)
1
while the mean client waiting time for this page is
d3 x (uy — ) +d X 0 eq. (12,13)
D(p;) = 1 1 ,
(pi) b, =
L o? ouy
Dip))=— - —— ) 14
(pi) 2uy 2Lu;  2Lwug 14

On the the other hand, should zero padding be used, L should be
increased by (u1 — o). Then, L' = L + u1 — o, and the spacing
becomes steady and equal to d; = -~. The mean client waiting
time in this case is

L L 1 o

Dz(p;) = =—4+-- 15
Z(p ) 21 ATE] + 2 2uy (15)
It is now easy to show that
L—-o)(ui—0o
Dz(pi) — D(pi) = Loa=0) sy

2Luy

since o € [1, uy). Therefore, D z(p;) > D(p;) in any case.

Even though this analysis proves the inferiority of zero
padding, it does not take into account the spacing conflicts
described in Section II-D. Yet, the zero padding method in-
troduced in [7] is known to overcome this problem as well.
However, this method has severe weaknesses that can become
evident through a simple example.

1) Brief Method Description: Begin by sorting the pages
in descending request probability fashion. Perform grouping
by page speed. Calculate the least common multiple (LCM) of
the page groups’ speeds. Split each group of pages into LOM
chunks, employing zero padding in the process where neces—
sary. Finally, broadcast the chunks in a round-robin manner.

Consider the following example. Three pages have request
probabilities 713 = {%7 %, %} For an I, = 20-pages-long
BS, their approximate optimal speeds are w3 = {11, 5, 4},
the least common multiple of which is 220. Thus, we have the
following:

1) Group 1 (i.e., page p;) must be split into 110 chunks (i.e.,

109 dummy pages must be added to it).
2) Groups 2 and 3 are similarly expanded by 43 and 54
dummy pages correspondingly.
The new BS has length L/ = 209 instead of the original L = 20
and corresponds to a mean client waiting time of D’/ = 11.55
(2) instead of D = 1.22 (4). Thus, the system’s performance is
reduced to a mere 10% of its ideal value.

In conclusion, zero padding should be avoided in data broad-

casting due to serious performance penalties.

E. On the Necessity of Data Segmentation

It is interesting to examine the limitations of the analysis of
[5], an overview of which has been given in Section II. [5] is
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Fig. 5. CABS schedule constructor.

considered the analytically optimal state of the art in the field of
broadcast scheduling.

In the event of uneven page-occurrence spacings, the mean
client waiting time is given by

£

i g2
d;;
™ -

2L

1 j=1

D =

N
(17)

k2

where d;; is the spacing between the jth and (j — 1)th oc-
currence of page p; in the BS. Spacings are measured from
one page-occurrence start (i.e., header) to the next. It has been
proven [1] that (17) is minimized when the spacings of each
page are constant, d;; = # Vj. Equation (17) is then reduced
to the form of (2). However, UL spacings can be impossible in
the event of uneven page sizes .

Consider three pages p1.3 : [{ur = 3, I1 = 1}, {us =
2, Iy = 1}, {uz = 1, I3 = 3000}]. The corresponding constant
spacings would be d; = 292 & 1000, dy = 1501, d3 = 3002.
However, p3 fits nowhere between the occurrences of either p;
or p2. The analysis of [5] is then essentially invalidated, yielding
D(p1) = % = 500, D(p2) = 750.5, D(p3) = 1501 instead
of the real values D(p1)™ = 1501, D(p2)" = 1501, D(p3)” =
1501 produced by (17).

The scheduling algorithm of [5] attempts to tackle this defi-
ciency by increasing L infinitely, effectively incorporating thou-
sands of redundant copies of pages p1, p2 in the BS. Moreover,
simulations run in [5] consider page sizes I; € [1,10] while
L — oo. This affects the ratio lT — 0, essentially reducing the
scenario to that of equally sized pages. Indeed, the results of the
scheduling algorithm in simulations of [5] are almost identical
for both unevenly and evenly sized pages.

A better approach would be to segment pages to smaller
packets. Large pages then become “filling material” between
occurrences of small pages. Thus, L is unaffected, and spacings
of UL become possible. Notice that the client waiting time
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is not affected either: The page headers are placed at their
optimal positions. The technique is essentially an application
of time multiplexing. The channel bandwidth is divided among
the clients with better temporal granularity. While the present
paper does not aim at introducing novel multiplexing schemes,
a safe packet size limit can be set as

Mmin = min{l;} (18)
while a less segmentation-greedy packet size is obviously
1
IT = — min{d;}. (19)

N

Packet sizes do not have an impact on waiting time, provided
that the aforementioned problem is avoided, but do affect client
data receival rate, smoothness, and noise resilience. Optimizing
packet size for these purposes goes beyond the scope of the
present work.

E. Priorities Over Conflict

Data segmentation and slight spacing deviations have been
proven to be beneficial to the performance of a push system.
However, the problem posed by conflicting spacings discussed
in Section II-D has not yet been resolved.

As it has already been stated, conflicting spacings are un-
avoidable when zero padding is not used. Thus, measures must
be taken to prioritize pages in the event of conflict. Equation (2)
states that pages with higher :— value have heavier impact on
the mean waiting time. Thus, the impact factor of a page p; can
be defined as

5

I = (20)

U; :
Therefore, it is logical that in the event of conflicting page or
packet spacings, items with higher impact factor should take
priority and be handled accordingly.

G. Theoretical Summary

Through the analysis and remarks of the preceding sections,

the following has become evident.

1) An optimal scheduler should provide optimal client
waiting times with minimal BS length.

2) Each page-spacing value in the BS must deviate as little
as possible from its ideal values in a uniform, distributed
way. If not possible due to excessive lT ratio, big pages
should be split into smaller packets. Zero padding should
be avoided.

3) Finally, on the event of spacing conflicts, pages or packets
should be prioritized according to their impact factor de-
fined by (20).

IV. COST-EFFECTIVE, ADAPTIVITY-ORIENTED BROADCAST
SCHEDULER

Having defined its optimal characteristics, the corresponding
scheduler can be easily formulated.

The proposed Cost-effective, Adaptivity-oriented Broadcast
Scheduler (CABS) employs a rotating disks scheme, depicted
in Fig. 5.

We consider pages p; : {m;, l;}, ¢ = 1...N. The optimal
page speeds u?pt and L are set by Algorithm 1. The pages are
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clustered by thelr
with ending cr1ter10n

= ratio through hierarchical clustering [31]

Vp; € C 21

where C' denotes the cluster owning page p;, [. indicates the
page length of the corresponding centroid, and 11 is the packet
size of (19). Each formed cluster is then divided into group
of pages with equal speeds. Each group has its contents seg-
mented and is placed on the periphery of a circle with unary
radius. The disks are set to rotate around a common axis with
their corresponding speeds, and a set of stationary heads de-
tects the start/end of pages or packets as shown in Fig. 5. In the
event of the detection of a page/packet start/end, the page/packet
is immediately broadcast. Should two or more pages conflict,
they are sorted by descending impact factor I; and are broad-
cast in that order. To minimize the probability of a conflict oc-
curring, the starting angle of each disk is randomized in the
range [0, 2r]. The procedure lasts for a time interval of 7' =

2z B T min{u;} = 2r R = 27, at which point a BS of exactly

min{u; ;
L= Zf\zl u; - [; has been produced.
The procedure is formulated as Algorithm 2.

Algorithm 2 The CABS Schedule Constructor

Input: The pages p; : {m;,l;},i=1...N.
Output: The broadcast schedule.
1:  Set u{®" by Algorithm 1.

2: Perform Hierarchical Clustering of pages by and
criterion of (21).
3:  Group pages in the clusters by u;.
4:  Set NoD as the number of produced groups.
5:  Segment pages by (19).
6:  Set initial position of heads:
S¢ = random{[0, 27}, i = 1. N()D
7:  Set At = min{DiSks#ju, i1=1...NoD}.
8: Set1l = 2w.
Create the broadcast schedule
9: fort:= Atto1, step by At do
10: Calculate current head positions:
Si=Si4+wu;-t,i=1...NoD
11: Collect pages/segments whose boundaries have
been crossed in [t,t — At], in array B.
12: Sort BB by descending impact factors /;.
13: Broadcast items of 5.
14:  end for

As an extra feature, CABS can also easily set custom speeds
for any custom group (i.e., disk), e.g., when advertising certain
pages with a guaranteed client waiting time variance [32].

V. PERFORMANCE AND COST ASSESSMENT

Even though the proposed algorithm adheres to the guidelines
of the theoretical analysis, it is imperative that its performance
be assessed and compared to other approaches.

To this end, the CABS algorithm is compared to the analyti-
cally optimal scheduling algorithm introduced in [5] (SOA) and
the latest advancement (BDISK-SOA) of the Broadcast Disks

TABLE 1
FEATURE SUPPORT OF SCHEDULING ALGORITHMS

Feature | SOA*!  BDISKS, BDISKS-SOA*?  CABS
Periodic BS no yes yes
Varying page size yes no yes
Data segmentation no no yes
Page advertising no no yes

*1: The analytically optimal algorithm presented in [5]
*2: The algorithms of [7, 25] respectively

family of algorithms [7] (BDISK-CLASSIC). The former,
though introduced in 1999, still represents the top-performing
algorithm client waiting-time-wise. BDISK-CLASSIC rep-
resents a very popular scheduling approach, as discussed in
Section I-A. BDISK-SOA was presented by the authors in
[25] and [26], where it surpassed the previous state of the art.
Performance of the ideal scheduler of Section II-C (IDEAL) is
given where applicable.

The performance assessment is twofold.

1) The classic criteria, i.e., the mean client waiting times
achieved by all three algorithms are compared for a variety
of different client probabilistic configurations.

2) The length of the produced broadcast schedules and the
CPU times required to construct them are compared as
a metric of the system’s implementation and operational
cost, as described in Section III-A.

Notice that to the best of our knowledge, the second criterion
is overlooked in the totality of the research on push systems.
As the results prove, though, it is exactly these criteria that de-
termine whether an algorithm can be implemented in the real
world: Push systems are de facto used as a minimal-cost solu-
tion. Should an algorithm require exquisite, powerful, and ex-
pensive hardware to run or excessive operational resources, it
would be wise to abandon the push logic altogether and resort
to classic client—server architectures that are bound to perform
better.

A. Simulation Setup and Results

As shown in Table I, not all compared algorithms support
all the features discussed in the theoretical analysis. Thus, two
comparisons take place: All algorithms are initially compared
in an evenly sized pages scenario. Then, only SOA and CABS
are compared in the varying-page-sizes case.

The comparison is simulation-based, and the corresponding
parameters are presented in Table II. The parameter values used
are typically used in similar papers. Worthy of special note are
the total number of pages N and the client probabilistic model.

A typical 3.5 G telephony cell can typically handle 10000
P2P client connections. For the broadcasting scenario to make
sense, a logical and feasible number of clients would thus be
30 000. Assuming that the clients share a common interest for a
good 60% of the available pages—broadcasting would have du-
bious meaning otherwise—and their access patterns are com-
prised of 10 pages each, the total number of items is N =
30000 -10- (1 —0.6) = 120000.

The only client pdf used in all related work is the Zipf model.
This global choice has a sound basis: All pages are typically
sorted by descending popularity ;. Should this be applied to



TABLE II
SIMULATION PARAMETERS

Parameter | Value

TOPOLOGY | STAR {1 node-server: n wireless clients}
Y

Client Query p.d.f ZIPF: 7r; = ii;@lfe,i =1...N

0 {[02:0.1:18}n{1}

SYSTEM STATE | BS Renewal triggered (see Section II-B)

PAGE SPEEDS
DEFINITION

SOA: round(uﬁde“l)

CABS: Algorithm 1
BDISKS-SOA: Procedure of [26]
BDISKS: round(udea!)

N = 120,000
600, 000 client queries
2 page segments

Number of pages
Simulation Duration
ThinkTime*

* Introduced in [7]: upon receiving a wanted page, the client halts
queries for this time interval.

any of the other popular distributions, e.g., Pareto, Gaussian,
they can precisely be substituted by a Zipf pdf with a proper
value. To this end, the authors maintain the Zipf convention and
examine a wide set of § values. As a side note, analysis of this
paper is pdf-independent.

Concerning the calculation of the CPU time required by each
algorithm, two approaches are most popular:

1) calculate and compare the complexity O(.) of each
algorithm;

2) implement each algorithm in assembly and count CPU cy-
cles required by each one.

In the present case, the first option is not a choice since the
complexity for SOA is not provided [5], and the complexity
of CABS cannot be calculated since the algorithm employs
grouping of pages by their speed w;, which is function of their
access probabilities (i.e., random). The assembly implementa-
tion choice also has severe weaknesses.

1) Any assembly implementation is too hardware-specific to
be verifiable.

2) A few decades of higher language code typically corre-
spond to several thousands lines of assembly code. Thus,
implementation optimization is a problem that is bound to
be more influential in the case of assembly.

3) Handwritten assembly code is obviously much less reliable
than the corresponding one produced by a well-known and
globally trusted compiler or interpreter.

Thus, all algorithms were implemented in MATLAB as stand-
alone functions. The CPU time spent in each one was then mea-
sured [33], [34] by the MATLAB Code Profiler tool. The rea-
sons for this choice were the following.

1) Each algorithm has typically an implementation of 10 or
less lines of MATLAB code, leaving little, if any, room for
implementation issues to be considered.

2) The MATLAB interpreter and profiler are popular and
well-known in the scientific community globally.

3) Only one official MATLAB interpreter exists, as opposed
to other programming languages like C/C + + or Fortran.
The results are thus more verifiable and trustworthy.
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TABLE III
CPU TIME ASSESSMENT SPECIFICATIONS

Parameter

Test CPU model

| Value

x86 Family 6 model 15 Stepping 11
Genuinelntel

4% 2672MHz

4GB DDR?2 800 MHz

Windows XP Professional
5.1.2600 SP3 Build 2600

Single-threaded MATLAB M-code

Number of cores
Test RAM

Operating System
Version

Programming language

Environment MATLAB R2009b
CPU Usage during Steady 100% on one dedicated core®
execution

Application Priority 13 (“High”)

*: Measured by means of Windows Task Manager

4) The MATLAB version used supports JIT compiling,
providing execution times comparable to corresponding
C/C + + implementation.

Throughout the execution time, great care was taken to keep
the CPU usage steady at 100% and dedicated to the MATLAB
interpreter. Specification details are given in Table III.

Results are displayed in Figs. 68, depicting achieved D, L,
and CPU times of the compared algorithms.

For the unevenly-sized-pages scenario, we assume
N = 50 pages with sizes uniformly distributed in [0.5, 1.5].
One large page with index I € [1, 50] is selected, and its size is
set to 50 000. The ratio m refers to the size of a typical 2-kB
HTML page divided by the size of a streaming video file of
100 MB. Zipf distribution of page popularity is assumed once
more, with the §-parameter ranging again in [0.2, 1.8]. Results
for this scenario are displayed in Fig. 9, depicting achieved D
of the algorithms supporting unevenly sized pages (SOA and
CABS).

B. Remarks

The waiting times achieved by the compared algorithms
(Figs. 6 and 9) indicate that CABS is the only algorithm
achieving ideality in both evenly- and unevenly-sized-pages
scenarios. Notice that apart from CABS, only SOA supports
unevenly sized pages, and in accordance with the remarks of
Section III-E, fails to achieve optimal results even by a differ-
ence of 2.7-107 length units. SOA tends to perform better as the
large page becomes less popular either by increasing the large
page index or the #-parameter of the Zipf pdf. Its performance,
however, is not satisfactory in the majority of the cases.

In the evenly-sized-pages scenario, CABS and SOA achieve
ideality (Fig. 6). However, CABS requires ~ 20 s on the test
machine to calculate the required BS in one pass, while SOA
requires an aggregate amount of days (Fig. 8). This effectively
means that to answer merely 20 queries for each of the 30 000
clients (thus the total of 600000 queries of the simulation),
SOA would require several days of optimization, thus creating
a major bottleneck. The only possible solution would be to run
SOA on specialized, powerful, and expensive hardware. Notice
that SOA cannot be divided to threads.

BS sizes achieved by SOA and CABS (Fig. 7) denote a
difference of a factor of 10°. CABS achieves a value of one
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Fig. 6. Mean client waiting times achieved by the competing algorithms in the
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Fig. 8. CPU time required by each algorithm on the test machine.

to three times the database size. SOA, requiring 10° times
greater BS, nullifies all cost-effective advantages mentioned in
Section III-A.

BDISKS-CLASSIC and BDISKS-SOA only refer to the
evenly-sized-pages scenario. They both offer suboptimal per-

16 g

Index of large page 50 1 s

Fig. 9. Deviation of mean client waiting times achieved by SOA from the
IDEAL scheduler unevenly-sized-pages scenario. CABS achieves &~ 0 devi-
ation in all cases.

formance, with BDISKS-SOA being the only one performing
acceptably (Fig. 6). BDISKS-CLASSIC performs well only
for § € [0.2,0.4], where the optimal schedule is nearly flat
with no need for exquisite optimization. For greater § values,
both the CPU times and BS sizes of BDISKS-CLASSIC render
it nonrealizable. BDISKS-SOA greatly outperforms SOA in
terms of resources (Figs. 7 and 8), but not CABS. Finally, the
least common multiple employed by the BDISKS-x algorithms
may sporadically yield conveniently small values. In this case,
the required CPU time is minimized as shown in Fig. 8. How-
ever, this only happens for small # values where the algorithms
achieve the performance of a nearly flat broadcast schedule
(Fig. 6).

VI. CONCLUSION

This paper focused on the real-world implementation per-
spectives of algorithms designed to construct the schedule of
broadcast-based (or push-based) systems. Push systems are pri-
marily designed as a cheap telecommunications solution, and
their applications typically include hospital and airport infor-
mative systems, instant messaging services, interactive televi-
sion, and more. However, the main research on the field has fo-
cused on performance optimization, disregarding the most vital
characteristic a push system should possess: low implementa-
tion cost.

By theoretically analyzing many aspects of the broadcast
scheduling procedure, a new broadcast scheduler constructor
algorithm, the Cost-effective Adaptivity-oriented Broadcast
Scheduler (CABS) has been proposed. CABS was compared
in terms of broadcast schedule size and CPU cost with the
current state-of-the-art SOA algorithm, and algorithms of the
Broadcast Disks model family. The results have proven that
these algorithms have neglected the cost attributes to the point
that may be only conditionally realizable.

As a general paper conclusion, it is shown that any push-re-
lated study should take the implementation cost into account,
apart from waiting-time-based performance. Successful com-
pliance with the aforementioned criteria results in realistic and
practically useful systems.
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