
Towards Reliable Computation of Large-Scale Market-Based Optimal Power 
Flow 

 
 

Hongye Wang   Robert J. Thomas 
hw41@cornell.edu          rjt1@cornell.edu  

School of Electrical and Computer Engineering, Cornell University 
 

 
Abstract 

 
The deregulated electricity market calls for robust 

OPF tools that can provide (a) deterministic 
convergence, (b) accurate computation of a variety of 
nodal prices, (c) support of continuous costs as well as 
discrete bids and offers, (d) full active and reactive 
power flow modeling of large-scale systems, and (e) 
satisfactory worst-case performance that meets the 
real-time dispatching requirement. For historical 
reasons, most prior research on OPF has focused on 
performance issues, without much treatment of 
requirements (a)-(c). This paper discusses these new 
challenges and presents two new algorithms for 
reliable computation of large-scale market-based 
OPF: trust-region based augmented Lagrangian 
method (TRALM) and step-controlled primal-dual 
interior point method (SCIPM). The former is more 
theoretically rigid while the latter is more effective in 
practice. The new algorithms, along with several 
existing ones, are tested and compared using large-
scale power system models.  
 
1. Introduction 
 

The optimal power flow (OPF) problem has been 
one of the most widely studied subjects in the power 
system community since Carpentier first published the 
concept in 1962 [1]. Over the years, researchers have 
examined various algorithmic techniques that seek to 
speed up the OPF computation for real-time usage. 
References [2]-[6] captured most of the work done in 
the 1970s and the 1980s, a time when several 
constrained optimization techniques such as the 
Lagrange multiplier method, penalty function method, 
and sequential quadratic programming, coupled with 
gradient method and Newton method for unconstrained 
optimization, emerged as the leading nonlinear 
programming (NLP) algorithms for solving AC OPF. 
In recent years, algorithms based on the primal-dual 

interior point method (PDIPM) have gained popularity 
[7]-[13]. 

Despite all of the advancements being made, the 
full AC OPF has not been widely adopted in real-time 
scheduling operations of large-scale power systems. 
Instead, system operators often use simplified OPF 
tools that are based on linear programming (LP) and 
decoupled (DC) system models [14]. Historically, this 
is mainly due to the lack of powerful computer 
hardware and efficient AC OPF algorithms. With the 
advent of low-cost parallel computers and the 
continued progress of silicon integrations, however, the 
speed has now become a secondary concern, after 
algorithm robustness. The remaining prevalent 
argument for favoring LP-based DC OPF over NLP-
based AC OPF is that LP algorithms are deterministic 
and always yield solutions albeit not necessarily the 
desired ones, while NLP algorithms are less robust and 
experience slow convergence or even divergence under 
worst-case scenarios.  

The emergence of deregulated electricity markets 
poses new challenges to the solution of the OPF 
problem. Unlike in the regulated system where the goal 
of computing the OPF is merely minimizing the system 
cost based on smooth pre-determined quadratic costs, 
OPF computation is now part of the core pricing 
mechanism for electricity trading in the deregulated 
market where discrete bids and offers are changing  
frequently [14]-[18]. In order to meet their legal 
obligations of providing timely market settlements and 
to ensure market fairness and efficiency, independent 
system operators (ISO) must adopt OPF tools that 
provide (a) deterministic convergence, (b) accurate 
computation of a variety of nodal prices (Lagrange 
multipliers), (c) support of continuous costs as well as 
discrete bids and offers (e.g. piecewise linear costs), 
(d) full active and reactive power flow modeling of 
large-scale systems, and (e) satisfactory worst-case 
performance that meets the real-time dispatching 
requirement. Most prior research on OPF has not given 
enough emphasis to requirements (a)-(c). 
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In this paper, we look into these arising challenges 
and present two new algorithms for reliable 
computation of large-scale market-based OPF: trust-
region based augmented Lagrangian method (TRALM) 
and step-controlled primal-dual interior point method 
(SCIPM). The former integrates the well-proven 
penalty and augmented Lagrangian method [24] with 
the trust-region unconstrained optimization technique 
[19]-[23] to achieve algorithm robustness. The latter 
amends the popular primal-dual interior point method 
with a step control procedure that deals with the 
irregularity of piecewise linear cost curves. 
Experimental results show that both algorithms (in 
contrast to some existing ones) yield precise Lagrange 
multipliers and handle large-scale systems and 
piecewise linear cost curves well. The TRALM 
algorithm is more theoretically rigid, but in terms of 
computational performance, the SCIPM algorithm is 
superior and more promising for real-time applications. 
Section 2 of the paper presents the AC OPF 
formulation, describes trigonometric smoothing of 
discrete cost curves, and defines metrics that will be 
used for later algorithm comparisons. The TRALM and 
SCIPM algorithms are introduced in Section 3 and 
Section 4, respectively. Section 5 shows the numerical 
results and compares the algorithms using power 
system models of several different sizes. The paper is 
then concluded in Section 6. 

 
2. Problem formulation 
 

The AC OPF problem is mathematically formulated 
as:  
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where (1.a) is a generic objective function representing 
the system cost, (1.b)-(1.c) are the nodal real and 
reactive power balancing equations, (1.d)-(1.f) are the 
limits on power generations and bus voltages, and 
(1.g)-(1.h) are squared branch flow constraints. The 
bounds in inequality constraints (1.d)-(1.h) are 
typically supplied by unit commitment and security 
analysis tools in the real-time system operation. 
Without much impact on the behavior of algorithms, 
we use the default bounds that come with the sample 
power system data throughout our study. The changes 
of price-sensitive loads, transformer taps, and 
switching shunt capacitors are not modeled in this 
work but can be easily accommodated through 
introduction of additional control variables.  

In today’s market, only the cost of real power is 
being optimized and thus the objective function (1.a) 
degenerates into C(P). When quadratic costs are used, 
the objective function takes the form of:  
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Several existing second-order NLP algorithms such as 
the primal-dual interior point method handle this form 
of smooth objective function quite well. The electricity 
market, however, does not use quadratic costs because 
they do not cognitively match how the market 
participants want to trade in the real world. Instead, 
piecewise linear costs based on incremental offers and 
decremental bids are adopted for better pricing 
transparency and flexibility. In this case, assuming no 
startup cost, the objective function can be written as: 
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where r represents an offer price, d is the power output 
at the breakpoint on a piecewise linear price curve (d0 
≡ 0), NB is the number of power blocks offered to the 
market from a given generator, and m′ is by definition 
the block index that satisfies dj

m’-1 < Pj < dj
m’.  Figure 1 

illustrates an example price curve with four blocks.   
As we will see later in Section 5, existing NLP-

based OPF algorithms often break down when being 
applied to solve (1) with the objective function (3), 
especially in the case of dealing with large-scale 
systems. There are two main difficulties, i.e. the non-
differentiability of price curves, and the lack of step 
length control to accommodate the abrupt rise and fall 
of derivatives around breakpoints. We will address the 
second issue when introducing the new algorithms. 
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Figure 1. An example discrete price-power 

curve for the market-based OPF 
 

To overcome the first one, we smooth the objective 
function using trigonometric functions. (Quadratic 
smoothing works equally well for second-order NLP 
algorithms. Trigonometric smoothing is used here 
because it achieves high-order continuity with no extra 
computational overhead.) Let the price r be a piecewise 
linear function of the real power d as shown in Figure 
1, the smoothed price-power function r’ and the 
corresponding objective function can be expressed as: 
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where α is a positive number that controls the precision 
of the approximation. Figure 2 shows a smoothed price 
curve along with its unmodified counterpart. 

 
Figure 2. Trigonometric smoothing of a 

discrete price curve 
 

The Lagrangian of (1) is: 
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where Z’s are slack variables and λ and μ are the 
Lagrange multipliers that are used in the market to 
price various kinds of electricity transactions. For 
example, λFA is the vector of real-power nodal prices. 
Given a benchmark solution of the first-order and 
second-order Karush-Kuhn-Tucker (KKT) conditions 
of (5) 
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and a trial solution under study  
),,,,,,( ,,,,, STSFVQPFRFAVQPC ±±±μλθ ,  

we define the following metrics to measure the 
accuracy of the trail solution: 
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In (6), e is the unitary vector and the […] operator 
diagonalizes the enclosed vector. In a fair market, the 
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OPF must ensure that all of these δ values are small at 
the dispatch point. 

 
3. Trust-region based augmented 
Lagrangian method 
 
The augmented Lagrangian method (ALM) [24] solves 
a generic optimization problem  
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by converting it into a sequence of unconstrained 
optimization problems with penalty terms: 
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In (8), ni is the number of inequality constraints, λk and 
μk are trial Lagrange multipliers, and Wk and Uk are 
penalty parameters. In the so-called “multiplier 
method”, λk, μk, Wk, and Uk are updated after each 
round of unconstrained optimization according to: 
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where Xk is the solution of (8), 0 < γW, γU <1, and βW, 
βU > 1. Convergence is achieved when  
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are satisfied. In (10), the ε’s are the tolerance 
parameters and εk decreases to a near-zero value ε∞ as 
the sub-optimization number k increases. Combining 
with a suitable unconstrained optimization algorithm, 
the augmented Lagrangian method can solve large-

scale nonlinear constrained optimization problems very 
reliably with accurate Lagrangian multipliers. 

In the TRALM algorithm, we use a trust-region 
method to solve (8). Trust-region methods represent a 
category of globally convergent unconstrained 
optimization algorithms [19]-[23]. Compared to 
Newton’s method, which was widely adopted in earlier 
OPF algorithms, trust-region methods are more robust 
in handling large-scale systems with indefinite starting 
points. Fundamentally, trust-region methods form and 
solve a sequence of simpler approximate optimization 
problems within “trust regions” (the neighborhoods 
where approximations remain valid) along the path that 
leads to the optimum.  
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Figure 3. Pseudo code for the trust-region 
method adopted in TRALM 

 
The pseudo code for the trust-region method 

adopted in TRALM is shown Figure 3, where ∆0 is set 
according to [22] and X0 is the Xk solved in the 
previous TRALM iteration. When solving the OPF 
with discrete prices using TRALM, the difficulty 
resulting from the abrupt change of derivatives, as 
mentioned in Section 2, is successfully mitigated by 
the automatic trust region sizing procedure. Large 
disruptive trial steps crossing breakpoints on price 
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curves would result in small ρ and hence get rejected 
and trigger the reduction of the trust-region size ∆. 

Coleman et al proposed a two-dimensional trust-
region method (which is now adopted in the MATLAB 
optimization toolbox) for solving large-scale 
optimization problems [21]-[22]. In their method, the 
trust region formed by ||S|| ≤ ∆ in Figure 3 is replaced 
with a two-dimensional region that spans the gradient 
direction and the direction generated by the modified 
PCG or Cholesky procedure. Our experiments show 
that, however, neither the PCG nor the Cholesky 
variation of this 2-D trust-region method is capable of 
solving large-scale OPF’s.  

To solve the sub-problem in Figure 3, we use the 
algorithm documented in [20], which is essentially a 
Newton’s procedure applied to solve for α in: 
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where 0≥α  and IXL
tX

α+∇ )(2  is positive definite. 

 
4. Step-controlled primal-dual interior 
point method 
 

The primal-dual interior point method (PDIPM) and 
its many variations have become the algorithms of 
choice for solving OPF’s over the past decade [7]-[13]. 
Given an optimization problem in the form of (7), 
PDIPM formulates the Lagrangian with barrier 
functions as: 
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and uses the Newton’s method to solve its first-order 
KKT conditions: 
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where Z, μ, and γ are strictly positive. Each Newton 
step involves variable substitutions and the solution of 
a reduced system of (13): 
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The variables (including γ) are updated according to: 
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where ξ and σ are constants that are typically set to 
0.99995 and 0.1 respectively in experiments.  

Although the PDIPM algorithm fit nicely with the 
traditional OPF that uses smooth polynomial cost 
curves, we cannot count on it to solve the market-based 
OPF in the form of (1) and (3) as demonstrated in the 
118-bus OPF example shown in Figure 4. When 

 
Figure 4. The progressions of PDIPM 

iterations in solving the 118-bus OPF with 
quadratic costs and with 3-block piecewise 

linear costs 
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Figure 5. Pseudo code for the step-controlled 

primal-dual interior point method 

 
dealing with piecewise linear cost curves, the gradient 
and Hessian variables used in (13) and (14) change 
drastically from iteration to iteration due to abrupt 
price changes at the breakpoints. This behavior causes 
a loss of the strong descending property of Newton 
steps. 

The SCIPM algorithm shown in Figure 5 
overcomes this difficulty by monitoring the accuracy 
of the quadratic approximation of the Lagrangian 
during the OPF computation and shortening the step 
length if any sudden change of derivative coupled with 
a large PDIPM step results in an inaccurate 
approximation. Empirically, it is more efficient to start 
applying such step control procedure after the normal 
PDIPM step fails to improve the gradient condition or 
the feasibility condition. Although Figure 5 uses 
PDIPM as the baseline algorithm, we shall point out 
that the same step control concept applies to other 
interior point methods as well. Figure 6 shows the 
positive result of applying SCIMP to solve the same 
118-bus market-based OPF as used in Figure 4. With 
step adjustments, SCIPM is able to reduce the system 
cost and the gradients continuously and eventually 
converges to the optimal solution. 

 
Figure 6. A comparison of PDIPM and SCIPM 

in solving the 118-bus OPF with 3-block 
piecewise linear costs 

 
Alternatively, the difficulty with discontinuous 

price curves can be addressed by changing the OPF 
formulation to use a separate control variable for each 
power block in (1). However, in this case, both 
memory footprint and computation time will increase 
along with the number of variables.  

 
5. Numerical results 
 
We tested our OPF algorithms using several power 
system models whose characteristics are summarized 
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in Table 1. The tests were run on a PC with Intel 
3.3GHz P4 processor (2MB L2 cache), 2GB memory, 
and Linux 2.6.9 kernel. All optimization programs and 
the underlying linear algebra functions, except the LU 
and Cholesky factorization modules, were developed in 
house and compiled using the GCC 3.4.4 compiler. LU 
and Cholesky factorizations were done using the 
UFsparse package [25]. The parameters used in 
TRALM, SCIPM, and the cost-curve smoothing, 
unless stated otherwise, were set according to Table 2. 
All experiments in this paper use flat starting points, 
i.e. unit voltages, zero phase angles, and generator 
outputs at the midpoints between maximum 
generations and minimum generations. Offer prices 
were randomly generated and ranged from $50/MWh 
to $100/MWh. The unit of cost was set to $10,000 in 
(1). 
 

Table 1. Summary of power system models 
used in the study 

 

Buses Generators Branches Total Load 
(MW) 

30 6 41 189 
57 7 80 1,250 

118 54 186 4,242 
300 69 411 23,525 

2383 327 2896 24,558 
2935 956 7028 394,794 

 
Table 2. Values of parameters used in TRALM, 

SCIPM, and trigonometric smoothing of 
piecewise linear cost curves 

 
NB = 3, α = 0.04 

TRALM SCIPM 
ελ 5e-3 τ 0.25 κ 0.5 Z0 1.0 
εμ 1e-1 η 0.75 η 0.1 λ0 0.0 
ε0 2e0 γ1 0.1 ε 1e-4 μ0 1.0 
ε∞ 1e-2 γ2 2.0 X0 flat γ0 1.0 
βW, U  = 3 γW, U = 0.33 ξ = 0.99995 σ 0.1 

 
At the time of writing, we are not able to find any 

production-quality OPF tool to compare our new 
algorithms with.  (In fact, the lack of robust 
commercial AC OPF tool has been a major hurdle for 
the market to institute advanced options of trading 
ancillary services such as reactive power [28].) Instead, 
the TRALM and SCIPM algorithms are compared with 
our own implementation of PDIPM and the MINOS 
used in MATPOWER [26]-[27] below, with regards to 
convergence, performance, accuracy, and scalability. 
 

5.1. Convergence and performance 
 

Table 3 lists the execution times of solving OPF’s 
of six different sizes using the four algorithms. 
TRALM and SCIPM converged in all cases, while 
MINOS failed to solve large-scale OPF’s and PDIPM 
failed to solve some market-based OPF’s with 
piecewise linear cost curves. Even when PDIPM did 
succeed, it usually took much longer to converge. In 
terms of performance, SCIPM is better than TRALM 
in execution time and therefore more suitable for real-
time applications.   
 

Table 3. A comparison of execution times 
(sec.) of four OPF algorithms 

 
Solving OPF with quadratic costs 

System MINOS PDIPM TRALM SCIPM 
30-bus 0.06 0.05 0.20 0.06 
57-bus 0.09 0.08 0.40 0.10 

118-bus 1.2 0.3 2.3 0.4 
300-bus 6.3 0.8 4.8 1.0 

2383-bus FAIL 12 168 14 
2935-bus FAIL 20 680 23 

Solving OPF with piecewise linear costs 
System MINOS PDIPM TRALM SCIPM 

30-bus 0.06 0.44 0.34 0.16 
57-bus 0.09 3.70 0.40 0.20 

118-bus 0.9 10.4 3.7 1.3 
300-bus 3.8 FAIL 6.7 3.4 

2383-bus FAIL 51 202 32 
2935-bus FAIL FAIL 1011 140 

 
One theoretical pitfall of the SCIPM algorithm, like 

that of the PDIPM algorithm, is that it does not 
guarantee global convergence. In [12], the authors 
published some non-converging results of solving 
OPF’s using PDIPM and proposed an algorithm that 
attempted to improve the convergence at the cost of 
performance through adjustments of the Hessian 
matrices. Our preliminary investigation showed that 
the problem formulation in [12], which treats all 
constraints as inequality constraints, does bring 
numerical difficulties to PDIPM when solving large-
scale OPF’s. We, however, were not able to regenerate 
the non-converging results in our experiments using 
the formulation in (1). SCIPM, as well as IPM in the 
context of solving OPF’s with quadratic costs, 
consistently converges to the desired OPF solutions. 
By checking the second-order KKT condition, we were 
able to verify the convergence of IPM and SCIPM for 
all OPF cases whose load levels range from 50% of the 
base load to the maximum levels listed in Table 4. 
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These encouraging experimental results may imply that 
the region of attraction around the stationary point for 
our particular nonlinear system is large enough to 
counter occasional ill-defined Newton steps.  
 
Table 4. Maximum load levels (relative to base 
loads) that each algorithm can accommodate, 

assuming uniform load scaling 
 

System MINOS PDIPM TRALM SCIPM 
30-bus 1.07 1.07 1.07 1.07 
57-bus 1.54 1.54 1.54 1.54 

118-bus 2.29 2.29 2.29 2.29 
300-bus 1.29 1.29 1.29 1.29 

2383-bus N/A 1.02 1.02 1.02 
2935-bus N/A 1.23 1.23 1.23 

 
5.2. Accuracy 
 

Table 5 lists the result of a cross examination of the 
OPF solutions generated by SCIPM, TRALM, and 
MINOS. As defined in Section 2, δC, δX, δλ, and δμ 
measure the deviation of a trial OPF solution from the 
reference one. The small values reported in Table 5 
indicate that SCIPM and TRALM are valid methods 
for computing large-scale OPF’s.  
 

Table 5. Deviations of OPF solutions 
computed by different algorithms 

 
 δC δX δλ δμ 
300-

quad-
SM* 

1.7e-7 3.0e-6 1.2e-6 5.4e-7 

300-
pwln-SM 5.2e-4 6.4e-5 3.3e-4 9.8e-8 

300-
quad-TM 1.2e-6 2.1e-5 3.3e-6 0 

300-
pwln-TM 5.2e-4 5.9e-5 3.3e-4 0 

2935-
quad-ST 1.1e-6 3.0e-6 1.8e-6 5.4e-9 

2935-
pwln-ST 1.9e-8 6.6e-6 1.1e-5 2.8e-8 

* Interpretation of label N-T-AB: N – power system 
model; T – cost curve type (quadratic or piecewise 
linear); A – trial algorithm (S for SCIPM and T for 
TRALM); B – reference algorithm (M for MINOS and 
T for TRALM).  

 
The parameter α used in (4) has an impact on the 

accuracy of the OPF solution. As shown in Table 6, 
smaller α’s yield more accurate solutions. In practice, 

0.04 should be small enough to ensure satisfactory 
results. 

 
Table  6. Accuracies of several OPF solutions 

computed by SCIPM with different α values 
(2935-bus system, reference α is 0.01) 

 
α δC δX δλ δμ 

0.2 1.6e-3 5.9e-4 6.2e-3 1.3e-8 
0.1 7.4e-4 5.1e-5 3.4e-3 1.6e-8 

0.08 5.6e-4 8.6e-5 3.6e-3 2.3e-8 
0.06 3.8e-4 5.3e-5 3.3e-3 1.1e-8 
0.04 2.0e-4 1.0e-4 8.8e-6 2.6e-8 
0.02 4.2e-5 3.4e-5 1.5e-5 9.2e-9 

 
5.3. Scalability 
 

The execution time of solving an OPF depends both 
on the number of iterations taken and on the 
computational complexity of one single iteration. 
Assuming a constant transmission network density and 
a constant fill-in ratio for sparse matrix factorization, 
the complexities of one iteration of TRALM and one 
iteration of SCIPM are both O(Nbus), although their 
underlying coefficients are quite different.  

 
Table 7. Numbers of iterations taken to solve 

OPF’s of different sizes 
 

Solving OPF with quadratic costs 
System MINOS PDIPM TRALM SCIPM 

30-bus 350 12 134 12 
57-bus 179 10 146 10 

118-bus 1579 17 441 17 
300-bus 3654 19 420 19 

2383-bus FAIL 33 1834 33 
2935-bus FAIL 30 2842 30 

Solving OPF with piecewise linear costs 
System MINOS PDIPM TRALM SCIPM 

30-bus 163 114 221 30 
57-bus 184 496 171 20 

118-bus 1190 606 698 52 
300-bus 2202 FAIL 544 62 

2383-bus FAIL 157 2193 72 
2935-bus FAIL FAIL 4310 177 

 
Table 7 shows the numbers of iterations taken by 

each algorithm to solve the OPF’s of different sizes. 
Although the exact relationship between the system 
size and the number of iterations is unclear, we can 
identify some general trends. First of all, the number of 
iterations generally rises as the system size increases. 
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Secondly, the pace of increase in iteration numbers for 
SCIPM is much slower than that of MINOS and 
TRALM and implies that SCIPM is more scalable and 
therefore suits large-scale systems better. Thirdly, for 
SCIPM, the number of iterations required to solve the 
2935-bus market-based OPF is abnormally high, 
indicating that other system details (such as number of 
generators) also have a impact on the algorithm 
complexity. Neglecting those system-specific 
characteristics, the overall OPF complexity can be 
approximated by O(Nbus

1+ε), where ε is a small number 
that falls between 0.1 and 0.2 in the case of SCIPM.  
 
Table 8. Numbers of iterations and execution 
times taken by SCIPM to solve the 2935-bus 

OPF with different NB’s 
  

NB Its. Time 
(sec.) NB Its. Time 

(sec.) 
1 32 21 6 219 174 
2 157 94 7 244 194 
3 177 140 8 259 208 
4 196 155 9 289 231 
5 198 158 10 282 226 

 

 
Figure 7. Illustration of the near-linear 

relationship between execution time and NB in 
the example of solving the 2935-bus OPF 

using SCIPM 
 

The number of blocks contained in each discrete 
offer or bid curve also has an impact on the 
performance of second-order NLP-based OPF 
algorithms. Table 8 lists the computation time and 
number of iterations taken by SCIPM to solve the 
2935-bus OPF with different NB values. Notice that 
computing an OPF solution becomes much simpler 
when NB is set to 1, which implies uniformly priced 
bids and offers. Therefore, when comparing the 
effectiveness of different algorithms in the context of 

market-based OPF’s, we need to rule out this special 
case. Figure 7 shows the near-linear relationship 
between NB and the execution time. When designing 
market rules, the ISO should balance its customer’s 
desire for flexibility and the real-time computational 
requirements to decide the maximum NB that can be 
allowed in the biddings.  
 
6. Conclusions 
 

In this paper, we discussed new computational 
challenges posed by the deregulated electricity market 
and proposed two new OPF algorithms, TRALM and 
SCIPM, to address them. Numerical studies showed 
that, for our OPF formulation, both algorithms are 
reliable and better than some existing algorithms in 
solving large-scale OPF’s with discrete price curves. 
SCIPM is particularly good for real-time applications 
due to its efficiency. We argued that future OPF 
research should give more emphasis to algorithm 
robustness and accuracy, in light of the changing roles 
of OPF’s in market-oriented applications. We plan to 
discuss alternative OPF formulations and how to 
integrate the new algorithms into the security-
constrained OPF in separate papers in the near future. 
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