
Research Article

Towards Reproducibility in Scientific Workflows:
An Infrastructure-Based Approach

Idafen Santana-Perez and María S. Pérez-Hernández

Ontology Engineering Group (OEG), Universidad Politécnica deMadrid, AvenidaMontepŕıncipe, s/n, 28660 Boadilla delMonte, Spain

Correspondence should be addressed to Idafen Santana-Perez; isantana@�.upm.es

Received 12 September 2014; Accepted 3 February 2015

Academic Editor: Gianluigi Greco

Copyright © 2015 I. Santana-Perez and M. S. Pérez-Hernández. 	is is an open access article distributed under the Creative
Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the
original work is properly cited.

It is commonly agreed that in silico scienti�c experiments should be executable and repeatable processes. Most of the current
approaches for computational experiment conservation and reproducibility have focused so far on two of the main components
of the experiment, namely, data and method. In this paper, we propose a new approach that addresses the third cornerstone of
experimental reproducibility: the equipment.	is work focuses on the equipment of a computational experiment, that is, the set of
so
ware and hardware components that are involved in the execution of a scienti�c work�ow. In order to demonstrate the feasibility
of our proposal, we describe a use case scenario on the Text Analytics domain and the application of our approach to it. From the
original work�ow, we document its execution environment, by means of a set of semantic models and a catalogue of resources, and
generate an equivalent infrastructure for reexecuting it.

1. Introduction

Reproducibility is a goal that every scientist developing a
research work should take into account during the experi-
mental and publication processes. Any scienti�c publication
is meant to both announce a result of interest and convince
readers that the exposed claims are true [1]. 	erefore, the
scienti�c community is encouraging authors and editors to
publish their contributions in a veri�able and understandable
way. However, reproducibility in computational sciences is a
goal hard to achieve due to the complexity of computational
experiments, usually involving many steps and combining
several data sources [2].

In the context of scienti�c experiments, reproducibility
and replicability are sometimes used as synonymous. Even
though there is no a clear consensus on how to de�ne
both (de�nitions may vary over di�erent scienti�c areas),
in this work, we understand them as di�erent concepts
[3]. On one hand, replicability can be de�ned as an exact
incarnation of the original experiment, considering the exact
same environment, and performed over the same individuals

using the same original experiment con�guration. On the
other hand, reproducibility implies that evenwhen the goal of
the experiment is the same, at least part of the experiment has
been modi�ed to obtain a new result or has been adapted to
�t a new scenario. In this work, we address the reproducibility
of the execution environment for a scienti�c work�ow, as we
do not aim to necessarily obtain an exact incarnation of the
original one, but rather an environment that is able to support
the required capabilities exposed by the former environment.

In computational science, or in silico science, experiments
are widely designed as scienti�c work�ows. 	ese work�ows
are being published more and more frequently as digital
artifacts, along with their related publications, including not
only the description of the experiment but also additional
materials to understand them [4].

A scienti�c work�ow is a precise, executable description
of a scienti�c procedure [5].	erefore, it is advisable to enrich
them with a description of a proper execution environment,
that, along with the work�ow and the information about
the rest of its components, would enable its reproduction.
We distinguish three main components on a computational

Hindawi Publishing Corporation
Scientific Programming
Volume 2015, Article ID 243180, 11 pages
http://dx.doi.org/10.1155/2015/243180



2 Scienti�c Programming

scienti�c experiment, which must be properly conserved to
achieve its reproducibility:

(i) data: the input and output data of the experiment.	e
input data represents the information of the domain
we study (e.g., light from the stars, molecule compo-
sition, etc.), and output data is the result of carrying
out the experiment (e.g., charts, statistic deviation,
plots, etc.) that enables verifying the experimental
hypothesis;

(ii) scienti�c procedure: the description of all the steps
of the experiment and how they must be performed,
including as many details as possible for guaranteeing
its traceability and repeatability. A computational
work�ow can be considered as a precise description
of a scienti�c procedure, as it contains the details of
each step of the process, relating how those steps are
connected and how the data �ows through them;

(iii) equipment: all the tools and materials involved in the
experimental process. In computational science, the
equipment is de�ned by the computational infras-
tructure, that is, the set of resources (computers,
storage devices, networking, etc.) and so
ware com-
ponents necessary for executing the experiment.

	e reproducibility of any object, either physical or
digital, is achieved by its proper conservation. Conservation
can be de�ned as the action of prolonging the existence of
signi�cant objects by researching, recording, and retaining
the relevant information related to the object.

Currently, most of the approaches dealing with com-
putational science conservation have been centered on the
data and procedure components, leaving the computational
equipment out of the scope. Hence, reproducibility problems
related to execution environments are not being handled
properly. 	e lack of approaches for conserving the infras-
tructure employed in an experiment makes scientists willing
to repeat it to guess which original set of tools it was and how
it was set up.	is may be even impossible to do if the former
components were insu
ciently described and therefore it
is not feasible to identify a counterpart o�ering the same
capabilities.

In this paper, we try to identify the most relevant current
approaches and their limitations. Taking into account these
ones, we have developed an infrastructure-aware approach
for computational execution environment conservation and
reproducibility based on documenting the components of the
infrastructure. We introduce here the main contributions of
our work: (i) the set of semantic models for describing work-
�ow execution environments, (ii) a catalogue documenting
the resources involved on a real use case scenario, and (iii) an
algorithm that generates an infrastructure speci�cation based
on this information.

	e reminder of this paper is organized as follows. In
Section 2, we show the main current approaches in the area
of execution environment preservation. We then introduce
in Section 3 our approach and then, in Section 4, we describe
our semantic model. In Section 5, we establish a use case sce-
nario in the context of Text Analytics work�ows and expose

the datasets we have generated using our models. In
Section 6, we introduce an algorithm for generating an
equivalent infrastructure speci�cation and in Section 7 we
summarize how we applied our ideas to the use case and,
�nally, in Section 8, we outline the main conclusions and
de�ne future lines of work.

2. Current Approaches

A computational experiment involves several elements, each
of which must be conserved in order to ensure reproducibil-
ity. Conserving data and the work�ow speci�cation is not
enough. As pointed out in [6] “without the ability of properly
consuming the conserved information we are le� with �les
full of rotting bits.” 	erefore, it is mandatory to maintain
the operability of the tools for accessing, consuming, and
interpreting the components of a scienti�c experiment (either
input data or the description of the method). In this section,
we survey the main conservation approaches regarding the
experimental equipment.

An interesting study about issues in computational sci-
enti�c reproducibility is exposed in [7], where authors con-
ducted a study about work�ow decay over a set of biological
work�ows from myExperiment [8] designed for the Taverna
[9] platform. Authors de�ne four di�erent categories for
work�ow decay causes: volatile third-party resources, missing
example data,missing execution environment, and insu�cient
descriptions about work	ows. 	e study shows that nearly
80% of the work�ows failed to be reproduced, and that
around 12% of these failures happened due to missing exe-
cution environment issues and that 50% are due to volatile
third-party resources. Taking into account that around 22% of
the tasks in Taverna are related to web services [10], some of
those third-party resources issues could be considered also as
execution environment problems.

Data and work�ow conservation has been widely
addressed in recent years. Initiatives such as CrowdLabs [11],
the Galaxy project [12], or GenePattern [13] aim to conserve
and share the knowledge about scienti�c computational
experiments and provide means for reproducing them.
However, so far, a complete and integral approach for
documenting and conserving the execution environment as
a whole has not been developed.

In [14], authors expose how so
ware must be preserved.
As a complex and dynamic entity, so
ware can not be
preserved just by maintaining its binary executable code.
Authors claim that a so
ware component is more likely to
be preserved by guaranteeing the performance of its features
rather than conserving the same physical binary code. To this
end, they introduce the concept of adequacy, as a way of
measuring how a so
ware component performs related to a
certain set of features.	e aim is to build a conceptual model
that allows to capture the relevant properties of each so
ware,
enhancing the possibilities of successfully conserving them.

In 2011, the Executable Paper Grand Challenge [15]
pointed out the importance of allowing the scienti�c commu-
nity to reexamine the execution of an experiment. As a result
of this challenge, some authors proposed the use of virtual
machines as a way of preserving the execution environment



Scienti�c Programming 3

of an experiment [16, 17]. Also, as part of the SIGMODconfer-
ence on 2011, a study was carried out to evaluate how a set of
repeatability guidelines proposed to the authors submitting a
paper (i.e., using virtual machines, pre- and post-conditions,
and provenance-based work�ow infrastructures) could help
reviewers to reproduce the experiments described on the
submitted paper [18].

A list of advantages and challenges of using virtual
machines for achieving reproducibility is exposed in [19],
arguing that availability of a highly distributed and automated
solution for computing such as Cloud Computing allows cost
reduction, e
cient and reliable lifecycle management, large
scale processing, and cost sharing. However, authors expose
that using Cloud solutions implies issues that are not yet fully
solved, such as the high cost of storing data in the Cloud or
the problems of dealing with high interactive experiments
through a network connection to remote virtual machines.

Authors also claim that provenance tracking inside a vir-
tual machine or the reuse and repurpose of the infrastructure
are real issues when using Cloud solutions. In our opinion,
these claims are not major issues within the scope of our
work. Provenance of a process executed on a virtual machine
can be traced by using a work�ow management system in
the same way it can be traced on a local cluster. Regarding
repurposing an infrastructure, this is out of the scope of our
work, as we are trying to achieve its conservation and not
looking for any kind of improvement.

Recently, some authors [20] have clearly exposed the
necessity of capturing and preserving the execution environ-
ment of an experiment, providing tools for analyzing and
packaging the resources involved on it. ReproZip [21] and
CDE [22] are promising tools in this direction, which are
aligned with some of the principles of our work, as they aim
to capture the information about an infrastructure and try to
reproduce this in a new environment. 	ese tools read the
infrastructure components involved on the execution (�les,
environment variables, etc.) and store this information into a
package. 	is package can be later unpackaged into another
machine in order to repeat the experiment.

	ese approaches di�er from ours as we do not try to
capture the real elements of the infrastructure (copy the
�les and libraries) but rather we try to describe them and
obtain an available counterpart that can be tuned to expose
the same features. We agree with ReproZip authors that
packaging the physical infrastructure components limits the
scope of applicability, as the packages require most of the
target machine to be the same. We also argue that the
knowledge and understanding of the infrastructure, as well
as the dynamism of this solution, would be higher using an
approach like the one exposed on our work, as we abstract the
description of the infrastructure from the concrete elements
that are involved in the former experiment.

Another recent and relevant contribution to the state
of the art is being developed within the context of the
TIMBUS project [23], which aims to preserve and ensure
the availability of business processes and their computational
infrastructure, aligning it with enterprise risk management
and business continuity management. 	ey propose, as we
do, a semantic approach for describing the execution envi-
ronment of a process.

Our approach di�ers from the TIMBUS one as we
propose amore lightweight and explicit way of annotating the
infrastructure information based on our ontology network.
Even though TIMBUS has studied the applicability of their
approach to the eScience scenario, their contributions are
mainly focused on business processes. Our approach focuses
on scienti�c processes, which are data�ow-oriented and
usually do not contain loops or branch structures.

Finally, we highlight deployment tools, such as Puppet
[24], Chef [25], and PRECIP [26], which are able to take
an infrastructure speci�cation and deploy it on a Cloud
provider and are highly useful for recreating an execution
environment. We will introduce in this work how PRECIP
can be used as an enactment system within the reproducibil-
ity process.

3. Infrastructure-Aware Approach

	e equipment used in a scienti�c experiment plays a key
role on its reproducibility. Without the proper set of tools,
it is hard to ensure the execution of the same process
obtaining consistent results. In order to guarantee it, we need
to document and describe the tools involved (types, brand,
provider, version, etc.) and the information for setting it up
(calibration, con�guration, handling, etc.).

We identify two di�erent approaches for conserving the
equipment of an experiment, depending on how relevant
this equipment is and how hard it is to obtain an equivalent
individual of the involved tools:

(i) physical conservation: that is, conserving the real
object, due to its relevancy and the di
culty of getting
a counterpart. 	e Large Hadron Collider (LHC
http://lhc.web.cern.ch/lhc/) or specialized telescopes
for high-energy astronomy are examples of this kind
of equipment, due to its singularity. In those cases, it is
mandatory to conserve the real equipment and bring
access to them to the research community;

(ii) logical conservation: usually the equipment used in
experimental science can be obtained by most of
the research community members. Commonly, it is
easier to obtain a counterpart than accessing the
original tool. Sometimes accessing the original is
even impossible due to its natural decay (individuals
used in experiments such as plants or animals). In
those cases, it is more suitable to describe the object
so an equivalent one can be obtained in a future
experiment: buying the same model and version of
a microscope, cultivating a plant of the same species,
and so forth. 	is requires a precise and understand-
able description of those elements.

As pointed out before, in computational science, the
main tools for carrying on an experiment are computational
infrastructures, either virtual or physical, where the high
amount and variety of requirements of a computational
experiment imply a highly heterogeneous environment. In
this work, we de�ne a computational infrastructure as the set



4 Scienti�c Programming

of computational nodes and so
ware components that are set
to execute a computational experiment.

Classical reproducibility approaches in computational
science aim to share the infrastructure by bringing access
to it within a community of users with the same interests.
	is approach clearly �ts the physical conservation case;
an organization or a set of them sets up an infrastructure
(supercomputers, clusters, and grids) for a speci�c goal
and allows some users to have access to their resources
under some conditions. 	ese are usually big and expensive
infrastructures that require a lot of e�ort of maintenance
in the long term. 	ese infrastructures have proved to be a
signi�cant contribution in computational science.

However, there are some challenges regarding repro-
ducibility issues that these kinds of approaches cannot face.
Within the context of this work, we identify the following:

(i) static infrastructures: classical infrastructures require
a huge technical maintenance e�ort, as they must be
tuned and con�gured in order to ful�ll the require-
ments of the di�erent experiments developed by the
community. 	e process of adapting these kind of
infrastructures to a new experiment is not trivial and
usually is restricted by the policies of the organization
hosting it. 	is also makes the reexecution of an old
experiment more di
cult once the infrastructure has
been modi�ed;

(ii) vendor locking: even though the main purpose of
most of these infrastructures is to be shared with as
many users as possible, it is not feasible to assume
that any organization can guarantee access to their
infrastructure to everyone interested on executing or
repeating an experiment;

(iii) long term conservation: guaranteeing the conserva-
tion of an infrastructure is not a trivial task. Issues
such as projects ending or funding cutsmay challenge
its future availability. Moreover, any infrastructure
su�ers from a natural decay process [27]. Machines
get eventually broken and as new tools appear and
new so
ware and hardware requirements are needed,
so machines must be replaced.

To solve the above-mentioned challenges, we propose
in this work a di�erent approach that contributes to the
previous one rather than substituting it. We aim to face those
challenges from a logical-oriented conservation point of view.

Instead of trying to conserve and share a physical infras-
tructure, we propose to describe its capabilities and, based on
that description, reconstruct the former infrastructure (or an
equivalent one) using virtualization techniques.

Virtualization is a mature technique that has been used
for the last three decades and that has lately gained momen-
tum. By using these techniques, we are facing the long term
conservation challenge, as virtualization solutions aremature
enough to assume that they will be available in the future. By
introducing the concept of an infrastructure-aware approach,
we aim to develop a solution that is not tied to any speci�c
virtualization solution, allowing the system to be adapted to
new solutions as they emerge.

	is approach implies some restrictions and assumptions
on the scope of applicability of this work, mainly related to
performance aspects, as it is hard to guarantee the perfor-
mance of a resource when using virtualization.	erefore, we
leave out the scope of this work those experiments that take
into account the performance as part of their goals.

In our approach, we propose to de�ne the capabilities of
the machines involved in the experiment, rather than using
just virtual machine images with those capabilities installed
on them. Based on the description, we would be able to
generate a set of virtual machines exposing those capabilities.
As Cloud computing (either private or public) is meant to be
a public facility, allowing almost everyone to create virtual
resources, we claim that our approach faces the vendor-lock
problem by implementing a common and shared pool of
resources in which every researcher could execute scienti�c
applications. We assume that research communities have
access to those resources and that they can be hosted on the
Cloud.

Asmentioned before, virtualization allows the customiza-
tion of the resources, sowe can de�ne a speci�c infrastructure
con�guration for each experiment. 	is eases the con�gura-
tion and maintenance process of classical approaches.

Our approach aims to separate the description of the
infrastructure capabilities from the speci�c solutions that
could be used to generate it, de�ning a more adaptive
solution that increases the chances of reproducing the execu-
tion environment. 	is approach also simpli�es the storage
requirements of the experiment equipment, as it is more
feasible to store and preserve a description of a computational
infrastructure than preserving it physically, as suggested in
other approaches that aim to store and preserve virtual
machine images.

We assume that with this approach it is not always
possible to reproduce the execution environment, as the
necessary resources may not be available and an equivalent
counterpart may not be found. However, we think that this is
amore versatile and �exible approach and therefore increases
the chances of achieving the infrastructure reproduction.
Also, we consider that initiatives such as WINGS or myEx-
periment, which maintain a shared catalog of components
accessible in the long term, support our goal.

We identify the following main technical contributions
that must be implemented to achieve the goals of this
approach:

(i) models/vocabularies: we need to de�ne a way for
representing and relating all the relevant information
about the capabilities of the infrastructure. We pro-
pose the use of semantic techniques to develop a set of
interrelated ontologies de�ning the necessary aspects
and relations about all the components involved in the
execution of a computational experiment. Semantic
technologies are a standard and integrable way of
sharing information, which is an important feature
when trying to share and conserve the knowledge of
an entity. 	e description of the infrastructure and
the resources in the catalogue will be described using
these vocabularies;



Scienti�c Programming 5

Catalogue Infrastructure providers

Algorithm

Ontologies
Enactment system

infrastruc-
Workflow

description
ture

Infrastruc-
ture

specification

Figure 1: System overview.

(ii) catalogue: it is not feasible to assume that we could
be able to deal with every kind of virtual appliance
and to install and manage every kind of application.
We need to develop a scienti�c appliances catalogue,
including a set of representative virtual appliances,
and applications for supporting computational exper-
iments within the context of a scienti�c community.
	is catalogue will be dynamically populated by the
members of the community involved in the experi-
ment design and development and will serve as part
of the input information for the process of generating
the infrastructure con�guration;

(iii) methodological framework: it is composed by a set
of tools and methodologies for capturing all the
necessary knowledge for conserving the infrastruc-
ture. 	is framework will de�ne who is responsible
for the annotation and curation of the information,
describing the components of the infrastructure, and
will guide the users in the process of identifying the
elements that must be documented and which details
about them must be included.

Figure 1 depicts an overall view of the main components
of our contribution and how they are related. 	e diagram
shows how the di�erent users (scientists, IT sta� members,
etc.) interact with the Catalogue, querying it to obtain the
identi�ers of the resources used in the experiment and
adding new resources in case they do not already exist.
	ese identi�ers are used within theWork	ow Infrastructure
Description to link each part of the work�ow to its depen-
dencies (so
ware packages, libraries, hardware requirements,
etc.) in the Catalogue, and therefore these dependencies
are added to the description of the infrastructure. All the
components included in the description and the catalogue
are de�ned using the terms and relations included in the
Ontologies of our system.

	e Work	ow Infrastructure Description serves as the
input of the Infrastructure Speci�cation Algorithm, which is
invoked whenever an infrastructure must be reproduced.
	is process also queries the state of the available Infrastruc-
ture Providers in order to get the resource availability and
the Catalogue to retrieve which tools and appliances can be
used. With this information about the former infrastructure

and providers, the algorithm generates an Infrastructure
Speci�cation, which de�nes a deployment plan detailing the
resources to be created and how they must be con�gured.
Finally, the Enactment System reads the Infrastructure Spec-
i�cation and carries out the actions de�ned on it over the
Infrastructure Providers, producing the target infrastructure
that the experiment would use to be executed.

In this work, we assume that the so
ware binaries are
either available online, as part of Open Source project and/or
on a public repository, or available on the user �lesystem
or organization’s repository. We argue that this assumption
holds for most of the scienti�c projects, where the necessary
so
ware components are available within the context of the
scienti�c community. Even though we have included some
concepts related to so
ware licensing in our ontologies, issues
related to license and so
ware rights are out of the scope of
this work.

4. Workflow Infrastructure Representation

In this work, we introduce the idea of describing computa-
tional resources involved in the execution of a scienti�cwork-
�ow. To this end, we propose the uses of semantic technolo-
gies for de�ning the necessary set of conceptual models that
allow us to generate descriptions of the work�ow and its envi-
ronment. Semantic technologies include standardized lan-
guages such as OWL2 (http://www.w3.org/TR/owl2-over-
view/), data models such as RDF (http://www.w3.org/RDF/)
and query languages such as SPARQL (http://www.w3.org/
TR/rdf-sparql-query/), along with a wide range of develop-
ment and management tools, that make them a mature and
proved solution.

	e WICUS ontology network (available at http://purl
.org/net/wicus) describes the main concepts of a computa-
tional infrastructure in a scienti�c work�ow. 	is network is
composed of �ve ontologies written in OWL2, four domain
ontologies, describing the di�erent concepts of a scienti�c
work�ow from the point of view of its infrastructure, and
another ontology for linking them.

	e four ontologies that compose the network are the
Software Stack Ontology (Section 4.1), the Hardware

Specs Ontology (Section 4.2), the Scientific Virtual
Appliance Ontology (Section 4.3), and the Workflow
Execution Requirements Ontology (Section 4.4).

As mentioned, we join these ontologies by means of the
Wicus ontology, which de�nes �ve object properties relat-
ing concepts from those ontologies, as depicted in Figure 2. In
this section, we introduce the main concepts and properties
of the network. A more detailed description of each ontology
can be accessed through their corresponding URIs.

4.1. So�ware StackOntology. 	isontology describes the so
-
ware elements of a computational resource. 	ese descrip-
tions can be used to describe both the already deployed
so
ware components and the so
ware requirements of a
work�ow, depending on whether it is being used for describ-
ing requirements of a virtual appliance.



6 Scienti�c Programming

Workflow
requirements 

Composed by

Composed by So�ware Stacks 

Has hardware specs 

Has So�ware 
Requires hardware

Scienti�c virtual

hardware specs

Hardware

So�ware

appliances

Stacks

Figure 2: WICUS ontology network overview.

	e main concept of this ontology is the wstack:Soft-
wareStack class, which groups a set of wstack:Software-
Component.	ewstack:SoftwareComponent class encodes
the information of a so
ware package, a library, a script, or,
in general, any piece of executable so
ware.

	e information about how to deploy and con�gure
a so
ware element is also included in this ontology. 	e
wstack:DeploymentPlan, wstack:DeploymentStep and
wstack:ConfigurationParameter classes encode this
information.

4.2. Hardware Specs Ontology. An ontology is meant for
describing the hardware characteristics of a computational
infrastructure and the hardware requirements of a so
ware
component.

	is ontology describes the set of hardware character-
istics/requirements of an element by means of the class
whw:HardwareSpec, which aggregates a set of whw:Hard-
wareComponent such as the CPU or the RAM memory and
details its capabilities using the whw:Feature.

4.3. Scienti�c Virtual Appliance Ontology. 	is ontology
de�nes the main concepts related to virtualized computa-
tional resources provided by an infrastructure provider (e.g.,
IaaS Cloud providers). 	is ontology focuses on Scienti�c
Virtual Appliances, that is, the assembly of virtual hardware
and so
ware components designed within the scope of a
scienti�c process.

	is ontology describes the concept of wsva:Scien-
tificVirtualAppliance, a computational resource described
as a virtualmachinewith a set of software components deployed
on it. 	ese resources de�ne a set of features speci�cally
designed for supporting the execution of a scienti�c work-
�ow.

wsva:ScientificVirtualAppliance is based on an
wsva:ImageAppliance thataggregates a set ofwsva:VMImage
that can be used for enacting a virtual machine in a certain
wsva:InfrastructureProvider and then con�gured to
expose the capabilities of the appliance.

4.4. Work	ow Execution Requirements Ontology. We have
implemented this ontology for describing and relating a
scienti�c work�ow with its execution requirements.

	is ontology relates the concept of wreq:Work-
flow, representing a scienti�c work�ow, to a wreq:Execut-
ionEnvironment, de�ning its dependencies. Depending
on whether the steps of the work�ow are fully speci�ed

in terms of infrastructure or not, we distinguish between
wreq:ConcreteWorkflow and wreq:AbstractWorkflow.

	ese concepts are related to the wreq:requires object
property. For the purpose of describing the execution infras-
tructure, we consider that a wok�ow can be composed of
several subwork�ows, de�ning for each one of them their
own infrastructure description. We do not describe the
execution order of these work�ows or their inner steps, as
this information is not relevant from the infrastructure point
of view.

5. Annotations Catalogue

To exemplify the ideas of our approach, we introduce here
a use case scenario involving a set of work�ow templates
from the WINGS platform along with their related so
ware
components. We have studied and annotated 4 work�ow
templates from the Text Analytics domain [28].

	ese templates contain abstract steps, that is, steps that
can be implemented using di�erent so
ware components.
Combining all the possible so
ware components, we obtain
56 di�erent work�ow implementations.

In this section, we explain how these templates are
annotated and then how this information is consumed by
our algorithm to generate an infrastructure speci�cation.
We include three di�erent datasets, namely, the Work	ow
Requirements Dataset, the So�ware Stacks Dataset, and the
Scienti�c Virtual Appliance Dataset. All of them are included
in the TextAnalyticsWF-RO Research Object [4] (available at
http://purl.org/net/TextAnalyticsWF-RO), a bundle contain-
ing the resources and documentation of our use case.

For these templates, we generated theWork	ow Require-
ments Dataset, a So�ware Stacks Dataset, and a Scienti�c
Virtual Appliance Dataset, which all together compose the
Catalogue component of the system depicted in Figure 1.

To annotate the requirements of each template, we
have developed a prototype of an annotation tool (available
at http://github.com/idafensp/WicusAnnotationTool), which
takes a work�ow template as input and generates a web
form. 	is form includes some parameter suggestions based
on the information retrieved from the WINGS component
catalogue, using string similarity between the work�ow step
and component’s name.

	is tool takes advantage of the similar structure of most
of the components. All of them include a shell script that
invokes an external script (Java, MATLAB, or Weka), so we
can suggest to the user the most probable parameters. All
those suggestions can be modi�ed by the user, correcting
them and adding newones.	is tool improves the usability of
our approach, reducing the amount of e�ort for annotation.
Improvements of this tool, such as integrating systems like
CDE [22] or SystemTap [29] to trace the execution and crawl
the so
ware components involved, are a part of our future
work.

Using this tool, we have documented the mentioned 4
templates and their related 27 so
ware components. 	is
information includes the con�guration parameters values
and version required (when available). Our system allows to
record the information about versions, but do not enforce



Scienti�c Programming 7

it for all component. In this case we had information for
describing the version of the Java VM and Ubuntu compo-
nents, but not for the JAR components as developers did not
include this information. We consider that is important to
allow both, versioned and unversioned components in our
system, asmany times scienti�c so
ware is not developed and
published using a versioning cycle.

We also have generated a catalogue including the available
So
ware Stacks, detailing the So
ware Binaries location
of each so
ware component and what parameters can be
speci�ed. In this catalogue, we also include a deployment plan
for each component, that speci�es a set of steps and scripts for
installing it in its future target location.

For describing the available computational resources, we
have generated a dataset for Scienti�c Virtual Appliances. In
this dataset, we describe the set of virtualmachine images that
can be used to enact the appliance and the So
ware Stacks
installed on them.

	ese 3 datasets, along with the So
ware Binaries and
the VM Images, compose the 3 catalogues that our system
queries for generating the new infrastructure con�guration.
	e TextAnalyticsWF-RO research object associated with this
paper contains the RDF �les of each catalogue, as well as a set
of sample queries for interacting with them.

6. Infrastructure Specification Algorithm

In this section, we introduce the Infrastructure Speci�cation
Algorithm (ISA), a process for generating an infrastructure
speci�cation, which de�nes the set of virtual machines that
must be created and the so
ware components that will be
deployed on each one of them.

	e inputs of this algorithm are the three datasets
explained in Section 5 and the identi�er, as a URI, of the
work�ow whose infrastructure we want to reproduce.

We have developed this proof-of-concept implemen-
tation of the algorithm in Java, using Jena (http://jena
.apache.org/) for managing the semantic information of our
system, which is stored locally. Jena provides the SPARQL
endpoint we query for retrieving information.

	is version of the algorithm aims to �nd all the possible
matches between the requirements of a work�ow, including
their dependencies, and the available virtual appliances.

Firstly, a
er loading the datasets (lines 1–5), we query
theWork	ow Requirements Dataset to load the requirements
of each step of the work�ow and their related So
ware
Stacks (line 7). 	en, we query the So�ware Stacks Dataset
to recursively calculate the Requirement Dependency Graph,
a directed graph that relates So
ware Stacks with their
dependent ones (lines 10–15).

	is graph may contain circular dependencies. Even
though these dependencies are a bad practice in so
ware
design and development, they usually occur in functional
programming and among nonexpert developers, which may
be the case of a scientist developing a computational exper-
iment without su
cient skills on programming. In our
datasets, there are no circular dependencies; however, our
algorithm is able to deal with them avoiding in�nite loops by

keeping track of the visited nodes and avoiding them over the
recursive iterations.

Once we have generated the Requirement Dependency
Graph, we retrieve the information of all the available
Scienti�c Virtual Appliances (line 17). We then calculate
the compatibility between each requirement and appliance
(line 19). To do that, we calculate the intersection of the
set of So
ware Stacks of the graph with the set of stacks
of the appliance. We require the intersection to be greater
than a certain threshold. Appliances below this threshold are
removed from the candidates list. In this work, we have used a
threshold parameter with value 0, requiring that at least both
sets have 1 stack in common.

We then sort the resultant appliances for obtaining the
one with the greater intersection for each requirement,
arguing that the more components they have in common,
the less deployment e�ort would be needed, making the
appliance more suitable.

Finally, we use this intersection to remove the unneces-
sary stacks from theRequirementDependencyGraph, as they
are already deployed in the appliance. We remove each stack
included in the intersection and its derived dependencies
recursively (line 21). 	at is, the dependencies that have no
other stack depending on them and therefore get isolated
once the stack from the intersection has been removed.

We �nally merge subwork�ows that share common
requirements (line 23). 	is version implements a simple
policy that aims to reduce the deployment e�ort. 	is is a
policy among many others that may be implemented con-
sidering many other aspects, such as performance (favoring
local Cloud providers) or economic aspects (encouraging the
system to select the cheapest available SVA).

A pseudocode overview of the main steps of the ISA is
listed in Listing 1.

In the last step, we generate a PRECIP experiment which
creates the necessary computational resources based on the
SVAs (line 23). We traverse the so
ware components that
must be deployed to generate a set of PRECIP commands for
executing the deployment plans of each component.

An online demo of the current implementation is avail-
able at http://github.com/idafensp/WicusISADemos/tree/
master/v.0.2.

7. Putting It Together

Once we have all the appliances and their associated require-
ment’s dependency graphs, we generate the infrastructure
speci�cation using the stacks’ deployment plans. In Listing 2,
we see how our algorithm has included scripts and con�gura-
tion parameters of the stacks for generating a PRECIP �le that
can be enacted on the Amazon EC2 Infrastructure Provider.
	is speci�cation corresponds to the Feature Generation
work�ow included in our dataset. 	is work�ow processes a
�le containing a list of words and generates a vector format
data structure with a �ltered version of the original �le.

In this speci�cation �le, we see the deployment descrip-
tion of one experiment. 	e depicted fragment of the �le
corresponds to the StopsWords step of the FeatureGeneration
work�ow. In this example, the user speci�ed that this step
required the StopWords.jar component (lines 31–60).



8 Scienti�c Programming

(1) WorkflowRequirementsDataset.load();

(2)
(3) SVADataset.load();

(4)
(5) SoftwareCatalogDataset.load();

(6)
(7) Map<Workflow,List<Requirements>> wfReqs =

(8) retrieveRequirements(WorkflowRequirementsDataset, WorkflowID);

(9)
(10) Map<Workflow,List<Requirements>> propagatedWfReqs =

(11) propagateReqs(wfReqs);

(12)
(13) List<List<List<SWComponents>>> softwareComponents =

getSoftwareComponents(propagatedWfReqs);

(14)
(15) Map<Requirement,D-Graph<SWComponents>>

softwareComponentsDependencyGraph = getSoftwareDependencies(

softwareComponents);

(16)
(17) List<SVA> availableSvas = getAvailableSvas(providersList);

(18)
(19) Map<Requirements,SVA> maxCompatibilities =

getCompatibilityIntersection(softwareComponentsDependencyGraph,

availableSvas);

(20)
(21) Map<Requirement,D-Graph<SWComponents>>

substractedSwComponentsDepGraph = substractSoftwareComponents(

softwareComponentsDependencyGraph, maxCompatibilities);

(22)
(23) Map<SVA, List<Requirments>>mergedSvas= mergeSubworkflows(

propagatedWfReqs, maxCompatibilities);

(24)
(25) generatePrecipScript(mergeSubworkflows,

substractedSweComponentsDepGraph);

Listing 1: Pseudocode overview of the ISA.

According to the So�ware Stacks Dataset, this component
depends on another JAR namedRemoveStopWords.jar, which
depends on the Java VM version 1.7.0 21, and on the Ubuntu
12.04 OS, and therefore the algorithm has included both
dependencies (lines 9–29). 	e Java VM included in the cat-
alogue corresponds to the available Ubuntu implementation.

In the annotations, it was speci�ed that the JAVA HOME
variable must be set to an speci�c path and that both JAR
�les should be located on the “DIR:” folder. We have de�ned
two con�gurable variables in our system, “DIR:” and “REPO:”
that the user can de�ne. “DIR:” represents the execution
folder of the work�ow that usually depends on the WMS,
while “REPO:” de�nes the URL (either FTP or HTTP) where
the so
ware binaries can be located.

Our systems selects in this case the “ami-967edc�”
AmazonMachine Image (lines 1–9), as it appears annotated in
the Scienti�c Virtual Appliance Datasetwith theUbuntu 12.04
so
ware stack, and therefore it matches the requirements of
the step. Notice that the speci�cation on Listing 2 does not
include Ubuntu 12.04, as it is already described as installed
on the selected appliance.

In this example, we have de�ned the Ubuntu 12.04
so
ware stack as a bundle that includes a virtual machine
image that includes that version of the OS. A more detailed
description of it, including speci�c libraries and tools would
be useful. Also de�ning a more expressive dependency
relationship, that could de�ne that the component, depends
on the UbuntuOS or any variant of it under some restrictions
and would be desirable. 	ese two aspects are a part of
the future work in which we plan to generate more �ne-
grained annotations and add new andmore expressive object
properties based on the work described in [14].

With this speci�cation along with the scripts referenced
on it, we will be able to reproduce an infrastructure for
reexecuting the former work�ow.

8. Conclusions and Future Work

In this work, we motivate and expose how an infrastructure-
aware approach could ease the experiment reproduction
and argue how it should be done. As described in this
paper, we propose to describe the computational resources,



Scienti�c Programming 9

(1) exp = EC2Experiment(

(2) os.environ[’AMAZON EC2 REGION’],
(3) os.environ[’AMAZON EC2 URL’],
(4) os.environ[’AMAZON EC2 ACCESS KEY’],
(5) os.environ[’AMAZON EC2 SECRET KEY’])
(6)
(7)
(8)
(9) exp.provision("ami-967edcff", instance type="t1.micro", tags=["inst0"

], count=1)

(10)
(11) # Wait for all instances to boot and become accessible.
(12) exp.wait()
(13)
(14) ⋅ ⋅ ⋅
(15)
(16) # [STACK] Deployment of wstack:JAVA SOFT STACK stack
(17)
(18) # [COMPONENT] Deployment of wstack:JAVA SOFT COMP component(version

: 1.7.0 21)
(19)
(20) # [STEP] Execution of wstack:JAVA DEP STEP step
(21)
(22) # copy JAVA script.sh to the instance
(23) exp.put(["inst0"], "JAVA script.sh", "/home/cloud-user/JAVA script.

sh", user="root")

(24)
(25) # granting execution for JAVA script.sh
(26) exp.run(["inst0"], "chmod⊔755⊔/home/cloud-user/JAVA script.sh", user

="root")

(27)
(28) # executing the JAVA script.sh script
(29) exp.run(["inst0"], "/home/cloud-user/JAVA script.sh⊔JAVA HOME⊔/usr/

lib/jvm/", user="root")

(30)
(31) # [STACK] Deployment of wstack:REMOVESTOPWORDS SOFT STACK stack
(32)
(33) # [COMPONENT] Deployment of wstack:REMOVESTOPWORDS SOFT COMP

component
(34)
(35) # [STEP] Execution of wstack:REMOVESTOPWORDS DEP STEP step
(36)
(37) # copy deploy jar.sh to the instance
(38) exp.put(["inst0"], "deploy jar.sh", "/home/cloud-user/deploy jar.sh"

,user="root")

(39)
(40) # granting execution for deploy jar.sh
(41) exp.run(["inst0"], "chmod⊔755⊔/home/cloud-user/deploy jar.sh", user=

"root")

(42)
(43) # executing the deploy jar.sh script
(44) exp.run(["inst0"], "/home/cloud-user/deploy jar.sh⊔⊔JAR FILE⊔REPO:

jar/RemoveStopWords.jar⊔DEST PATH⊔DIR:⊔", user="root")

(45)
(46) # [STACK] Deployment of wstack:STOPWORDS SOFT STACK stack
(47)

Listing 2: Continued.



10 Scienti�c Programming

(48) # [COMPONENT] Deployment of wstack:STOPWORDS SOFT COMP component
(49)
(50) # [STEP] Execution of wstack:STOPWORDS DEP STEP step
(51)
(52) # copy deploy jar.sh to the instance
(53) exp.put(["inst0"], "deploy jar.sh", "/home/cloud-user/deploy jar.sh"

,user="root")

(54)
(55) # granting execution for deploy jar.sh
(56) exp.run(["inst0"], "chmod⊔755⊔/home/cloud-user/deploy jar.sh", user=

"root")

(57)
(58) # executing the deploy jar.sh script
(59) exp.run(["inst0"], "/home/cloud-user/deploy jar.sh⊔JAR FILE REPO:jar

/StopWords.jar⊔⊔DEST PATH⊔DIR:⊔", user="root")

(60)
(61) ⋅ ⋅ ⋅

Listing 2: Part of the PRECIP speci�cation �le for the FeatureGeneration work�ow.

from hardware speci�cation to so
ware con�guration, rather
than physically conserving and sharing them. We argue
that documenting the features and characteristics of these
resources in an abstract way improves the expressiveness
of the approach, increasing the chances of recreating an
equivalent execution environment in the future.

We have described a use case scenario on Text Analytics
domain, in which we documented 4 work�ow templates and
their related resources. Based on those descriptions, we have
explained how our Infrastructure Speci�cation Algorithm is
able to generate an equivalent infrastructure de�nition that
can be later enacted on an infrastructure provider.

We are planning to extend our Infrastructure Speci�cation
Algorithm, providing new policies and including new criteria
for selecting and combining computational resources. Even
though the running time of our algorithm is not expensive
(around 4 seconds), we plan to study di�erent heuristics to
our selection process in order to reduce its complexity, which
is important when dealing with large collections of resources.

Wewill also extend theWICUSontology network, adding
new properties and classes for increasing its expressiveness.
	ese capabilities will allow us to de�ne infrastructures with
a deeper level of detail and include more dimensions for
describing so
ware components, including properties such
as package, release, or variant, as described in [14].

	e annotations about the work�ow infrastructure
requirements are a key component of our approach. In
order to obtain a coherent description of the execution
environment and also to reduce the amount of e�ort for the
scientists, we need to improve and expand the usability of our
annotation tools.

We are planning to add features for automatic capture and
suggest the components involved in the execution. In addi-
tion to this tool, we need to provide a set of guidelines that
allow users to understand and evaluate what are the necessary
and relevant properties of their execution environments. We
will de�ne a set of methodological steps for experiment

designers to know how to populate and for scientists in
general to know how to reproduce an execution environment
using our approach.

We are also planning to apply our approach to another
science domains (such as astrophysics, genetics, etc.), using
di�erent work�ow management systems, in order to validate
the ideas exposed in this paper on di�erent contexts involving
di�erent kinds of work�ows.

Conflict of Interests

	e authors declare that there is no con�ict of interests
regarding the publication of this paper.

Acknowledgments

	e authors would like to thank the WINGS Project (http://
wings-work�ows.org/) and the PRECIP (http://pegasus.isi
.edu/precip) team for their support and materials and the
FPU Grant Program (Formacion de Profesorado Universi-
tario) from the Spanish Science and Innovation Ministry
(MICINN).

References

[1] J. P. Mesirov, “Accessible reproducible research,” Science, vol.
327, no. 5964, pp. 415–416, 2010.

[2] Y. Gil, E. Deelman, M. Ellisman et al., “Examining the chal-
lenges of scienti�c work�ows,”Computer, vol. 40, no. 12, pp. 24–
32, 2007.

[3] C. Drummond, “Replicability is not reproducibility: nor is it
good science,” in Proceedings of the Evaluation Methods for
Machine Learning Workshop at the 26th ICML, 2009.

[4] K. Belhajjame, O. Corcho, D. Garijo et al., “Work�ow-centric
research objects: �rst class citizens in scholarly discourse,” in
Proceedings of the Workshop on the Semantic Publishing, Crete,
Greece, 2012.



Scienti�c Programming 11

[5] D. de Roure, K. Belhajjame, P. Missier et al., “Towards the
preservation of scienti�c work�ows,” in Proceedings of the the
8th International Conference on Preservation of Digital Objects
(iPRES ’11), Singapore, 2011.

[6] V. G. Cerf, “Avoiding ‘bit rot’: long-term preservation of digital
information,” Proceedings of the IEEE, vol. 99, no. 6, pp. 915–916,
2011.

[7] J. Zhao, J. M. Gomez-Perez, K. Belhajjame et al., “Why work-
�ows break—understanding and combating decay in Taverna
work�ows,” in Proceedings of the IEEE 8th International Confer-
ence on E-Science, pp. 1–9, October 2012.

[8] D. de Roure, C. Goble, and R. Stevens, “Designing themyex-
periment virtual research environment for the social sharing
of work�ows,” in Proceedings of the 3rd IEEE International
Conference on E-Science and Grid Computing (E-SCIENCE ’07),
pp. 603–610, IEEE, Washington, DC, USA, December 2007.

[9] T. Oinn, M. Greenwood, M. Addis et al., “Taverna: Lessons
in creating a work�ow environment for the life sciences,”
Concurrency and Computation: Practice and Experience, vol. 18,
no. 10, pp. 1067–1100, 2006.

[10] I. Wassink, P. E. van der Vet, K. Wolstencro
 et al., “Analyzing
scienti�c work�ows: why work�ows not only connect web
services,” in IEEE Congress on Services 2009, L. J. Zhang, Ed.,
pp. 314–321, IEEE Computer Society Press, Los Alamitos, Calif,
USA, July 2009.

[11] P. Mates, E. Santos, J. Freire, and C. T. Silva, “Crowdlabs: social
analysis and visualization for the sciences,” in Proceedings of
the 23rd International Conference on Scienti�c and Statistical
Database Management (SSDBM ’11), pp. 555–564, Springer,
Berlin, Germany, 2011.

[12] B.Giardine, C. Riemer, R. C.Hardison et al., “Galaxy: a platform
for interactive large-scale genome analysis,” Genome Research,
vol. 15, no. 10, pp. 1451–1455, 2005.

[13] M. Reich, T. Liefeld, J. Gould, J. Lerner, P. Tamayo, and J. P.
Mesirov, “GenePattern 2.0,” Nature Genetics, vol. 38, no. 5, pp.
500–501, 2006.

[14] B. Matthews, A. Shaon, J. Bicarregui, J. Catherine, J. Woodcock,
and E. Conway, Towards a Methodology for So�ware Preserva-
tion, 2009.

[15] 2011, http://www.executablepapers.com/.

[16] P. Van Gorp and S. Mazanek, “Share: a web portal for creating
and sharing executable research papers,”ProcediaComputer Sci-
ence, vol. 4, pp. 589–597, 2011, Proceedings of the International
Conference on Computational Science, 2011.

[17] G. R. Brammer, R.W. Crosby, S. J.Matthews, and T. L.Williams,
“Papermache: creating dynamic reproducible science,”Procedia
Computer Science, vol. 4, pp. 658–667, 2011, Proceedings of the
International Conference on Computational Science (fICCSg
'11).

[18] P. Bonnet, S. Manegold, M. Bjørling et al., “Repeatability and
workability evaluation of SIGMOD 2011,” SIGMOD Record, vol.
40, no. 2, pp. 45–48, 2011.

[19] B. Howe, “Virtual appliances, cloud computing, and repro-
ducible research,”Computing in Science and Engineering, vol. 14,
no. 4, Article ID 6193081, pp. 36–41, 2012.

[20] Reproducibility in computational and experimental mathemat-
ics, 2012.

[21] F. Chirigati, D. Shasha, and J. Freire, “ReproZip: using prove-
nance to support computational reproducibility,” in Proceedings
of the 5th USENIX Workshop on the �eory and Practice of
Provenance, 2013.

[22] P. J. Guo, “CDE: run any Linux application on-demand without
installation,” in Proceedings of the 25th International Conference
on Large Installation System Administration (LISA ’11), USENIX
Association, Berkeley, Calif, USA, December 2011.

[23] S. Strodl, R. Mayer, G. Antunes, D. Draws, and A. Rauber,
“Digital preservation of a process and its application to e-
science experiments,” in Proceedings of the 10th International
Conference on Preservation of Digital Objects (IPRES ’13), 2013.

[24] Puppet Labs, Puppet, http://projects.puppetlabs.com/projects/
puppet.

[25] Opscode, Chef, http://www.opscode.com/chef/.

[26] S. Azarnoosh, M. Rynge, G. Juve et al., “Introducing precip:
an api for managing repeatable experiments in the cloud,” in
Proceedings of the IEEE 5th International Conference on Cloud
Computing Technology and Science (CloudCom ’13), pp. 19–26,
Bristol, UK, December 2013.

[27] M. Gavish and D. Donoho, “A universal identi�er for compu-
tational results,” Procedia Computer Science, vol. 4, pp. 637–
647, 2011, Proceedings of the International Conference on
Computational Science (fICCSg '11).

[28] M. Hauder, E�cient text analytics with scienti�c work	ows
[M.S. thesis], University of Augsburg, Institute for So
ware and
Systems Engineering, Augsburg, Germany, 2011.

[29] Systemtap, http://sourceware.org/systemtap/.



Submit your manuscripts at

http://www.hindawi.com

Computer Games 
 Technology

International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Distributed 
 Sensor Networks

International Journal of

Advances in

Fuzzy
Systems

Hindawi Publishing Corporation
http://www.hindawi.com

Volume 2014

International Journal of

Reconfigurable

Computing

Hindawi Publishing Corporation 
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

 Applied 
Computational 
Intelligence and Soft 
Computing

 Advances in 

Artificial 
Intelligence

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Advances in

Software Engineering
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Electrical and Computer 
Engineering

Journal of

Journal of

Computer Networks 
and Communications

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

 Advances in 

Multimedia

 International Journal of 

Biomedical Imaging

Hindawi Publishing Corporation

http://www.hindawi.com Volume 2014

Artificial
Neural Systems

Advances in

Hindawi Publishing Corporation

http://www.hindawi.com Volume 2014

Robotics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Computational 
Intelligence and 
Neuroscience

Industrial Engineering
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Modelling & 
Simulation 
in Engineering
Hindawi Publishing Corporation 
http://www.hindawi.com Volume 2014

The Scientific 
World Journal
Hindawi Publishing Corporation 
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Human-Computer
Interaction

Advances in

Computer Engineering
Advances in

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014


