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ABSTRACT

We describe the ICSI-SRI entry in the Fall 2004 DARPA
EARS Metadata Evaluation. The current system was de-
rived from ICSI’s Fall 2003 Speaker-attributed STT sys-
tem. Our system is an agglomerative clustering system that
uses a BIC-like measure to determine when to stop merg-
ing clusters and to decide which pairs of clusters to merge.
The main advantage of this approach is that it does not re-
quire pre-trained acoustic models, providing robustness and
portability. Changes for this year’s system include: differ-
ent front-end features, the addition of SRI’s Broadcast News
speech/non-speech detector, and modifications to the seg-
mentation routine. In post-evaluation work, we found fur-
ther improvement by changing the stopping criterion from
the BIC-like measure to a Viterbi measure. Additionally,
we have explored issues related to pruning and improved
initialization.

1. INTRODUCTION

The goal of “diarization” is to locate homogeneous re-
gions within audio segments and consistently label them for
speaker, gender, music, noise, etc. Within the framework
of the Fall 2004 Rich Transcription evaluation, the labels of
interest were speaker, and gender1. Participating sites were
given approximately half-hour segments from twelve broad-
cast news shows and were required to produce a record of
the show indicating “who spoke when”. Sites were not re-
quired to identify the actual speaker, just to consistentlyla-
bel segments from the same speaker. Performance was mea-
sured based on the amount of speech that was incorrectly as-
signed. For this evaluation, systems were allowed to make
use of any form of automatic processing, including the out-
put of Speech-to-text (STT) systems.

The system we used this year is based on an agglom-
erative clustering system that was originally developed at
IDIAP by Ajmera and colleagues [1, 2]. We used this same

1We did not participate in the gender identification task.

basic system in both the Spring 2003 (“Who Spoke When”)
and Fall 2003 (“Who Spoke the Words”) evaluations [3].
The primary advantage of this approach is that it requires
no pre-trained acoustic models— acoustic modeling is per-
formed using only the evaluation data itself. Because there
are no pre-trained acoustic models, the system is more ro-
bust and more easily portable to new audio conditions, lan-
guages, etc., than are systems that use pre-trained acoustic
models. Evidence of this robustness can be seen in the sim-
ilarity of performance of our system on the two different
development sets used in this evaluation: 15.11% error rate
for devset1 and 15.72% for devset2.

In Section 2 we present the detailed description of our
system. In Section 3 we describe the performance of our
system in the evaluation. In Section 4 we describe some im-
provements to the system that were made after the evalua-
tion was submitted. Ongoing and future work are presented
in Section 5.

2. SYSTEM DESCRIPTION

The system this year is nearly identical to the system sub-
mitted for the Fall 2003 evaluation. There were three
changes from the system a year ago: 1) the addition of a
speech/non-speech detector, 2) a switch from PLP to MFCC
features, and 3) a small modification to the main clustering
loop. We will examine the effect of each of these changes
below.

Since the system uses agglomerative clustering, it be-
gins by segmenting the data into many small pieces. Each
piece of data is assigned to a cluster. The system then iter-
atively merges clusters and stops when there are no clusters
that can be merged. This procedure requires two measures:
one to determine which pair of clusters to merge, and a sec-
ond measure to determine when to terminate the merging
process. In our baseline system, we use a modified version
of BIC [4] for both of these measures. The modified BIC
equation is defined as:



log p(D|θ) ≥ log p(Da|θa) + log p(Db|θb) (1)

where:

• Da andDb represent the data in two clusters andθa

andθb represent the models trained on the data as-
signed to the two clusters.

• D is the data fromDa∪Db andθ represents the model
trained onD.

Eq. 1 is similar to BIC, except that the modelθ is con-
structed such that the number of parameters is equal to the
sum of the number of parameters inθa andθb. By keep-
ing the number of parameters constant on both sides of the
equation, we have eliminated the traditional BIC penalty
term. This increases the robustness of the system as there
is no need to tune this parameter.

We can compute a merging score forθa andθb by com-
bining the right and left-hand sides of Eq. 1:

MergeScore(θa, θb) = (2)

log p(D|θ) − (log p(Da|θa) + log p(Db|θb))

2.1. Speech/non-speech Detection

The primary difference this year is use of the SRI Broadcast
News (BN) speech/non-speech (SNS) detector to eliminate
non-speech frames. This is a two-class detector, in which
each class is modeled by a three-state HMM, with a mini-
mum duration of 30 msec. The non-speech model includes
both music and silence. The features used in the SNS de-
tector (MFCC12) are different from the features used for
clustering below. This is the same detector that was used
as part of SRI’s BN STT system for this year’s evaluation.
This detector was trained on 80 hours of 1996 HUB4 BN
acoustic data.

2.2. Signal processing

For our system this year, we used 19 MFCC parameters,
with no deltas. The MFCCs were computed over a 60 mil-
lisecond analysis window, stepping at 20 millisecond inter-
vals. Before computing the features for each show, we ex-
tract just the region of audio specified in the NIST input
UEM files. The features are then calculated over this ex-
tracted region.

2.3. Initialization

The first step in our clustering process is to initialize the
models. This requires a “guess” at the maximum number of
speakers (K) that are likely to occur in the data. (For this

evaluation we useK = 40.) The data is then divided intoK
equal-length segments and each segment is assigned to one
model. Each model’s parameters are then trained using its
assigned data. These are the models that seed the clustering
and segmentation processes described next.

2.4. Segmentation

The procedure for segmenting the data includes the follow-
ing steps:

1. Run the SRI BN SNS detector.

2. Extract 19 MFCCs.

3. Discard the Non-speech frames.

4. Create the initial models as described above in Sec-
tion 2.3.

The iterative merging process consists of the follow-
ing steps:

(a) Run a Viterbi decode to segment the data.

(b) Retrain the models using the segmentation from
(a).

(c) Select the pair of clusters with the largest merge
score (Eq. 2) that is> 0.0. (Since Eq. 2 pro-
duces positive scores for models that are similar,
and negative scores for models that are different,
a natural threshold for the system is0.0.)

(d) If no pair of clusters is found, stop.

(e) Merge the pair of clusters found in (c). The
models for the individual clusters in the pair are
replaced by a single, combined model. Thus,
the total number of clusters is reduced by one.

(f) Go to (a).

3. EVALUATION PERFORMANCE

Our official system this year had a diarization error rate
(DER) of 17.97%2 and used the following parameters:

• 19th order MFCC, no deltas, 60 msec analysis win-
dow, 20 msec step size.

• Three second minimum duration for each segment

• 40 initial clusters

• Each initial cluster began with five gaussians

• Iterative segmentation/training (See Sec. 3.3)

• Cluster pruning (See Sec. 4.2)
2After the evaluation we discovered a bug in our script that creates the

RTTM scoring files. Once this bug was fixed, the score of the official
system dropped slightly to 17.91%. All of the results in thispaper use the
bug-fixed version of the conversion script.



Performance of the 2003 System
%Miss %FA %Spkr %DER

PLP
Baseline 0.1 5.0 15.8 20.93
+ SRI/SNS 1.6 1.2 15.5 18.36

MFCC
Baseline 0.1 5.0 17.8 22.95
+ SRI/SNS 1.5 1.2 15.4 18.17

Table 1. Performance of the 2003 system using both PLP and MFCC
features on the Fall 2004 eval data. The “+ SRI/SNS” line shows the per-
formance of the baseline system using the SRI BN speech/non-speech de-
tector to remove non-speech frames.

3.1. Comparison with 2003 System

The systems we used in the Spring and Fall evaluations in
2003 were essentially identical. For the Fall, we switched
to using PLP for our frontend features since it performed
better on the official development data. However, the offi-
cial development data was a small data set and our findings
didn’t generalize to the evaluation data. Also, since the Fall
evaluation was a “who spoke the words” evaluation, we did
not use the speech/music classifier [5] that was used in the
Spring system.

The system for this year is nearly identical to the Fall
2003 system except for the following:

• Changed frontend from PLP12 to MFCC19

• Added SRI’s BN speech/non-speech detector

• Added iterative segmentation/training (see Sec. 3.3)

Table 1 shows a comparison of the Fall 2003 system
using both PLP12 and MFCC19 features3. The “Base-
line” rows are for the baseline system as it was in 2003.
Thus, they do not include the SNS detector or the iterative
segmentation/training mentioned above. The “+ SRI/SNS”
rows in Table 1 show the performance of the 2003 system
using the SRI BN speech/non-speech detector to remove
non-speech frames. (The effect of the iterative segmenta-
tion/training will be shown in Sec. 3.3 below.)

In Table 1, the “%Miss” column shows the percentage
of time in the reference that was not labeled by the sys-
tem. The “%FA” column shows the percentage of time that
the system attributed to a speaker that was not in the refer-
ence. The “%Spkr” column shows the percentage of time
that the system incorrectly identified the reference speaker.
The “%DER” column give the diarization error rate, which
is the sum of Miss, FA, and Spkr errors.

3In 2003, we experimented with the feature order, step size and analysis
window size. We found that the two best candidates were12

th order PLP
(10 msec step and 25 msec analysis window) and19

th order MFCC (20
msec step and 60 msec analysis window). Thus, these are the only two
candidate feature sets we considered this year.

SRI SNS Detector vs. Ideal SNS Detector

%Miss %FA %Spkr %DER
Baseline 0.1 5.0 17.8 22.95
+ SRI/SNS 1.5 1.2 15.4 18.17
+ Ideal SNS 0.2 0.0 16.8 16.98

Table 2. Performance of the SRI SNS detector compared with an “ideal”
SNS detector using the 2003 baseline system on Fall 2004 evaldata.

Table 1 shows that the baseline systems each have a
0.1% miss rate. Since the baseline system assigns a speaker
label to every frame of speech, the miss rate should be 0.0%.
We believe this is due to a rounding error in our conversion
from seconds to frames or frames to seconds.

For the baseline 2003 system, both the PLP and MFCC
features perform similarly in terms of %Miss and %FA.
However, the MFCC features seem to be more sensitive to
the presence of the non-speech frames, resulting in a 2% ab-
solute increase in Spkr error. Once the non-speech frames
are removed, the MFCC features slightly outperform the
PLP features. So, for the PLP features, the main contribu-
tion of the SNS detector is to the reduction of false alarms.
While for the MFCC features, the SNS detector reduces the
false alarms and reduces the speaker errors.

3.2. Performance of the SRI Speech/Non-Speech Detec-
tor

Table 2 shows a comparison between an “ideal” SNS de-
tector and the SRI BN SNS detector. The “ideal” detec-
tor was constructed by using the times contained on the
“SPEAKER” lines in the reference RTTM file for each
show. The SRI SNS detector achieves about 80% of the
gain possible. We did not attempt to optimize the parame-
ter settings of the SRI detector for this task. We expect that
we could improve the performance for diarization since the
default parameter settings we used were originally set for
optimal ASR performance.

Without the use of a SNS detector, our system, pre-
dictably, has a high number of false alarms. Adding the
SNS detector not only reduces the false alarms, it reduces
the speaker error, probably due to having “cleaner” data for
clustering.

Table 2 also shows non-zero Miss rates where there
should be zeros. Presumably this is due to the same bug
mentioned above.

3.3. Iterative Segmentation/Training

In an attempt to improve the segmentation in the system, we
iterated the Viterbi segmentation and HMM training steps
during the merging process. Basically, we added a loop
around steps 4.(a) and 4.(b) in Sec. 2.4. Table 3 shows
the improvement gained by this. While the improvement in



Performance of 2004 System

%Miss %FA %Spkr %DER
Baseline MFCC 0.1 5.0 17.8 22.95
+ SNS 1.5 1.2 15.4 18.17
+ SNS + Loops 1.5 1.2 15.1 17.91

Table 3. Performance gain for each of the two additions to this year’s
system (on Fall 2004 eval data.) The “+ SNS + Loops” line corresponds to
the system used in the evaluation.

BIC Stopping vs. Viterbi Stopping

%Miss %FA %Spkr %DER
BIC Stopping 1.5 1.2 15.1 17.91
Viterbi Stopping 1.5 1.2 13.6 16.36

Table 4. Performance comparison between the two stopping criterion.

%DER is relatively small (only 0.26% absolute), all of this
improvement comes from a reduction in the %Spkr error.

Table 3 indicates that the score for our “official” system
is 17.91%. However, it should be noted that our “official”
NIST score was 17.97%. The number given in Table 3 is the
score we get after fixing a small bug in a post-processing
script. All scores reported in this paper are with the fixed
script.

The changes to this year’s system resulted in a net gain
of about 3.0% over the system that we used in the 2003
evaluations (the PLP system). While it appears that we lost
about 2% by changing back to MFCC features, we gained it
back when we added the SRI SNS detector. It is interesting
to note that the 2003 system performed fairly well on the
2004 data. We believe this is due to the simplicity of our
approach: no external training data is used and few tunable
parameters.

4. POST-EVALUATION IMPROVEMENTS

4.1. Stopping Criterion

In the past, we have always indicated that the algorithm
stops merging clusters when it arrives at a maximum in the
likelihood function [3]. However, the actual implementation
of this did not use the likelihood produced by the Viterbi
segmentation at each merging step. Rather, we approxi-
mated this by stopping the merging when there were no
more cluster pairs whose merge score (Eq. 2) was> 0.0.
This approximation was used to save the extra iterations that
would be required to search for the maximum in the likeli-
hood function. Table 4 shows the results using the approxi-
mate max (“BIC Stopping”) versus using the max according
to the Viterbi segmentation (“Viterbi Stopping”).

Stopping when we reach a maximum in the Viterbi like-
lihood improves the %DER score by 1.55% absolute. All
of this improvement comes from a reduction in the %Spkr

BIC Stopping vs. Viterbi Stopping
For Individual Eval Shows

Show BIC Viterbi Full Name
ABC ENG 29.83 33.96 (20031203183814ABC ENG)

ABC ENG 26.20 20.48 (20031217184122ABC ENG)

ABC ENG 33.66 35.37 (20031209193152ABC ENG)

CNBC ENG 13.54 12.64 (20031202203013CNBC ENG)

CNBC ENG 13.78 15.71 (20031219202502CNBC ENG)

CNNHL ENG 17.22 16.93 (20031215204057CNNHL ENG)

CNN ENG 6.23 6.98 (20031202050216CNN ENG)

CNN ENG 28.56 17.89 (20031204130035CNN ENG)

CSPAN ENG 5.41 3.43 (20031206163852CSPANENG)

PBSENG 22.29 15.93 (20031218004126PBSENG)

PBSENG 7.34 9.37 (20031209193946PBSENG)

WBN ENG 11.52 11.15 (20031215231058WBN ENG)

Table 5. Performance comparison between the two stopping criteria
on each show in the eval 2004 set. Not all shows improve using Viterbi
stopping. Best scores are shown inbold.

error.
Figure 1 plots the diarization error rate, the Viterbi

scores, and BIC scores against the number of clusters for
a typical show. In this example, the max in the Viterbi score
results in a number of clusters that is closer to the optimal
number. However, not all of the eval shows improved using
Viterbi stopping, as can be seen in Table 5.

4.2. Pruning

At each merge step, there areN ∗(N −1)/2 pairs (whereN
is the current number of clusters) for which we must com-
pute a merge score (Eq. 2). We can reduce this computation
by keeping a list of cluster-pairs with poor merge scores
(< 0.0). Before we compute the merge score for a pair, we
look to see if the pair is on the prune list and if so, we don’t
consider it. We can reduce the amount of pruning by only
adding cluster pairs to the pruning list if their merge score
is less than some threshold, where the threshold is< 0.0.

Table 6 compares the results using three pruning strate-
gies: 1) no pruning, 2) “Full Pruning” (the default pruning
used in our official submission) with a threshold = 0.0, and
3) “Light Pruning”, with a threshold4 = -1600.0. These re-
sults show that we are taking a small hit for pruning. Al-
though the “Light Pruning” has a slightly better score than
“No Pruning”, we don’t think this difference is significant.

While we did not examine the computation savings in
detail, rough estimates show that the system runs about
twice as fast with full pruning than with no pruning.

4The “Light Pruning” threshold was determined by examining the dis-
tribution of merging scores over several shows.
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Fig. 1. top: Diarization error rate vs. number of clusters. The line
marked with the square shows the optimal (oracle) stopping point.
The point marked with the ’X’ shows the point corresponding to
the number of clusters producing the best Viterbi score, andthe
line marked with the circle, shows the point corresponding to the
number of clusters at which the BIC merge score= 0.0.

The Affect of Pruning on System Performance

%Miss %FA %Spkr %DER
Full Pruning 1.5 1.2 15.1 17.91
Light Pruning 1.5 1.2 14.2 17.00
No Pruning 1.5 1.2 14.3 17.07

Table 6. This table shows what affect pruning has on our system.

5. FUTURE WORK

5.1. XBic

We believe that one of the weak points of the current algo-
rithm is the initialization. Currently, we simply divide the
input file evenly intoK pieces and use these pieces of data
to initialize theK models. However, this is not necessarily
a good starting point. We have begun work to find a better
initialization. The approach we are exploring is called XBic
[6]. XBic is similar to BIC in that it measures the dissimi-
larity between two adjacent segments. However, XBic cal-
culates the cross-probabilities of each segment’s data given
the other segment’s model. The XBic measure for segment
boundaryi is given by:

XBic(i) = p(Da|θb) + p(Db|θa) (3)

As in Eq. 1,Da andDb represent the data for segments
a and b respectively andθa and θb represent the models
trained onDa andDb.

Figure 2 shows a plot of Eq. 3 versus time for a 60 sec-
ond segment of a BN show. The true segment boundaries
are shown along with the XBic scores. From this figure we
can see that XBic looks like a promising method of locating
boundaries. Additionally, it is simple to compute and there
are no tuning thresholds to be set during the XBic calcula-
tions. However, we do have to decide which XBic scores
correspond to boundaries that we will use for segmentation.

We plan to explore methods of integrating XBic into the
initialization process. The hope is that the boundaries that
XBic locates will allow for a “cleaner” set of initial seg-
ments.

5.2. Neighbor Merging

Because the computational cost of our algorithm increases
roughly with the square of the number of clusters, we are
exploring ways to increase the number of initial clusters
without significantly impacting the run-time. One approach
we are exploring is to begin merging by only considering
cluster-pairs that are located next to each other. This in-
volves iterating through the initial segments sequentially
looking for matches only between clusters that are assigned
to neighboring segments. In theory, the merges that occur
initially will most likely be between clusters whose seg-
ments are located temporally adjacent to one another. The



Fig. 2. Plot showing the XBic distance vs. true boundary loca-
tions.

hope is that using this neighbor merging approach will al-
low us to begin with a much larger number of initial clusters
without dramatically increasing the run-time.

5.3. Incorporating speaker ID techniques

Both the MITLL and LIMSI diarization systems this year
showed improvements through the incorporation of “stan-
dard” speaker ID techniques. We plan to explore the use of
these techniques in our algorithm. For example, we could
try to use MAP adaptation of a UBM to train the models
for our clusters instead of our current maximum likelihood
training. Also, we currently don’t perform any type of fea-
ture transformation to try to reduce the effect of the acous-
tic environment. We hope that incorporating some of these
techniques will result in better acoustic modeling without
resorting to the use of pre-trained acoustic models.

5.4. Alternate Acoustic Features

In the current work, we briefly explored the use of PLP and
MFCC features. We would like to explore the use of a vari-
ety of new frontend feature types. Of particular interest are
features that may carry more speaker-specific information
such as pitch, speaking-rate, etc.

6. CONCLUSION

The system we are using for speaker diarization is a sim-
ple, easy to run, portable system. Because we don’t train
acoustic models on external data and we have few “tunable”
thresholds, the system is relatively robust to differencesbe-
tween data sets. The nearly identical performance of our
system on the two development test sets this year is a good
example of this robustness.
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