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Towards reliable extreme weather and climate
event attribution
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Climate change is shaping extreme heat and rain. To what degree human activity has

increased the risk of high impact events is of high public concern and still heavily debated.

Recent studies attributed single extreme events to climate change by comparing climate

model experiments where the influence of an external driver can be included or artificially

suppressed. Many of these results however did not properly account for model errors in

simulating the probabilities of extreme event occurrences. Here we show, exploiting

advanced correction techniques from the weather forecasting field, that correcting properly

for model probabilities alters the attributable risk of extreme events to climate change. This

study illustrates the need to correct for this type of model error in order to provide trust-

worthy assessments of climate change impacts.
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T
he odds of extreme weather and climate events are chan-
ging. There is today overwhelming evidence that human
activity impacts extreme heat and rain1–4. This finding is

playing a key role in establishing public awareness of climate
change5 and in taking policy decisions for climate adaptation6. To
what degree human influence was responsible for recent high-
impact events is, therefore, of high public concern. This question
is increasingly being addressed by an emerging research field
designated as extreme event attribution7–10.

Event attribution aims to estimate, whether and to what degree,
natural and anthropogenic drivers have favoured the occurrence
of a past event from a probabilistic point of view10. Single-
extreme weather and climate events are unique—they happen
only once in the exact same manner and their probability is.
therefore. strictly speaking infinitely small, which inhibits any
attribution. However, single events can be described as part of
classes of events, e.g., regionally constrained exceedance of a
geophysical variable over a specific threshold, for which prob-
abilities can be attached (for instance the probability to exceed the
extreme 2-m air temperature observed over Europe during the
summer 200311). Discerning external factors in these probabilities
has been the objective of diverse event attribution methods
relying on model simulations that allow to compute event
probabilities in the presence or absence of external forcings7,8.

One limitation that concerns all the state-of-the-art approaches
is the model ability to reliably simulate the probabilities of
extreme events and the changes thereof12–15. By model reliability,
we mean here a specific statistical condition: simulated prob-
abilities are said to be reliable if they truly reflect the observed
frequencies (within uncertainties). For example, considering all
the cases where a hot summer is simulated with 20% probability,
a hot summer should also occur in 20% of these cases for a model
to be considered reliable16. This concept of reliability originates
from forecasting weather and climate where trustworthy forecast
probabilities are of paramount importance for decision-making17.
Event attribution does not aim to predict a specific event, but
rather quantify how an external driver has changed its like-
lihood18. Model simulations used in event attribution are,
therefore, typically evaluated for the accuracy of their mean state
and different modes of variability19, as well as their ability to
reproduce the physical processes involved20, which is generally
thought to be enough for a trustworthy extreme event attribution.
A small number of attribution studies assessed model reliability in
the past to support or discard a statement21,22, but they remained
a clear exception in the current literature and usually did not go
beyond a sole assessment of reliability for evaluation purposes.

In this study, we challenge the current practice insufficiently
accounting for reliability, by demonstrating that it is not only
unjustified but also carries the risk of issuing overly strong attri-
bution statements (for extreme events). To demonstrate this, we
explore to which extent climate variability and long-term response
to forcing are reliably represented in model simulations com-
monly used for event attribution21,23,24. We propose subsequently
a way to correct for such shortcomings, exploiting advanced
model correction techniques developed in weather and near-term
climate forecasting. Finally, we show its impact on event attribu-
tion statements. This study advances the current literature two-
fold: by demonstrating the crucial role reliability plays in an event
attribution context and, in particular, by offering an approach that
can cope with potentially unreliable model simulations with the
goal to provide robust attribution statements.

Results
The role of reliability. Causal extreme event attribution relies on
climate model experiments that discern the influence of an

external factor (such as increased levels of greenhouse gases).
These experiments simulate the possible evolutions of the climate
system using an ensemble approach, i.e., generating several cli-
mate simulations under the same conditions, but with tiny initial
perturbations to obtain a range of possible climate realisations.
This ensemble approach allows to quantify the probability that a
rare event occurs under given conditions24. In the context of
attribution to climate change, two types of ensembles are
required: one incorporating all observed radiative forcings (ALL,
i.e., including anthropogenic greenhouse gases and aerosols in
addition to natural forcings) and one counterfactual using natural
forcings alone (NAT, i.e., including solar forcings and volcanic
aerosols). The ensembles are carried out using coupled (ocean-
atmosphere) climate models or atmosphere-only models, which
are forced by observed sea–surface temperature (SST) and sea–ice
concentrations7. The atmosphere-only approach has been the
dominant approach up to date leading to several large data bases
designed for extreme event attribution21,23,24. Both types of
model approaches (coupled or atmosphere-only) simulate a
nonstationary climate given that the radiative and the marine
boundary forcing (in the atmosphere-only experiments) change
over time. A reliable ensemble response to these forcings is
fundamental as illustrated in the following example.

The example uses the case of high temperatures during Northern
Hemisphere summers (June-to-August (JJA)) and warm Southern
Hemisphere winters, respectively, which have been the subject of
many event attribution2–4 and physical process studies25–27.
Figure 1a shows the summer (JJA) 2-m air temperature evolution
over a grid point in Sudan in an ensemble of atmosphere-only
simulations from the UK Met Office quasi-operational system
(HadGEM3-A21). The grid point in Sudan has been chosen to
illustrate the influence of marine conditions on a continental area
and to select a region that is highly vulnerable to climate variability
judging from recent observations. The ensemble, including
anthropogenic forcings (red) undergoes a positive-temperature
trend. This trend is absent in the NAT simulations (green) and,
hence, attributable to human-induced climate change. Both
ensembles exhibit a pronounced interannual variability that is
coherent among the ensemble members due to the impact of
tropical SST forcings in this region28. Although a similar
interannual signal is reflected in the observations (black lines
showing two different datasets) the model ensemble range is clearly
too narrow. Indeed, the observations fall outside the model
ensemble range more often than if the observations could be
considered an equiprobable realisation of the model ensemble. This
is illustrated with a rank histogram16 in Fig. 2 (inset in panel a). The
rank histogram counts the position of the observation amongst
the ranked members of the ensemble in each year. If the
observation could be considered an equiprobable member of the
model ensemble, the rank histogram would be perfectly flat. On
the contrary, peaks stand out at the tail ends of the diagram,
which illustrates that the observation falls too often outside the
model range.

One way to quantify this overconfidence objectively is to
compute the mean squared differences between simulated
probabilities and observed frequencies to exceed a threshold (in
this case 1 in 5 years hot summers). This mean difference is widely
known as the reliability component of the Brier score16, which is
shown in Fig. 2 for the entire globe (shown as 1 minus the Brier
score reliability component). Central Africa (see the grid point of
the example indicated) reveals to be a region of general low
reliability, but other areas are also affected. The lack of reliability
persists even when using a set of four different atmosphere-only
models from the C20C+ project24 (Fig. 2, panel c) or a model
with large global model ensemble (100 members) used in the
weather@home project (panel d)23. This suggests that a common
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Fig. 1 Effect of ensemble calibration on an attribution case for boreal hot summers for a grid point in Sudan (12.6°N, 34.4°W). Panels a and b show the

observed historical evolution of summer temperatures (black, two different datasets) and the single-model ensemble of the UK quasi-operational

attribution system (HadGEM3-A) considering all forcings (red) and only natural forcings (blue) as anomalies from present day climatology (1981–2010)

derived from the all forcings ensemble. Panels c and d show the probability distribution of temperature and the associated fraction of attributable risk

(FAR) due to climate change (distribution red opposed to the blue one) for a 1 in 5-year event in the NAT simulation (xEX)
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Fig. 2 Reliability of event attribution experiments to simulate probabilities of high temperatures during boreal summers. The reliability measures the

accuracy of simulated probabilities and a value of one denotes perfect reliability (see methods reliability assessment). Reliability is shown for a the single-

model ensemble of the UK quasi-operational attribution system (HadGEM3-A), b the single-model system (HadGEM3-A) after the ensemble calibration,

c the multi-model event attribution system of Climate of the 20th Century Plus project (C20C+) and d a 100-member ensemble of the weather@home

project using HadCM323. The small boxes in panels a and b denote the ranked histogram (counts of the position where the observations fall in the

ensemble over the historical period) for the grid point denoted in panel a over Sudan analysed in Fig. 1
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structural deficiency of the models or the experimental design
exists that prevents the problem to be overcome by the traditional
multi-model or large-ensemble approaches. The result further
demonstrates that the lack of reliability (overconfidence)
identified in decadal-long forced SST-driven simulations29 does
not arise from the short simulation length, but also persists in 50-
year-long simulations of the C20C+ project.

Using unreliable ensembles, i.e., those in which simulated
probabilities do not match the observed frequencies, to attribute a
hypothetical extreme event30 has a direct consequence on
attribution statements as illustrated in Fig. 1. Assume a 1-in-5-
year event (event probabilities estimated in the NAT simula-
tion30, same probability as used to assess the reliability) would
occur in the grid-cell selected over Sudan (black vertical line) in
an arbitrary recent year (2003). In the NAT ensemble this event
would be much less likely than in ALL, i.e., such an event would
be almost entirely attributed to human activity. To measure the
level of attribution it is common to express the fraction of
attributable risk10 (fraction of attributable risk (FAR)= 1−
PNAT/PALL) or simply the risk ratio (RR= PALL/PNAT), where
PNAT and PALL denote the probability to exceed the observed
event magnitude in the NAT and ALL ensembles, respectively.
Values of FAR larger than zero denote that the event is
attributable to anthropogenic activity (or another external factor
that is being discerned). In the example provided, FAR is almost
equal to one. This means that this class of events are entirely
attributable to human influence in this specific year. From visual
inspection and the quantified lack of reliability, we know that the
probability distributions are overly confident. The magnitude of
the attributable risk is, therefore, likely overestimated and we
therefore need to improve the reliability prior to the calculation of
the FAR12.

Calibration of climate model ensembles. Low reliability in
ensemble simulations is a pervasive problem in weather and cli-
mate forecasting31. A range of methods referred to as ensemble
calibration have therefore been proposed to overcome this defi-
ciency32–34. These approaches are promising tools for the for-
mulation of trustworthy event attribution statements, as we show
in the following. Ensemble calibration corrects the model
response to prevailing conditions for example as part of inter-
annual climate variability (implicitly simulated by the model, e.g.,
an El Niño state) as a function of the model’s ability to simulate
the response to these (technically as a function of the reliability).
This implies a correction of the ensemble spread (often a
widening but also a narrowing is sometimes required) and a
correction of the amplitude of the ensemble mean signal that
deviates from the climatological state32. In doing so, the model
ensemble becomes more reliable, i.e., more trustworthy from a
probabilistic point of view.

In the context of event attribution, it is fundamental that the
model response to the external driver, to which we aim to
establish a causal link, is retained after the calibration. This is a
concern in traditional approaches since the ensemble is
simultaneously calibrated for short-term and long-term variabil-
ities34–36. Here, we propose a forecast calibration technique that
can cope with this difficulty. The approach relies on the ensemble
inflation (see Methods) and corrects the ensemble separately for
near-term variations (forced for instance by interannual SST
variations or volcanic eruptions) and long-term trends (forced for
instance by greenhouse gas concentration changes). Note that the
climate simulations analysed here all use observed SST as ocean
surface boundary conditions, which prescribes low-frequency
variability in the model simulations in phase with variability in
the observations. Trend differences over the 50-year period

would, therefore, primarily be due to different responses to
anthropogenic forcing as opposed to climate variability. However,
other more comprehensive approaches11 would be relevant in a
coupled-model setup or in presence of a highly nonlinear
temporal changes in response to anthropogenic forcing. The
long-term trend is only corrected for the ensemble including the
anthropogenic forcings since no observations are available for a
world without climate change. Also note that typical methods
that correct the mean state of the simulations37,38 (known as bias-
correction methods) would not be able to correct the reliability
illustrated in the example in Fig. 1 since the errors in the
ensemble response differ from year to year38.

The impact of the forecast calibration is illustrated across all
three figures (Figs. 1–3). In the example provided for Sudan
(Fig. 1), the calibration corrects both the ensemble mean and the
spread (the long-term trend remains almost unaffected), which
yields higher levels of reliability and greatly improves the rank
histogram for the example (inset in Fig. 2, panel b). A lower value
of FAR is obtained as a consequence. The change of FAR on a
global scale is illustrated in Fig. 3. Over many regions the
calibration reduces the FAR but there are also regions where FAR
is underestimated by the raw model output as, e.g., Central
Europe or Brazil. The overall change of FAR results from the
correction of both the near-term response (ensemble correction)
and the long-term change (linear trend over 50 years). The
contribution from each component, as well as the impact on the
risk ratio shown in the supplementary information (Supplemen-
tary Figs. 1, 2). In the example provided, correcting the near-term
response particularly impacts the result over the tropics29, while
correcting the response to long-term forcing most strongly affects
the mid-latitudes. The supplementary information further shows
consistent results when using a different physical variable and a
different return-period (JJA precipitation in a 1-in-10 year event,
Supplementary Fig. 3) and an application of the calibration on
artificial attribution data12, which demonstrates that the calibra-
tion perfectly corrects the reliability and FAR in an idealised
context (Supplementary Fig. 4).

While the additional analysis supports the conclusions of the
study, it does not claim to be exhaustive and further applications
may need to test the approach for other types of events. The
current proposed method is generic, since it corrects the entire
model distribution, which is advantageous compared to quantile-
specific calibration approaches. However, the method might for
instance not be suitable to correct a highly non-linear response to
anthropogenic forcing or to correct heavily skewed native model
distributions, and non-parametric approaches might be useful in
such cases. Also, physical deficiencies of general circulation
models as for instance the correct positioning of the storm tracks
are unlikely corrected by this approach and hence calibration
always be complemented with an evaluation of the model’s ability
to simulate the underlying physical processes20.

Discussion
Limitations of climate models to reliably simulate event prob-
abilities remain overlooked in current practice of event attribu-
tion studies. Simulated probabilities can be confronted with
observations as shown in this study and their reliability is a
concern in simulations designed for event attribution. By
exploiting techniques developed in weather and climate predic-
tions and refining them, we have been able to improve the
attribution of extreme events by taking into account the reliability
of the systems used. These techniques can be refined to take into
account different sources of unreliability, but it is clear that the
attribution community can go a long way if it works closely with
other communities concerned by this type of model error.
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From a broader perspective, this study presents an example of
how extreme event attribution could benefit from the experience
in weather and climate forecasting. Bridging the prediction and
event attribution community could enable a better understanding
of the models’ ability to represent the processes that lead to the
occurrence of climate extremes. For instance, it has been regular
practice in forecasting to disentangle drivers of a specific high
impact event, using methods that allow to prescribe the observed
atmospheric conditions that prevailed during the event or before
it occurred39–42. The inability to capture past extreme events
under these protocols can serve as an additional guidance on
which kind of events we have sufficient confidence to carry out
event attribution studies for.

It is now urgent for the scientific community to more properly
address model limitations in event attribution studies because of the
increasing public attention to and trust in the scientific community
formulating robust attribution assessments. Adopting this practice
will lead us to a more robust assessment of the human role on past
extreme events for the upcoming assessment report of the Inter-
governmental Panel on Climate Change (IPCC) and for the rising
demand from media and international organisations such as the
UN Framework Convention on Climate Change (UNFCCC) or the
International Federation of the Red Cross (IFRC).

Methods
Model and observational data. Atmosphere-only simulations using HadGEM3-
A21 and simulations of CAM5, MIROC5 and HadAM3P from the C20C+ pro-
ject24 are used and interpolated linearly to a common resolution of 100 × 50 grid-
points. All models simulate an ensemble (15 members for HadGEM3-A and 10
members for the models in C20C+) using all radiative forcings and natural for-
cings only (shown in red and blue, respectively in Fig. 1). The simulations use
observed SST and sea–ice conditions as boundary conditions from which a climate
change signal is removed in the simulations using natural forcings alone. The
observational reference used to determine the reliability and calibrate the ensemble
are two-metre temperature from CRUTS3.2143 and GHCN v344.

Reliability assessment. The ensemble reliability is measured using the reliability
component of the Brier score16. For a given threshold (e.g., 80th quantile, 1 in 5
years event) it computes the simulated probabilities for each year, pk, which is equal
to the number of ensemble members that exceed the threshold divided by the total
number of ensemble members. These probabilities are binned for a discrete

number of probabilities (k= 5 bins in this study based on quantiles of the
observations and the model)43,44. Subsequently, the observed frequencies are
computed. These consist of the occurrences of the event (ok) when the kth prob-
ability bin was observed divided by the number of times the kth probability is
simulated (nk). The reliability is the mean squared difference between the simulated
probability and the observed frequency computed for all years of the evaluation
period (N= 51 years, 1960–2010) and summed up across all probability bins. The
reliability is here expressed as 1 minus the reliability component to obtain a
positive orientation of the metric (a value of 1 denoting perfect reliability32)

r ¼ 1�
X

K

k¼1

nk
N

ok
nk

� pk

� �2

: ð1Þ

The reliability is computed for the two observational datasets and then averaged to
account for observational uncertainties.

Ensemble probabilities and the FAR. FAR compares the probability that an
extreme event occurs in the ensemble using all radiative forcings (PALL) and the
counterfactual ensemble comprising of natural forcings alone (PNAT) as

FAR ¼ 1� PNAT
PALL

. The probabilities are here estimated by fitting a Normal dis-

tribution to all ensemble members. FAR is calculated in each year for the period
2001–2010 and then averaged in order to obtain a more robust signal. The dif-
ference between the calibrated and raw FAR shown in Fig. 3 is tested for statistical
significance by resampling (100 iterations) with replacement all data used to
estimate the probability distributions and therefore PNAT and PALL. This resam-
pling allows to estimate a distribution of the differences between raw and calibrated
FAR. When the resulting distribution of differences excludes zero at the 95th
percentile the difference is stippled as significant. The influence of the reliability on
FAR is also robust when using other types of distributions12.

Forecast calibration. The forecast calibration relies on ensemble inflation32, which
is here expanded to correct the long-term trend and the ensemble spread indivi-
dually. The recalibrated ensemble (y) comprises the linear trend (xTR), the
detrended ensemble mean (xEM), and the ensemble deviation from the ensemble
mean (x’EM), while each component is multiplied by their respective correction
factor that leads to the optimal calibration under Normal statistics

y ¼ αxEM þ βx′EM þ γxTR ; α ¼ jρj
σO
σxem

; β ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� ρ
σo

σx′em

r

; γ ¼
to
tx

: ð2Þ

ρ is the ensemble mean correlation with the observations, σo, σxem, and σx’em are the
standard deviation of the observations, the standard deviation of the ensemble mean,
and the ensemble spread, respectively. to and tx are respectively the linear trend slopes
of the observations and the ensemble mean over the calibration period. The cali-
bration factors are estimated from both alternative observational datasets and then
averaged. We note that linear trend slopes are a relatively simple (though easily
understood and therefore frequently used) measure to estimate long-term changes.

Effect of calibration on FAR for hot summers
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Fig. 3 Effect of the model ensemble calibration on the fraction of attributable risk (FAR) to anthropogenic forcings of boreal hot summers. The change
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resampling at a 10% significance level
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However, the assumption of linear changes may not always be justified, and more
sophisticated approaches11 to evaluate long-term changes may be useful to refine the
outlined calibration approach. Also note that ideally the calibration should take into
account the difference between the current and a “natural” climatology. However, in
the absence of observations from a natural climate the evaluation of long-term
transient changes over a period with reasonably trustworthy observations appears
reasonable to calibrate the long-term climate response.

Data availability
Model data that supports the findings of this study are available on the following

repositories: HadGEM3-A, https://catalogue.ceda.ac.uk/uuid/99b29b4bfeae470599fb962

?43e90cde3, C20C+: http://www.happimip.org/happi_data/, weather@home: Please

consult under https://www.climateprediction.net/. Observational data sources are

available on the following repositories: CRU T3.23. GHCN: ftp/ftp.ncdc.noaa.gov/pub/

data/ghcn/daily/. GPCC

Code availability
The code developed in this study is available under the following GitHub Repository:

https://github.com/obellprat/NCOMMS-18-00404A. It is written using the “R”

programme language and relies on the CRAN package s2dverification45.
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