
This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TPAMI.2020.3019967, IEEE

Transactions on Pattern Analysis and Machine Intelligence

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. XX, NO. XX, 2020 1

Towards Robust Monocular Depth Estimation:
Mixing Datasets for

Zero-shot Cross-dataset Transfer

René Ranftl*, Katrin Lasinger*, David Hafner, Konrad Schindler, and Vladlen Koltun

Abstract—The success of monocular depth estimation relies on large and diverse training sets. Due to the challenges associated with

acquiring dense ground-truth depth across different environments at scale, a number of datasets with distinct characteristics and

biases have emerged. We develop tools that enable mixing multiple datasets during training, even if their annotations are incompatible.

In particular, we propose a robust training objective that is invariant to changes in depth range and scale, advocate the use of

principled multi-objective learning to combine data from different sources, and highlight the importance of pretraining encoders on

auxiliary tasks. Armed with these tools, we experiment with five diverse training datasets, including a new, massive data source: 3D

films. To demonstrate the generalization power of our approach we use zero-shot cross-dataset transfer, i.e. we evaluate on datasets

that were not seen during training. The experiments confirm that mixing data from complementary sources greatly improves monocular

depth estimation. Our approach clearly outperforms competing methods across diverse datasets, setting a new state of the art for

monocular depth estimation.

Index Terms—Monocular depth estimation, Single-image depth prediction, Zero-shot cross-dataset transfer, Multi-dataset training

✦

1 INTRODUCTION

D EPTH is among the most useful intermediate representations

for action in physical environments [1]. Despite its utility,

monocular depth estimation remains a challenging problem that

is heavily underconstrained. To solve it, one must exploit many,

sometimes subtle, visual cues, as well as long-range context and

prior knowledge. This calls for learning-based techniques [2], [3].

To learn models that are effective across a variety of scenarios,

we need training data that is equally varied and captures the diver-

sity of the visual world. The key challenge is to acquire such data

at sufficient scale. Sensors that provide dense ground-truth depth

in dynamic scenes, such as structured light or time-of-flight, have

limited range and operating conditions [6], [7], [8]. Laser scanners

are expensive and can only provide sparse depth measurements

when the scene is in motion. Stereo cameras are a promising

source of data [9], [10], but collecting suitable stereo images

in diverse environments at scale remains a challenge. Structure-

from-motion (SfM) reconstruction has been used to construct

training data for monocular depth estimation across a variety

of scenes [11], but the result does not include independently

moving objects and is incomplete due to the limitations of multi-

view matching. On the whole, none of the existing datasets is

sufficiently rich to support the training of a model that works

robustly on real images of diverse scenes. At present, we are faced

with multiple datasets that may usefully complement each other,

but are individually biased and incomplete.

In this paper, we investigate ways to train robust monocular

depth estimation models that are expected to perform across
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diverse environments. We develop novel loss functions that are

invariant to the major sources of incompatibility between datasets,

including unknown and inconsistent scale and baselines. Our

losses enable training on data that was acquired with diverse

sensing modalities such as stereo cameras (with potentially un-

known calibration), laser scanners, and structured light sensors.

We also quantify the value of a variety of existing datasets for

monocular depth estimation and explore optimal strategies for

mixing datasets during training. In particular, we show that a

principled approach based on multi-objective optimization [12]

leads to improved results compared to a naive mixing strategy.

We further empirically highlight the importance of high-capacity

encoders, and show the unreasonable effectiveness of pretraining

the encoder on a large-scale auxiliary task.

Our extensive experiments, which cover approximately six

GPU months of computation, show that a model trained on

a rich and diverse set of images from different sources, with

an appropriate training procedure, delivers state-of-the-art results

across a variety of environments. To demonstrate this, we use the

experimental protocol of zero-shot cross-dataset transfer. That is,

we train a model on certain datasets and then test its performance

on other datasets that were never seen during training. The intu-

ition is that zero-shot cross-dataset performance is a more faithful

proxy of “real world” performance than training and testing on

subsets of a single data collection that largely exhibit the same

biases [13].

In an evaluation across six different datasets, we outperform

prior art both quantitatively and qualitatively, and set a new state

of the art for monocular depth estimation. Example results are

shown in Figure 1.
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Fig. 1. We show how to leverage training data from multiple, complementary sources for single-view depth estimation, in spite of varying and
unknown depth range and scale. Our approach enables strong generalization across datasets. Top: input images. Middle: inverse depth maps
predicted by the presented approach. Bottom: corresponding point clouds rendered from a novel view-point. Point clouds rendered via Open3D [4].
Input images from the Microsoft COCO dataset [5], which was not seen during training.

2 RELATED WORK

Early work on monocular depth estimation used MRF-based

formulations [3], simple geometric assumptions [2], or non-

parametric methods [14]. More recently, significant advances have

been made by leveraging the expressive power of convolutional

networks to directly regress scene depth from the input image [15].

Various architectural innovations have been proposed to enhance

prediction accuracy [16], [17], [18], [19], [20]. These methods

need ground-truth depth for training, which is commonly acquired

using RGB-D cameras or LiDAR sensors. Others leverage existing

stereo matching methods to obtain ground truth for supervi-

sion [21], [22]. These methods tend to work well in the specific

type of scenes used to train them, but do not generalize well to

unconstrained scenes, due to the limited scale and diversity of the

training data.

Garg et al. [9] proposed to use calibrated stereo cameras for

self-supervision. While this significantly simplifies the acquisition

of training data, it still does not lift the restriction to a very

specific data regime. Since then, various approaches leverage self-

supervision, but they either require stereo images [10], [23], [24]

or exploit apparent motion [24], [25], [26], [27], and are thus

difficult to apply to dynamic scenes.

We argue that high-capacity deep models for monocular depth

estimation can in principle operate on a fairly wide and uncon-

strained range of scenes. What limits their performance is the lack

of large-scale, dense ground truth that spans such a wide range of

conditions. Commonly used datasets feature homogeneous scene

layouts, such as street scenes in a specific geographic region [3],

[28], [29] or indoor environments [30]. We note in particular that

these datasets show only a small number of dynamic objects.

Models that are trained on data with such strong biases are prone

to fail in less constrained environments.

Efforts have been made to create more diverse datasets. Chen

et al. [34] used crowd-sourcing to sparsely annotate ordinal rela-

tions in images collected from the web. Xian et al. [32] collected a

stereo dataset from the web and used off-the-shelf tools to extract

dense ground-truth disparity; while this dataset is fairly diverse,

it only contains 3,600 images. Li and Snavely [11] used SfM

and multi-view stereo (MVS) to reconstruct many (predominantly

static) 3D scenes for supervision. Li et al. [38] used SfM and MVS

to construct a dataset from videos of people imitating mannequins

(i.e. they are frozen in action while the camera moves through the

scene). Chen et al. [39] propose an approach to automatically

assess the quality of sparse SfM reconstructions in order to

construct a large dataset. Wang et al. [33] build a large dataset

from stereo videos sourced from the web, while Cho et al. [40]

collect a dataset of outdoor scenes with handheld stereo cameras.

Gordon et al. [41] estimate the intrinsic parameters of YouTube

videos in order to leverage them for training. Large-scale datasets

that were collected from the Internet [33], [38] require a large

amount of pre- and post-processing. Due to copyright restrictions,

they often only provide links to videos, which frequently become

unavailable. This makes reproducing these datasets challenging.

To the best of our knowledge, the controlled mixing of mul-

tiple data sources has not been explored before in this context.

Ummenhofer et al. [42] presented a model for two-view structure
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TABLE 1
Datasets used in our work. Top: Our training sets. Bottom: Our test sets. No single real-world dataset features a large number of diverse scenes

with dense and accurate ground truth.

Dataset Indoor Outdoor Dynamic Video Dense Accuracy Diversity Annotation Depth # Images

DIML Indoor [31] ✓ ✓ ✓ Medium Medium RGB-D Metric 220K

MegaDepth [11] ✓ (✓) (✓) Medium Medium SfM No scale 130K

ReDWeb [32] ✓ ✓ ✓ ✓ Medium High Stereo No scale & shift 3600

WSVD [33] ✓ ✓ ✓ ✓ ✓ Medium High Stereo No scale & shift 1.5M

3D Movies ✓ ✓ ✓ ✓ ✓ Medium High Stereo No scale & shift 75K

DIW [34] ✓ ✓ ✓ Low High User clicks Ordinal pair 496K

ETH3D [35] ✓ ✓ ✓ High Low Laser Metric 454

Sintel [36] ✓ ✓ ✓ ✓ ✓ High Medium Synthetic (Metric) 1064

KITTI [28], [29] ✓ (✓) ✓ (✓) Medium Low Laser/Stereo Metric 93K

NYUDv2 [30] ✓ (✓) ✓ ✓ Medium Low RGB-D Metric 407K

TUM-RGBD [37] ✓ (✓) ✓ ✓ Medium Low RGB-D Metric 80K

and motion estimation and trained it on a dataset of (static)

scenes that is the union of multiple smaller datasets. However,

they did not consider strategies for optimal mixing, or study the

impact of combining multiple datasets. Similarly, Facil et al. [43]

used multiple datasets with a naive mixing strategy for learning

monocular depth with known camera intrinsics. Their test data is

very similar to half of their training collection, namely RGB-D

recordings of indoor scenes.

3 EXISTING DATASETS

Various datasets have been proposed that are suitable for monoc-

ular depth estimation, i.e. they consist of RGB images with

corresponding depth annotation of some form [3], [11], [28], [29],

[30], [31], [32], [33], [34], [35], [36], [37], [38], [40], [44], [45],

[46], [47], [48]. Datasets differ in captured environments and

objects (indoor/outdoor scenes, dynamic objects), type of depth

annotation (sparse/dense, absolute/relative depth), accuracy (laser,

time-of-flight, SfM, stereo, human annotation, synthetic data),

image quality and camera settings, as well as dataset size.

Each single dataset comes with its own characteristics and has

its own biases and problems [13]. High-accuracy data is hard to

acquire at scale and problematic for dynamic objects [35], [47],

whereas large data collections from Internet sources come with

limited image quality and depth accuracy as well as unknown

camera parameters [33], [34]. Training on a single dataset leads

to good performance on the corresponding test split of the same

dataset (same camera parameters, depth annotation, environment),

but may have limited generalization capabilities to unseen data

with different characteristics. Instead, we propose to train on a

collection of datasets, and demonstrate that this approach leads

to strongly enhanced generalization by testing on diverse datasets

that were not seen during training. We list our training and test

datasets, together with their individual characteristics, in Table 1.

Training datasets. We experiment with five existing and com-

plementary datasets for training. ReDWeb [32] (RW) is a small,

heavily curated dataset that features diverse and dynamic scenes

with ground truth that was acquired with a relatively large

stereo baseline. MegaDepth [11] (MD) is much larger, but shows

predominantly static scenes. The ground truth is usually more

accurate in background regions since wide-baseline multi-view

stereo reconstruction was used for acquisition. WSVD [33] (WS)

consists of stereo videos obtained from the web and features

diverse and dynamic scenes. This dataset is only available as

a collection of links to the stereo videos. No ground truth is

provided. We thus recreate the ground truth according to the

procedure outlined by the original authors. DIML Indoor [31]

(DL) is an RGB-D dataset of predominantly static indoor scenes,

captured with a Kinect v2.

Test datasets. To benchmark the generalization performance of

monocular depth estimation models, we chose six datasets based

on diversity and accuracy of their ground truth. DIW [34] is highly

diverse but provides ground truth only in the form of sparse

ordinal relations. ETH3D [35] features highly accurate laser-

scanned ground truth on static scenes. Sintel [36] features perfect

ground truth for synthetic scenes. KITTI [29] and NYU [30] are

commonly used datasets with characteristic biases. For the TUM

dataset [37], we use the dynamic subset that features humans in

indoor environments [38]. Note that we never fine-tune models on

any of these datasets. We refer to this experimental procedure as

zero-shot cross-dataset transfer.

4 3D MOVIES

To complement the existing datasets we propose a new data

source: 3D movies (MV). 3D movies feature high-quality video

frames in a variety of dynamic environments that range from

human-centric imagery in story- and dialogue-driven Hollywood

films to nature scenes with landscapes and animals in documentary

features. While the data does not provide metric depth, we can

use stereo matching to obtain relative depth (similar to RW and

WS). Our driving motivation is the scale and diversity of the data.

3D movies provide the largest known source of stereo pairs that

were captured in carefully controlled conditions. This offers the

possibility of tapping into millions of high-quality images from

an ever-growing library of content. We note that 3D movies have

been used in related tasks in isolation [49], [50]. We will show

that their full potential is unlocked by combining them with other,

complementary data sources. In contrast to similar data collections

in the wild [32], [33], [38], no manual filtering of problematic

content was required with this data source. Hence, the dataset

can easily be extended or adapted to specific needs (e.g. focus on

dancing humans or nature documentaries).

Challenges. Movie data comes with its own challenges and

imperfections. The primary objective when producing stereoscopic

film is providing a visually pleasing viewing experience while

avoiding discomfort for the viewer [51]. This means that the

disparity range for any given scene (also known as the depth
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Fig. 2. Sample images from the 3D Movies dataset. We show images from some of the films in the training set together with their inverse depth
maps. Sky regions and invalid pixels are masked out. Each image is taken from a different film. 3D movies provide a massive source of diverse
data.

budget) is limited and depends on both artistic and psychophysical

considerations. For example, disparity ranges are often increased

in the beginning and the end of a movie, in order to induce a very

noticeable stereoscopic effect for a short time. Depth budgets in

the middle may be lower to allow for more comfortable viewing.

Stereographers thus adjust their depth budget depending on the

content, transitions, and even the rhythm of scenes [52].

In consequence, focal lengths, baseline, and convergence angle

between the cameras of the stereo rig are unknown and vary

between scenes even within a single film. Furthermore, in contrast

to image pairs obtained directly from a standard stereo camera,

stereo pairs in movies usually contain both positive and negative

disparities to allow objects to be perceived either in front of

or behind the screen. Additionally, the depth that corresponds

to the screen is scene-dependent and is often modified in post-

production by shifting the image pairs. We describe data extraction

and training procedures that address these challenges.

Movie selection and preprocessing. We selected a diverse set

of 23 movies. The selection was based on the following con-

siderations: 1) We only selected movies that were shot using a

physical stereo camera. (Some 3D films are shot with a monocular

camera and the stereoscopic effect is added in post-production by

artists.) 2) We tried to balance realism and diversity. 3) We only

selected movies that are available in Blu-ray format and thus allow

extraction of high-resolution images.

We extract stereo image pairs at 1920x1080 resolution and

24 frames per second (fps). Movies have varying aspect ratios,

resulting in black bars on the top and bottom of the frame, and

some movies have thin black bars along frame boundaries due

to post-production. We thus center-crop all frames to 1880x800

pixels. We use the chapter information (Blu-ray meta-data) to split

each movie into individual chapters. We drop the first and last

chapters since they usually include the introduction and credits.

We use the scene detection tool of FFmpeg [53] with a

threshold of 0.1 to extract individual clips. We discard clips that

are shorter than one second to filter out chaotic action scenes and

highly correlated clips that rapidly switch between protagonists

during dialogues. To balance scene diversity, we sample the first

24 frames of each clip and additionally sample 24 frames every

four seconds for longer clips. Since multiple frames are part of

the same clip, the complete dataset is highly correlated. Hence,

we further subsample the training set at 4 fps and the test and

validation sets at 1 fps.

Disparity extraction. The extracted image pairs can be used

to estimate disparity maps using stereo matching. Unfortunately,

state-of-the-art stereo matchers perform poorly when applied to

movie data, since the matchers were designed and trained to match

only over positive disparity ranges. This assumption is appropriate

for the rectified output of a standard stereo camera, but not to

image pairs extracted from stereoscopic film. Moreover, disparity



This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TPAMI.2020.3019967, IEEE

Transactions on Pattern Analysis and Machine Intelligence

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. XX, NO. XX, 2020 5

TABLE 2
List of films and the number of extracted frames in the 3D Movies

dataset after automatic processing.

Movie title # frames

Training set 75074

Battle of the Year (2013) 4821
Billy Lynn’s Long Halftime Walk (2016) 4178
Drive Angry (2011) 328
Exodus: Gods and Kings (2014) 8063
Final Destination 5 (2011) 1437
A very Harold & Kumar 3D Christmas (2011) 3690
Hellbenders (2012) 120
The Hobbit: An Unexpected Journey (2012) 8874
Hugo (2011) 3189
The Three Musketeers (2011) 5028
Nurse 3D (2013) 492
Pina (2011) 1215
Dawn of the Planet of the Apes (2014) 5571
The Amazing Spider-Man (2012) 5618
Step Up 3D (2010) 509
Step Up: All In (2014) 2187
Transformers: Age of Extinction (2014) 8740
Le Dernier Loup / Wolf Totem (2015) 4843
X-Men: Days of Future Past (2014) 6171

Validation set 3058

The Great Gatsby (2013) 1815
Step Up: Miami Heat / Revolution (2012) 1243

Test set 788

Doctor Who - The Day of the Doctor (2013) 508
StreetDance 2 (2012) 280

ranges encountered in 3D movies are usually smaller than ranges

that are common in standard stereo setups due to the limited depth

budget.

To alleviate these problems, we apply a modern optical flow

algorithm [54] to the stereo pairs. We retain the horizontal compo-

nent of the flow as a proxy for disparity. Optical flow algorithms

naturally handle both positive and negative disparities and usually

perform well for displacements of moderate size. For each stereo

pair we use the left camera as the reference and extract the optical

flow from the left to the right image and vice versa. We perform

a left-right consistency check and mark pixels with a disparity

difference of more than 2 pixels as invalid. We automatically filter

out frames of bad disparity quality following the guidelines of

Wang et al. [33]: frames are rejected if more than 10% of all pixels

have a vertical disparity >2 pixels, the horizontal disparity range

is <10 pixels, or the percentage of pixels passing the left-right

consistency check is <70%. In a final step, we detect pixels that

belong to sky regions using a pre-trained semantic segmentation

model [55] and set their disparity to the minimum disparity in the

image.

The complete list of selected movies together with the number

of frames that remain after filtering with the automatic cleaning

pipeline is shown in Table 2. Note that discrepancies in the number

of extracted frames per movie occur due to varying runtimes as

well as varying disparity quality. We use frames from 19 movies

for training and set aside two movies for validation and two movies

for testing, respectively. Example frames from the resulting dataset

are shown in Figure 2.

5 TRAINING ON DIVERSE DATA

Training models for monocular depth estimation on diverse

datasets presents a challenge because the ground truth comes in

different forms (see Table 1). It may be in the form of absolute

depth (from laser-based measurements or stereo cameras with

known calibration), depth up to an unknown scale (from SfM), or

disparity maps (from stereo cameras with unknown calibration).

The main requirement for a sensible training scheme is to carry

out computations in an appropriate output space that is compatible

with all ground-truth representations and is numerically well-

behaved. We further need to design a loss function that is flexible

enough to handle diverse sources of data while making optimal

use of all available information.

We identify three major challenges. 1) Inherently different

representations of depth: direct vs. inverse depth representations.

2) Scale ambiguity: for some data sources, depth is only given up

to an unknown scale. 3) Shift ambiguity: some datasets provide

disparity only up to an unknown scale and global disparity shift

that is a function of the unknown baseline and a horizontal shift

of the principal points due to post-processing [33].

Scale- and shift-invariant losses. We propose to perform pre-

diction in disparity space (inverse depth up to scale and shift)

together with a family of scale- and shift-invariant dense losses

to handle the aforementioned ambiguities. Let M denote the

number of pixels in an image with valid ground truth and let θ

be the parameters of the prediction model. Let d = d(θ) ∈ R
M

be a disparity prediction and let d∗ ∈ R
M be the corresponding

ground-truth disparity. Individual pixels are indexed by subscripts.

We define the scale- and shift-invariant loss for a single sample

as

Lssi(d̂, d̂
∗) =

1

2M

M
∑

i=1

ρ
(

d̂i − d̂
∗

i

)

, (1)

where d̂ and d̂
∗ are scaled and shifted versions of the predictions

and ground truth, and ρ defines the specific type of loss function.

Let s : R
M → R+ and t : R

M → R denote estimators

of the scale and translation. To define a meaningful scale- and

shift-invariant loss, a sensible requirement is that prediction and

ground truth should be appropriately aligned with respect to their

scale and shift, i.e. we need to ensure that s(d̂) ≈ s(d̂∗) and

t(d̂) ≈ t(d̂∗). We propose two different strategies for performing

this alignment.

The first approach aligns the prediction to the ground truth

based on a least-squares criterion:

(s, t) = argmin
s,t

M
∑

i=1

(sdi + t− d
∗

i )
2
,

d̂ = sd+ t, d̂
∗ = d

∗, (2)

where d̂ and d̂
∗ are the aligned prediction and ground truth,

respectively. The factors s and t can be efficiently determined in

closed form by rewriting (2) as a standard least-squares problem:

Let ~di = (di, 1)
⊤ and h = (s, t)⊤, then we can rewrite the

objective as

h
opt = argmin

h

M
∑

i=1

(

~d⊤

i h− d
∗

i

)2

, (3)

which has the closed-form solution

h
opt =

(

M
∑

i=1

~di
~d⊤

i

)−1(
M
∑

i=1

~did
∗

i

)

. (4)
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We set ρ(x) = ρmse(x) = x2 to define the scale- and shift-

invariant mean-squared error (MSE). We denote this loss as

Lssimse.

The MSE is not robust to the presence of outliers. Since all

existing large-scale datasets only provide imperfect ground truth,

we conjecture that a robust loss function can improve training.

We thus define alternative, robust loss functions based on robust

estimators of scale and shift:

t(d) = median(d), s(d) =
1

M

M
∑

i=1

|d− t(d)|. (5)

We align both the prediction and the ground truth to have zero

translation and unit scale:

d̂ =
d− t(d)

s(d)
, d̂

∗ =
d
∗ − t(d∗)

s(d∗)
. (6)

We define two robust losses. The first, which we denote as

Lssimae, measures the absolute deviations ρmae(x) = |x|. We

define the second robust loss by trimming the 20% largest residu-

als in every image, irrespective of their magnitude:

Lssitrim(d̂, d̂∗) =
1

2M

Um
∑

j=1

ρmae

(

d̂j − d̂
∗

j

)

, (7)

with |d̂j−d̂
∗

j | ≤ |d̂j+1−d̂
∗

j+1| and Um = 0.8M (set empirically

based on experiments on the ReDWeb dataset). Note that this is

in contrast to commonly used M-estimators, where the influence

of large residuals is merely down-weighted. Our reasoning for

trimming is that outliers in the ground truth should never influence

training.

Related loss functions. The importance of accounting for un-

known or varying scale in the training of monocular depth estima-

tion models has been recognized early. Eigen et al. [15] proposed

a scale-invariant loss in log-depth space. Their loss can be written

as

Lsilog(z, z
∗) = min

s

1

2M

M
∑

i=1

(

log(eszi)− log(z∗i )
)2
, (8)

where zi = d
−1

i and z
∗

i = (d∗

i )
−1 are depths up to unknown

scale. Both (8) and Lssimse account for the unknown scale of the

predictions, but only Lssimse accounts for an unknown global

disparity shift. Moreover, the losses are evaluated on different

depth representations. Our loss is defined in disparity space, which

is numerically stable and compatible with common representations

of relative depth.

Chen et al. [34] proposed a generally applicable loss for

relative depth estimation based on ordinal relations:

ρord(zi − zj) =

{

log(1 + exp(−(zi − zj)lij), lij 6= 0

(zi − zj)
2, lij = 0,

(9)

where lij ∈{−1, 0, 1} encodes the ground-truth ordinal relation of

point pairs. This encourages pushing points as far apart as possible

when lij 6= 0 and pulling them to the same depth when lij = 0.

Xian et al. [32] suggest to sparsely evaluate this loss by randomly

sampling point pairs from the dense ground truth. In contrast, our

proposed losses take all available data into account.

Recently, Wang et al. [33] proposed the normalized multiscale

gradient (NMG) loss. To achieve shift invariance in addition to

scale invariance in disparity space, they evaluate the gradient

difference between ground-truth and rescaled estimates at multiple

scales k:

Lnmg(d,d
∗) =

K
∑

k=1

M
∑

i=1

|s∇k
xd−∇k

xd
∗|+ |s∇k

yd−∇k
yd

∗|.

(10)

In contrast, our losses are evaluated directly on the ground-truth

disparity values, while also accounting for unknown scale and

shift. While both the ordinal loss and NMG can, conceptually, be

applied to arbitrary depth representations and are thus suited for

mixing diverse datasets, we will show that our scale- and shift-

invariant loss variants lead to consistently better performance.

Final loss. To define the complete loss, we adapt the multi-

scale, scale-invariant gradient matching term [11] to the disparity

space. This term biases discontinuities to be sharp and to coincide

with discontinuities in the ground truth. We define the gradient

matching term as

Lreg(d̂, d̂
∗) =

1

M

K
∑

k=1

M
∑

i=1

(

|∇xR
k
i |+ |∇yR

k
i |
)

, (11)

where Ri = d̂i − d̂
∗

i , and Rk denotes the difference of disparity

maps at scale k. We use K = 4 scale levels, halving the image

resolution at each level. Note that this term is similar to Lnmg ,

but with different approaches to compute the scaling s.

Our final loss for a training set l is

Ll =
1

Nl

Nl
∑

n=1

Lssi

(

d̂
n, (d̂∗)n

)

+ α Lreg

(

d̂
n, (d̂∗)n

)

, (12)

where Nl is the training set size and α is set to 0.5.

Mixing strategies. While our loss and choice of prediction

space enable mixing datasets, it is not immediately clear in what

proportions different datasets should be integrated during training

with a stochastic optimization algorithm. We explore two different

strategies in our experiments.

The first, naive strategy is to mix datasets in equal parts in each

minibatch. For a minibatch of size B, we sample B/L training

samples from each dataset, where L denotes the number of distinct

datasets. This strategy ensures that all datasets are represented

equally in the effective training set, regardless of their individual

size.

Our second strategy explores a more principled approach,

where we adapt a recent procedure for Pareto-optimal multi-task

learning to our setting [12]. We define learning on each dataset

as a separate task and seek an approximate Pareto optimum over

datasets (i.e. a solution where the loss cannot be decreased on any

training set without increasing it for at least one of the others).

Formally, we use the algorithm presented in [12] to minimize the

multi-objective optimization criterion

min
θ

(

L1(θ), . . . ,LL(θ)
)⊤

, (13)

where model parameters θ are shared across datasets.

6 EXPERIMENTS

We start from the experimental setup of Xian et al. [32] and

use their ResNet-based [56] multi-scale architecture for single-

image depth prediction. We initialize the encoder with pretrained

ImageNet [57] weights and initialize other layers randomly. We

use Adam [58] with a learning rate of 10−4 for randomly
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Fig. 3. Relative performance of different loss functions (higher is better)
with the best performing loss Lssitrim + Lreg used as reference. All
our four proposed losses (white area) outperform current state-of-the-
art losses (gray area).

initialized layers and 10−5 for pretrained layers, and set the

exponential decay rate to β1 = 0.9 and β2 = 0.999. Images are

flipped horizontally with a 50% chance, and randomly cropped

and resized to 384 × 384 to augment the data and maintain the

aspect ratio across different input images. No other augmentations

are used.

Subsequently, we perform ablation studies on the loss function

and, since we conjecture that pretraining on ImageNet data has sig-

nificant influence on performance, also the encoder architecture.

We use the best-performing pretrained model as the starting point

for our dataset mixing experiments. We use a batch size of 8L, i.e.

when mixing three datasets the batch size is 24. When comparing

datasets of different sizes, the term epoch is not well-defined; we

thus denote an epoch as processing 72,000 images, roughly the

size of MD and MV, and train for 60 epochs. We shift and scale

the ground-truth disparity to the range [0, 1] for all datasets.

Test datasets and metrics. For ablation studies of loss and

encoders, we use our held-out validation sets of RW (360 images),

MD (2,963 images – official validation set), and MV (3,058

images – see Table 2). For all training dataset mixing experiments

and comparisons to the state of the art, we test on a collection

of datasets that were never seen during training: DIW, ETH3D,

Sintel, KITTI, NYU, and TUM. For DIW [34] we created a

validation set of 10,000 images from the DIW training set for

our ablation studies and used the official test set of 74,441 images

when comparing to the state of the art. For NYU we used the

official test split (654 images). For KITTI we used the intersection

of the official validation set for depth estimation (with improved

ground-truth depth [59]) and the Eigen test split [60] (161 images).

For ETH3D and Sintel we used the whole dataset for which ground

truth is available (454 and 1,064 images, respectively). For the

TUM dataset, we use the dynamic subset that features humans in

indoor environments [38] (1,815 images).

For each dataset, we use a single metric that fits the ground

truth in that dataset. For DIW we use the Weighted Human

Disagreement Rate (WHDR) [34]. For datasets that are based

on relative depth, we measure the root mean squared error in

disparity space (MV, RW, MD). For datasets that provide accurate

absolute depth (ETH3D, Sintel), we measure the mean absolute

value of the relative error (1/M)
∑M

i=1 |zi − z∗i | /z
∗

i in depth

space (AbsRel). Finally, we use the percentage of pixels with

δ = max( zi
z∗

i

,
z∗

i

zi
)>1.25 to evaluate models on KITTI, NYU, and

TUM [15]. Following [10], we cap predictions at an appropriate
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Fig. 4. Relative performance of different encoders across datasets
(higher is better). ImageNet performance of an encoder is predictive of
its performance in monocular depth estimation.

maximum value for datasets that are evaluated in depth space. For

ETH3D, KITTI, NYU, and TUM, the depth cap was set to the

maximum ground-truth depth value (72, 80, 10, and 10 meters,

respectively). For Sintel, we evaluate on areas with ground-truth

depth below 72 meters and accordingly use a depth cap of 72

meters. For all our models and baselines, we align predictions and

ground truth in scale and shift for each image before measuring

errors. We perform the alignment in inverse-depth space based

on the least-squares criterion. Since absolute numbers quickly

become hard to interpret when evaluating on multiple datasets,

we also present the relative change in performance compared to

an appropriate baseline method.

Input resolution for evaluation. We resize test images so that the

larger axis equals 384 pixels while the smaller axis is resized to a

multiple of 32 pixels (a constraint imposed by the encoder), while

keeping an aspect ratio as close as possible to the original aspect

ratio. Due to the wide aspect ratio in KITTI this strategy would

lead to very small input images. We thus resize the smaller axis to

be equal to 384 pixels on this dataset and adopt the same strategy

otherwise to maintain the aspect ratio.

Most state-of-the-art methods that we compare to are special-

ized to a specific dataset (with fixed image dimensions) and thus

did not specify how to handle different image sizes and aspect

ratios during inference. We tried to find the best-performing setting

for all methods, following their evaluation scripts and training

dimensions. For approaches trained on square patches [32], we

follow our setup and set the larger axis to the training image

axis length and adapt the smaller one, keeping the aspect ratio

as close as possible to the original. For approaches with non-

square patches [11], [33], [34], [38] we fix the smaller axis to

the smaller training image axis dimension. For DORN [19] we

followed their tiling protocol, resizing the images to the dimen-

sions stated for their NYU and KITTI evaluation, respectively.

For Monodepth2 [24] and Struct2Depth [27], which were both

trained on KITTI and thus expect a very wide aspect ratio, we

pad the input image using reflection padding to obtain the same

aspect ratio, resize to their specific input dimension, and crop

the resulting prediction to the original target dimensions. For

methods where model weights were available for different training

resolutions we evaluated all of them and report numbers for the

best-performing variant.

All predictions were rescaled to the resolution of the ground

truth for evaluation.

Comparison of loss functions. We show the effect of different
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loss functions on the validation performance in Figure 3. We used

RW to train networks with different losses. For the ordinal loss (cf.

Equation (9)), we sample 5,000 point pairs randomly [32]. Where

appropriate, we combine losses with the gradient regularization

term (11). We also test a scale-invariant, but not shift-invariant,

MSE in disparity space Lsimse by fixing t=0 in (1). The model

trained with Lord corresponds to our reimplementation of Xian

et al. [32]. Figure 3 shows that our proposed trimmed MAE loss

yields the lowest validation error over all datasets. We thus conduct

all experiments that follow using Lssitrim + Lreg .

Comparison of encoders. We evaluate the influence of the

encoder architecture in Figure 4. We define the model with a

ResNet-50 [56] encoder as used originally by Xian et al. [32]

as our baseline and show the relative improvement in perfor-

mance when swapping in different encoders (higher is better). We

tested ResNet-101, ResNeXt-101 [61] and DenseNet-161 [62]. All

encoders were pretrained on ImageNet [57]. For ResNeXt-101,

we additionally use a variant that was pretrained with a massive

corpus of weakly-supervised data (WSL) [63] before training on

ImageNet. All models were fine-tuned on RW.

We observe that a significant performance boost is achieved

by using better encoders. Higher-capacity encoders perform better

than the baseline. The ResNeXt-101 encoder that was pretrained

on weakly-supervised data performs significantly better than the

same encoder that was only trained on ImageNet. We found

pretraining to be crucial. A network with a ResNet-50 encoder

with random initialization performs on average 35% worse than

its pretrained counterpart. In general, we find that ImageNet

performance of an encoder is a strong predictor for its perfor-

mance in monocular depth estimation. This is encouraging, since

advancements made in image classification can directly yield gains

in robust monocular depth estimation. The performance gain over

the baseline is remarkable: up to 15 % relative improvement,

without any task-specific adaptations. We use ResNeXt-101-WSL

for all subsequent experiments.

TABLE 3
Relative performance with respect to the baseline in percent when

fine-tuning on different single training sets (higher is better).
Performance better than the baseline in green, worse performance in

red. Best performance is bold, second best is underlined. The absolute
errors of the RW baseline are shown on the top row. While some

datasets provide better performance on individual, similar datasets,
average performance for zero-shot cross-dataset transfer degrades.

DIW ETH3D Sintel KITTI NYU TUM Mean [%]

RW → RW 14.6 0.2 0.3 28.0 18.7 21.7 —

RW → DL −37.6 2.0 −4.3 −73.0 32.3 19.4 −10.2
RW → MV −26.1 −15.9 −15.5 10.1 −10.2 −3.5 −10.2
RW → MD −31.5 4.0 −9.7 −24.3 −1.7 −52.0 −19.2
RW → WS −32.4 −29.8 −2.9 −34.5 −31.9 3.2 −21.4

TABLE 4
Absolute performance when fine-tuning on different single training sets

– lower is better. This table corresponds to Table 3.

DIW ETH3D Sintel KITTI NYU TUM
WHDR AbsRel AbsRel δ>1.25 δ>1.25 δ>1.25

RW → RW 14.59 0.151 0.349 27.95 18.74 21.69
RW → DL 20.08 0.148 0.364 48.35 12.68 17.48

RW → MV 18.39 0.175 0.403 25.12 20.65 22.44
RW → MD 19.18 0.145 0.383 34.73 19.05 32.96
RW → WS 19.31 0.196 0.359 37.59 24.72 20.99

TABLE 5
Combinations of datasets used for training.

Mix RW DL MV MD WS

MIX 1 ✓ ✓

MIX 2 ✓ ✓ ✓

MIX 3 ✓ ✓ ✓ ✓

MIX 4 ✓ ✓ ✓ ✓

MIX 5 ✓ ✓ ✓ ✓ ✓

Training on diverse datasets. We evaluate the usefulness of

different training datasets for generalization in Table 3 and Table 4.

While more specialized datasets reach better performance on

similar test sets (DL for indoor scenes or MD for ETH3D),

performance on the remaining datasets declines. Interestingly,

every single dataset used in isolation leads to worse generalization

performance on average than just using the small, but curated, RW

dataset, i.e. the gains on compatible datasets are offset on average

by the decrease on the other datasets.

The difference in performance for RW, MV, and WS is espe-

cially interesting since they have similar characteristics. Although

substantially larger than RW, both MV and WS show worse indi-

vidual performance. This could be explained partly by redundant

data due to the video nature of these datasets and possibly more

rigorous filtering in RW (human experts pruned samples that had

obvious flaws). Comparing WS and MV, we see that MV leads to

more general models, likely because of higher-quality stereo pairs

due to the more controlled nature of the images.

For our subsequent mixing experiments, we use Table 3 as

reference, i.e. we start with the best performing individual training

dataset and consecutively add datasets to the mix. We show which

datasets are included in the individual training sets in Table 5.

To better understand the influence of the Movies dataset, we

additionally show results where we train on all datasets except

Movies (MIX 4). We always start training from the pretrained RW

TABLE 6
Relative performance of naive dataset mixing with respect to the RW

baseline (top row) – higher is better. While we usually see an
improvement when adding datasets, adding datasets can hurt

generalization performance with naive mixing.

DIW ETH3D Sintel KITTI NYU TUM Mean [%]

RW 14.6 0.2 0.3 28.0 18.7 21.7 —

MIX 1 10.9 9.9 −3.7 18.0 41.4 33.0 18.3

MIX 2 6.7 8.6 3.2 9.2 40.8 35.7 17.3

MIX 3 13.5 10.6 4.9 13.9 43.8 29.1 19.3

MIX 4 11.7 11.3 5.2 11.3 38.8 35.5 19.0

MIX 5 12.3 12.6 7.2 9.1 38.5 37.2 19.5

TABLE 7
Absolute performance of naive dataset mixing – lower is better. This

table corresponds to Table 6.

DIW ETH3D Sintel KITTI NYU TUM

WHDR AbsRel AbsRel δ>1.25 δ>1.25 δ>1.25

RW 14.59 0.151 0.349 27.95 18.74 21.69

MIX 1 13.00 0.136 0.362 22.91 10.98 14.53

MIX 2 13.62 0.138 0.338 25.39 11.10 13.94

MIX 3 12.62 0.135 0.332 24.06 10.54 15.39

MIX 4 12.88 0.134 0.331 24.78 11.46 14.00

MIX 5 12.79 0.132 0.324 25.41 11.52 13.62
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Fig. 5. Comparison of models trained on different combinations of datasets using Pareto-optimal mixing. Images from Microsoft COCO [5].

TABLE 8
Relative performance of dataset mixing with multi-objective

optimization with respect to the RW baseline (top row) – higher is
better. Principled mixing dominates the solutions found by naive mixing.

DIW ETH3D Sintel KITTI NYU TUM Mean [%]

RW 14.6 0.2 0.3 28.0 18.7 21.7 —

MIX 1 9.4 7.3 −7.7 13.2 44.1 33.2 16.6

MIX 2 14.1 8.6 0.9 17.5 45.5 32.0 19.8

MIX 3 15.8 11.9 5.2 11.7 47.8 32.4 20.8

MIX 4 15.4 13.9 1.7 17.2 43.4 38.2 21.6

MIX 5 15.9 14.6 6.3 14.5 49.0 34.1 22.4

TABLE 9
Absolute performance of dataset mixing with multi-objective

optimization – lower is better. This table corresponds to Table 8.

DIW ETH3D Sintel KITTI NYU TUM

WHDR AbsRel AbsRel δ>1.25 δ>1.25 δ>1.25

RW 14.59 0.151 0.349 27.95 18.74 21.69

MIX 1 13.22 0.140 0.376 24.26 10.48 14.50

MIX 2 12.54 0.138 0.346 23.05 10.21 14.76

MIX 3 12.29 0.133 0.331 24.68 9.78 14.66

MIX 4 12.35 0.130 0.343 23.13 10.61 13.41

MIX 5 12.27 0.129 0.327 23.90 9.55 14.29

baseline.

Tables 6 and 7 show that, in contrast to using individual

datasets, mixing multiple training sets consistently improves per-

formance with respect to the baseline. However, we also see that

adding datasets does not unconditionally improve performance

when naive mixing is used (see MIX 1 vs. MIX 2). Tables 8

and 9 report the results of an analogous experiment with Pareto-

optimal dataset mixing. We observe that this approach improves

over the naive mixing strategy. It is also more consistently able

to leverage additional datasets. Combining all five datasets with

Pareto-optimal mixing yields our best-performing model. We

show a qualitative comparison of the resulting models in Figure 5.

Comparison to the state of the art. We compare our best-

performing model to various state-of-the-art approaches in Ta-

ble 10 and Table 11. The top part of each table compares to

baselines that were not fine-tuned on any of the evaluated datasets

(i.e. zero-shot transfer, akin to our model). The bottom parts show

baselines that were fine-tuned on a subset of the datasets for

reference. In the training set column, MC refers to Mannequin

Challenge [38] and CS to Cityscapes [45]. A → B indicates

pretraining on A and fine-tuning on B.

Our model outperforms the baselines by a comfortable margin

in terms of zero-shot performance. Note that our model outper-

forms the Mannequin Challenge model of Li et al. [38] on a

subset of the TUM dataset that was specifically curated by Li et

al. to showcase the advantages of their model. We show additional

results on a variant of our model that has a smaller encoder based

on ResNet-50 (Ours – small). This architecture is equivalent to

the network proposed by Xian et al. [32]. The smaller model also

outperforms the state of the art by a comfortable margin. This

shows that the strong performance of our model is not only due to

increased network capacity, but fundamentally due to the proposed

training scheme.

Some models that were trained for one specific dataset (e.g.

KITTI or NYU in the lower part of the table) perform very well

on those individual datasets but perform significantly worse on all

other test sets. Fine-tuning on individual datasets leads to strong

priors about specific environments. This can be desirable in some

applications, but is ill-suited if the model needs to generalize. A

qualitative comparison of our model to the four best-performing

competitors is shown in Figure 6.

Additional qualitative results. Figure 7 shows additional qual-

itative results on the DIW test set [34]. We show results on a

diverse set of input images depicting various objects and scenes,

including humans, mammals, birds, cars, and other man-made

and natural objects. The images feature indoor, street and nature

scenes, various lighting conditions, and various camera angles.

Additionally, subject areas vary from close-up to long-range shots.

We show qualitative results on the DAVIS video dataset [64] in

our supplementary video https://youtu.be/D46FzVyL9I8.

Note that every frame was processed individually, i.e. no temporal

information was used in any way. For each clip, the inverse depth

maps were jointly scaled and shifted for visualization. The dataset

consists of a diverse set of videos and includes humans, animals,

and cars in action. This dataset was filmed with monocular

cameras, hence no ground-truth depth information is available.

Hertzmann [65] recently observed that our publicly available

https://youtu.be/D46FzVyL9I8
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Fig. 6. Qualitative comparison of our approach to the four best competitors on images from the Microsoft COCO dataset [5].

model provides plausible results even on abstract line drawings.

Similarly, we show results on drawings and paintings with differ-

ent levels of abstraction in Figure 8. We can qualitatively confirm

the findings in [65]: The model shows a surprising capability to

estimate plausible relative depth even on relatively abstract inputs.

This seems to be true as long as some (coarse) depth cues such as

shading or vanishing points are present in the artwork.

Failure cases. We identify common failure cases and biases of

our model. Images have a natural bias where the lower parts of

the image are closer to the camera than the higher image regions.

When randomly sampling two points and classifying the lower

point as closer to the camera, [34] achieved an agreement rate of

85.8% with human annotators. This bias has also been learned

by our network and can be observed in some extreme cases that

are shown in the first row of Figure 9. In the example on the

left, the model fails to recover the ground plane, likely because

the input image was rotated by 90 degrees. In the right image,

pellets at approximately the same distance to the camera are

reconstructed closer to the camera in the lower part of the image.

Such cases could be prevented by augmenting training data with

rotated images. However, it is not clear if invariance to image

rotations is a desired property for this task.

Another interesting failure case is shown in the second row of

Figure 9. Paintings, photos, and mirrors are often not recognized

as such. The network estimates depth based on the content that

is depicted on the reflector rather than predicting the depth of the

reflector itself.

Additional failure cases are shown in the remaining rows.

Strong edges can lead to hallucinated depth discontinuities. Thin

structures can be missed and relative depth arrangement between

disconnected objects might fail in some situations. Results tend to

get blurred in background regions, which might be explained by

the limited resolution of the input images and imperfect ground

truth in the far range.
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Fig. 7. Qualitative results on the DIW test set.
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Fig. 8. Results on paintings and drawings. Top row: A Friend in Need, Cassius Marcellus Coolidge, and Bathers at Asniéres, Georges Pierre Seurat.
Bottom row: Mittagsrast, Vincent van Gogh, and Vector drawing of central street of old european town, Vilnius, @Misha

Fig. 9. Failure cases. Subtle failures in relative depth arrangement or missing details are highlighted in green.

https://stock.adobe.com/images/vector-drawing-of-central-street-of-old-european-town-vilnius/73034935?asset_id=73034935
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7 CONCLUSION

The success of deep networks has been driven by massive datasets.

For monocular depth estimation, we believe that existing datasets

are still insufficient and likely constitute the limiting factor.

Motivated by the difficulty of capturing diverse depth datasets

at scale, we have introduced tools for combining complementary

sources of data. We have proposed a flexible loss function and a

principled dataset mixing strategy. We have further introduced a

dataset based on 3D movies that provides dense ground truth for

diverse dynamic scenes.

We have evaluated the robustness and generality of models via

zero-shot cross-dataset transfer. We find that systematically testing

models on datasets that were never seen during training is a better

proxy for their performance “in the wild” than testing on a held-

out portion of even the most diverse datasets that are currently

available.

Our work advances the state of the art in generic monoc-

ular depth estimation and indicates that the presented ideas

substantially improve performance across diverse environments.

We hope that this work will contribute to the deployment

of monocular depth models that meet the requirements of

practical applications. Our models are freely available at

https://github.com/intel-isl/MiDaS.

TABLE 10
Relative performance of state of the art methods with respect to our
best model (top row) – higher is better. Top: models that were not

fine-tuned on any of the datasets. Bottom: models that were fine-tuned
on a subset of the tested datasets.

Training sets DIW ETH3D Sintel KITTI NYU TUM Mean [%]

Ours MIX 5 12.46 0.129 0.327 23.90 9.55 14.29 —

Ours – small MIX 5 -0.2 -20.2 -0.9 8.7 -64.7 -19.0 −16.0

Xian [32] RW -17.1 -44.2 -29.1 -42.6 -182.7 -75.1 −65.1

Li [38] MC -112.8 -41.9 -23.9 -100.6 -94.5 -23.9 −66.2

Wang [33] WS -53.2 -58.9 -19.3 -33.6 -209.6 -41.2 −69.3

Li [11] MD -85.8 -41.1 -17.7 -51.8 -188.2 -106.7 −81.9

Casser [27] CS -163.2 -82.2 -29.1 11.5 -314.5 -160.2 −122.9

Fu [19] NYU -131.1 -51.2 -32.4 -157.8 9.0 -72.5 −72.6

Chen [34] NYU�DIW -16.1 -71.3 -34.6 -51.9 -196.6 -111.1 −80.3

Godard [24] KITTI -138.1 -46.5 -24.2 76.9 -248.6 -152.1 −88.8

Casser [27] KITTI -168.8 -68.2 -25.1 50.1 -277.8 -159.1 −108.2

Fu [19] KITTI -143.9 -67.4 -32.1 70.2 -325.2 -180.8 −113.2

TABLE 11
Absolute performance of state of the art methods, sorted by average

rank. This table corresponds to Table 10.

Training sets DIW ETH3D Sintel KITTI NYU TUM Rank

WHDR AbsRel AbsRel δ>1.25 δ>1.25 δ>1.25

Ours MIX 5 12.46 0.129 0.327 23.90 9.55 14.29 2.0

Ours – small MIX 5 12.48 0.155 0.330 21.81 15.73 17.00 2.7

Li [11] MD 23.15 0.181 0.385 36.29 27.52 29.54 5.7

Li [38] MC 26.52 0.183 0.405 47.94 18.57 17.71 5.7

Wang [33] WS 19.09 0.205 0.390 31.92 29.57 20.18 6.0

Xian [32] RW 14.59 0.186 0.422 34.08 27.00 25.02 6.1

Casser [27] CS 32.80 0.235 0.422 21.15 39.58 37.18 9.6

Godard [24] KITTI 29.67 0.189 0.406 5.53 33.29 36.03 6.7

Fu [19] NYU 28.79 0.195 0.433 61.61 8.69 24.65 7.3

Chen [34] NYU � DIW 14.47 0.221 0.440 36.30 28.33 30.16 8.5

Casser [27] KITTI 33.49 0.217 0.409 11.93 36.08 37.03 8.7

Fu [19] KITTI 30.39 0.216 0.432 7.13 40.61 40.13 9.2
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