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Abstract

This paper presents the physical formulation of a 1D material model suitable for seis-

mic applications. It is written within the framework of thermodynamics with internal

variables that is, especially, very efficient for the phenomenological representation of

material behaviors at macroscale: those of the representative elementary volume. The

model can reproduce the main characteristics observed for concrete, that is nonsymet-

ric loading rate-dependent (viscoelasticity) behavior with appearance of permanent

deformations and local hysteresis (continuum plasticity), stiffness degradation (con-

tinuum damage), cracking due to displacement localization (discrete plasticity or dam-

age). The parameters have a clear physical meaning and can thus be easily identified.

Although this point is not detailed in the paper, this material model is developed to

be implemented in a finite element computer program. Therefore, for the benefit of

the robustness of the numerical implementation, (i) linear state equations (no local

iteration required) are defined whenever possible and (ii) the conditions in which the

presented model can enter the generalized standard materials class – whose elements

benefit from good global and local stability properties – are clearly established. To

illustrate the capabilities of this model – among them for Earthquake Engineering

applications – results of some numerical applications are presented.

Keywords: Thermodynamics with internal variables; Phenomenological ap-
proach; Continuum-discrete plasticity and damage models; Generalized stan-
dard material; Earthquake Engineering.
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1 Introduction

The development of numerical computing facilities within the last decades has
made it possible to carry out numerical large scale dynamic nonlinear analyses
that take into account the nonlinear behavior of the materials, such as steel and
concrete in reinforced concrete structures [1, 6, 23, 25]. Multi-scale-like state-
gies for defining frame section behavior laws from information collected at the
material level also emerged, e.g. for static ultimate load design [30]. The im-
plementation of robust refined material models in computer programs has thus
become a key issue in structural engineering. Indeed, the prediction of the time-
history of some material properties provides useful information to predict the
global structural seismic response: strength and stiffness degradations as well
as residual deformation in the materials help for drawing conclusions about the
residual capacity of the structure in post-earthquake conditions. In Earthquake
Engineering, the physical modeling of damping is not an easy task because many
dissipative phenomena occur at several levels. Refined material models are re-
quired for a reliable computation of the amount of material energy dissiped in
seismic loading. Other dissipation sources at the level of the bounding between
steel and concrete in RC structural elements have already been introduced in
numerical static analyses [8, 17] and one can hope that they will be adapted
to seismic analyses within the next few years. Since many computations are
required for complete seismic analyses (need to consider several input motions)
or in automatic parameters identification procedures [19], the robustness of the
material models should be considered with care.

This paper deals with modeling the behavior of concrete until collapse in dy-
namic loading applications so that it is robust once implemented in a computer
program. The authors already presented a robust elasto-plastic-damage model
and its implementation in finite element procedures [18]. In addition here, in
the physical formulation: (i) viscosity is added by appealing to the so-called
Kelvin-Voigt viscoelastic model; (ii) the modeling of the softening part, which
is introduced in the formulation by a discrete plastic or damage model that
requires the definition of an enhanced strain field, is presented in detail and
(iii) a clear distinction between tensile and compressive constitutive models is
made. On the numerical side, the conditions under which the model can enter
the generalized standard materials class [11], whose elements benefit from good
robustness properties, are identified. This latter point, along with the model
formulation that allows solving the local problem (the integration point level)
without any iteration, except in tension, in a numerical nonlinear structural
analysis [18] justifies the use of the words “towards robust” in this paper title.

This material model is formulated in the framework provided by thermody-

namics with internal variables (TIV ), which is very suitable for developing phe-
nomenological material constitutive models with good numerical properties [24].
A set of internal variables is chosen to describe nonlinear phenomena that occur
in the material. Our approach is phenomenological because the nonlinear phe-
nomena we aim at modeling for concrete are those observed on the strain-stress
experimental macroscopic response of a concrete representative elementary vol-
ume (REV). However, internal variables often are connected to microscopic
phenomena that have macroscopic effects such as in steel materials where mi-
croscopic dislocations motion lead to a macroscopic strain hardening behav-
ior. More accurate representations of concrete could be provided for numerical
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simulations by, for instance, taking into account the heterogeneous nature of
concrete [12]. The macroscopic phenomenological approach is however an effi-
cient way to carry out large-scale structural numerical simulations with a rather
refined material description.

The introduction of viscosity in a material model can be motivated by sev-
eral purposes. (i) Viscosity in concrete can be associated to its loading rate-
dependent macroscopic behavior that results from several nano- and microscopic
phenomena such as complex interaction between moisture and micro-structural
solid skeleton, micro-cracking process, Stefan effect, micro-inertia of the mate-
rial surronding the crack tip [28]. (ii) Viscosity can also be associated to creep
phenomena in highly dissipative materials such as asphalt concrete [27]. (iii)
The introduction of viscosity leads to the explicit appearance of a time-step in
the governing equations of the discretized problem. The possibility to deter-
mine a critical time-step then provides a tool to reguralize numerical problems
that can be ill-posed in the presence of materials that exhibit strain softening
behaviors [26]. (iv) Viscosity can also be used to introduce a source of en-
ergy dissipation at the material level: it can lump the energy dissipation that
physically comes from unknown or not (accurately) modeled physical nonlin-
ear phenomena in the materials; this is what the authors have in mind when
developing this concrete constitutive model.

The aim of this paper is to present the theoretical formulation of a refined 1D
cyclic constitutive concrete model that has been developed in a framework lead-
ing to a robust implementation into finite element numerical procedures. We
first present in section 2 the theoretical formulation of the constitutive concrete
model; in section 3, the conditions in which the model can enter the generalized

standard material class are examined for the benefit of robustness; in section
4, the mechanical problem of a concrete 1D structure in dynamic loading is
formulated in a complementary variational form and the Euler-Lagrange equa-
tions are derived; before to conclude, section 5 is dedicated to the presentation
of some numerical examples that illustrate some capabilities of the constitutive
concrete model implemented in a finite element program.

2 Constitutive concrete model

2.1 Thermodynamics with internal variables

To represent the salient phenomena observed in the experimental cyclic response
of a concrete REV (Fig. 1), a set α of internal variables is chosen. The phe-
nomena we aim at modeling are: (i) loading-rate dependent behavior, (ii) strain
hardening, (iii) strain softening, (iv) appearance of residual deformation, (v)
stiffness and strength degradations, (vi) hysteresis loops. We consider that the
phenomena (ii), (iv) and (vi) only occur in compression, that strain softening in
compression is due to the localization of permanent deformation whereas strain
softening in tension is due to the localization of deformation that completely
disappear after unloading. Internal variables are associated to each of these
phenomenologically identified mechanisms.

The set of internal variables we choose is defined in Tab. 1. •̄ and ¯̄• re-
fer to continuum and discrete quantities. Concerning the continuum internal
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Fig. 1: [left] Experimental (adapted from [31]) and [right] numerical (by using
the proposed constitutive concrete model) cyclic behavior of concrete in
quasi-static loading.

variables: ǭv and ǭp are the viscous and plastic deformations, ξ̄p and λ̄p are
the strain-like variables that represent isotropic and kinematic plastic strain
hardenings, D̄ represents stiffness degradation and ξ̄d isotropic damage strain
hardening. Then, concerning the discrete internal variables, that is in the sec-
tion where displacement localizes, ¯̄up represents plastic deformation, ¯̄ξp plastic
strain softening in compression, ¯̄D the stiffness degradation and ¯̄ξd damage
strain softening in tension.

t/c compression tension

α ǭv ǭp ξ̄p λ̄p D̄ ξ̄d ¯̄up ¯̄ξp ¯̄D ¯̄ξd

A σv σ q̄p κ̄p σ2

2 q̄d t ¯̄qp t
2

2
¯̄qd

PC E, η Ē K̄p H̄p Ē−1 K̄d ¯̄E ¯̄Kp ¯̄E−1 σ∞, a

Tab. 1: Set of internal variables α, corresponding affinities A and phenomeno-
logical coefficients PCs (parameters of the model).

A noteworthy advantage of this material model is that all its parameters
have a clear meaning and can therefore be easily identified according to experi-
mental curves. The complete procedure to identify a concrete law is presented
in Section 5.1: the viscous parameter η can be seen as a material property
and identified from free vibration tests; the tensile softening curve coefficient
a is related to the fracture energy GF , a fracture mechanics concept [13] that
quantifies the total amount of energy that has to be furnished in tension to a
concrete section between the time when displacement begins to localize and the
time when the section is completely broken; all the other parameters can be
identified from stress-strain curves of concrete specimen in quasi-static cyclic
loading.
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2.2 Governing equations of the constitutive model

2.2.1 Basic ingredients

We first define the three basic ingredients for developing a constitutive model
in the framework of the TIV :

1. Split of the total strain into a viscoelastic, a plastic, a damage and another
discrete part due to the likely localization of the displacement. A-space is
devided into two parts: the terms involved in tension σ ≥ 0 are mentioned
by the sign •+ and those involved in compression σ < 0 by the sign •−

(note that for a 1D case, tension and compression have a clear meaning):

u(x, t) = ū(x, t) + ¯̄u(t)Hx̄(x) (1)

ǫ(x, t) =
∂u

∂x
= ǭv + ǭp + (¯̄u⋄ + ¯̄up)δx̄

where ǭ = ∂ū
∂x = ǭv + ǭp is the continuum part of the strain and ¯̄uδx̄ =

(¯̄u⋄ + ¯̄up)δx̄ – with ¯̄u⋄ = ¯̄ud in tension and ¯̄u⋄ = ¯̄ue in compression – its
discrete part introduced by the Dirac’s function δx̄ that is the derivative
of the Heaviside’s function Hx̄ that introduces the displacement jump ¯̄u
in the description of the displacement. ǭv corresponds to the deformation
in a Kelvin-Voigt rheological model: a spring – elastic in tension (ǭv = ǭe)
and damaging in compression (ǭv = ǭd) – and a dashpot in parallel. For
simplicity, we assume here that the displacement jumps only take place in
one section; extension to several localization sections is straightforward.

2. Helmholtz free energy functional:

ψ+(u,α) = ψ̄e(ū+) +
(

¯̄ψd(¯̄u+, ¯̄D) + ¯̄Ξd( ¯̄ξd)
)

δx̄ (2)

ψ−(u,α) = ψ̄d(ū−, ǭp, D̄) + Ξ̄p(ξ̄p) + Λ̄p(λ̄p) + Ξ̄d(ξ̄d) +
(

¯̄ψe(¯̄u−, ¯̄up) + ¯̄Ξp( ¯̄ξp)
)

δx̄

3. The nonlinear plasticity and damage mechanisms are activated for a pos-
itive value of the corresponding plasticity and damage criteria:

• For σ ≥ 0 (tension), the dissipative mechanisms that can be in-
volved in the evolution process are activated according to the follow-
ing criteria:

φ̄v,+(σ) = σv = σ − σe ≤ 0 (3)
¯̄φd,+(t, ¯̄qd) = t − (σtu − ¯̄qd) ≤ 0

where t is the stress at the discontinuity and σtu is the ultimate stress
in tension.

• For σ < 0 (compression), the criteria functions are:

φ̄v,−(σ) = −σv = −
(
σ − σd

)
≤ 0 (4)

φ̄p,−(σ, q̄p, κ̄p) = |σ + κ̄p| − (σy − q̄p) ≤ 0

φ̄d,−(σ, q̄d) = −σ − (σf − q̄d) ≤ 0

¯̄φp,−(t, ¯̄qp) = −t − (σcu − ¯̄qp) ≤ 0
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where σy, σf and σcu are yield, fracture and ultimate stresses in com-
pression.

2.2.2 State equations of the system

We can now give the expression of the energy dissipated by this viscoelastic-
plastic-damage model with different hardenings / softenings within a time unit.
This can be computed as the difference between the total amount of energy im-
parted to the system and the amount of energy stored by the system (internal
potential energy) during this time unit:

In tension:

Ḋ+ =
(

σ ˙̄ǫ+ + t ˙̄̄u+δx̄

)

− ψ̇+(ū+, ¯̄u+, ¯̄D, ¯̄ξd)

= (σe + σv) ˙̄ǫ+ + t ˙̄̄u+δx̄ −
∂ψ̄e

∂ǭ+
˙̄ǫ+ −

(

∂ ¯̄ψd

∂ ¯̄u+
˙̄̄u+ +

∂ ¯̄ψd

∂ ¯̄D

˙̄̄
D +

∂ ¯̄Ξd

∂ ¯̄ξd
˙̄̄
ξd

)

δx̄

We also have ˙̄ǫ+ = ˙̄ǫe = ˙̄ǫv and ˙̄̄u+ = ˙̄̄ud because ¯̄up cannot evolve in tension
according to Eqs. (3) and (4). Thus:

Ḋ+ =

(

σe −
∂ψ̄e

∂ǭe

)

˙̄ǫe+σv,+ ˙̄ǫv,+ +

(

t −
∂ ¯̄ψd

∂ ¯̄ud

)

˙̄̄udδx̄−
∂ ¯̄ψd

∂ ¯̄D

˙̄̄
Dδx̄−

∂ ¯̄Ξd

∂ ¯̄ξd
˙̄̄
ξdδx̄ (5)

In compression:

Ḋ− =
(

σ ˙̄ǫ− + t ˙̄̄u−δx̄

)

− ψ̇−

(

ū−, ¯̄u−, ǭp, ξ̄p, λ̄p, D̄, ξ̄d, ¯̄up, ¯̄ξp
)

=
(
σd + σv

)
˙̄ǫ− + t ˙̄̄u−δx̄ −

(
∂ψ̄d

∂(ǭ− − ǭp)
( ˙̄ǫ− − ˙̄ǫp) +

∂ψ̄d

∂D̄
˙̄D +

∂Ξ̄p

∂ξ̄p
˙̄ξp

+
∂Λ̄p

∂λ̄p
˙̄λp +

∂Ξ̄d

∂ξ̄d
˙̄ξd
)

−

(

∂ ¯̄ψe

∂(¯̄u− − ¯̄up)
( ˙̄̄u− − ˙̄̄up) +

∂ ¯̄Ξp

∂ ¯̄ξp
˙̄̄
ξp

)

δx̄

We also have ˙̄ǫ− = ˙̄ǫv + ˙̄ǫp with ˙̄ǫv = ˙̄ǫd and ˙̄̄u− = ˙̄̄ue + ˙̄̄up. Thus:

Ḋ− =

(

σd −
∂ψ̄d

∂(ǭ− − ǭp)

)

˙̄ǫd + σv ˙̄ǫv,− + σ ˙̄ǫp −
∂ψ̄d

∂D̄
˙̄D −

∂Ξ̄p

∂ξ̄p
˙̄ξp −

∂Λ̄p

∂λ̄p
˙̄λp

−
∂Ξ̄d

∂ξ̄d
˙̄ξd +

(

t −
∂ ¯̄ψe

∂(¯̄u− − ¯̄up)

)

˙̄̄ueδx̄ + t ˙̄̄upδx̄ −
∂ ¯̄Ξp

∂ ¯̄ξp
˙̄̄
ξpδx̄ (6)

Note that ǭe, ¯̄ud, ǭd, ¯̄ue are not internal variables. Moreover, when there is no
evolution of any internal variable, the dissipation is null. Therefore, according
to Eqs. (5) and (6), we have the following state equations:

σe =
∂ψ̄e

∂ǭe
, σd =

∂ψ̄d

∂ǭd
, t+ =

∂ ¯̄ψd

∂ ¯̄ud
, t− =

∂ ¯̄ψe

∂ ¯̄ue
(7)

To recover, for the thermodynamic forces, expressions that will then lead to
an accurate reproduction of the experimentally observed behavior of a concrete
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REV, we define the different terms in the expression of the Helmholtz free energy
as follows:

ψ̄e =
1

2
ǭeĒǭe ψ̄d =

1

2

(
ǭ− − ǭp

)
D̄−1

(
ǭ− − ǭp

)
(8)

¯̄ψd =
1

2
¯̄ud ¯̄D−1 ¯̄ud Ξ̄p =

1

2
ξ̄pK̄pξ̄p

¯̄Ξd = −
(
σtu − σ∞

)
(

¯̄ξd +
1

a
e−a

¯̄ξd

)

Λ̄p = λ̄pH̄pλ̄p

Ξ̄d =
1

2
ξ̄dK̄dξ̄d

¯̄ψe =
(
¯̄u− − ¯̄up

) ¯̄E
(
¯̄u− − ¯̄up

)

¯̄Ξp =
1

2
¯̄ξp ¯̄Kp ¯̄ξp

We define the state equations of the internal variables from the Helmholtz
free energy functional that plays the role of a thermodynamic potential:

Ai = −
∂ψ

∂αi
(9)

Finally, the state equations of the system, that is the equations that characterize
the state of a concrete material point at a given instant in A-space, are given
in Tab. 2.

Tension Compression

σe = Ēǭe σd = D̄ǭd

t = ¯̄D−1 ¯̄ud t = ¯̄E ¯̄ue

¯̄qd = −∂ ¯̄Ξd

∂ ¯̄ξd
= (σtu − σ∞)

(

1 − e−a
¯̄ξd
)

q̄p = −∂Ξ̄p

∂ξ̄p = −K̄pξ̄p

1
2 t2 = −∂ ¯̄ψd

∂ ¯̄D
κ̄p = −∂Λ̄p

∂λ̄p = −H̄pλ̄p

q̄d = −∂Ξ̄d

∂ξ̄d = −K̄dξ̄d

1
2σ

2 = −∂ψ̄d

∂D̄

¯̄qp = −∂ ¯̄Ξp

∂ ¯̄ξp
= − ¯̄Kp ¯̄ξp

Tab. 2: State equations of the system.

2.2.3 Equations of evolution of the internal variables

Now, we determine the equations that govern the evolution of the internal vari-
ables of this concrete phenomenological constitutive law. We assume that the
evolution is driven by the principle of maximum dissipation. With the state
equations in Tab. 2 at hand we first rewrite the dissipation – Eqs. (5) and (6) –
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as:

Ḋ = σv ˙̄ǫv
︸︷︷︸

˙̄
Dv

+ σ ˙̄ǫp + q̄p ˙̄ξp + κ̄p ˙̄λp
︸ ︷︷ ︸

˙̄
Dp

+
1

2
σ ˙̄Dσ + q̄p ˙̄ξd

︸ ︷︷ ︸

˙̄
Dd

+

(

t ˙̄̄up + ¯̄qp
˙̄̄
ξp
)

︸ ︷︷ ︸

˙̄̄
Dp

δx̄ +

(
1

2
t

˙̄̄
Dt + ¯̄qd

˙̄̄
ξd
)

︸ ︷︷ ︸

˙̄̄
Dd

δx̄ (10)

To characterize the evolution of the system, except the viscous one, we ex-
tend the principle of maximum dissipation – which was first formulated for
plasticity problems [14, 21] – to our model and thus compute the flow of the
internal variables by assuming that they maximize the dissipation. Remember-
ing that the criteria functions in Eqs. (3) and (4) must be satisfied, we thus
have to solve a problem of constrained maximization that involves inequalities.
Denoting f = (σ, t, qp, κp, qd, ¯̄qp, ¯̄qd), we have the following problem P :

maxf Ḋ with constraints φp(f) ≤ 0 , φd(f) ≤ 0 , ¯̄φp(f) ≤ 0 , ¯̄φd(f) ≤ 0 (11)

Such a problem can be solved with the Lagrange’s multipliers method [15,
34]. We define the Lagrangian as:

L(f, γ̇) = Ḋ − (γ̇pφp + γ̇dφp + ˙̄̄γp ¯̄φp + ˙̄̄γd ¯̄φd) (12)

where γ̇ = (γ̇p, γ̇d, ˙̄̄γp, ˙̄̄γd) is the set of Lagrange’s multipliers associated to each
constraint. According to the Kuhn-Tucker conditions, if the set f∗ = {f∗

i } is a
solution of P , then there exists a unique set of Lagrange multipliers γ̇∗ = {γ̇∗j }
such that the following relations are verified for all i and for all j:

∂L(f∗, γ̇∗)

∂fi
= 0 ,

∂L(f∗, γ̇∗)

∂γ̇j
≥ 0 , γ̇∗j ≥ 0 , γ̇∗j φj(f

∗) = 0 (13)

where the last three conditions are referred to as the loading / unloading con-
ditions. Finally, the equations of evolution of the internal variables are given in
Tab. 3.

For the viscous internal variable ǭv, the evolution is expressed, in an asso-
ciative form too, à la Perzyna [29]:

˙̄ǫv =
φ̄v

η

∂φ̄v

∂σ
(14)

where η is the viscous parameter assumed here to be rate-insensitive although
this might not be the case [28]. Note that Eq. (14) is in accordance with the
rheological relation in a dashpot σv = ηǫ̇v.

Note that concrete is in general not an associative material. However, in
the 1D context of this paper, we nevertheless assume that it is the case. All
the equations of evolution of the internal variables thus are expressed in an
associative form. The normality of the flow rule to the loading surface is in
particular implied by the appeal to the maximum dissipation principle.
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Continuous plasticity Continuous damage

ǫ̇p = γ̇p ∂φ
p

∂σ Ḋσ = γ̇d ∂φ
d

∂σ

ξ̇p = γ̇p ∂φ
p

∂qp ξ̇d = γ̇d ∂φ
d

∂qd

λ̇p = γ̇p ∂φ
p

∂κp

γ̇p ≥ 0 , φp ≤ 0 , γ̇pφp = 0 γ̇d ≥ 0 , φd ≤ 0 , γ̇dφd = 0

Discrete plasticity Discrete damage

˙̄̄up = ˙̄̄γp ∂
¯̄φp

∂t

˙̄̄
Dt = ˙̄̄γd ∂

¯̄φd

∂t

˙̄̄
ξp = ˙̄̄γp ∂

¯̄φp

∂ ¯̄qp

˙̄̄
ξd = ˙̄̄γd ∂

¯̄φd

∂ ¯̄qd

˙̄̄γp ≥ 0 , ¯̄φp ≤ 0 , ˙̄̄γp ¯̄φp = 0 ˙̄̄γd ≥ 0 , ¯̄φd ≤ 0 , ˙̄̄γd ¯̄φd = 0

Tab. 3: Equations of evolution of the internal variables.

3 Generalized standard materials

Materials that belong to the generalized standard materials class benefit from
nice local and global stability properties required for robust implementation in,
for instance, finite element procedures. For other materials, some attention must
be paid on the local or global stability properties. There are five conditions,
in an isothermal context, to be fulfilled for a material to enter the generalized
standard materials class [24]:

1. Its Helmholtz free energy ψ(α) is convex in α = {αi}.

2. The laws of state for the internal variables are derived from the Helmholtz
free energy that plays the role of a thermodynamic potential: Ai = − ∂ψ

∂αi
.

3. The intrinsic dissipation verifies: Ḋ =
∑

Aiα̇i ≥ 0.

4. There exists a closed convex set K in the space of the associated variables
A and A ∈ K.

5. The flux of the internal variables αi is normal to the boundary of K (nor-
mality law).

As shown in section 2.2, the material model presented in this paper satisfies
the conditions 2) and 5). The sets K mentioned in the condition 4) are char-
acterized according to the criteria functions φ(A) introduced in Eq. (3) and (4)
and their boundary is defined by the equations φ(A) = 0. In our 1D context,
these criteria functions clearly define closed and convex sets in A-space. About
condition 1), we recall that a function of the form f(x) = cx2 is convex only
if c > 0. The convexity of the Helmholtz free energy is therefore not verified
for a negative phenomenological coefficient ¯̄K, which is required to represent
softening.
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Let prove that our model satisfies the condition 3). First, since η > 0,
˙̄Dv = σ ˙̄ǫv = η ˙̄ǫv2 ≥ 0. For the other dissipative mechanisms:

Ḋ⋄ = σǫ̇⋄ + q⋄ξ̇⋄

= γ̇⋄(σ ∂φ
⋄

∂σ + q⋄) (see Tab. (3))

= γ̇⋄(φ⋄ + σy,f,u) (see Eqs. (3) and (4)) (15)

According to the loading / unloading conditions Eq. (13), γ̇⋄ ≥ 0 and γ̇⋄φ⋄ = 0.
Moreover, the material parameters verifies σy,f,u > 0 and thus, finally, Ḋ⋄ ≥ 0.
Fulfillment of the condition 3) ensures local stability properties (hysteretic loops
builded clockwise).

To conclude this section, (i) because condition 1) is not satisfied with ¯̄K < 0,
the global stability of the numerical model has to be investigated: the tangent
stiffness matrix could become non-invertible during nonlinear resolution proce-
dure; moreover, (ii) the constitutive model presented here is rate-sensitive and
the existence of a critical time-step must thus also be investigated; finally, (iii)
A-space is divided into two parts, one for tension and the other for compression,
which shall be considered in the numerical resolution phase. In this paper, we
only focus on the physical formulation of the model, but it can be shown that
these three points can be treated in an efficient way that makes the numerical
implementation in finite element procedures robust at local and global levels.

4 Euler-Lagrange equations of a concrete 1D structure in
dynamic loading

In this section, we move up from the formulation of the local constitutive model
to the formulation of the structural mechanical problem. This latter, illustrated
here in the 1D case, has to be adapted to the local constitutive model and
requires the definition of an enhanced displacement field.

4.1 Enhanced displacement field kinematics

x̄ x

ū

¯̄uHx̄

ũ

˜̄̄u

u

Fig. 2: Enhanced displacement field in a 1D structure. The solid, dashed and
dotted lines represent the enriched displacement field u(x, t), the smooth
displacement field ũ(x, t) and the continuum displacement field ū(x, t).

As shown in Fig. 2, the displacement field is written as the sum of a smooth
linear part ũ(x, t) enhanced by an additional part ˜̄̄u(x, t) to take into account
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the possible appearance of a displacement jump ¯̄u(t) in the 1D structure [10, 16]:

u(x, t) = ũ(x, t) + (Hx̄(x) − ϕ(x)) ¯̄u(t)
︸ ︷︷ ︸

˜̄̄u(x,t)

(16)

which can also be written, in the form adapted for identification with Eq. (1),
as:

u(x, t) = ũ(x, t) − ϕ(x)¯̄u(t)
︸ ︷︷ ︸

ū(x,t)

+¯̄u(t)Hx̄(x) (17)

Then ǫ(x, t) = ǭ(x, t) + ¯̄u(t)δx̄ with:

ǭ(x, t) =
∂ū(x, t)

∂x
=
∂ũ(x, t)

∂x
−
dϕ(x)

dx
¯̄u(t) (18)

In this 1D context, only the failure mode I is considered; we refer to [9] for
a presentation of the kinematics with embedded crack of quadrilateral 2D finite
elements where several failure modes are considered.

4.2 Complementary Lagrangian variational formulation

The kinetic energy, assumed to depend only on the smooth part of the displace-
ment, is:

T (ũ, t) =
1

2

∫

Ω

ρ

(
∂ũ(x, t)

∂t

)2

dΩ (19)

where the volumic mass ρ in the volume Ω is considered as constant.
The total potential energy can be written:

U(ũ, ¯̄u,α, t) =

∫

Ω

ψ(ũ, ¯̄u,α, t)dΩ − Uext(ũ, t) (20)

To introduce the stress fields σ and t as other independent variables of the
problem and thus give a more general setting that can be helpful to derive the
governing equations of the problem [22, 32], we appeal to the partial Legendre
transformation of the Helmholtz free energy:

ψ+ = σeǭe −
1

2
σeĒ−1σe +

(

t¯̄ud −
1

2
t ¯̄Dt + ¯̄Ξd

)

δx̄ (21)

ψ− = σdǭd −
1

2
σdD̄σd + Ξ̄p + Λ̄p + Ξ̄d +

(

t¯̄ue −
1

2
t ¯̄E−1t + ¯̄Ξp

)

δx̄

Recalling that ǭe = ǭv in tension, ǭd = ǭv in compression, σ = σv + σe/d and
according to Eqs. (1) and (18), we rewrite these equations with respect to ũ(x, t),
¯̄u(t), σ(x, t), t(t) and α:

ψ+ = σ

(
∂ũ

∂x
−
dϕ

dx
¯̄u− ǭp

)

− σv ǭv −
1

2
(σ − σv)Ē−1(σ − σv) (22)

+

(

t(¯̄u − ¯̄up) −
1

2
t ¯̄Dt + ¯̄Ξd

)

δx̄

ψ− = σ

(
∂ũ

∂x
−
dϕ

dx
¯̄u− ǭp

)

− σv ǭv −
1

2
(σ − σv)D̄(σ − σv)

+Ξ̄p + Λ̄p + Ξ̄d +

(

t(¯̄u− ¯̄up) −
1

2
t ¯̄E−1t + ¯̄Ξp

)

δx̄
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We denote L the Lagrangian of the mechanical system. It is defined as
L = T − U and Lagrange’s variational principle can be written as:

∫ t2

t1

δL(ũ, ¯̄u, σ, t, t)dt = 0 ∀t1, ∀t2 (23)

with δũ(x, t), δ ¯̄u(t), δσ(x, t), δt(t) null when t = t1 and t = t2.
After some calculus (integration by parts,. . . ), we obtain the following set

of governing equations of the system available for tension and compression:

∫

Ω

ρ
∂2ũ

∂t2
δũdΩ +

∫

Ω

∂ψ

∂ũ
δũdΩ − δUext = 0 (24)

∫

Ω

∂ψ

∂ ¯̄u
dΩδ ¯̄u = 0

∫

Ω

∂ψ

∂σ
δσdΩ = 0

∫

Ω

∂ψ

∂t
dΩδt = 0

which leads, with Γ denoting the section in which the displacement is likely to
occur and by remembering that neither ¯̄u nor t depends on the position x (they
are only defined at the position xΓ of the section Γ), to the set of Euler-Lagrange
equations of a concrete 1D structure written in Tab. 4.

Tension Compression

∫

Ω

(

ρ∂
2ũ
∂t2 δũ+ ∂δũ

∂x σ
)

dΩ − δUext = 0
∫

Ω

(

ρ∂
2ũ
∂t2 δũ+ ∂δũ

∂x σ
)

dΩ − δUext = 0
∫

Ω

(
dϕ
dxσ − tδx̄

)

dΩ δ ¯̄u = 0
∫

Ω

(
dϕ
dxσ − tδx̄

)

dΩ δ ¯̄u = 0
∫

Ω δσ
(
∂ũ
∂x − dϕ

dx
¯̄u− ǭv − ǭp

)

dΩ = 0
∫

Ω δσ
(
∂ũ
∂x − dϕ

dx
¯̄u− ǭv − ǭp

)

dΩ = 0
∫

Γ

(

¯̄u− ¯̄up − ¯̄Dt
)

dΓ δt = 0
∫

Γ

(

¯̄u− ¯̄up − ¯̄E−1t
)

dΓ δt = 0

Tab. 4: Euler-Lagrange equations of a concrete 1D structure.

Either for tension or compresssion, the first equation in Tab. 4 enforces
satisfying global force equilibrium, the second equation gives the condition of
compatibility between the continuum σ and discrete t stresses, the third and
fourth equations correspond to the weak form of the local continuum and dis-
crete constitutive models.

To give another – also simplified in our viewpoint – expression of the set of
the governing equations of the problem, one can take advantage of the depen-
dancy between the continuum and the discrete stresses that appears in Tab. 4:
∫

Ω

(
dϕ
dxσ − tδx̄

)

dΩ = 0 ⇒ t = t(σ). Then, the expression of the Lagrangian is
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modified according to:
∫

Ω

ψ+dΩ =

∫

Ω

(

σ

(
∂ũ

∂x
− ǭv − ǭp

)

+

(

−t¯̄up −
1

2
t ¯̄Dt + ¯̄Ξd

)

δx̄

)

dΩ

∫

Ω

ψ−dΩ =

∫

Ω

(

σ

(
∂ũ

∂x
− ǭv − ǭp

)

+ Ξ̄p + Λ̄p + Ξ̄d

+

(

−t¯̄up −
1

2
t ¯̄E−1t + ¯̄Ξp

)

δx̄

)

dΩ (25)

Moreover, the response of the localization section is supposed to be infinitely
rigid before the stress reaches an ultimate value and therefore ¯̄E−1 → 0. Finally,
denoting AΓ the area of the section Γ where displacement localization can take
place, the simplified form of these equations is written in Tab. 5. Only two
unknown fields remain: the smooth displacement ũ(x, t) and the continuum
stress σ(x, t).

Tension Compression

∫

Ω

(

ρ∂
2ũ
∂t2 δũ+ ∂δũ

∂x σ
)

dΩ − δUext = 0
∫

Ω

(

ρ∂
2ũ
∂t2 δũ+ ∂δũ

∂x σ
)

dΩ − δUext = 0
∫

Ω
δσ
(
∂ũ
∂x − ǭv − ǭp

∫

Ω
δσ
(
∂ũ
∂x − ǭv − ǭp − ¯̄up dtdσ δx̄

)
dΩ = 0

−
(

¯̄up + ¯̄Dt
)
dt
dσ δx̄

)

dΩ = 0

with t = t(σ) = 1
AΓ

∫

Ω
dϕ
dxσdΩ with t = t(σ) = 1

AΓ

∫

Ω
dϕ
dxσdΩ

Tab. 5: Final Euler-Lagrange equations of a concrete 1D structure.

5 Numerical applications

The numerical implementation has been done in the general purpose finite ele-
ment computer program FEAP [35]. Because any external distributed loading
is involved (self-weight is in particular neglected) in these applications, the con-
crete structure is always modeled with constant-stress bar elements. The 1D
structure tested is presented in Fig. 3.

M

L

x
uext(t) or F ext(t)

Fig. 3: 1D concrete structure model used for the numerical applications. The
cross-section area S = 0.04 m2, the length L = 1 m, the added mass
M = 7.0e5 kg, the volumic mass ρ = 2400 kg.m−3 and the concrete
elastic modulus E = 35 GPa.

Neglecting the concrete mass m = ρAL as compared to the added mass M ,
we compute the stiffness k, the fundamental pulsation ω and period T of this
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structure as:

k =
ES

L
= 1.4 GPa ; ω =

√

k

M
= 44.7 s−1 ; T =

2π

ω
= 0.14 s (26)

5.1 Identification of a concrete law

All the parameters of the 1D cyclic concrete model presented in this paper
have a clear physical meaning. It is shown in this section that (i) the viscous
parameter η is related to the material critical damping ratio ξ, (ii) the tensile
softening law parameter a is related to the fracture energy GF and (iii) all the
other parameters can be directly identified from the experimental stress-strain
response of a concrete specimen in quasi-static cyclic loading.

5.1.1 Identification of the viscous parameter η

We show here that the viscous parameter η can be interpreted as a material
property that can be identified according to, among others, the experimental
results of free low-amplitude – so that the structure remains elastic – vibration
tests (Fig. 4):

1. First, denoting ξ the critical damping ratio and c the structural viscous
parameter, if one assumes that ξ << 1, one can write [5]:

c = 2ξmω (27)

0 1 2 3 4 5

−0.1

−0.05

0

0.05

0.1

0.15

time (s)

re
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tio
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N

)

 

 

ξ = 1%
ξ = 2%
ξ = 5%

Fig. 4: Free-vibrations viscoelastic response of the tested structure for various
critical damping ratios.

2. Then we link the material viscous parameter η to the structural one c
starting from the 1D local form of the equilibrium and the Kelvin-Voigt
model constitutive equations:

ρü+
∂σ

∂x
= 0 ; σ = E

∂u

∂x
+ η

d

dt

(
∂u

∂x

)

(28)
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For a tested structure with constant cross-section area S and strain field
(∂u∂x = u

L), the introduction of Eq. (28)2 into Eq. (28)1 and then the
integration of the resulting local equation over the whole structure gives:

ρSL
︸︷︷︸

m

ü+
S

L
η

︸︷︷︸

c

u̇+
ES

L
︸︷︷︸

k

u = 0 (29)

3. The Kelvin-Voigt viscoelastic model exhibits a hysteretic – energy dissi-
pative – behavior in cyclic loading as illustrated in Fig. 5 for an excitation
of the form ū = A · sin (Ωt) with, except for other indicated values,
A = 0.3 mm, Ω = 157.08 s−1 and τ = 0.001 s. The amount of energy dis-
sipated per cycle Dcyc – the area of the elliptical loop – can be analytically
written as [36]:

Dcyc = πcΩA2 (30)

The main drawback of the Kelvin-Voigt model is that Dcyc is dependent
on the loading frequency Ω. It is indeed not realistic in particular for
seismic excitations [36]. This dependency is only negligeable in the cases
where the response is primarily represented by the resonant pulsation,
that is Ω ≃ ω.
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Fig. 5: Hysteretic response of the viscoelastic model in quasi-static sine loading
for several [top-left] viscous parameters, [top-right] loading amplitudes
and [bottom] forcing pulsations.

4. Now, suppose that a concrete structure is excited by an impulsion that is
weak enough not to active the nonlinear phenomena that are represented
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by our model, and that, assuming that the response is primarily repre-
sented by the fundamental pulsation ω, a critical damping ratio ξ = 1 %
is measured (for instance thanks to the logarithmic decrement), we can
then see η as a material property and identify it according to the following
relation:

η =
2ξmωL

S
(31)

In the case of a tested structure identical to those in Fig. 3, we compute:.

η = 15.7 MPa.s ; τ =
η

E
≃ 4.5e−4 s (32)

5.1.2 Identification of the tensile softening parameter a

The tensile softening parameter a can be computed according to the fracture
energy GF . GF is one of the parameters that characterize the softening stress-
separation (crack opening) curve of the cohesive crack model [13, 3] and repre-
sents the total amount of energy that has to be furnished in tension to a section
between the time tloc when displacement begins to localize and the time tcri that
we define as the time when the local softening problem becomes (numerically)

ill-posed, because ¯̄Kd < 0; physically, tcri has to coincide with the time when
the section is completely broken: when all the energy GF is consumed. In the
case of our concrete model, one can demonstrate that tcri is always defined and
that:

GF =

∫ tcri

tloc

t ˙̄̄udt =
σtu
2a

⇒ a =
σtu

2GF
(33)

In addition, there exists an empirical relation [2] that allows computing GF
according to material characteristics:

GF = 2.5 α0

(
σcu

0.051

)0.46(

1 +
da

11.27

)0.22 (w

c

)−0.30

(34)

with σcu in MPa and where α0 = 1 for rounded aggregates, α0 = 1.44 for crushed
or angular aggregates, da is the maximum aggregate size in mm and w

c is the
water-cement ratio. Finally, for a concrete with α0 = 1.44, da = 25 mm and
w
c = 0.5, we compute GF = 136 N.m−1 that leads, from (33) with σtu = 3 MPa,
to:

a = 22060 m−1 (35)

5.1.3 Identification of the other parameters

Here is the procedure to identify the remaining parameters of the model from
the stress-strain experimental response in Fig. 1 [left]:

1. Identify the Young’s modulus for tensile and compressive parts. We con-
sider here that they have the same value: E = Ē = 35 GPa.

2. Identify the set of stresses σy , σf , σ
c
u, σ

t
u so as to characterize the changes

of the slope of the backbone curve. We choose: σy = 3 MPa, σf = 37 MPa,
σcu = 49 MPa and σtu = 0.6 · σcu = 3 MPa.
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3. Identify simultaneously K̄p and H̄p so as they describe both the strain
hardening phase of the backbone curve in the range σy < σ < σf and the
shape of the local hysteresis loops.

4. Identify K̄d so as to describe the remaining strain hardening phase of the
backbone curve in the range σf < σ < σcu.

5. Identify ¯̄Kp so as to describe the softening part of the backbone curve.

Fig. 1 [right] is plotted with the parameters indicated above. Note that
although all the parameters have a clear physical meaning, they also are all
connected and the results of a first identification process thus often need to be
refined. Indeed, the slope of the hardening part of the backbone curve in the

range σy < σ < σf is C1 = ĒK̄p

Ē+K̄p , in the range σf < σ < σcu is C2 = C1K̄
d

C1+K̄d

and the slope of the softening part of the backbone curve is C3 = C2
¯̄Kp

C2+
¯̄Kp

.

However, in the absence of an automatic identification process [19], following
the procedure indicated above gives satisfying results within a few iterations.
Note also that, although we observed that activating plasticity before damage
leads to a better identification, it is possible to invert the roles of σy and σf .

5.2 Mesh objectivity

In finite element procedures, when displacement localizes, the solution of the
mechanical problem can depend on the size of the mesh. In the formulation of
our model, we introduced a strong discontinuity – a displacement jump – [16, 33]
and thus concentrated the localization in a zero-length zone. This method leads
to a formulation that does not need any characteristic length and thus satisfies
the mesh objectivity requirement, that is unicity of the solution, in a bar as
illustrated in Fig. 6 where the quasi-static tensile response of the section where
displacement localizes in the bar in Fig. 3 submitted to an imposed displacement
is plotted.

Concerning the modeling of the tensile softening phase, the fracture energy
is so small with resect to the elastic energy that it is numerically difficult to
grasp the post peak tensile response of concrete bar. The curve in Fig. 6 has
been plotted with 4,000 points, which cannot be achieved for instance in seismic
applications. Note that the presence of viscosity helps the numerical represen-
tation of this tensile softening part.

5.3 Loading rate-sensitive response

The four main effects of the loading strain-rate on the response of concrete are:
the increases of (i) the compressive strength [4, 20], (ii) the tensile strength [37],
(iii) the Young’s modulus [37] and (iv) the brittle behavior [7]. For seismic
excitations, the strain rates are comprised between 10−5 s−1 and 10−2 s−1,
which respectively corresponds to an increase of (i) the compression strength
between 0 and 30% [4, 20], (ii) the tensile strength between 0 and 60% [37] and
(iii) the Young’s modulus between 0 and 10% [37].

The numerical applications presented in Fig.7 [left] show that the Young’s
modulus computed for a loading strain rate of 10−2 s−1 is about 5.7% larger
than the one computed for a loading strain rate of 10−5 s−1. The increase of
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Fig. 6: Tensile response of the section where the discontinuity appears. nel is
the number of elements of the regular mesh of the bar.

Young’s modulus is thus represented by the model but a little underestimated
here. However, this increase is related to the viscous parameter τ computed in
these numerical applications from the damping ratio ξ = 1% whose value has
been arbitrarily chosen: one can thus hope that, in reality, the right value for the
damping ratio would lead to a correct modeling of the increase of elastic stiffness.
The compressive response is presented in Fig.7 [right]. The proposed concrete
model has not been developed yet to represent by itself the rate-dependent
tensile and compressive strengths, what can be done a priori by hand, as it is
common practice in engineering where the parameters that define the strengths
for concrete in quasi-static loading are majorated for seismis analyses.
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Fig. 7: Tensile [left] and [right] compressive concrete response for several loading
rates.
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5.4 Seismic application

5.4.1 Global seismic response

We focus on the compressive part only of the concrete law in Fig. 1. Thus a static
compressive normal force in imposed to the bar before the seimic excitation.
In the absence of steel, once the strength degradation process has begun, the
structure is no more capable of resisting the seismic force demand and global
equilibrium can no more be satisfied; we therefore couple to the concrete bar an
elastic steel bar with cross section area Ss = 0.02 · Sc = 8e−4 m2 and Young’s
modulus Es = 210 GPa. The behavior law for concrete is those presented in
Fig. 1 [right]. The loading pattern is shown in Fig. 8 and the global structural
response in Fig. 9.
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Fig. 8: Loading pattern: static loading + seismic loading time histories.
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5.4.2 Local response and intrinsic dissipated energies

TIV provides a useful framework to quantify the material intrinsic dissipation.
Indeed, the amount of continuum viscous, plastic and damage energies dissi-
pated in all the structure wide and the discrete plastic and damage energies
dissipated in the section where displacement localizes can be computed accord-
ing to Eq. (10):

Ēv =

∫ T

0

∫

Ω

˙̄Dv dΩ dt =

∫ T

0

∫

Ω

σv ˙̄ǫvdΩ dt (36)

Ēp =

∫ T

0

∫

Ω

˙̄Dp dΩ dt =

∫ T

0

∫

Ω

(

σ ˙̄ǫp + q̄p ˙̄ξp + κ̄p ˙̄λp
)

dΩ dt

Ēd =

∫ T

0

∫

Ω

˙̄Dd dΩ dt =

∫ T

0

∫

Ω

(
1

2
σ ˙̄Dσ + q̄p ˙̄ξd

)

dΩ dt

¯̄Ep =

∫ T

0

∫

Ω

˙̄̄
Dp dΩ dt =

∫ T

0

∫

Γ

(

t ˙̄̄up + ¯̄qp
˙̄̄
ξp
)

dΓ dt

¯̄Ed =

∫ T

0

∫

Ω

˙̄̄
Dd dΩ dt =

∫ T

0

∫

Γ

(
1

2
t

˙̄̄
Dt + ¯̄qd

˙̄̄
ξd
)

dΓ dt

Note that the total intrinsic dissipation is composed by a volumic and a surfacic
– in the section Γ where displacement localizes – part.

The local response of material points located outside and inside Γ is ploted
in Fig 10: the localization of the displacement in Γ leads to a larger amount of
dissipated energy in this section. The amount and sources of intrinsic energy
dissipation within the seimic excitation are detailed in Fig. 11. Around t = 11 s,
a big amount of seimic energy is imparted to the structure (see Fig. 8); so as
this latter do not collapse, it has to dissipate this input energy. The input
energy is converted both into stored energy in the material and dissipated energy
(irreversible mechanisms).
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Fig. 10: Local response of a material point [left] located and [right] not located
in section Γ where displacement localizes.
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Fig. 11: Continuum plastic and damage and discrete plastic intrinsic dissipated
energy time-histories.

6 Conclusion and future work

In this paper, the theoretical formulation of a 1D cyclic constitutive concrete
model is presented. The model is capable of representing most of the salient
phenomena that can be experimentally observed in the stress-strain response
of a concrete representative elementary volume (REV) – at macroscale – in
cyclic 1D loading: brittle loading-rate dependent behavior in tension, quasi-
brittle loading-rate dependent behavior in compression with strain hardening,
appearance of residual deformation, stiffness and strength degradations, local
hysteretis. Although the details of the numerical implementation are not given
in this paper, the model has been developed to be implemented in finite element
numerical procedures and thus special attention is paid on its robustness: (i)
the conditions under which the model enters the generalized standard materials

class are determined and (ii) linear hardening / softening laws that make the
resolution processes noniterative at the local – or numerical integration point
– level are prefered to nonlinear ones. The Euler-Lagrange equations of a 1D
structure, made of this concrete material, in dynamic loading are derived and
finally some numerical applications are presented. They illustrate that: the
viscous parameter can be considered as a material property, the objectivity
of the mesh of the tested bar is satisfied when displacement localizes and the
material REV thus exhibits a softening behavior, the model can represent the
salient phenomena that occur in concrete in cyclic loading.

The model is developed in the framework of thermodynamics with internal

variables, that is that a set of internal variables is chosen to represent the ex-
perimentally observed response of a concrete REV in 1D cyclic loading. All
the material parameters introduced have a clear physical meaning, what makes
their identification simple. The model is developed in a purely phenomenolog-
ical way at macroscale: for instance “strain hardening” means here “observed
increase of the yield stress while strain increases” and has no relation with phys-
ical effects that occur at lower scales such as dislocations motion well known for
steel materials. One could give a more refined description of the micro- or even
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nanoscopic behavior of concrete and one could hope that relating physical micro-
or nanoscopic effects to the macroscopic response of a concrete REV would still
improve the accuracy of the material models. However, our approach, albeit
phenomenological and thus somehow arbitrary, can be efficiently used in com-
mon computer programs for large-scale structural numerical dynamic analyses.
To that purpose, the implementation of the model in a fiber beam element is
currently being achieved.
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