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S

Two asymptotic frameworks, increasing domain asymptotics and infill asymptotics,
have been advanced for obtaining limiting distributions of maximum likelihood estimators
of covariance parameters in Gaussian spatial models with or without a nugget effect.
These limiting distributions are known to be different in some cases. It is therefore of
interest to know, for a given finite sample, which framework is more appropriate. We
consider the possibility of making this choice on the basis of how well the limiting distri-
butions obtained under each framework approximate their finite-sample counterparts.
We investigate the quality of these approximations both theoretically and empirically,
showing that, for certain consistently estimable parameters of exponential covariograms,
approximations corresponding to the two frameworks perform about equally well. For
those parameters that cannot be estimated consistently, however, the infill asymptotic
approximation is preferable.

Some key words: Asymptotic normality; Consistency; Increasing domain asymptotics; Infill asymptotics;
Maximum likelihood estimation; Spatial covariance.

1. I

Spatially referenced data are usually positively spatially correlated, observations from
nearby sites tending to be more alike than observations from distant sites. It is standard
practice to model the data’s variance and correlation structure through a parametric
covariance function, or covariogram, and then estimate these parameters, by the method
of maximum likelihood, say. For purposes of making inferences about the covariogram’s
parameters, knowledge of the asymptotic properties of parameter estimators is useful,
mainly because one hopes that the asymptotic results will yield useful approximations to
finite-sample properties. However, the applicability of asymptotics to spatial data is com-
plicated by the fact that there are two quite different asymptotic frameworks to which
one can appeal: increasing domain asymptotics, in which the minimum distance between
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sampling points is bounded away from zero and thus the spatial domain of observation
is unbounded, and infill asymptotics, in which observations are taken ever more densely
in a fixed and bounded domain.
Not surprisingly, the asymptotic behaviour of spatial covariance parameter estimators

can be quite different under the two frameworks. It is known, for example, that some
covariance parameters are not consistently estimable under infill asymptotics (Ying, 1991;
Stein, 1999, p. 110; Zhang, 2004), whereas these same parameters are consistently estimable
and their maximum likelihood estimators are asymptotically normal, subject to some
regularity conditions, under increasing domain asymptotics (Mardia & Marshall, 1984).
Furthermore, there are cases in which a parameter is consistently estimable under both
asymptotic frameworks, but the convergence rates are different (Chen et al., 2000).
Typically in practice, spatial data are observed at a finite number of points with no

intention or possibility of taking more observations, and it is not clear which asymptotic
framework to appeal to. Stein (1999) gives a cogent argument for using infill asymptotics
if interpolation of the spatial process is the ultimate goal. An alternative approach is to
choose a framework on the basis of how well the asymptotic distributions of estimators of
parameters of interest approximate the finite-sample distributions of those estimators. The
purpose of this paper is to investigate and compare the quality of these approximations.

2. R    

Consider a spatial process X(s) that is observed on a set of n points D
n
, with

D15D25 . . .5Rd, and whose distribution depends on the parameter hµRp, where p
and d are fixed positive integers. Let L

n
(h) be the likelihood function of h given the

observations {X(s) : sµD
n
}. Then a maximum likelihood estimator of h is any value h@

n
that maximises L

n
(h). If X(s) is Gaussian, Mardia & Marshall (1984) showed that, under

an increasing domain asymptotic framework and subject to some regularity conditions, h@
n

is approximately normally distributed with mean h and covariance matrix I−1
n
(h), where

I
n
(h)=−E{∂2 log L

n
(h)/∂h ∂h∞}.

One of the regularity conditions is that the diagonal elements of I−1
n
(h) converge to 0

as n�2.
The available results under infill asymptotics are considerably narrower in scope than

for increasing domain asymptotics. Consider a stationary, zero-mean, Gaussian process
that has an exponential covariogram, that is

E{X(s)}=0, cov{X(s), X(s+h)}=h
1
exp (−h

2
h) (sµR, h�0). (2·1)

When this process is observed in the unit interval, Ying (1991) showed that, as n�2,

√n(h@
1
h@
2
−h
1
h
2
)�N{0, 2(h

1
h
2
)2}, (2·2)

in distribution, where h@
i
is the maximum likelihood estimator of h

i
(i=1, 2). Furthermore,

if h2 is fixed at any value h
A
2 , then the estimator h

@
1=arg max L n (h1 , h

A
2 ) satisfies

√n(h@
1
−h
1
)�N{0, 2(h

1
h
2
/hA
2
)2}, (2·3)

in distribution. In particular, if h2 is known and h
A
2=h2 , the limiting variance in (2·3)

is 2h2
1
. However, the individual parameters h1 and h2 are not consistently estimable under

the infill asymptotic framework; see Zhang (2004) for more general results.
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When there are measurement errors, the infill asymptotic behaviour of the maximum
likelihood estimators is somewhat different. Chen et al. (2000) showed that, for a zero-
mean Gaussian process on the unit interval having an exponential covariogram with a
nugget effect, that is

cov{X(s), X(s+h)}=qh0+h1 , if h=0,

h
1
exp (−h

2
h), if h>0,

(2·4)

the maximum likelihood estimators h@
i
(i=0, 1, 2) satisfy

A n1/2 (h@0−h0 )n1/4 (h@
1
h@
2
−h
1
h
2
)B�NqA00B , A2h20 0

0 4(2h
0
)1/2 (h

1
h
2
)3/2Br , (2·5)

in distribution. Also, if the inverse range parameter h2 is known, then the maximum
likelihood estimators of h0 and h1 satisfy

An1/2 (h@0−h0 )n1/4 (h@
1
−h
1
)B�NqA00B , A2h20 0

0 4(2h
0
)1/2h3/2
1
h−1/2
2
Br , (2·6)

in distribution. Note that, in this case, h@1h
@
2 and h

@
1 converge at the rate of n−1/4 instead

of n−1/2 as in the previous case.
Analogous results to Ying (1991) and Chen et al. (2000) are not available for two-

dimensional, and higher, isotropic cases, though Ying (1993) established the infill
asymptotic distribution of maximum likelihood estimators of the parameters of a separable
exponential covariogram in higher dimensions. Zhang (2004) showed that not all para-
meters in a Matérn covariance function are consistently estimable under infill asymptotics,
and he identified one parametric function that is consistently estimable when the dimension
d=1, 2 or 3.
The increasing domain asymptotic distribution of (h@0 , h

@
1 , h
@
2 ) for the case of model (2·4)

does not appear to be available in the literature, but we will derive it in § 3·2.
We now review a general result for martingales, which is useful for establishing

properties of maximum likelihood estimators under any asymptotic framework. Let F
n

be the s-algebra generated by {X(s) : sµD
n
}. For any i=1, . . . , p, it can be shown that

{∂ log L
n
(h)/∂h

i
,F
n
, n�1} is a martingale. Thus, under a wide range of circumstances,

we have

I−1/2
n
(h)∂ log L

n
(h)/∂h�N(0, I ),

in distribution, where I
n
(h) is the conditional information matrix, as given by (6.2)

of Hall & Heyde (1980), and I is the identity matrix; see for example Proposition 6.1 of
Hall & Heyde (1980). The asymptotic normality of the maximum likelihood estimator
of h can be established using the asymptotic results above and the first-order Taylor
expansion of ∂ log L

n
(j)/∂j about h; see Crowder (1976) and equation (6.4) of Hall &

Heyde (1980). This approach underlies how the asymptotic distributions of maximum
likelihood estimators are established in the previously cited works.
There is a simple case in which the limiting distributions are the same under

both frameworks. Let {X(s) : sµRd}, be a stationary, zero-mean, Gaussian process
with covariogram C(h)= (1/h)r(h), where r(h) is a known correlogram. If we observe
X
n
={X(s

i
), i=1, . . . , n}, it is easily verified that the Fisher information and conditional



924 H Z  D L. Z

information coincide and equal I
n
(h)=n/(2h2 ). Furthermore, ∂ log L

n
(h)/∂h satisfies

Assumptions 1 and 2 of Hall & Heyde (1980). Proposition 6.1 of Hall & Heyde (1980)
then implies that

I−1/2
n
(h)∂ log L

n
(h)/∂h=I−1/2

n
(h)A n2h−12X∞nC−1n XnB�N(0, 1),

in distribution, or equivalently

√nA1nX∞nC−1n Xn− 1hB�N(0, 2/h2 ),
in distribution, where (C

n
)
ij
=r(s

i
−s
j
). This result holds as long as n�2, regardless of

framework. The key here is that the Fisher information matrix does not depend on X
n
,

and therefore behaves in the same way under both frameworks. However, when the
correlogram has a parameter to be estimated, the information matrix may behave
differently under the two frameworks. For example, the diagonal elements of the inverse
matrix of the Fisher information matrix may not go to 0 as n�2 under infill asymptotics.
This difference may be the driving force behind the different results under the two
frameworks.
We finish this section with a general discussion about the behaviour of maximum

likelihood estimators under infill asymptotics. Let the process {X(s) : sµD} be Gaussian
with a mean and covariogram that depend on a vector parameter w, where D is a bounded
infinite subset of Rd for some dimension d. Following Stein (1999, p. 163), we say that a
function h(w) is microergodic if, for all w and wA in the parameter space, h(w)Nh(wA ) implies
that the two measures P(w) and P(wA ) are orthogonal, where P(w) denotes the Gaussian
measure corresponding to the parameter w. Microergodicity is necessary but not sufficient
for the existence of a consistent estimator. Let us partition w= (w1 , w2 ) such that w1 has
only microergodic elements and w2 has only non-microergodic elements. In addition, we
assume that, for any w= (w1 , w2 ) and w

A= (wA1 , w
A
2 ), P(w) and P(w

A ) are equivalent if and only
if w1=w

A
1 . We will now argue that, when the observations become dense in D, the maximum

likelihood estimators of w
i
(i=1, 2) have the following properties under regularity con-

ditions: w@1 is asymptotically normal; w
@
2 converges in probability or almost surely to

the maximum likelihood estimator of w2 when w1 is known and the process is observed
everywhere in D. This limit is nondegenerate.
We will now indicate why these results are plausible. Let P(w1 , w2 ) be the Gaussian
measure on the s-algebra generated by {X(s) : sµD}, and let w

i,0
denote the true value

of w
i
(i=1, 2). Since the two measures P(w1 , w2 ) and P(w1,0 , w2,0 ) are equivalent if

w1=w1,0 and orthogonal otherwise, we have that, with P(w1,0 , w2,0 )-probability 1, the
Radon–Nikodym derivative

r(w
1
, w
2
)=

dP(w
1
, w
2
)

dP(w
1,0
, w
2,0
)

is equal to 0 if w1Nw1,0 , and is strictly positive for any w2 if w1=w1,0 . If the process is
observed everywhere in D, the Radon–Nikodym derivative is a likelihood, and con-
sequently the maximum likelihood estimator of w1 is the degenerate variable w1,0 , and
the maximum likelihood estimator of w2 maximises dP(w1,0 , w2 )/dP(w1,0 , w2,0 ), which is the
maximum likelihood estimator of w2 when w1,0 is known. Denote this estimator of w2
by w@2,2 .
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Given observations X(s) for s in a finite subset D
n
of D, let P

n
(w1 , w2 ) denote the

restriction of P(w1 , w2 ) to the s-algebra generated by {X(s) : sµDn}. The max-
imum likelihood estimators w@

1,n
and w@

2,n
maximise the density

r
n
(w
1
, w
2
)=

dP
n
(w
1
, w
2
)

dP
n
(w
1,0
, w
2,0
)
.

If the subsets D
n
increase to D, that is D

n
5D
n+1
and ^2

n=1
D
n
=D, then r

n
(w1 , w2 )

converges almost surely to r(w1 , w2 ); see for example Theorem 1 of Gihman &
Skorohod (1974, p. 442). Consequently, w@

1,n
and w@

2,n
converge in probability or almost

surely, depending on the assumed regularity conditions, to w1,0 and w
@
2,2 , respectively.

The asymptotic normality of w@
1,n
can be established under conditions similar to those

given by Crowder (1976).
An explicit expression for w@2,2 does not always exist; however, it can be given in some
special cases. For example, consider the Ornstein–Uhlenbeck process {X(t) : 0∏t∏T }
that has mean 0 and satisfies the stochastic differential equation

dX(t)=−w
2
X(t)dt+√(2w

1
)dB(t) (w

1
>0, w

2
>0),

where B(t) is a Brownian motion. This process has an exponential covariogram
(w1/w2 ) exp(−w2h), for h>0 (Karatzas & Shreve, 1991, p. 358). For any finite T>0,
any fixed w1>0 and any w2>0, the probability measure restricted to s{X(t), 0∏t∏T },
denoted by PX, is equivalent to the probability measure restricted to s{B(t), 0∏t∏T },
denoted by PB, and the density is

dPB/dPX=expC(2w1 )−1qw2 P T
0
X(t)dX(t)+1

2
w2
2 P T
0
X(t)2dtrD

(Liptser & Shiryayev, 1977, Theorem 7.7, p. 248). Then the likelihood function is
1/(dPB/dPX ), which is maximised by

w@
2,2
=−

∆T
0
X(t)dX(t)

∆T
0
X(t)2dt

. (2·7)

Therefore, if the process is observed continuously on [0, T ], the maximum likelihood
estimator of w2 is given explicitly by (2·7).

3. A     

3·1. Model 1

Consider a Gaussian process having mean 0 and nuggetless exponential covariogram
(2·1). We assume initially that the process is observed at points s

i
=di, for i=0, . . . , n and

some fixed constant d>0 not depending on n. The asymptotic distribution of the maxi-
mum likelihood estimators of h

i
(i=1, 2) can be established easily under this increasing

domain framework. Note that the time series Y
i
=X(s

i
) has a power correlation function

R(k)=r|k|, for r=exp(−h2d), and therefore follows a Gaussian  (1) model:

Y
i
−rY

i−1
=e
i
(i=1, 2, . . . , n),

where the {e
i
} are independently and identically distributed as N(0, g) and g=h1 (1−r2 ).
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It is well known that the maximum likelihood estimator of (g, r)∞ is asymptotically
normal, that is

√nqAg@r@ B−AgrBr�N(0, W ),
in distribution, where W=diag(2g2, 1−r2 ).
The maximum likelihood estimator of h= (h1 , h2 )∞ thus has the following asymptotic
distribution:

√n(h@
n
−h)�N(0, AWA∞), (3·1)

in distribution, where

A=A∂h1/∂g ∂h1/∂r∂h
2
/∂g ∂h

2
/∂rB .

After some calculation, we obtain

AWA∞=A2h21 (1+r2 )/(1−r2 ) −2h
1
/d

−2h
1
/d (1−r2 )/(dr)2B . (3·2)

Furthermore,

√n(h@
1
h@
2
−h
1
h
2
)�N(0, s2 ), (3·3)

in distribution, for

s2=2(h
1
h
2
)2+{(1−r2 ) (dr)−1−2h

2
r}2h2
1
(1−r2 )−1. (3·4)

We now calculate explicitly the Fisher information matrix given a finite sample. The
(i, j)th element of the Fisher information matrix is one half of the trace of V −1V

i
V −1V

j
,

where V
i
=∂V /∂h

i
(i, j=1, 2) and V is the covariance matrix of Y0 , . . . , Yn (Mardia &

Marshall, 1984). We see that, for this particular model, V1= (1/h1 )V, and after some calcu-
lation we find that the diagonal elements of V −1V2 are 2dr2/{h1 (1−r2 )}, except for the
first and last ones, which are dr2/{h1 (1−r2 )}. The diagonal elements of (V −1V2 )2 are
2d2r2 (1+r2 )/(1−r2 )2, except for the first and last ones, which are d2r2 (1+r2 )/(1−r2 )2.
The information matrix is therefore

I
n
(h)=

1

2h2
1
An+1 h1hh
1
h h2

1
gB ,

where h=2dnr2/(1−r2 ) and g=2d2nr2 (1+r2 )/(1−r2 )2. The inverse is

I−1
n
(h)=c−1A h21g −h

1
h

−h
1
h n+1 B , (3·5)

where

c={(n+1)g−h2}/2=
nd2r2

1−r2An+ 1+r21−r2B .
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Note that c is dominated by the first term of the right-hand side. It follows that nI−1
n
(h)

converges to the covariance matrix AWA∞ in (3·1) as n�2, and thus we can use I−1
n
to

approximate the covariance matrix of the h@
i
’s. This is expected in the light of the general

result of Mardia & Marshall (1984).
Now suppose instead that the sampling points are given by s

i
= i/n (i=0, . . . , n). The

inverse information matrix in this case is still given by (3·5), but its asymptotic behaviour
is quite different since d=1/n depends on n here, which affects h and g. It can be shown
that

h=
2r2

1−r2
=
n

h
2
+o(n), g=

2r2 (1+r2 )
n(1−r2 )2

=
n

h2
2
+o(n), c=

1+h
2

2h2
2
n+o(n).

It follows that

lim
n�2
I−1
n
(h)=

h
2

1+h
2
B,

where

B=A2h21/h2 −2h1−2h
1
2h
2
B .

We see that the diagonal elements of the inverse information matrix do not converge to
0 as n�2. In addition, the limit of I

n
(h) is singular. Thus, some of the basic assumptions

of Mardia & Marshall (1984) do not hold and consequently, under infill asymptotics,
there is no theoretical basis for using the normal distribution to approximate the
distribution of h@

i
(i=1, 2).

Although approximations to the covariance matrix of h@ based on either (3·1) or the
inverse information matrix are inappropriate when d=1/n, it is nonetheless of some
interest to see how the two approximations compare to each other. It can be shown that,
when d=1/n in (3·2),

lim
n�2
AWA∞/n=B.

Thus, if we use I−1
n
(h) or AWA∞/n to approximate the variance matrix of (h@1 , h

@
2 ), the

difference is approximately a multiplicative factor h2/(1+h2 ) for a large sample. This
factor is closer to 1 when h2 is large, which corresponds to weaker correlation. Therefore,
while neither of these two approximations is appropriate under infill asymptotics, the
difference between them is not substantial unless the correlation is very strong.
Finally let us consider a different parameterisation by letting w1=h1h2 and
w2=h2 . Then, under both asymptotic frameworks, w1 is consistently estimable and its
maximum likelihood estimator is asymptotically normal. If we calculate the Fisher
information matrix for the new parameters, the variance of w@1 as given by the inverse
information matrix is 2w2

1
/n+o(1/n) when d=1/n (Abt & Welch, 1998), which agrees with

the infill asymptotic result (2·2). Given observations at finitely-many uniformly spaced
points in [0, 1], we therefore have three distinct approximations to the distribution of w@1 ,
namely that given by (3·3) and (3·4), which was derived under an increasing domain
framework, that given by (2·2), and the finite sample Fisher information matrix; the latter
two were derived under infill asymptotics. We have just noted that the difference between
the second and third approximations is negligible when the sample size n is large.
Furthermore, it is easily shown that (3·4) converges to 2w2

1
when d=1/n. Thus, the
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increasing domain approximation based on (3·4), which would seem to be inappropriate
under infill sampling, will nevertheless be asymptotically equivalent to the other two
approximations. Therefore, given a large sample from this particular model, the three
approximations to the finite sample distribution of w@1 would be virtually identical.
The infill asymptotic distribution of w@2 coincides with that of (2·7), which will be
shown in § 4 to be right-skewed and which therefore differs from the asymptotic normal
distribution of w@2 under the increasing domain framework.

3·2. Model 2

As our second model we consider a zero-mean Gaussian process having the exponential
covariogram with a nugget effect. This process can be written as a sum of two independent
Gaussian processes,

Y (s)=X(s)+W (s),

where X(s) is the Gaussian process of Model 1 and W (s) is Gaussian white noise,
independent of X(s), which accounts for measurement error. The covariogram of Y (s) is
given by (2·4), where the nugget effect h0 is the variance of W (s) and h1 is the variance
of X(s). Recall that h1 and h2 are not consistently estimable under infill asymptotics,
but that (h0 , h1h2 )∞ is consistently estimable and its maximum likelihood estimator is
asymptotically normal; see (2·5).
First we establish the limiting distributions of the maximum likelihood estimators

under increasing domain asymptotics. When Y (s) is observed at di for some fixed d>0
(i=0, 1, . . . ), the resulting time series Y

i
=Y (di ) has been studied previously; see for

example Gingras & Masry (1988) and Pagano (1974). However, this literature apparently
does not include explicit asymptotic distributions of the maximum likelihood estimators.
Suppose that we observe Y0 , . . . , Yn . Note that Yi has the spectral density

f (l)=
1

2pAn0+ n
1

1+r2−2r cos lB , (3·6)

where n0=h0 , r=exp(−dh2 ) and n1= (1−r2 )h1 . Write n2=h2 . It follows from a well-
known result (Rosenblatt, 1985, Theorems 3, 4) that, for the maximum likelihood estimator
n@ of n= (n0 , n1 , n2 )∞,

√n(n@−n)�N(0, E−1 ), (3·7)

in distribution, where E is the matrix with (i+1, j+1)th (i, j=0, 1, 2) element

E
ij
=
1

4p P 2p
0

∂ log f (l)
∂n
i

∂ log f (l)
∂n
j
dl. (3·8)

Explicit expressions for the E
ij
’s are obtained in the Appendix.

The maximum likelihood estimators for other parameterisations are also asymptotically
normal. For example, for w= (h0 , h1h2 )= (n0 , n1n2/(1−r2 ))∞, we have

√n(w@−w)�N(0, JE−1J∞), (3·9)

in distribution, where J=∂w/∂n is the 2×3 Jacobian matrix.
Although the limiting distributions for w@ under the two asymptotic frameworks, as given
by (3·9) and (2·5), are both multivariate normal, the limiting covariance matrices seem
quite different. Given a large but finite sample, the covariance matrix of w@ is approximately
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JE−1J∞/n according to (3·9), and diag{2h2
0
/n, 4(2h

0
)1/2 (h

1
h
2
)3/2/√n} according to (2·5). We

will show, however, that, when the sampling sites are s
i
= i/n (i=0, . . . , n), these two

covariance matrices agree asymptotically. To be more specific, let

A
n
=JE−1J∞/n, B

n
=diag{2h2

0
/n, 4(2h

0
)1/2 (h

1
h
2
)3/2/√n}.

Then

B−1/2
n
A
n
B−1/2
n
� diag(1, 1),

as n�2. Hence we can use either one to approximate the covariance matrix of w@ . A
proof of (3·10) is given in the Appendix.

4. A  

Given a sequence of sets of sampling locations, the appropriate asymptotic sampling
framework is obvious. However, in virtually every practical application there is only one
sample and one set of sampling locations. Hence, it is often not clear which asymptotic
framework and consequently which asymptotic results to employ. In order to identify
typical finite-sample situations where each asymptotic approximation works or fails, we
carried out a simulation study, which we now present.
The first process we simulated was Model 1, the stationary Gaussian process having

mean 0 and an exponential covariogram (2·1), with h1 fixed at 1 and h2 equal to 4, 8
or 16. We took sampling sites to be equally spaced over [0, 1], and considered three
sample sizes, namely 41, 81 and 161, although the results for the sample size 81 are not
shown. Thus, 9 combinations of parameter value and sample size were considered. For
each of these combinations, we simulated 1000 independent realisations of the Gaussian
process at the sampling sites and then obtained maximum likelihood estimates using the
Newton–Raphson algorithm described by Zhang (2004). In the numerical algorithm, we
employed the parameterisation w1=h1h2 and w2=h2 . Thus w1 is microergodic and w2
is not.
There are three approximations to the finite-sample distribution of the maximum

likelihood estimators of w1 and w2 , as discussed in § 3. We compare the three approxi-
mations by comparing the quantiles of the approximate distributions with the empirical
quantiles computed from the 1000 estimates. Figure 1 plots the 0·05+0·1(i−1), for
i=1, . . . , 10, quantiles for parameter w1 , where the horizontal axis is for the empirical
quantiles and the vertical axis is for the quantiles of the three normal distributions
corresponding to the finite-sample Fisher information, dotted line, the increasing domain
approximation, circles, and the infill approximation, plus signs. We refrain from plotting
additional quantiles in order to make the display more readable. We observe from Fig. 1
that all three approximations improve as the sample size n increases. Each of them
fits the finite-sample distribution quite well when n=80, not shown, or 160, while for
n=40 the finite-sample distribution of w@1 is slightly to moderately right-skewed. For the
microergodic parameter w1 , there is little difference among the three approximations in
all cases.
Figure 2 is a similar display for maximum likelihood estimates of w2 , where the infill

limit distribution is given by the distribution of w@2,2 in (2·7). We used simulation to
approximate this limit distribution. We simulated the Ornstein–Uhlenbeck process at
m=5000 points i/m (i=1, . . . , m), which results in a first-order autoregressive time series
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Fig. 1. Plots of quantiles of limit distributions according to the infill asymptotics, shown by plus signs, the
increasing domain asymptotics, circles, and the finite-sample Fisher information, dotted line, against the
empirical quantiles of estimates of w1=h1h2 , where h1 is fixed at 1 and h2=4, 8 and 16. Empirical quantiles
were based on 1000 samples of size n+1 from Model 1 at sites i/n (i=0, . . . , n), for (a)–(c) n=40 and

(d)–(f ) n=160.
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Fig. 2. Plots of quantiles of limit distributions according to the infill asymptotics, shown by plus signs, the
increasing domain asymptotics, circles, and the finite-sample Fisher information, dotted line, against the
empirical quantiles of estimates of h2 , where h1 is fixed at 1 and h2=4, 8 and 16. Empirical quantiles
were based on 1000 samples of size n+1 from Model 1 at sites i/n (i=0, . . . , n), for (a)–(c) n=40 and

(d)–(f ) n=160.
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X(i/m). The quantity on the right-hand side of (2·7) is approximated by

−
Wm−1
i=1
X(i/m)[X{(i+1)/m}−X(i/m)]
Wm
i=1
X(i/m)2/m

.

The simulation was repeated 1000 times to obtain an approximation to the distribution
of w@2,2 . Figure 2 reveals that the finite-sample distribution of w2 is approximated very
well by the infill limit distribution (2·7), even when n=40, but it is approximated
very poorly by the normal approximations corresponding to the finite-sample Fisher
information and increasing domain framework.
The design of our simulation study facilitates an investigation of not only infill

asymptotic behaviour but also increasing domain asymptotic behaviour. For example,
consider n=40 and w2=4, and suppose we sample at {i/40 : i=0, . . . , 40}. Adding 40
more sampling sites at {i/40 : i=41, . . . , 80} would correspond to increasing domain
sampling, and the random variables generated at all 81 sites would be zero-mean Gaussian
with cov(Y

i
, Y
j
)=exp (−w2 |i− j|/40 ). Clearly, however, random variables generated at the

81 sites {i/80 : i=0, . . . , 80} from a zero-mean Gaussian process with variance 1 and
inverse range parameter 2w2 have the same joint distribution. Therefore, we can mimic
the increasing domain framework by fixing the domain and increasing the inverse range
parameter. The increasing domain asymptotic behaviour of, say, w@2 , can be studied simply
by diagonally examining plots in Fig. 2, from which we see that, when w2=4, a sample
size of 161 is not large enough for the increasing domain asymptotic distribution to
approximate satisfactorily the finite-sample distribution of w@2 . In particular, the distri-
bution of w@2 is still skewed. In this case, the process is observed on the interval [0, 4] and
the effective range, that is the distance between two points at which the correlation
is about 5%, is about 0·75. Therefore, although the spatial correlation in this case is
rather weak, apparently it must be even weaker for the increasing domain asymptotic
distributions to approximate the finite-sample distributions well.
Next, we simulated data from Model 2 at the same sites and with the same sample

sizes. We fixed h1=2 and took h0=1, 2 and h2=4, 8, 16. Thus, for this model we have
18 combinations of parameter value and sample size. For each combination, we simulated
1000 independent realisations of the Gaussian process. For each simulated realisation, we
used a Fisher scoring algorithm (Mardia &Marshall, 1984) to obtain maximum likelihood
estimates of h

i
(i=0, 1, 2). As before, we partition the parameters into microergodic ones

and a non-microergodic one by defining

w
0
=h
0
, w
1
=h
1
h
2
, w
2
=h
2
.

Quantiles of fitted density and quantiles of estimates of h0 are plotted against each other
in Fig. 3. We first note that h0 tends to be underestimated, and that the bias decreases
when the sample size increases. When n=40, h0 is seriously underestimated, especially
when the spatial correlation is weak. For example, when n=40, h0=1 and h2=16, the
empirical results reveal a positive probability that the maximum likelihood estimator of h0
is exactly 0, which explains why some circles and plus signs appear vertically stacked for
n=40; see the first row of Fig. 3. The three approximations become more similar when h2
decreases or when n increases. Depending on how strong the spatial correlation is, the
sample size required for the three approximations to be close to each other may be quite
large. For example, a sample size of 161 is sufficient for the three approximations to the
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Fig. 3. Plots of quantiles of limit distributions according to the infill asymptotics, shown by
plus signs, the increasing domain asymptotics, circles, and the finite-sample Fisher information,
dotted line, against the empirical quantiles of the estimates of nugget effect h0 , where h1 is
fixed at 2 and h2=4, 8 and 16. Empirical quantiles were based on 1000 samples of size n+1
from Model 2 at sites i/n (i=0, . . . , n), for (a)–(c) n=40 and h0=1, (d)–(f ) n=160 and

h0=1, (g)–(i) n=40 and h0=2, ( j)–( l ) n=160 and h0=2.

distribution of h@0 to be similar when h2=4, but not when h2=16. We also observe that the
Fisher information appears to be a compromise between the infill asymptotic variance
and the increasing domain asymptotic variance.
Figure 4 plots quantiles of the fitted density versus quantiles of estimates of w1 . We see
that, in all cases, the three approximations are very similar. However, none of them
approximates the finite-sample distributions well, even when n=160. This is because the
distribution of w@1 is right-skewed even when n=160. Thus, the sample size required for
any of the approximations to be satisfactory has to be much larger than 161. This is not
surprising in the light of the slower convergence rate of w@1 when a nugget effect is present,
that is n−1/4 rather than n−1/2.
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Fig. 4. Plots of quantiles of limit distributions according to the infill asymptotics, shown by
plus signs, the increasing domain asymptotics, circles, and the finite-sample Fisher information,
dotted line, against the empirical quantiles of the estimates of w1=h1h2 , where h1 is fixed at
2 and h2=4, 8 and 16. Empirical quantiles were based on 1000 samples of size n+1 from
Model 2 at sites i/n (i=0, . . . , n), for (a)–(c) n=40 and h0=1, (d)–(f ) n=160 and h0=1,

(g)–(i) n=40 and h0=2, ( j)–( l ) n=160 and h0=2.

The distribution of the maximum likelihood estimator of h2 is also seriously right-
skewed regardless of sample size, and therefore the normal approximations are not
appropriate. This is not surprising because h@2 in this case converges again to a non-
degenerate and nonnormal variable. It is reasonable to conjecture that the limit of w@2 is
also given by (2·7) where X(s) is recovered from Y (s) when Y (s) is observed everywhere
on [0, 1]. However, it would seem true that the sample size must be quite large in order
for the limit distribution to approximate the finite sample distribution well, unless the
nugget effect h0 is sufficiently small. For all the combinations of sample size and parameter
values used here, the approximation given by the limit distribution is rather poor.
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5. D

The theoretical and empirical results presented herein highlight the importance of
studying asymptotics for spatial statistics, especially infill asymptotics. Indeed, the concept
of inconsistent estimability arises only in infill asymptotics because all parameters are
consistently estimable under the increasing domain asymptotic framework under some
regularity conditions. The fact that infill asymptotics warns that certain covariogram
parameters may be hard to estimate and that the estimates may be badly nonnormal even
with a large sample size is a compelling virtue of this framework.
In order to make use of existing infill asymptotic results, we restricted attention to one-

dimensional stationary Gaussian processes with zero mean, or more generally known
mean, and exponential covariogram. Further research is needed to relax some of these
restrictions. For example, when the mean is unknown and needs to be estimated, the infill
limiting distribution of the maximum likelihood estimator of h2 will probably change for
the two models in § 3, and one could in this case also consider the infill limit distribution
of the restricted maximum likelihood estimator of h2 . Extensions to higher dimensions
and to covariograms other than the exponential are also of interest.
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A

T echnical Details

Evaluation of (3·8) for Model 2. Let

a=n
1
/(n
0
r), D=−{(r+r−1+a)2−4}0·5, z

1
= (r+r−1+a+D)/2.

We obtain the following expressions for E
ij
( j� i=0, 1, 2):

E
00
=
1

2n2
0
{1+2a(a+D)D−2−a2 (D+2z

1
)D−3}, (A·1)

E
01
=−

1

2n2
0
rAa+DD2 − 2az1D3 B , (A·2)

E
02
=
ad(1−r2 )
2n
0
r
(1/D2−2z

1
/D3 ), (A·3)

E
11
=

1

2n2
0
r2
(D−2−2z

1
D−3 ), (A·4)

E
12
=

d

2arn
0
+
d(1−r2 )
2n
0
r2
{1/(aD)+2z/D3−1/D2}, (A·5)
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E
22
=
d2r2

1−r2
+
d2

2
−
d3 (1−r2 )
ar

+
d2 (1−r2 )2
2r2 A 1aD2− 2aD− 2z1D2 B . (A·6)

To derive these expressions, first define the complex functions

G(z)=z2− (r+1/r)z+1, H(z)=z2− (r+1/r+a)z+1.

Then simple calculations yield

1+r2−2r cos l=−re−ilG(eil ), f (l)=
n
0
H(eil )

2pG(eil )
.

Using (3·6), we obtain

∂ log f (l)
∂n
0
=
G(eil )

n
0
H(eil )

,
∂ log f (l)
∂n
1
=−

eil

n
0
rH(eil )

,

∂ log f (l)
∂h
2
=dr−1 (1−r2 )a

e2il

G(eil )H(eil )
.

The integral in (3·8) can therefore be expressed as a complex integral of rational functions of z on
the unit circle C={z : |z|=1}. For example,

P 2p
0
q∂ log f (l)∂n

0
r2dl= 1n2

0
P 2p
0

G2 (eil )

H2 (eil )
dl=

1

n2
0
i P
C

G2 (z)

zH2 (z)
dz. (A·7)

Since z1 is a root of H(z) inside the unit circle, the function G2 (z)/{zH2 (z)} is analytic everywhere
inside C except at 0 and z1 . The residuals at the points are

ResA G2 (z)zH2 (z)
, 0B=G2 (0)H2 (0)

=1, ResA G2 (z)zH2 (z)
, z
1B= limz�z

1

∂
∂zq G2 (z)z(z−z

2
)2r ,

where z2= (r+1/r+a−D)/2 is the root of H outside the unit circle. After some calculations,
we obtain the limit above as 2a(a+D)D−2−a2 (D+2z1 )D−3. Applying the Residual Theorem
(Rubin, 1966, p. 260), we see that (A·7) equals

1

n2
0
i
(2pi)qResA G2 (z)zH2 (z)

, 0B+ResA G2 (z)zH2 (z)
, z
1Br= (2pn−20 ){1+2a(a+D)D−2−a2 (D+2z1 )D−3}.

Therefore,

E
00
=
1

4p P 2p
0
q∂ log f (l)∂n

0
r2dl= (2n20 )−1{1+2a(a+D)D−2−a2 (D+2z1 )D−3}.

We have derived (A·1). Equations (A·2)–(A·6) can be derived similarly.

Proof of (3·10). Note that d=1/n and r, a, D and z1 all depend on n. For two sequences an
and b

n
, we use the notation a

n
~b
n
to mean lim

n�2
a
n
/b
n
=1. For simplicity, we suppress n in all

this notation. Then

a~2h
1
h
2
d/h
0
, D2~8h

1
h
2
d/h
0
, r~1, z

1
~1.

Simple calculations yield the following results:

E
00
~
1

2h2
0
, E
01
~

2h
1
h
2

h3/2
0
(8h
1
h
2
)3/2
d−1/2, E

02
=O(d3/2 ),

E
11
~

1

h1/2
0
(8h
1
h
2
)3/2d3/2

, E
12
~1/(4h

1
h
2
), E

22
~d/(2h

2
).
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It follows that det(E) is dominated by E11 (E00E22−E202 )~E11E22E00 . Hence

det E~{4h5/2
0
h
2
(8h
1
h
2
)3/2}−1d−0·5.

We are now ready to approximate the elements of E−1. Denote the elements of E−1 by Q
ij

(i, j=0, 1, 2). Then

Q
00
= (E

11
E
22
−E2
12
)/det (E)~2h2

0
, Q
11
= (E

00
E
22
−E2
02
)/det (E)~h1/2

0
(8h
1
h
2
)3/2d3/2,

Q
22
= (E

00
E
11
−E2
01
)/det (E)~2h

2
/d.

In addition,

Q
01
~−4h

0
h
1
h
2
d, Q

02
=O(d1/2 ), Q

12
=O(d2 ).

Next, we also approximate the Jacobian matrix J. Let w1=h1h2=n1n2/(1−r2 ). Then

∂w
1
∂n
1
=n
2
/(1−r2 )~1/(2d),

∂w
1
∂n
2
=n
1q 11−r2− 2n

2
r2d

(1−r2 )2r~2h1h2d.
Consequently

A0, ∂w1∂n
1
,
∂w
1
∂n
2
BE−1A0, ∂w1∂n

1
,
∂w
1
∂n
2
B∞~A∂w1∂n

1
B2Q11~4(2h0 )1/2w3/21 d−1/2,

(1, 0, 0)E−1A0, ∂w1∂n
1
,
∂w
1
∂n
2
B∞=Q01 ∂w1∂n

1
+Q
0,2
∂w
1
∂n
2
~−2h

0
h
1
h
2
,

and (3·10) follows.
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