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Towards Robust and Efficient Computation in

Dynamic Peer-to-Peer Networks

John Augustine∗ Gopal Pandurangan † Peter Robinson ‡ Eli Upfal§

Abstract

Motivated by the need for robust and fast distributed
computation in highly dynamic Peer-to-Peer (P2P)
networks, we study algorithms for the fundamental
distributed agreement problem. P2P networks are
highly dynamic networks that experience heavy node
churn (i.e., nodes join and leave the network continu-
ously over time). Our goal is to design fast algorithms
(running in a small number of rounds) that guarantee,
despite high node churn rate, that almost all nodes
reach a stable agreement. Our main contributions
are randomized distributed algorithms that guarantee
stable almost-everywhere agreement with high proba-
bility even under high adversarial churn in a polylog-
arithmic number of rounds. In particular, we present
the following results:

1. An O(log2 n)-round (n is the stable network
size) randomized algorithm that achieves almost-
everywhere agreement with high probability un-
der up to linear churn per round (i.e., εn, for some
small constant ε > 0), assuming that the churn
is controlled by an oblivious adversary (that has
complete knowledge and control of what nodes
join and leave and at what time and has unlim-
ited computational power, but is oblivious to the
random choices made by the algorithm).
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2. An O(logm log3 n)-round randomized algorithm
that achieves almost-everywhere agreement with
high probability under up to ε

√
n churn per

round (for some small ε > 0), where m is the
size of the input value domain, that works even
under an adaptive adversary (that also knows the
past random choices made by the algorithm).

Our algorithms are the first-known, fully-
distributed, agreement algorithms that work under
highly dynamic settings (i.e., high churn rates per
step). Furthermore, they are localized (i.e., do not re-
quire any global topological knowledge), simple, and
easy to implement. These algorithms can serve as
building blocks for implementing other non-trivial dis-
tributed computing tasks in dynamic P2P networks.
Keywords: Peer-to-Peer network, Dynamic net-
work, Stable agreement, Distributed algorithm, Ran-
domized algorithm, Expander graph.

1 Introduction

Peer-to-peer (P2P) computing is emerging as one of
the key networking technologies in recent years with
many application systems, e.g., Skype, BitTorrent,
Cloudmark etc. However, many of these systems are
not truly P2P, as they are not fully decentralized —
they typically use hybrid P2P along with centralized
intervention. For example, Cloudmark [17] is a large
spam detection system used by millions of people that
operates by maintaining a hybrid P2P network; it uses
a central authority to regulate and charge users for
participation in the network. A key reason for the
lack of fully-distributed P2P systems is the difficulty
in designing highly robust algorithms for large-scale
dynamic P2P networks. Indeed, P2P networks are
highly dynamic networks characterized by high degree
of node churn — i.e., nodes continuously join and
leave the network. Connections (edges) may be added
or deleted at any time and thus the topology changes
very dynamically. In fact, measurement studies of
real-world P2P networks [24, 29, 51, 52] show that
the churn rate is quite high: nearly 50% of peers
in real-world networks can be replaced within an
hour. (However, despite a large churn rate, these
studies also show that the total number of peers in
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the network is relatively stable.) We note that peer-
to-peer algorithms have been proposed for a wide
variety of computationally challenging tasks such as
collaborative filtering [14], spam detection [17], data
mining [19], worm detection and suppression [43,
54], and privacy protection of archived data [27].
However, all algorithms proposed for these problems
have no theoretical guarantees of being able to work
in a network with a dynamically changing topology
and a linear churn rate per round. This is a major
bottleneck in implementation and wide-spread use of
these algorithms.

In this paper, we take a step towards designing ro-
bust algorithms for large-scale dynamic peer-to-peer
networks. In particular, we study the fundamental
distributed agreement problem in P2P networks (the
formal problem statement and model is given in Sec-
tion 2). An efficient solution to the agreement prob-
lem can be used as a building block for robust and effi-
cient solutions to other problems as mentioned above.
However, the distributed agreement problem in P2P
networks is challenging since the goal is to guarantee
almost-everywhere agreement, i.e., almost all nodes1

should reach consensus, even under high churn rate.
The churn rate can be as much as linear per time step
(round), i.e., up to a constant fraction of the stable
network size can be replaced per time step. Indeed,
until recently, almost all the work known in the liter-
ature (see e.g., [23, 33, 34, 35, 53]) have addressed the
almost-everywhere agreement problem only in static
(bounded-degree) networks and these approaches do
not work for dynamic networks with changing topol-
ogy. Such approaches fail in dynamic networks where
both nodes and edges can change by a large amount
in every round. For example, the work of Upfal [53]
showed how one can achieve almost-everywhere agree-
ment under up to a linear number — up to εn, for a
sufficiently small ε > 0 — of Byzantine faults in a
bounded-degree expander network (n is the network
size). The algorithm required O(log n) rounds and
polynomial (in n) number of messages; however, the
local computation required by each processor is expo-
nential. Furthermore, the algorithm requires knowl-
edge of the global topology, since at the start, nodes
need to have this information “hardcoded”. The work
of King et al. [36] is important in the context of P2P
networks, as it was the first to study scalable (poly-
logarithmic communication and number of rounds) al-
gorithms for distributed agreement (and leader elec-
tion) that are tolerant to Byzantine faults. However,
as pointed out by the authors, their algorithm works
only for static networks; similar to Upfal’s algorithm,

1In sparse, bounded-degree networks, an adversary can

always isolate some number of non-faulty nodes, hence almost-
everywhere is the best one can hope for in such networks [23].

the nodes require hardcoded information on the net-
work topology to begin with and thus the algorithm
does not work when the topology changes. In fact,
this work ([36]) raises the open question of whether
one can design agreement protocols that can work in
highly dynamic networks with a large churn rate.

1.1 Our Main Results Our first contribution is
a rigorous theoretical framework for the design and
analysis of algorithms for highly dynamic distributed
systems with churn. We briefly describe the key in-
gredients of our model here. (Our model is described
in detail in Section 2.) Essentially, we model a P2P
network as a bounded-degree expander graph whose
topology — both nodes and edges — can change ar-
bitrarily from round to round and is controlled by an
adversary. However, we assume that the total num-
ber of nodes in the network is stable. The number
of node changes per round is called the churn rate or
churn limit. We consider a churn rate of up to some
εn, where n is the stable network size. Note that our
model is quite general in the sense that we only as-
sume that the topology is an expander at every step;
no other special properties are assumed. Indeed, ex-
panders have been used extensively to model dynamic
P2P networks in which the expander property is pre-
served under insertions and deletions of nodes (e.g.,
[41, 47]). Since we do not make assumptions on how
the topology is preserved, our model is applicable to
all such expander-based networks.

We study stable, almost-everywhere, agreement
in our model. By “almost-everywhere”, we mean that
almost all nodes, except possibly βc(n) nodes (where
c(n) is the order of the churn and β > 0 is some
small constant) should reach agreement on a common
value. (This agreed value must be the input value of
some node.) By “stable” we mean that the agreed
value is preserved subsequently after the agreement is
reached.

Our main contribution is the design and analysis
of randomized distributed algorithms that guarantee
stable almost-everywhere agreement with high prob-
ability (i.e., with probability 1− 1/nΩ(1)) even under
high adversarial churn in a polylogarithmic number of
rounds. Our algorithms also guarantee stability once
agreement has been reached. In particular, we present
the following results (the precise theorem statements
are given in the respective sections below):

1. (cf. Section 4) An O(log2 n)-round (n is the
stable network size) randomized algorithm that
achieves almost-everywhere agreement with high
probability under up to linear churn per round
(i.e., εn, for some small constant ε > 0), assum-
ing that the churn is controlled by an oblivious
adversary (that has complete knowledge of what
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nodes join and leave and at what time, but is
oblivious to the random choices made by the al-
gorithm). Our algorithm requires only polyloga-
rithmic in n bits to be processed and sent (per
round) by each node.

2. (cf. Section 5) An O(logm log3 n)-round random-
ized algorithm that achieves almost-everywhere
agreement with high probability under up to ε

√
n

churn per round, for some small ε > 0, that
works even under an adaptive adversary (that
also knows the past random choices made by the
algorithm). Here m refers to the size of the do-
main of input values. Our algorithm requires up
to polynomial in n bits (and up to O(logm) bits)
to be processed and sent (per round) by each
node.

3. (cf. Section 6) We also show that no determin-
istic algorithm can guarantee almost-everywhere
agreement (regardless of the number of rounds),
even under constant churn rate.

To the best of our knowledge, our algorithms
are the first-known, fully-distributed, agreement algo-
rithms that work under highly dynamic settings. Our
algorithms are localized (do not require any global
topological knowledge), simple, and easy to imple-
ment. These algorithms can serve as building blocks
for implementing other non-trivial distributed com-
puting tasks in P2P networks.

1.2 Technical Contributions The main techni-
cal challenge that we have to overcome is design-
ing and analyzing distributed algorithms in networks
where both nodes and edges can change by a large
amount. Indeed, when the churn rate is linear, i.e.,
say εn per round, in constant (1/ε) number of rounds
the entire network can be renewed!

We derive techniques for information spread-
ing (cf. Section 3) for doing non-trivial distributed
computation in such networks. The first technique
that we use is “flooding”. We show that in an
expander-based P2P network even under linear churn
rate, it is possible to spread information by flood-
ing if sufficiently many (a β-fraction of the order of
the churn) nodes initiate the information spreading
(cf. Lemma 3.1). In other words, even an adaptive
adversary cannot “suppress” more than a small frac-
tion of the values. The precise statements and proofs
are in Section 3.

To analyze these flooding techniques we introduce
the dynamic distance, which describes the effective
distance between two nodes with respect to the causal
influence. We define the notions of influence sets and
dynamic distance (or flooding time) in dynamic net-
works with node churn. (Similar notions have been

defined for dynamic graphs with a fixed set of nodes,
e.g., [37, 12]).) In (connected) networks where the
nodes are fixed, the effective diameter (e.g., [37]) is
always finite. In the highly dynamic setting consid-
ered here, however, the effective distance between two
nodes might be infinite, thus we need a more refined
definition for influence set and dynamic distance.

The second technique that we use is “support
estimation” (cf. Section 3.4). Support estimation is a
randomized technique that allows us to estimate the
aggregate count (or sum) of values of all or a subset of
nodes in the network. Support estimation is done in
conjunction with flooding and uses properties of the
exponential distribution (similar to [18, 44]). Support
estimation allows us to estimate the aggregate value
quite precisely with high probability even under linear
churn. But this works only for an oblivious adversary;
to get similar results for the adaptive case, we need
to increase the amount of bits that can be processed
and sent by a node in every round.

Apart from support estimation, we also use our
flooding techniques in the agreement algorithm for the
oblivious case (cf. Algorithm 1) to sway the decision
one way or the other. For the adaptive case (cf.
Algorithm 2), we use the variance property of a
certain probability distribution to achieve the same
effect with constant probability.

1.3 Other Related Work The distributed agree-
ment (or consensus) problem is important in a wide
range of applications, such as database management,
fault-tolerant analysis of aggregate data, and coordi-
nated control of multiple agents or peers. There is a
long line of research on various versions of the problem
with many important results (see e.g., [5, 42] and the
references therein). The relaxation of achieving agree-
ment “almost everywhere” was introduced by [23] in
the context of fault-tolerance in networks of bounded
degree where all but O(t) nodes achieve agreement
despite t = O( n

logn ) faults. This result was improved

by [53], which showed how to guarantee almost every-
where agreement in the presence of a linear fraction
of faulty nodes. We also refer to the related results of
Berman and Garay on the butterfly network [13].

There has been significant work in designing peer-
to-peer networks that are provably robust to a large
number of Byzantine faults [25, 32, 45, 49]. These fo-
cus only on robustly enabling storage and retrieval
of data items. The problem of achieving almost-
everywhere agreement among nodes in P2P networks
is considered by King et al. in [36] in the context of
the leader election problem; essentially, [36] is a sparse
network implementation of the full information pro-
tocol of [35]. More specifically, [36] assumes that the
adversary corrupts a constant fraction b < 1/3 of the
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processes that are under its control throughout the
run of the algorithm. The protocol of [36] guarantees
that with constant probability an uncorrupted leader
will be elected and that a 1−O( 1

logn ) fraction of the
uncorrupted processes know this leader. Note that the
failure assumption of [36] is quite different from the
one we use: Even though we do not assume corrupted
nodes, the adversary is free to subject different nodes
to churn in every round. Also note that the algorithm
of [36] does not work for dynamic networks.

Dynamic networks have been studied extensively
over the past three decades. Some of the early studies
focused on dynamics that arise out of faults, i.e., when
edges or nodes fail. A number of fault models, vary-
ing according to extent and nature (e.g., probabilistic
vs. worst-case) and the resulting dynamic networks
have been analyzed (e.g., see [5, 42]). There have
been several studies on models that constrain the rate
at which changes occur, or assume that the network
eventually stabilizes (e.g., see [1, 22, 26]). Some of the
early work on general dynamic networks include [2, 9]
which introduce general building blocks for communi-
cation protocols on dynamic networks. Another no-
table work is the local balancing approach of [7] for
solving routing and multicommodity flow problems on
dynamic networks. Most of these papers develop algo-
rithms that will work under the assumption that the
network will eventually stabilize and stop changing.

Modeling general dynamic networks has gained
renewed attention with the recent advent of heteroge-
neous networks composed out of ad hoc, and mobile
devices. To address the unpredictable and often un-
known nature of network dynamics, [38] introduce a
model in which the communication graph can change
completely from one round to another, with the only
constraint being that the network is connected at each
round. The model of [38] allows for a much stronger
adversary than the ones considered in past work on
general dynamic networks [6, 7, 8]. The model has
also been applied to agreement problems in dynamic
networks; various versions of coordinated consensus
(where all nodes must agree) have been considered by
Kuhn et al. in [39]. The survey of [37] summarizes
recent work on dynamic networks.

We note that the model of [38] allows only edge
changes from round to round while the nodes remain
fixed. In this work, we introduce a dynamic network
model where both nodes and edges can change by a
large amount (up to a linear fraction of the network
size). Therefore, the framework we introduce in Sec-
tion 2 is more general than the model of [38], as it is
additionally applicable to dynamic settings with node
churn. The same is true for the notions of dynamic
distance and influence set that we introduce in Sec-
tion 3.1, since in our model the dynamic distance is

not necessarily finite. In fact, according to [37], mod-
eling churn is one of the important open problems in
the context of dynamic networks. Our paper takes a
step in this direction.

An important aspect of our algorithms is that
they will work and terminate correctly even when the
network keeps continually changing. We note that
there has been considerable prior work in dynamic
P2P networks (see [47] and the references therein)
but these do not assume that the network keeps
continually changing over time.

Recent work of [30, 31] presents information
spreading algorithms based on network coding [3].

Due to the mobility of nodes, mobile ad-hoc net-
works can also be considered as dynamic networks.
The focus of [46] are the minimal requirements that
are necessary to correctly perform flooding and rout-
ing in highly dynamic networks where edges can
change but the set of nodes remains the same. In
the context of agreement problems, electing a leader
among mobile nodes that may join or leave the net-
work at any time is the focus of [16]. To make leader
election solvable in this model, Chung et al. introduce
the notion of D-connectedness, which ensures infor-
mation propagation among all nodes that remain long
enough in the network. Note that, in contrast to our
model, this assumption prohibits the adversary from
permanently isolating parts of the network.

In most work on fault-tolerant agreement prob-
lems the adversary a priori commits to a fixed set
of faulty nodes. In contrast, [21] considers an ad-
versary that can corrupt the state of some (possibly
changing) set of O(

√
n) nodes in every round. The

median rule of [21] provides an elegant way to ensure
that most nodes stabilize on a common output value
within O(log n) rounds, assuming a complete com-
munication graph. The median rule, however, only
guarantees that this agreement lasts for some polyno-
mial number of rounds, whereas we are able to retain
agreement ad infinitum.

Expander graphs and spectral properties have al-
ready been applied extensively to improve the net-
work design and fault-tolerance in distributed com-
puting (cf. [53, 23, 11]). Law and Siu [41] provide a
distributed algorithm for maintaining an expander in
the presence of churn with high probability by using
Hamiltonian cycles. In [48] it is shown how to main-
tain the expansion property of a network in the self-
healing model where the adversary can delete/insert
a new node in every step. Information spreading in
distributed networks is the focus of [15] where it is
shown that this problem requires O(log n) rounds in
graphs with a certain conductance in the push/pull
model where a node can communicate with a ran-
domly chosen neighbor in every round.
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Aspnes et al. [4] consider information spreading
via expander graphs against an adversary, which is
related to the flooding techniques we derive in Sec-
tion 3. More specifically, in [4] there are two oppos-
ing parties “the alert” and “the worm” (controlled by
the adversary) that both try to gain control of the
network. In every round each alerted node can alert
a constant number of its neighbors, whereas each of
the worm nodes can infect a constant number of non-
alerted nodes in the network. In [4], Aspnes et al.
show that there is a simple strategy to prevent all
but a small fraction of nodes from becoming infected
and, in case that the network has poor expansion, the
worm will infect almost all nodes.

The work of [11] shows that, given a network
that is initially an expander and assuming some
linear fraction of faults, the remaining network will
still contain a large component with good expansion.
These results are not directly applicable to dynamic
networks with large amount of churn like the ones we
are considering, as the topology might be changing
and linear churn per round essentially corresponds
to O(n log n) total churn after Θ(log n) rounds—the
minimum amount of time necessary to solve any non-
trivial task in our model.

In the context of maintenaning properties in P2P
networks, Kuhn et al. consider in [40] that up to
O(log n) nodes can crash or join per constant num-
ber of time steps. Despite this amount of churn, it is
shown in [40] how to maintain a low peer degree and
bounded network diameter in P2P systems by using
the hypercube and pancake topologies. Scheideler and
Schmid show in [50] how to maintain a distributed
heap that allows join and leave operations and, in
addition, is resistent to Sybil attacks. A robust dis-
tributed implementation of a distributed hash table
(DHT) in a P2P network is given by [10], which can
withstand two important kind of attacks: adaptive
join-leave attacks and adaptive insert/lookup attacks
by up to εn adverserial peers.

2 Model and Problem Statement

We are interested in establishing stable agreement in
a dynamic peer-to-peer network in which the nodes
and the edges change over time. The computation is
structured into synchronous rounds, i.e., we assume
that nodes run at the same processing speed and
any message that is sent by some node u to its
(current) neighbors in some round r > 1 will be
received by the end of r. To ensure scalability, we
restrict the number of bits sent per round by each
node to be polylogarithmic in the size of the input
value domain (cf. Section 2.1). For dealing with
the much more powerful adaptive adversary, we relax
this requirement in Sections 3.5 and 5. We model

dynamism in the network as a family of undirected
graphs (Gr)r>0. At the beginning of each round r
we start with the network topology Gr−1. Then, the
adversary gets to change the network from Gr−1 to
Gr (in accordance to rules outlined below). As is
typical, an edge (u, v) ∈ Er indicates that u and v
can communicate in round r by passing messages. For
the sake of readability, we use V [r,r+t] as a shorthand
for
⋂r+t
i=r V

i. Each node u has a unique identifier and
is churned in at some round ri and churned out at
some ro > ri. More precisely, for each node u, there
is a maximal range [ri, ro−1] such that u ∈ V [ri,ro−1]

and for every r /∈ [ri, ro−1], u /∈ V r. Any information
about the network at large is only learned through the
messages that u receives. It has no a priori knowledge
about who its neighbors will be in the future. Neither
does u know when (or whether) it will be churned out.
Note that we do not assume that nodes have access
to perfect clocks, but we show (cf. Section 3.3) how
the nodes can synchronize their clocks.

We make the following assumptions about the
kind of changes that our dynamic network can en-
counter:

Stable Network Size: For all r, |V r| = n, where n
is a suitably large positive integer. This assump-
tion simplifies our analysis. Our algorithms will
work correctly as long as the number of nodes is
reasonably stable, say, between n−κn and n+κn
for some suitably small value of κ. Also, we as-
sume that n (or a constant factor estimate of n)
is common knowledge among the nodes in the
network.

Churn: For each r > 1,

|V r \ V r−1| = |V r−1 \ V r| 6 L = εc(n),

where L is the churn limit, which is some fixed
ε > 0 fraction of the order of the churn c(n); the
equality in the above equation ensures that the
network size remains stable. Our work is aimed
at high levels of churn up to a churn limit L that
is linear in n, i.e., c(n) = n.

Bounded Degree Expanders: The sequence of
graphs (Gr)r>0 is an expander family with a ver-
tex expansion of at least α. In other words, the
adversary must ensure that for every Gr and ev-
ery S ⊂ V r such that |S| 6 n/2, the number of
nodes in V r \ S with a neighbor in S is at least
α|S|.

A run of a distributed algorithm consists of an
infinite number of rounds. We assume that the
following events occur (in order) in every round r:
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1. A set of at most L nodes are churned in and
another set of L nodes are churned out. The
edges ofGr−1 may be changed as well, butGr has
to have a vertex expansion of at least α. These
changes are under the control of the adversary.

2. The nodes broadcast messages to their (current)
neighbors.

3. Nodes receive messages broadcast by their neigh-
bors.

4. Nodes perform computation that can change
their state and determine which messages to send
in round r + 1.

Bounds on Parameters Recall that the churn limit
L = εc(n), where ε > 0 is a constant and c(n) is the
churn order. When c(n) = n, ε is the fraction of the
nodes churned out/in and therefore we require ε to be
less than 1. However, when c(n) ∈ o(n), ε can exceed
1. In the remainder of this paper, we consider β to
be a small constant independent of n, such that

(2.1)
ε(1 + α)

α
< β.

Moreover, when c(n) = n, we expect β < 1
12 . The

churn expansion ratio ε(1+α)
α presents a fundamental

lower bound for information propagation in our model
(cf. Lemma 3.1). Finally, we assume that n is suitably
large (cf. Equations 4.4 and 5.5).

2.1 Stable Agreement We now define the Sta-
ble Agreement problem. Each node v ∈ V 0 has an
associated input value from some value domain of size
m; subsequent new nodes come with value ⊥. Let V
be the set of all input values associated with nodes in
V 0 at the start of round 1. Every node u is equipped
with a special decision variable decisionu (initialized
to ⊥) that can be written at most once. We say that
a node u decides on val when u assigns val to its
decisionu. Note that this decision is irrevocable, i.e.,
every node can decide at most once in a run of an al-
gorithm. As long as decisionu = ⊥, we say that u is
undecided. Stable Agreement requires that a large
fraction of the nodes come to a stable agreement on
one of the values in V. More precisely, an algorithm
solves Stable Agreement in R rounds, if it exhibits
the following characteristics in every run, for any fixed
β adhering to (2.1).

Validity: If, in some round r, node u ∈ V r decides
on a value val, then val ∈ V.

Almost Everywhere Agreement: We say that
the network has reached strong almost everywhere
agreement by round R, if at least n−βc(n) nodes

in V R have decided on the same value val∗ ∈ V
and every other node remains undecided, i.e., its
decision value is ⊥. In particular, no node ever
decides on a value val′ ∈ V in the same run, for
val′ 6= val∗.

Stability: Let R be the earliest round where nodes
have reached almost everywhere agreement on
value val∗. The agreement is stable if, at every
round r > R, at least n−βc(n) nodes in V r have
decided on val∗.

We also consider a weaker variant of the above
problem that we call Almost Everywhere Binary
Consensus (or simply, Binary Consensus) where
the input values in V are restricted to {0, 1}. Note
that for Binary Consensus the Validity property is
trivially satisfied except in runs where all nodes start
with the same input value.

We consider two types of adversaries for our
randomized algorithms. An oblivious adversary must
commit in advance to the entire sequence of graph
(Gr)r>0. In other words, an oblivious adversary must
commit independently of the random choices made by
the algorithm. We also consider the more powerful
adaptive adversary that can observe the entire state
of the network in every round r (including all the
random choices made until round r − 1), and then
chooses the nodes to be churned out/in and how to
change the topology of Gr+1.

For the sake of readability, we treat log n as an
integer and omit the necessary ceiling or floor opera-
tions if their application is clear from the context.

3 Techniques for Information Spreading

Due to the high amount of churn and the dynamically
changing network, we use message flooding to dissem-
inate and gather information. We now precisely define
flooding. Any node can initiate a message for flood-
ing. Messages that need to be flooded have an indica-
tor bit bFlood set to 1. Each of these messages also
contains a terminating condition. The initiating node
sends copies of the message to itself and its neighbors.
When a node receives a message with bFlood set to
1, it continues to send copies of that message to it-
self and its neighbors in subsequent rounds until the
terminating condition is satisfied.

3.1 Dynamic Distance and Influence Set We
define the notion of dynamic distance of a node v from
u starting at round r, denoted by DDr(u→ v). When
the subscript r is omitted, we may assume that r = 1.

Suppose node u joins the network at round ru,
and, from round max(ru, r) onward, u initiates a
message m for flooding whose terminating condition
is: 〈has reached v〉. If u is churned out before r,
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then DDr(u → v) is undefined. Suppose the first of
those flooded messages reaches v in round r + ∆r.
Then, DDr(u → v) = ∆r. Note that this definition
allows DDr(u→ v) to be infinite under two scenarios.
Firstly, node v may be churned out before any copy
of m reaches v. Secondly, at each round, v can
be shielded by churn nodes that absorb the flooded
messages and are then removed from the network
before they can propagate these messages any further.
The influence set of a node u after R rounds starting
at round r is given by:

Inflr(u,R) = {v ∈ V r+R : DDr(u→ v) 6 R}.

Note that we require Inflr(u,R) ⊆ V r+R. Intu-
itively, we want the influence set of u (in this dynamic
setting) to capture the nodes currently in the network
that were influenced by u. Note however that the in-
fluence set of a node u is meaningful even after u is
churned out. Analoguously, we define

Inflr(U,R) = ∪u∈U Inflr(u,R),

for any set of nodes U ⊆ V r.
If we consider only a single node u, an (adaptive)

adversary can easily prevent the influence set of this
node from ever reaching any significant size by simply
shielding u with churn nodes that are replaced in
every round.2

3.2 Properties of Influence Sets We now focus
our efforts on characterizing influence sets. This will
help us in understanding how we can use flooding
to spread information in the network. For the most
part of this section we assume that the network is
controlled by an adaptive adversary (cf. Section 2.1).
The following lemma shows that the number of nodes
that we need to influence almost all the nodes in
the network is bounded from below by the churn-
expansion ratio (cf. Equation (2.1)):

Lemma 3.1. Suppose that the adversary is adaptive.
Consider any set U ⊆ V r−1 (for any r > 1) such that
|U | > βc(n). Then, after

T = 2

⌈
log n− log c(n)− log(β − ε(1+α)

α )− 1

log(1 + α)

⌉
number of rounds, it holds that

|Inflr(U, T )| > n− βc(n).

When considering linear churn, i.e., c(n) = n, the
bound T becomes a constant independent of n. On
the other hand, when considering a churn order of√
n, we get T ∈ O(log n).

2An oblivious adversary can achieve the same effect with
constant probability for linear churn.

Proof. Our proof assumes that r = 1 for simplicity
as the arguments extend quite easily to arbitrary
values of r. We proceed in two parts: First we show
that the nodes in U influence at least n/2 nodes
in some T1 rounds. More precisely, we show that
|Infl(U, T1)| > n/2. We use vertex expansion in a
straightforward manner to establish this part. Then,
in the second part we show that nodes in Infl(U, T1)
go on to influence more than n − βc(n) nodes. We
cannot use the vertex expansion in a straightforward
manner in the second part because the cardinality of
the set that is expanding in influence is larger than
n/2. Rather, we use a slightly more subtle argument
in which we use vertex expansion going backward in
time. The second part requires another T1 rounds.
Therefore, the two parts together complete the proof
when we set T = 2T1.

To begin the first part, consider U ⊆ V 0 at
the start of round 1 with |U | > βc(n). In round
1, up to εc(n) nodes in U can be churned out.
Subsequently, the remaining nodes in U influence
some nodes outside U as G1 is an expander with
vertex expansion at least α. More precisely, we can
say that

|Infl(U, 1)| > (βc(n)− εc(n))(1 + α).

At the start of round 2, the graph changes dynami-
cally to G2. In particular, up to εc(n) nodes might
be churned out and they may all be in Infl(U, 1)
in the worst case. However, the influenced set will
again expand. Therefore, |Infl(U, 2)| cannot be less
than (|Infl(U, 1)| − εc(n))(1 + α) > βc(n)(1 + α)2 −
εc(n)(1 + α)2 − εc(n)(1 + α). Of course, there will
be more churn at the start of round 3 followed by
expansion leading to:

|Infl(U, 3)| >
(
βc(n)(1 + α)2−εc(n)(1 + α)2

−εc(n)(1 + α)

−εc(n)
)

(1 + α)

= βc(n)(1 + α)3 −εc(n)

3∑
k=1

(1 + α)k.

This cycle of churn followed by expansion continues
and we get the following bound at the end of some
round i:

|Infl(U, i)| > βc(n)(1 + α)i − εc(n)

i∑
k=1

(1 + α)k

= βc(n)(1 + α)i

+ εc(n)
1− (1 + α)i+1

α
− εc(n)
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Therefore, after

T1 =

⌈
log n− log c(n)− log(β − ε(1+α)

α )− 1

log(1 + α)

⌉
rounds, we get

(3.2) |Infl(U, T1)| > n/2.

Now we move on to the second part of the proof.
Let T = 2T1. Clearly, if |Infl(U, T )| > n− βc(n), we
are done. Therefore, for the sake of a contradiction,
assume that |Infl(U, T )| 6 n − βc(n). Let S =
V T \ Infl(U, T ), i.e., S is the set of nodes in V T

that were not influenced by U at (or before) round T .
Clearly, |S| > βc(n) because we have assumed that
|Infl(U, T )| 6 n − βc(n). We will start at round T
and work our way backward. For q 6 T , let Sq ⊆ V q,
be the set of all vertices in V q that, starting from
round q, influenced some vertex in S at or before
round T . More precisely,

Sq = {s ∈ V q : Inflq(s, T − q) ∩ S 6= ∅}.

Suppose that |ST1 | > n/2. Then

ST1 ∩ Infl(U, T1) 6= ∅,

since |Infl(U, T1)| > n/2 by (3.2). Consider a node
s∗ ∈ ST1 ∩ Infl(U, T1). Clearly, s∗ was influenced by
U and went on to influence some node in S before (or
at) round T . However, by definition, no node in S can
be influenced by any node in U at or before round T .
We have thus reached a contradiction.

We are left with showing that |ST1 | > n/2. We
start with S and work our way backwards. We know
that |S| > βc(n) > βc(n) − εc(n). We want to
compute the cardinality of ST−1. We first focus on
an intermediate set S′, which we define as

S′ = S ∪ {s′ : ∃(s, s′) ∈ ET }.

Since GT is an expander, |S′| > |S|(1 + α). Fur-
thermore, it is also clear that each node in S′ could
influence some node in S. Notice that S′ \ ST−1 is
the set of nodes in S′ that were churned in only at
the start of round T . Therefore,

|ST−1| > |S′| − εc(n)

> |S|(1 + α)− εc(n)

> (βc(n)− εc(n))(1 + α)− εc(n)

= βc(n)(1 + α)− εc(n)(1 + α)− εc(n).

Continuing to work our way backwards in time, we
get

|ST−2| > βc(n)(1 + α)2 − εc(n)(1 + α)2

− εc(n)(1 + α)− εc(n),

Or more generally,

|ST−i| > βc(n)(1 + α)i − εc(n)
∑

06j6i

(1 + α)j

= βc(n)(1 + α)i + εc(n)
1− (1 + α)i+1

α

= βc(n)(1 + α)i − εc(n)(1 + α)i+1

α
+
εc(n)

α
.

We now want the value of i for which

|ST−i| > n/2 +
εc(n)

α
> n/2.

In other words, we want a value of i such that

βc(n)(1+α)i−εc(n)(1 + α)i+1

α
+
εc(n)

α
> n/2+

εc(n)

α
,

which is obtained when i = T1. Therefore, it is easy
to see that if we set T = 2T1, we get |ST1 | > n/2,
thereby completing the proof.

At first glance, it might appear to be counterintuitive
that the order of the bound T decreases with increas-
ing churn. When the adversary has the benefit of
churn that is linear in n, our bound on T is a con-
stant, but when the adversary is limited to a churn
order of

√
n, we get T ∈ O(log n). This, however,

turns out to be fairly natural when we note that the
size of the set U of nodes that we start out with is in
proportion to the churn limit.

We say that a node u ∈ V r is suppressed for R
rounds if |Inflr(u,R)| < n− βc(n); otherwise we say
it is unsuppressed. The following lemma shows that
given a set with cardinality at least βc(n) some node
in that set will be unsuppressed.

Lemma 3.2. Consider the adaptive adversary. Let U
be any subset of V r−1, r > 1, such that |U | > βc(n).
Let T be the bound derived in Lemma 3.1. There is at
least one u∗ ∈ U such that for some R ∈ O(T log n),

|Inflr(u∗, R)| > n− βc(n).

In particular, when the order of the churn is n, T
becomes a constant, and we have R = O(log n).

Before we proceed with our key arguments of the
proof, we state a property of bipartite graphs that
we will use subsequently.

Property 3.1. Let H = (A,B,E) be a bipartite
graph in which |A| > 1 and every vertex b ∈ B has at
least one neighbor in A. There is a subset A∗ ⊂ A of
cardinality at most d|A|/2e such that

|{b : ∃a∗ ∈ A∗such that (a∗, b) ∈ E}| > d|B|/2e.
558 Copyright © SIAM.
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Proof. (of Property 3.1) Consider each node in A to
be a unique color. Color each node in B using the
color of a neighbor in A chosen arbitrarily. Now
partition B into maximal subsets of nodes with like
colors. Consider the parts of the partition sorted
in decreasing order of their cardinalities. We now
greedily choose the first d|A|/2e colors in the sorted
order of parts of B. We call the chosen colors C.
Clearly, colors in C cover at least as many nodes in
B as those not in C. Suppose the colors in C cover
fewer than d|B|/2e nodes in B. Then the remaining
colors will cover d|B|/2e, but that is a contradiction.
Therefore, colors in C cover at least d|B|/2e nodes
in B. The nodes in A that have the colors in C are
the nodes that comprise A∗, thereby completing our
proof.

Proof. (of Lemma 3.2) Again, our proof assumes r =
1 because it generalizes to arbitrary values of r quite
easily. From Lemma 3.1, we know that the influence
of all nodes in U taken together will reach n− βc(n)
nodes in T rounds. This does not suffice because we
are interested in showing that there is at least one
node in V 0 that (individually) influences n − βc(n)
nodes in V R for some R = O(T log n).

From Lemma 3.1, we know that U (collectively)
will influence at least n − βc(n) nodes in T rounds,
i.e.,

|Infl(U, T )| > n− βc(n).

From Property 3.1, we know that there is a set U1 ⊂ U
of cardinality at most d|U |/2e such that

|Infl(U1, T )| > n− βc(n)

2
.

Recalling that β < 1
12 < 1

3 , we know that
|Infl(U1, T )| > βc(n). We can again use Lemma 3.1
to say that Infl(U1, T ) influences more than n−βc(n)
nodes in additional T rounds and, by transitivity,
U1 influences more than n − βc(n) nodes after 2T
rounds. We therefore have |Infl(U1, 2T )| > n−βc(n).
Again, we can choose a set U2 ⊂ U1 (using Prop-
erty 3.1) that consists of d|U1|/2e nodes in U1 such
that |Infl(U2, 2T )| > βc(n). Subsequently applying
Lemma 3.1 extends the influence set of U2 to more
than n− βc(n) after 3T rounds.

In every iteration i of the above argument, the
size of the set Ui decreases by a constant fraction
until we are left with a single node u∗ ∈ U such that
|Infl(u∗, O(log n)T )| > n− βc(n).

Can βc(n) (or more nodes) be suppressed for any
significant number of (say, Ω(T log n)) rounds? This
is in immediate contradiction to Lemma 3.2 because
any such suppressed set of nodes must contain an
unsuppressed node! This leads us to the following
corollary.

Corollary 3.1. The number of nodes that can be
suppressed for Ω(T log n) rounds is less than βc(n),
even if the networks is controlled by an adaptive
adversary.

Corollary 3.2. Consider an oblivious adversary
that must commit to the entire sequence of graphs in
advance. If we choose a node u uniformly at random

from V 0, with probability at least 1− βc(n)
n ,

|Infl(u,Ω(T log n))| > n− βc(n).

Proof. Let S ⊂ V 0 be the set of nodes suppressed for
Ω(T log n) rounds. Under an oblivious adversary, the
node u chosen unformly at random from V 0 will not

be in S with probability 1− βc(n)
n , and hence, will not

be suppressed with that same probability.

Lemma 3.3. Consider a dynamic network under lin-
ear churn that is controlled by an adaptive adversary.
In some r ∈ O(log n) rounds, there is a set of un-
suppressed nodes V ∗ ⊆ V 0 of cardinality more than
(1− β)n such that∣∣∣∣∣ ⋂

v∈V ∗
Infl(v, r)

∣∣∣∣∣ > (1− β)n.

Proof. Let V ∗ ⊆ V 0 be any set of unsuppressed
nodes, i.e., in some c0 log n rounds for some constant
c0, the influence set of each v ∈ V ∗ has cardinality
more than (1 − β)n. Note that, however, we cannot
guarantee that, for any two vertices v1 and v2 in V ∗,

|Infl(v1, c0 log n) ∩ Infl(v1, c0 log n)| > (1− β)n.

Assume for simplicity that |V ∗| is a power of 2.
Consider any pair of vertices {v1, v2}, both members
of V ∗. Recalling that β < 1

12 <
1
3 , we can say that

|Infl(v1, c0 log n) ∩ Infl(v2, c0 log n)| > βn.

Therefore, considering that the intersected set
Infl(v1, c0 log n)∩ Infl(v2, c0 log n) of nodes has car-
dinality at least βn, we can apply Lemma 3.1 leading
to |Infl(v1, c0 log n + T ) ∩ Infl(v2, c0 log n + T )| >
(1 − β)n. We can partition V ∗ into a set S1 of |V

∗|
2

pairs such that for each pair, the intersection of in-
fluence sets has cardinality more than (1 − β)n after
c0 log n+ T rounds. Similarly, we can construct a set
S2 of quadruples by disjointly pairing the pairs in S1.
Using a similar argument, we can say that for any
Q ∈ S2,∣∣∣∣∣∣

⋂
v∈Q

Infl(v, c0 log n+ 2T )

∣∣∣∣∣∣ > (1− β)n.
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Progressing analogously, the set Slog |V ∗| will equal V ∗

and we can conclude that∣∣∣∣∣∣
⋂

v∈Slog |V ∗|

Infl(v, c0 log n+ T log |V ∗|)

∣∣∣∣∣∣ > (1− β)n.

Since |V ∗| 6 n, it holds that c0 log n + T log |V ∗| ∈
O(log n), thus completing the proof.

Lemma 3.4. Suppose that up to ε
√
n nodes can be

subjected to churn in any round by an adaptive ad-
versary. In some r ∈ O(log2 n) rounds, there is a set
of unsuppressed nodes V ∗ ⊆ V 0 of cardinality at least
n− β

√
n such that∣∣∣∣∣ ⋂

v∈V ∗
Infl(v, r)

∣∣∣∣∣ > n− β
√
n.

Proof. Since we assume that c(n) =
√
n, the bound

T of Lemma 3.1 is in O(log n). Therefore, by
instantiating Corollary 3.1, we know that each of the
unsuppressed nodes in V ∗ (which is of cardinality at
least n−β

√
n) will influence more than n−β

√
n nodes

in O(log2 n) time. We can use the same argument
as in Lemma 3.3 to show that in O(log n) rounds,
all the unsuppressed nodes have a common influence
set of size at least Θ(n). That common influence set
will grow to all but n − β

√
n nodes within another

O(log2 n) rounds. Thus a total of O(log2 n) rounds is
sufficient to fulfill the requirements.

3.3 Maintaining Information in the Network
In a dynamic network with churn limit εn, the en-
tire set of nodes in the network can be churned out
and new nodes churned in within 1/ε rounds. How
do the new nodes even know what algorithm is run-
ning? How do they know how far the algorithm has
progressed? To address these basic questions, the net-
work needs to maintain some global information that
is not lost as the nodes in the network are churned
out. There are two basic pieces of information that
need to be maintained so that a new node can join
in and participate in the execution of the distributed
algorithm:

1. the algorithm that is currently executing, and

2. the number of rounds that have elapsed in the
execution of the algorithm. In other words, a
global clock has to be maintained.

We assume that the nodes in V 0 are all synchronized
in their understanding of what algorithm to execute
and the global clock. The nodes in the network
continuously flood information on what algorithm is
running so that when a new node arrives, unless it

is shielded by churn, it receives this information and
can start participating in the algorithm. To maintain
the clock value, nodes send their current clock value to
their immediate neighbors. When a new node receives
the clock information from a neighbor, it sets its
own clock accordingly. Since nodes are not malicious
or faulty, Lemma 3.1 ensures that information is
correctly maintained in more than n− βc(n) nodes.

3.4 Support Estimation Under an Oblivious
Adversary Suppose we have a dynamic network
with R nodes colored red in V 0. R is also called
the support of red nodes. We want the nodes in the
network to estimate R under an oblivious adversary.
We assume that the adversary chooses R and which
R nodes in V 0 to color red, but it does not know the
random choices made by the algorithm. Furthermore,
we assume that churn can be linear in n, i.e., c(n) = n.

We now provide our algorithm. P ∈ O(log n) is
the number of parallel iterations performed by our al-
gorithm in order to increase the precision of our esti-
mate to hold with high probability. Its exact value is
worked out in the proof of Theorem 3.1. At round
1, each red node in V 0 draws P random samples
s1, s2, . . . , si, . . . , sP , each from the exponential ran-
dom distribution with rate 1. Each si is chosen with a
precision that ensures that the smallest possible pos-
itive value is at most 1

nΘ(1) ; note that O(log n) bits
suffice. Each red node u initiates P parallel flooding
messages mu(i); each mu(i) contains si and its termi-
nating condition is: has encountered a message
mv(i) with a smaller random sample. Note that
for i 6= j, messages mu(i) do not interact with mes-
sages mu(j). This allows each live node u to keep
track of the P smallest samples that it has seen, which
we denote as s̄u(i) for each i. After some t ∈ O(log n)
rounds, each node u ∈ V t computes the average s̄u
over all s̄u(i) that it has. Each node u estimates R to
be 1/s̄u. It is easy to see that the number of bits trans-
mitted per round through a link is at most O(log2 n).

To analyze this algorithm, we use two properties
of exponential random variables. Consider K > 1
independent random variables Y1, Y2, . . . , YK , each
following the exponential distribution of rate λ.

Property 3.2. (see [28] for example) The min-
imum among all Yi, for 1 6 i 6 K, is an exponentially
distributed random variable with parameter Kλ.

Property 3.3. (see [44] and pp. 30, 35 of [20])

Let XK = 1
K

∑K
i=1 Yi. Then, for any ς ∈ (0, 1/2),

Pr

(∣∣∣∣XK −
1

λ

∣∣∣∣ > ς

λ

)
6 2 exp

(
− ς

2K

3

)
.

Theorem 3.1. Consider an oblivious adversary.
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With high probability, (1 − β)n nodes in the network
estimate R
• between (1−δ)R and (1+δ)R for some arbitrarily

small δ > 2β when R is large, say R > n/2, and
• between R− δn and R+ δn when R is small, say
R < n/2.

Proof. Suppose that R > n/2. Out of the R red
nodes up to βn nodes (chosen obliviously) can be
suppressed, leaving us with

(3.3) R′ > R− βn > (1− 2β)R

unsuppressed red nodes (since R > n/2). In a slight
abuse of notation, we useR andR′ to denote both the
cardinality and the set of red nodes and unsuppressed
red nodes, respectively. Let

U = {u : u ∈
⋂
v∈R′

Infl(v, t)};

Note that t = O(log n) and |U | > (1 − β)n (cf.
Lemma 3.3). Let u be some node in U . Let

Vu = {v : v ∈ R ∧ u ∈ Infl(v, t)}.

For all u ∈ U , R′ ⊆ Vu ⊆ R. Intuitively, at
round t, node u is estimating R using the exponential
random numbers that were drawn by nodes in Vu.
Since our adversary is oblivious, the choice of Vu is
independent of the choice of the random numbers
generated by each v ∈ Vu. Therefore, s̄u(i) is an
exponentially distributed random number with rate
|Vu| > R′ (cf. Property 3.2). For any δ > 2β, let
ς 6 min{ δ−2β

1−δ ,
δ

1+δ}. When P = 3c lnn
ς2 ∈ O(log n)

parallel iterations are performed, where c > 0, the
required accuracy is obtained with probability 1 −

1
Ω(nc) (cf. Property 3.3). The case where R < n/2

can be addressed in a similar manner. However, we
need to allow an error range that is dependent on n
as up to βn nodes can be suppressed.

3.5 Support Estimation Under an Adaptive
Adversary The algorithm for support estimation
under an oblivious adversary (cf. Section 3.4 does
not work under an adaptive adversary. To estimate
the support of red nodes in the network, each red
node draws a random number from the exponential
distribution and floods it in an attempt to spread
the smallest random number. When the adversary is
adaptive, the smallest random numbers can easily be
targeted and suppressed. To mitigate this difficulty,
we consider a different algorithm in which the number
of bits communicated is more. In particular, the
number of bits communicated per round by each node
executing this algorithm is at most polynomial in n.

Let R be the support of the red nodes. Every
node floods its unique identifier along with a bit

that indicates whether it is a red node or not. At
most β

√
n nodes’ identifiers can be suppressed by

the adversary for Ω(log2 n) rounds leaving at least
n − β

√
n unsuppressed identifiers (cf. Corollary 3.1).

Each node counts the number of unique red identifiers
A and non-red identifiers B that flood over it and
estimates R to be A+ n−A−B

2 .
This support estimation technique generalizes

quite easily to arbitrary churn order. Therefore, we
state the following theorem more generally.

Theorem 3.2. Consider the algorithm mentioned
above in which nodes flood their unique identifiers in-
dicating whether they are red nodes or not and assume
that the network is controlled by an adaptive adver-
sary. Let c(n) be the order of the churn; we assume
for simplicity that c(n) is either n or

√
n. Then the

following holds:
1. At least n − βc(n) nodes estimate R between

R − βc(n)
2 and R + βc(n)

2 . Furthermore, these
nodes are aware that their estimate is within
R− βc(n)

2 and R+ βc(n)
2 .

2. The remaining nodes are aware that their esti-

mate of R might fall outside [R−βc(n)
2 ,R+βc(n)

2 ].
When c(n) = n, it requires only O(log n) rounds, but
when c(n) =

√
n, it requires O(log2 n) rounds.

Proof. Let u be any one of the n− βc(n) nodes that
receive at least n − βc(n) unsuppressed identifiers
(cf. Lemma 3.3 and Lemma 3.4). Let A and B be
the number of unique identifiers from red nodes and
non-red nodes, respectively, that flood over u. Let
C = n−A−B 6 βc(n). This means that u estimates
R to be A + C

2 . Clearly, A 6 R 6 A + C and since

C 6 βc(n), R is estimated between R − βc(n)
2 and

R + βc(n)
2 . Furthermore, since u received n − βc(n)

identifiers, it can be sure that its estimate is between

R− βc(n)
2 and R+ βc(n)

2 .
If a node does not receive at least n − βc(n)

identifiers, then it is aware that its estimate of R
might not be within [R− βc(n)

2 ,R+ βc(n)
2 ].

From Lemma 3.3, when c(n) = n, the algorithm
takes O(log n) rounds to complete because we want
to ensure that unsuppressed nodes have flooded the
network. When c(n) =

√
n, as a consequence of

Lemma 3.4, the algorithm requires O(log2 n) rounds.

4 Stable Agreement Under an Oblivious
Adversary

In this section we will first present Algorithm 1 for
the simpler problem of reaching Binary Consen-
sus, where the input values are restricted to {0, 1}
(cf. Section 2.1). We will then use this algorithm as
a subroutine for solving Stable Agreementin Sec-
tion 4.2.
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Throughout this section we assume suitable
choices of ε and α such that the upper bound

(4.4) β <
1

12

can be satisfied for β; note that (4.4) must hold in
addition to bound (2.1). Moreover, we assume that
a node can send an process up to O(log2m) bits in
every round, where m is the size of the input value
domain.

4.1 Binary Consensus A node u that executes
Algorithm 1 proceeds in a sequence of O(log n) check-
points that are interleaved by O(log n) rounds. Each
node u has a bit variable bu that stores its current
output value. At each checkpoint ti, node u initiates
support estimation of the number of nodes currently
having 1 as their output bit by using the algorithm
described in Section 3.4. (At checkpoint tR−1, nodes
estimate both: the support of 1 and 0.) The outcome
of this support estimation will be available in check-
point ti+1 where u has derived the estimation #(1).
If u believes that the support of 1 is small (6 1

4n),
it sets its own output bu to 0; if, on the other hand,
#(1) is large (> 3

4n), u sets its output bu to 1. This
guarantees stability once agreement has been reached
by a large number of nodes. When the support of 1 is
roughly the same as the support of 0, we need a way
to sway the decision to one side or the other. This
is done by flooding the network whereby the flood-
ing message of node v is weighted by some randomly
chosen value, say rv. The adversary can only guess
which node has the highest weight and therefore, with
constant probability, the flooding message with this
highest weight (i.e., smallest random number) will be
used to set the output bit by almost all nodes in the
network.

Theorem 4.1. Assume that the adversary is obliv-
ious and that the churn limit per round is εn. Al-
gorithm 1 solves Binary Consensus in O(log2 n)
rounds with high probability.

Proof. We first argue that Validity holds: Suppose
that all nodes start with input value 1. The only way
a node can set its output to 0 is by passing Line 5.
This can happen for at most βn nodes. The only way
that more nodes can set their output to 0 is if they
estimate the support of 1 to be in ( 1

4n,
3
4n). If β is

suitably small, Theorem 3.1 guarantees that with high
probability this will not happen at any node. The
argument is analogous for the case where all nodes
start with 0.

Next we show Almost Everywhere Agreement:
Let Ni be the number of nodes at checkpoint round
ti that output 1. Let Lowi, Highi, and Midi,

Algorithm 1 Binary Consensus under an oblivi-
ous adversary; code executed by node u.

Let decisionu be initialized to ⊥.

Let bu be the current output bit of u. If u ∈ V 0, then bu
is initialized to the input value of u; otherwise it is set to

⊥.

Let t1 = 1 be the first checkpoint round. Subsequent
checkpoint rounds are given by ti = ti−1 + O(logn), for

i > 1. For the terminating checkpoint tR, we choose an

R ∈ O(logn), i.e., tR ∈ O(log2 n).

At every checkpoint round ti excluding tR:
1: Initiate support estimation (to be completed in checkpoint

round ti+1).

2: Generate a random number ru uniformly from {1, . . . , nk}
for suitably large but constant k. (With high probability,

we want exactly one node to have generated minu ru.)

3: Initiate flooding of {ru, bu} with terminating condition:
〈(has encountered another message initiated by v 6=
u with rv < ru) ∨ (current round > ti+1)〉.

At every checkpoint round ti except t1:

4: Use the support estimation initiated at checkpoint round

ti−1. Let #(1) be u’s estimated support value for the
number of nodes that had an output of 1.

5: if #(1) 6 1
4
n then

6: bu ← 0.

7: else if #(1) > 3
4
n then

8: bu ← 1.
9: else if u has received flooded messages initiated in ti−1

then

10: Let {rv , bv} be the message with the smallest random
number that flooded over u.

11: bu ← bv .

At terminating checkpoint round tR:

12: if #(1) > n
2

then
13: decisionu ← 1.

14: Flood a 1-decision message ad infinitum.

15: else if #(0) > n
2

then
16: decisionu ← 0.

17: Flood 0-decision message ad infinitum.

If u receives a b-decision message:

18: decisionu ← b

respectively, be the sets of nodes in V ti for which
#(1) 6 1

4n, #(1) > 3
4n, and 1

4n < #(1) < 3
4n; note

that nodes are placed in Lowi, Highi, and Midi
based on their #(1) values, which are estimates of
Ni−1, not Ni. Clearly, we have that Lowi + Midi +
Highi = n.

For some i > 1, let u∗ ∈ V ti−1 be the node that
generated the smallest random number in checkpoint
round ti−1 among all nodes in V ti−1 . With high
probability, u∗ will be unique. By Corollary 3.2, with
probability 1 − β (a constant), u∗ is unsuppressed,
implying that bu∗ will be used by all nodes in Midi.
Consider the following cases:

Case A (Ni−1 6 ( 1
4 − δ)n): From Theorem 3.1, we

know that with high probability |Lowi| > (1 −
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β)n implying |Midi| + |Highi| 6 βn. There-
fore, Ni will continue to be very small leading
to small estimates #(1) in subsequent check-
points. After O(log n) rounds, this causes at least
(1−β)n nodes to decide on 0, with high probabil-
ity. Moreover, it is easy to see that the remaining
βn nodes will not be able to pass Line 12, since
the adversary cannot artificially increase the esti-
mated support of nodes with 0. (Recall from Sec-
tion 3.4 that by suppressing the minimum ran-
dom variables, the adversary can only make the
estimate smaller.)

Case B ( 1
4 − δ)n < Ni−1 < ( 1

4 + δ)n): With high
probability, |Lowi|+ |Midi| > (1−β)n implying
|Highi| 6 βn. Note first that nodes in Lowi will
set their output bits to 0. Since Ni−1 < ( 1

4 +δ)n,
there are at least ( 3

4 − ε)
′n nodes in V t−1 that

output 0. Of these, at most βn could have
been suppressed. So, with probability at least
3
4 − δ − β, u∗ is an unsuppressed node that
outputs 0. When u∗ outputs 0, nodes in Midi
will set their output bits to 0. Thus, considering
Lowi and Midi, we have at least (1−β)n nodes
that set their output bits to 0 with constant
probability. For a suitably small δ and β < 1

4−δ,
this will lead to Case A in the next iteration,
which means that subsequently nodes agree on
0.

Case C (( 1
4 + δ)n 6 Ni−1 6 ( 3

4 − δ)n): With high
probability, |Midi| > (1 − β)n. With constant
probability (1 − β), u∗ will be an unsuppressed
node and nodes in Midi will set their output
bits to the same value bu∗ .

Case D (( 3
4 − δ)n < Ni−1 < ( 3

4 + δ)n): This is sim-
ilar to Case B, i.e., with constant probability, at
least (1− β)n nodes will reach agreement on 1.

Case E (Ni−1 > ( 3
4 + δ)n): This is similar to Case

A. With high probability, at least (1−β)n nodes
will decide on 1.

Note that, when a checkpoint falls either under Case
A or Case E, with high probability, it will remain in
that case. When a checkpoint falls under Case B,
Case C, or Case D, with constant probability, we get
either Case A or Case E in the following checkpoint.
Therefore, in O(log n) rounds, at least (1−β)n nodes
will reach agreement with high probability and all
other nodes will remain undecided.

For property Stability, note that if a node has
decided on some value in checkpoint tR, it continues
to flood its decision message. We showed that, with
high probability, at least (1 − β)n nodes will decide
on the same bit value. Therefore, it follows by

Lemma 3.1 that agreement will be maintained ad
infinitum among at least (1− β)n nodes.

In order to use Algorithm 1 to solve Stable
Agreement, we will need to make a couple of crucial
adaptations.

• Suppose every vertex in V 0 has some auxiliary
information. We can easily adapt Algorithm 1
so that when a node u decides on a bit value
b, then, it also inherits the auxiliary information
of some v ∈ V 0 whose initial bit value was b.
This adaptation is possible because our algorithm
ensures Validity.

• For a typical agreement algorithm, we assume
that all nodes simultaneously start running the
algorithm. We want to adapt our algorithm
so that only nodes in V 0 that have an initial
output bit of 1 initiate the algorithm, while nodes
that start with 0 are considered passive, i.e.,
these nodes do not generate messages themselves,
but still forward flooding messages and start
generating messages from the next checkpoint
onward as soon as they notice that an instance
of the algorithm is running.

We now sketch how the algorithm can be
adapted: In the first checkpoint t1, each node v
with a 1 initiates support estimation and flood-
ing of message 〈rv, bv = 1〉. If the number of
nodes with 1 is small at checkpoint t1, then, at
checkpoint t2, nodes that receive estimate values
will conclude 0, which will get reinforced in sub-
sequent checkpoints. However, if the number of
nodes with a 1 at checkpoint t1 is large (in partic-
ular, larger than βn), then, by suitable flooding
most nodes (in particular, at least (1−β)n nodes)
will know that a support estimation is underway
and will participate from checkpoint t2 onward.

4.2 A 3-phase Algorithm for Stable Agree-
ment We will now describe how we use Algorithm 1
as a building block for solving Stable Agreement:

Flooding Phase: In the very first round, each
node u ∈ V 0 generates a uniform random number ru
from (0, 1) and if the random number is less than logn

n ,
it initiates a message mu for flooding. The message
mu contains the random number ru and the value
valu assigned to u by the adversary. Nodes enter the
candidate selection phase (see below) after a sufficient
number of rounds to ensure that no more than βn
nodes are suppressed (see Corollary 3.1). However,
the flooding messages go on ad infinitum.

Candidates Selection Phase: We initiate an
expected O(log n) parallel iterations of Binary Con-
sensus, each associated with one of the (expected)
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O(log n) flooding messages mu. More precisely, the
instance of Binary Consensus for a particular mu

is designed as follows: nodes that have received the
flooded message mu set themselves to 1 and initiate
Binary Consensus. If mu has reached saturation
(i.e., flooded to at least (1− β)n nodes), the consen-
sus value will be 1. If mu has a very small support
(say, βn), the consensus value will be 0 with high
probability (cf. Case A of the proof of Theorem 4.1).
When the support of mu is neither too small nor too
large, the nodes will reach consensus on either 0 or 1.
We say that a flooded message mu is a candidate mes-
sage if the instance of Binary Consensus associated
with it reached a consensus value 1. Note that, with
high probability, (1 − β)n nodes agree on the set of
candidate messages. Among the candidate messages,
every node v chooses the message mu with the small-
est random number ru and value valu, and initiates
a support estimation for mu.

Confirmation Phase: In expectation, log n
nodes initiate flooding in the Flooding phase. From
Corollary 3.2, each of them will not be suppressed
with probability at least (1 − β). Therefore, with
high probability, at least one node u will have
|Infl(u,O(log n))| > (1 − β)n. That is, at least one
flooded message mv will be a candidate message and
therefore, when the support estimation is initiated, a
set S of at least (1− β)n nodes will measure its sup-
port to be at least (1− β − δ)n for some δ > 2β with
high probability (cf. Theorem 3.1). Due to (4.4), there
can only be one such message mv with high support.
The nodes S will decide on the attached valv of mv,
whereas nodes that do not observe that mv has high
support (because of being shielded by churn nodes)
remain undecided. This shows Almost Everywhere
Agreement.

Analogously to Algorithm 1, nodes in S flood
their decision messages, which are adopted by newly
incoming nodes. By virtue of Lemma 3.1, the stability
property is maintained ad infinitum.

The additional running time overhead of the
above three phases excluding Algorithm 1 is only in
O(log n). Thus we have shown the following result:

Theorem 4.2. Consider the oblivious adversary and
suppose that εn nodes can be subject to churn in
every round. The 3-phase algorithm is correct with
high probability and reaches Stable Agreement in
O(log2 n) rounds.

5 Stable Agreement Under an Adaptive
Adversary

In this section we consider the Stable Agreement
problem while dealing with a more powerful adaptive
adversary. At the beginning of a round r, this

adversary observes the entire state of the network and
previous communication between nodes (including
even previous outcomes of random choices!), and thus
can adapt its choice of Gr to make it much more
difficult for nodes to achieve agreement.

It is instructive to consider the algorithms pre-
sented in Section 4 in this context. Both approaches
are doomed to fail in the presence of an adaptive ad-
versary: For the Stable Agreement algorithm, the
expected number of nodes that initiate flooding in the
flooding phase is log n. Even though each of these
nodes would have expanded its influence set to some
constant size by the end of the next round, the adap-
tive adversary can spot and immediately churn out all
these nodes before they can communicate with anyone
else, thus none of these values will gain any support.

Algorithm 1 fails for the simple reason that the
adversary can selectively suppress the flooding of the
smallest generated random value z ∈ {1, . . . , nk} with
attached bit bz from ever reaching some 50% of the
nodes, which instead might use a distinct minimum
value z′ (with an attached bit value bz′ 6= bz) to guide
their output changes.

To counter the difficulties we have mentioned, we
relax the model. Firstly, we limit the order of the
churn to

√
n. Secondly, we allow messages of up to

a polynomial (in n) number of bits to be sent over a
link in a single round. Under these relaxations, we
can estimate the support of red nodes in the network
simply by flooding all the unique identifiers of the red
and non-red nodes (cf. Theorem 3.2).

Similarly to Section 4, we will first solve Binary
Consensus under these assumptions and then show
how to implement Stable Agreement. In this
section we assume that the number of nodes in the
network is sufficiently large, such that

(5.5) n� 4β2.

Moreover, we assume that every node can send and
process up to O(nc + logm) bits per round, where c
is a constant and m is the size of the input domain.

5.1 Binary Consensus We now describe an algo-
rithm for solving Binary Consensus, which is sim-
ilar in spirit to Algorithm 1. The main difference
is the handling of the case where the support of the
nodes that output 1 is roughly equal to the support
of the nodes with output bit 0. In this case we rely
on the variance of random choices made by individual
nodes to sway the balance of the support towards one
of the two sides with constant probability.

Theorem 5.1. Algorithm 2 solves Binary Consen-
sus within O(log3 n) rounds with high probability,
even in the presence of an adaptive adversary and up
to ε
√
n churn per round.
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Algorithm 2 Binary Consensus under an adaptive
adversary; code executed by node u.

Let decisionu be initialized to ⊥.

Let bu be the current output bit of u. If u ∈ V 0, then bu
is initialized to the input value of u; otherwise it is set to

⊥.

Let t1 = 1 be the first checkpoint round. Subsequent
checkpoint rounds are given by ti = ti−1 + O(log2 n), for

i > 1, with time between consecutive checkpoint rounds

sufficient for unsuppressed nodes to reach a common
influence (cf. Lemma 3.4). For the terminating checkpoint

tR, we choose an R ∈ O(logn), i.e., tR ∈ O(log3 n).

At every checkpoint round ti excluding tR:

1: Initiate support estimation (to be completed in checkpoint
round ti+1).

At every checkpoint round ti excluding t1, tR:
2: Use the support estimation initiated at checkpoint round

ti−1. Let #(1) be the estimated support value for nodes

that output 1.

3: if support estimation is not accurate within [R− β
√
n

2
,R+

β
√
n

2
] then

4: Do nothing.

5: else if #(1) < n
2
− β
√
n

2
then

6: bu ← 0.
7: else if #(1) > n

2
+ β
√
n

2
then

8: bu ← 1.

9: else
10: if the outcome of an unbiased coin flip is heads then

11: bu ← 0.
12: else

13: bu ← 1.

At terminating checkpoint round tR:

14: if #(1) > n
2

then

15: decisionu ← 1.
16: Flood a 1-decision message ad infinitum.

17: else if #(0) > n
2

then

18: decisionu ← 0.
19: Flood a 0-decision message ad infinitum.

If u receives a b-decision message:
20: decisionu ← b

Proof. First consider the Validity property: Suppose
that all nodes start with input value 1. Theorem 3.2
guarantees that any node u that receives insufficiently
many identifiers for support estimation, will execute
Line 4 and therefore never set its output to 0. On
the other hand, if u does receive sufficiently many
samples, again Theorem 3.2 ensures that it will always
pass the if-check in Line 7. Thus, no node can every
output 0. The case where all nodes start with 0 can
be argued analogously.

Next, we will show that Algorithm 2 satisfies Al-
most Everywhere Agreement. Let Ni be the number
of vertices at checkpoint round ti with output bit 1.
Let Lowi, Highi, and Midi, respectively, be the sets

of nodes in V ti for which #(1) 6 n/2− β
√
n

2 , #(1) >

n/2 + β
√
n

2 , and n/2 − β
√
n

2 < #(1) < n/2 + β
√
n

2 ;
note that nodes are placed in Lowi, Highi, and Midi
based on their #(1) values, which are estimates of
Ni−1, not Ni. In a slight abuse of notation, we use
Lowi, Midi, and Highi to also refer to their respec-
tive cardinalities. Clearly, we have that

Lowi + Midi + Highi = n.

Furthermore, observe that either Lowi or Highi
will be 0. Otherwise, we will have two nodes such

that one estimates Ni−1 below n/2− β
√
n

2 , while the

other estimates it above n/2 + β
√
n

2 — a violation of
Theorem 3.2.

Consider the following cases:

Case A (Ni−1 < n/2− β
√
n): From Theorem 3.2,

Lowi > n− β
√
n and all nodes in Lowi will set

themselves to output 0. Once this case is reached
in some checkpoint, it will be reached in all fu-
ture checkpoints until tR with high probability.
Therefore, the algorithm guarantees Almost Ev-
erywhere Agreement on 0 in tR; with high prob-
ability, nodes do not pass Line 14 in checkpoint
tR, thus no node will ever decide on 1.

Case B (Ni−1 > n/2 + β
√
n): This case is similar

to Case A with the difference that almost all
nodes decide on 1.

Case C (n/2− β
√
n 6 Ni−1 6 n/2): Notice that

Highi = 0. Therefore,

(5.6) Lowi + Midi > n− β
√
n.

We consider two subcases:

1. In this case, we assume that Lowi is at least
n/2+β

√
n. This will set Ni < n/2−β

√
n putting

the network in Case A in the next checkpoint.

2. In this case, we assume that Lowi < n/2 +
β
√
n. This implies that

Midi > n− Lowi − β
√
n > n/2− 2β

√
n.

The nodes in Midi will choose 1 or 0 with equal
probability. The number of nodes that choose 0
is a binomial distribution with mean Midi

2 and

standard deviation
√
Midi

2 . Clearly, with some

constant probability, Midi

2 +
√
Midi

2 or more nodes
in the set Midi will set themselves to output 0.
Therefore, with constant probability,

Ni < n− Lowi −
Midi

2
−
√
Midi
2

< n− Lowi −
n− Lowi − β

√
n

2

−
√
n− Lowi − β

√
n

2
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Clearly, Ni <
n
2 − β

√
n if

3β
√
n <

√
n− Lowi − β

√
n,

which means that

Lowi + β
√
n < n− 9β2n.

We know that Lowi <
n
2 + β

√
n. Therefore,

Ni <
n
2 − β

√
n if

n

2
+ 2β

√
n < n− 9β2n,

that is,

2β <
√
n

(
1

2
− 9β2

)
.

In other words, as long as

(5.7) n >
4β2(

1
2 − 9β2

)2 ,
it holds with constant probability that

Ni <
n

2
− β
√
n,

which will put the network in Case A at the next
checkpoint round. Assumption (5.5) guarantees
that Condition (5.7) is easily met.

Case D (n/2 < Ni−1 6 n/2 + β
√
n): Using argu-

ments similar to Case C, we can show that with
constant probability,

Ni >
n

2
+ β
√
n,

thereby, putting the network in Case B.

Clearly, after O(log n) checkpoint rounds the network
will reach either Case A or Case B3 with high prob-
ability and hence achieve Almost Everywhere Agree-
ment on either 0 or 1.

For property Stability, note that if a node has
decided on some value 6= ⊥ in checkpoint tR, it
continues to flood its decision message. Since at least
(1 − β)n have decided, it follows by Lemma 3.1 that
any nodes that have been churned in will also decide
on this value within a constant number of rounds,
thus agreement will be maintained ad infinitum.

3Due to Equation (5.5) we know that Cases A and B exist.

5.2 Stable Agreement Now that we have a so-
lution for Binary Consensus, we will show how to
use it to solve Stable Agreement where nodes have
input values from some set {0, . . . ,m}, for m > 1.
Given some input value val we can write it in the
base-2 number system as (b0, . . . , blogm) where bi ∈
{0, 1}, for 1 6 i 6 logm. We call val a general input
value and bi a binary input value.

The basic idea of the Stable Agreement al-
gorithm is to run an instance of the Binary Con-
sensus algorithm for each bi and then combine the
agreed bits to obtain agreement on the general in-
put values. More specifically, in the first instance ev-
ery node uses the bit b0 of its general input value as
binary input for the Binary Consensus algorithm.
We need to be careful, however, to not violate the
validity property of Stable Agreement. Thus we
assume that every node sends its general input value
along with the input bit. When the Binary Con-
sensus instance of node u decides on some bit value
b, node u overwrites its general input value with the
input value valb that was sent along with b. For the
next instance of Binary Consensus, u uses the sec-
ond bit of valb and so on. After logm such instances,
we can be sure that the sequence of binary decision
values corresponds to the bit value of some general
input value, thus guaranteeing validity. Stability and
Almost Everywhere Agreement follow from the prop-
erties of Binary Consensus.

Theorem 5.2. Suppose that the network is controlled
by an adaptive adversary who can subject up to ε

√
n

nodes to churn in every round. There is an algorithm
that solves Stable Agreement in O(logm log3 n).

6 Impossibility of a Deterministic Solution

In this section we show that there is no deterministic
algorithm to solve Stable Agreement even when
the churn is restricted to only a constant number of
nodes per round. As a consequence, randomization is
a necessity for solving Stable Agreement.

We introduce some well known standard nota-
tions (see [5, Chap. 5]) used for showing impossibility
results of agreement problems. The configuration Cr

of the network at round r consists of
• the graph of the network at that point in time,

and
• the local state of each node in the network.

A specific run ρ of some Stable Agreement algo-
rithm A is entirely determined by an infinite sequence
of configurations C0, C1, . . . where C0 contains the
initial state of the graph before the first round. Con-
sider the input value domain {0, 1}. A configuration
Cr is 1-valent (resp., 0-valent) if all possible runs of A
that share the common prefix up to and including Cr,
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lead to an agreement value of 1 (resp., 0). Note that
this decision value refers to the decision of the large
majority of nodes; strictly speaking, a small fraction
of nodes might remain undecided on ⊥. A configu-
ration is univalent if it is either 1-valent or 0-valent.
Any configuration that is not univalent is called a bi-
valent configuration.

Lemma 6.1. Consider a bivalent configuration Cr

in round r reached by an algorithm A that solves
Stable Agreement and ensures Almost Everywhere
Agreement. No node in V r can have decided on a
value 6= ⊥ by round r.

Proof. Assume in contradiction that some node u has
already decided on 0 in some bivalent configuration
Cr. Then, by the Almost Everywhere Agreement
property, no other node v can ever decide on 1 in
the same run. But this means that Cr is actually a
univalent configuration, yielding a contradiction.

Theorem 6.1. Suppose that the sequence of graphs
(Gr)r>0 is an expander family with maximum degree
∆. Assume that the churn is limited to at most ∆+1
nodes per round. There is no deterministic algorithm
that solves Stable Agreement if the network is
controlled by an adaptive adversary.

Proof. We use an argument that is similar to the
argument used in the proof that f + 1 rounds are
required for consensus in the presence of f faults (cf.
[5, Chap. 5]). For the purpose of this impossibility
proof, we restrict the input domain of nodes to {0, 1}
and allow arbitrary congestion on the communication
channnels. Moreover, we assume that the topology
of the network is fixed throughout the run. Thus
the adversary can only “replace” nodes at the same
position by some other nodes.

For the sake of contradiction, assume that such a
deterministic algorithm A exists that solves Stable
Agreement under the assumed settings. We will
prove our theorem by inductively constructing an
infinite run ρ of this algorithm consisting of a sequence
of bivalent configurations. By virtue of Lemma 6.1
this allows us to conclude that nodes do not reach
almost everywhere agreement.

To establish the basis of our induction, we need
to show that there is an initial bivalent configuration
C0 at the start of round 1. Assume in contradic-
tion that there is no bivalent starting configuration.
Clearly, if all nodes start with a value 0 (resp., 1),
this network must reach Stable Agreement on 0
(resp., 1). This implies that there are two possible
starting configurations C0

0 and C0
1 in which (i) the

input values are the same for all but one node u0,
but (ii) C0

0 is 0-valent whereas C0
1 is 1-valent. Con-

sider the respective one-round extension of C0
0 and

C0
1 where the adversary simply churns out node u0.

Both successor configurations C1
0 and C1

1 are indistin-
guishible for all other nodes, in particular they have
no way of knowing what initial value was assigned
to u0, since all witnesses have been removed by the
adversary. Therefore, C1

0 and C1
1 must both be ei-

ther 0-valent or 1-valent, a contradiction. This shows
that there is an initial bivalent configuration, thereby
establishing the basis for our induction.

For the inductive step, we assume that the net-
work is in a bivalent configuration Cr−1 at the end
of round r − 1. We will extend Cr−1 by one round
(guided by the adversary) that yields another bivalent
configuration Cr. Assume for the sake of a contradic-
tion that every possible one-round extension of Cr−1

yields a univalent configuration. Without loss of gen-
erality, assume that the one-round extension γ where
no node is churned out is 1-valent and yields config-
uration Cr1 . Since by assumption Cr−1 was bivalent,
there is another one-round extension γ′ that yields a
0-valent configuration Cr0 . Moreover, we know that
a nonempty set S of size at most ∆+1 nodes must
have been subject to churn in γ′. (This is the only
difference between Cr0 and Cr1 — recall that the edges
of the graph are stable throughout the run.)

Let S′ be a subset of S and let γS′ be the one-
round extension of Cr−1 that we get when only nodes
in S′ are churned out. Clearly, γ = γ∅ and γ′ = γS .
Consider the lattice of all such one-round extension
bounded by γ and γ′ that is given by the power set of
S. Starting at γ and moving towards γ′ along some
path, we must reach a one-round extension γ{v1,...,vk}
that yields a 1-valent configuration Dr

1, whereas the
next point on this path is some one-round extension
γ{v1,...,vk+1} that ends in a 0-valent configuration Dr

0.
The only difference between these two extensions is
that node vk+1 is churned out in the latter but not in
the former extension. Now consider the one-round
extensions of Dr

0 and Dr
1 where vk+1 and all its

neighbors are churned out, yielding Dr+1
0 and Dr+1

1 .
For all other nodes, Dr

0 and Dr
1 are indistinguishible

and therefore they must either both be 0-valent or
both be 1-valent. This, however, is a contradiction.

Considering that expander graphs usually are as-
sumed to have constant degree, Theorem 6.1 implies
that even if we limit the churn to a constant, the
adaptive adversary can still beat any deterministic
algorithm.

7 Conclusion

We have introduced a novel framework for analyzing
highly dynamic distributed systems with churn. We
believe that our model captures the core character-
istics of such systems: a large amount of churn per
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round and a constantly changing network topology.
Future work involves extending our model to include
Byzantine nodes and corrupted communication chan-
nels. Furthermore, our work raises some key ques-
tions: How much churn can we tolerate in an adaptive
setting? Are there algorithms that tolerate linear (in
n) churn in an adaptive setting? We show that we
can tolerate O(

√
n) churn in an adaptive setting, but

it takes a polynomial (in n) number of communication
bits per round. An intriguing problem is to reduce the
number of bits to polylogarithmic in n.

While the main focus of this paper was achieving
agreement among nodes which is one of the most im-
portant tasks in a distributed system, we believe that
the techniques we have developed are useful build-
ing blocks for tackling other tasks like aggregation or
leader election in this setting.
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