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Challenging design problems arise regularly in modern fault diagnosis systems. Unfortunately, classical analytical tech-
niques often cannot provide acceptable solutions to such difficult tasks. This explains why soft computing techniques such
as neural networks become more and more popular in industrial applications of fault diagnosis. Taking into account the
two crucial aspects, i.e., the nonlinear behaviour of the system being diagnosed as well as the robustness of a fault diagno-
sis scheme with respect to modelling uncertainty, two different neural network based schemes are described and carefully
discussed. The final part of the paper presents an illustrative example regarding the modelling and fault diagnosis of a DC
motor, which shows the performance of the proposed strategy.
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1. Introduction

One of the most well-known approaches to residual gener-
ation is the model based concept. In the general case, this
concept can be realized using different kinds of models:
analytical, knowledge based and data based ones (Blanke
et al., 2003; Chen and Patton, 1999; Iserman, 2006; Ko-
rbicz et al., 2004; Korbicz et al., 2007; Witczak, 2007).
Unfortunately, the analytical model based approach is
usually restricted to simpler systems described by linear
models. When there are no mathematical models of the di-
agnosed system or the complexity of a dynamic system in-
creases and the task of modelling is very difficult to solve,
analytical models cannot be applied or cannot give satis-
factory results. In these cases data based models, such as
neural networks, fuzzy sets or their combination (neuro-
fuzzy networks), can be considered (Rutkowski, 2004).

In the framework of Fault Detection and Isolation
(FDI), robustness plays an important role. Model based
fault diagnosis is built on a number of idealized assump-
tions. One of them is that the model of the system is a
faithful replica of plant dynamics. Another one is that dis-
turbances and noise acting upon the system are known.
This is, of course, not possible in engineering practice.
The robustness problem in fault diagnosis can be defined
as the maximization of the detectability and isolability
of faults and simultaneously the minimization of uncon-
trolled effects such as disturbances, noise, changes in in-

puts and/or the state, etc. (Chen and Patton, 1999). In
the fault diagnosis area, robustness can be achieved in two
ways (Chen and Patton, 1999; Puig et al., 2006):

1. active approaches – based on generating residuals
insensitive to model uncertainty and simultaneously
senstitive to faults,

2. passive approaches – enhancing the robustness of the
fault diagnosis system to the decision making block.

Active approaches to fault diagnosis are frequently real-
ized using, e.g., unknown input observers, robust parity
equations or H∞. However, in the case of models with
uncertainty located in the parameters, perfect decoupling
of residuals from uncertainties is limited by the number
of available measurements (Gertler, 1998). An alternative
solution is to use passive approaches, which propagate
uncertainty into residuals. Robustness is then achieved
through the use of adaptive thresholds. The passive ap-
proach has an advantage over the active one because it
can achieve the robustness of the diagnosis procedure in
spite of uncertain parameters of the model and without
any approximation based on simplifications of the under-
lying parameter representation. A shortcoming of passive
approaches is that faults producing a residual deviation
smaller than model uncertainty can be missed.

Unfortunately, as can be observed in the litera-
ture (Blanke et al., 2003; Chen and Patton, 1999; Is-
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erman, 2006; Korbicz et al., 2004; Witczak, 2007; Ro-
drigues et al., 2007), most of the existing approaches (both
passive and active) were developed for linear systems.
Since most industrial systems exhibit nonlinear behaviour,
this may considerably limit their practical applications.
Taking into account such a situation, the main objective
of this paper is to describe two neural network based pas-
sive approaches that can be used for robust fault diagnosis
of nonlinear systems.

The approaches presented in the literature try to ob-
tain a neural model that is best suited to a particular data
set. This may result in a model with a relatively large
uncertainty. A degraded performance of fault diagnosis
constitutes a direct consequence of using such models. To
settle such a problem within the framework of this paper,
it is proposed to use two different strategies:

Model error modelling: this approach makes it possible
to obtain a description of an existing neural model,
which then can be used for robust fault diagnosis;

Robust GMDH neural network: this approach makes it
possible to obtain a model with a possibly small un-
certainty as well as to estimate its uncertainty, which
then can be used for robust fault diagnosis.

Taking into account the above discussion, the paper is
organised as follows: Section 2 presents two alternative
neural network based approaches to robust fault diagno-
sis. Subsequently, Section 3 presents an application of the
model error modelling strategy for fault diagnosis of a DC
motor. Finally, the last section concludes the paper.

2. Neural network based FDI

Artificial Neural Networks (ANNs) have been intensively
studied during the last two decades and successfully ap-
plied to dynamic system modelling and fault diagno-
sis (Narendra and Parthasarathy, 1990; Frank and Köppen-
Seliger, 1997; Köppen-Seliger and Frank, 1999; Korbicz
et al., 2004; Korbicz, 2006; Witczak, 2006; Patan, 2007c).
Neural networks stand for an interesting and valuable al-
ternative to the classical methods, because they can deal
with very complex situations which are not sufficiently
defined for deterministic algorithms. They are especially
useful when there is no mathematical model of a process
being considered. In such situations, the classical ap-
proaches, such as observers or parameter estimation meth-
ods, cannot be applied. Neural networks provide excel-
lent mathematical tools for dealing with nonlinear prob-
lems (Haykin, 1999; Nelles, 2001; Norgard et al., 2000).
They have an important property owing to which any non-
linear function can be approximated with an arbitrary ac-
curacy using a neural network with a suitable architecture
and weight parameters. For continuous mappings, one
hidden layer based ANN is sufficient, but in other cases,

two hidden layers should be implemented. ANNs are par-
allel data processing tools capable of learning functional
dependencies of the data. This feature is extremely use-
ful for solving various pattern recognition problems. An-
other attractive property is the self-learning ability. A neu-
ral network can extract the system features from histor-
ical training data using a learning algorithm, requiring
little or no a priori knowledge about the process. This
makes ANNs nonlinear modelling tools of a great flex-
ibility. Neural networks are also robust with respect to
incorrect or missing data. Protective relaying based on
ANNs is not affected by a change in the system operat-
ing conditions. Neural networks also have high compu-
tation rates, substantial input error tolerance and adaptive
capability. These features allow applying neural networks
effectively to the modelling and identification of complex
nonlinear dynamic processes and fault diagnosis (Marcu
et al., 1999; Patan and Parisini, 2005).

2.1. Locally recurrent neural network. Let us con-
sider a discrete-time neural network with n inputs and m
outputs. The network structure is composed of two pro-
cessing layers with v1 neurons with Infinite Impulse Re-
sponse (IIR) filters in the first layer and v2 neurons with
Finite Impulse Response (FIR) filters in the second layer.
Each neuron consists of a filter of order r. The state of
such a network is represented as follows:

x1(k + 1) = A1x1(k) + W 1u(k), (1a)

x2(k + 1) = A2x2(k) + W 2σ
(
G1

2(B
1x1(k)

+D1u(k) − g1
1)

)
+ W uu(k), (1b)

where x1(k) ∈ R
N1 (N1 = v1 × r) represents the states

of the first layer and x2(k) ∈ R
N2 (N2 = v2 × r) rep-

resents the states of the second layer, A1 ∈ R
N1×N1 and

A1 ∈ R
N2×N2 are the block diagonal state matrices of

the first and second layers, respectively, W 1 ∈ R
N1×n is

the input weight matrix, W 2 ∈ R
N2×v1 is the weight ma-

trix between the first and second layers, W u ∈ R
N2×n is

the weight matrix between the input and the second layer,
B1 ∈ R

v1×N1 is the block diagonal matrix of feedfor-
ward filter parameters of the first layer, D1 ∈ R

v1×n is
the transfer matrix, g1

1 denotes the vector of biases of the
first layer, G1

2 ∈ R
v1×v1 is the diagonal matrix of the

slope parameters of the first layer, and σ : R
v1 → R

v1 is
a nonlinear vector-valued function. A detailed form of the
network matrices can be found in (Patan, 2008).

Neurons of the second layer receive excitation not
only from the neurons of the previous layer, but also from
the external inputs (Fig. 1). The first layer includes neu-
rons with IIR filters while the second one consists of neu-
rons with FIR filters. In this case, the second layer of
the network is not a hidden one, contrary to the orig-
inal structure of locally recurrent networks (Patan and
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Parisini, 2005). The following result presents approxima-
tion abbilities of the modified neural network:

Theorem 1. (Patan, 2007a) Let S ∈ R
n and U ∈ R

m be
open sets, Ds ∈ S and Du ∈ U compact sets, Z ∈ Ds

an open set, and f : S × U → R
n a C1 vector-valued

function. For a discrete-time nonlinear system of the form

z(k + 1) = f(z(k),u(k)), z ∈ R
m,u ∈ R

n (2)

with an initial state z(0) ∈ Z, for arbitrary ε > 0 and
an integer 0 < I < +∞, there exist integers v1 and v2

as well as a neural network of the form (1) with an appro-
priate initial state x(0) such that for any bounded input
u : R

+ = [0,∞] → Du

max
0≤k≤I

‖z(k) − x2(k)‖ < ε. (3)

The network structure (1) is not a strict feedforward
one, as it has a cascade structure. The introduction of an
additional weight matrix W u renders it possible to obtain
a system equivalent to the classical locally recurrent net-
work with two hidden layers (Patan and Parisini, 2005),
but the main advantage of this representation is that the
whole state vector is available from the neurons of the
second layer of the network. This fact is of crucial im-
portance taking into account the training of the neural net-
work. If the output y(k) is

y(k) = x2(k), (4)

then weight matrices can be determined using a training
process, which minimizes the error between the network
output and measurable process states. Usually, in engi-
neering practice, not all process states are directly avail-
able (measurable). In such cases, the dimension of the
output vector is rather lower than the dimension of the
state vector, and the network output can be produced in
the following way:

y(k) = Cx2(k). (5)

In such cases, the cascade neural network contains an ad-
ditional layer of static linear neurons playing the role of
the output layer (Fig. 1).

2.2. Robustness via model error modelling. A robust
identification procedure should deliver not only a model
of a given process, but also a reliable estimate of the un-
certainty associated with the model. Two main ideas ex-
ist to deal with the uncertainty associated with the model.
The first group of approaches, the so-called set member-
ship identification (Milanese, 2004; Duzinkiewicz, 2006)
or bounded error approaches (Walter and Pronzato, 1997),
relies on the assumption that the identification error is
unknown but bounded. In this framework, robustness is

�IIR – neuron with the IIR filter

�FIR – neuron with the FIR filter

�L – static linear neuron

u(k)

y1(k)
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IIR
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L

L

Fig. 1. Cascade structure of the modified dynamic
neural network.

hardly integrated with the identification process. A some-
what different approach is to identify the process with-
out robustness deliberations first, and then consider ro-
bustness as an additional step. This usually leads to least
squares estimation and prediction error methods. Model
Error Modelling (MEM) employs prediction error meth-
ods to identify a model from input-output data (Reinelt
et al., 2002). After that, one can estimate the uncertainty
of the model by analyzing residuals evaluated from the
inputs. Uncertainty is a measure of unmodelled dynam-
ics, noise and disturbances. The identification of resid-
uals provides the so-called error model. In the original
algorithm, a nominal model along with uncertainty is con-
structed in the frequency domain adding frequency by fre-
quency the model error to the nominal model (Reinelt
et al., 2002). Below, an algorithm to form uncertainty
bands in the time domain is proposed, intended for use
in the fault diagnosis framework (Patan et al., 2007). The
design procedure is described by the following steps:

1. Using a model of the process, compute the residual
r = y − ym, where y and ym are desired and model
outputs, respectively.

2. Collect the data {ui, ri}N
i=1 and identify an error

model using these data. This model constitutes an
estimate of the error due to undermodelling, and it is
called the error model.

3. Derive the centre of the uncertainty region as ym+ye.

4. If the model error model is not falsified by the data,
one can use statistical properties to calculate a confi-
dence region. A confidence region forms uncertainty
bands around the response of the error model.

The model error modelling scheme can be carried out
by using neural networks of the dynamic type. Both the
fundamental model of the process and the error model can
be modelled utilizing such networks. Assuming that the
fundamental model of the process has already been con-
structed, the next step is to design the error model. In this
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case, a neural network is used to model an “error” system
with input u and output r. After training, the response
of this model is used to form uncertainty bands, where
the centre of the uncertainy region is obtained as a sum of
the output of the system model and the output of the error
model. Then, the upper band can be calculated as

Tu = ym + ye + tβv, (6)

and the lower band in the following way:

Tl = ym + ye − tβv, (7)

where ye is the output of the error model on the input u,
tβ is the N (0, 1) tabulated value assigned to a given con-
fidence level, e.g, β = 0.05 or β = 0.01, v is the standard
deviation of ye. It should be kept in mind that ye rep-
resents not only a residual but also structured uncertainty,
disturbances, etc. Therefore, the uncertainty bands (6) and
(7) should work well only assuming that the signal ye has
a normal distribution. The centre of the uncertainty region
is the signal ym + ye ≈ y. Now, observing the system
output y, one may make a decision whether or not a fault
occurred. If y is inside the uncertainty region, the system
is healthy.

2.3. Robust GMDH neural networks. Successful ap-
plication of ANNs in system identification and fault diag-
nosis tasks (Witczak, 2006) depends on a proper selection
of the neural network architecture. In the case of classical
ANNs such as MLPs, the problem reduces to the selec-
tion of the number of layers and the number of neurons in
a particular layer. If the obtained network does not satisfy
prespecified requirements, then a new network structure
is selected and the parameter estimation is repeated once
again. The determination of the appropriate structure and
parameters of the model in the presented way is a com-
plex task. Furthermore, an arbitrary selection of the ANN
structure can be a source of model uncertainty. Thus, it
seems desirable to have a tool which can be employed for
automatic selection of the ANN structure, based only on
the measured data. To overcome this problem, GMDH
neural networks (Ivakhnenko and Mueller, 1995; Witczak
et al., 2006) have been proposed. The synthesis process of
a GMDH model is based on iterative processing of a se-
quence of operations. This process leads to the evolution
of the resulting model structure in such a way as to obtain
the best quality approximation of the identified system.
Thus, the task of designing a neural network is defined in
such a way as to obtain a model with a small uncertainty.

The idea of the GMDH approach rests on replacing
the complex neural model by a set of hierarchically con-
nected neurons. The behaviour of each neuron should re-
flect the behaviour of the modelled system. From the rule
of the GMDH algorithm it follows that the parameters of
each neuron are estimated in such a way that their output

signals are the best approximation of the real system out-
put. In this situation, the neuron should have an ability to
represent the dynamics. One way out of this problem is
to use dynamic neurons (Patan and Parisini, 2005). Dy-
namics in this neuron are realized by introducing a linear
dynamic system—an IIR filter. The process of GMDH
network synthesis leads to the evolution of the resulting
model structure in such a way as to obtain the best qual-
ity approximation of the real system. An outline of the
GMDH algorithm can be as follows (Witczak et al., 2006):

Step 1: Determine all neurons (estimate their parameter
vectors p

(l)
n with the training data set T ) whose in-

puts consist of all possible couples of input variables,
i.e., (r − 1)r/2 couples, where r is the dimension of
the system input vector.

Step 2: Using a validation data set V , not employed dur-
ing the parameter estimation phase, select several
neurons which are best fitted in terms of the chosen
criterion.

Step 3: If the termination condition is fulfilled (either the
network fits the data with a desired accuracy, or the
introduction of new neurons did not induce a signif-
icant increase in the approximation abilities of the
neural network), then STOP. Otherwise, use the out-
puts of the best-fitted neurons (selected in Step 2) to
form the input vector for the next layer, and then go
to Step 1.

To obtain the final structure of the network, all un-
necessary neurons are removed, leaving only those which
are relevant to the computation of the model output. The
procedure of removing the unnecessary neurons is the last
stage of the synthesis of the GMDH neural network. The
appealing feature of the above algorithm is that the tech-
niques for parameter estimation of linear-in-parameter
models can be used during the realization of Step 1. This
is possible under the standard invertibility assumption of
the activation function of a network.

2.3.1. Confidence estimation of GMDH neural net-
works. Even though the application of the GMDH ap-
proach to model structure selection can improve the qual-
ity of the model, the resulting structure is not the same as
that of the system. It can be shown (Mrugalski, 2004) that
the application of the classic evaluation criteria like the
Akaike Information Criterion (AIC) and the Final Predic-
tion Error (FPE) (Ivakhnenko and Mueller, 1995; Mueller
and Lemke, 2000) can lead to the selection of inappropri-
ate neurons and, consequently, to unnecessary structural
errors.

Apart from the model structure selection stage, in-
accuracy in parameter estimates also contributes to mod-
elling uncertainty. Indeed, while applying the least-
square method to parameter estimation of neurons, a set
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of restrictive assumptions has to be satisfied (see, e.g.,
(Witczak et al., 2006) for further explanations). An ef-
fective remedy to such a challenging problem is to use
the so-called Bounded Error Approach (BEA) (Milanese
et al., 1996; Witczak et al., 2006). Let us consider the
following system:

y(k) = r(k)T p + ε(k), (8)

where r(k) stands for the regressor vector, p ∈ R
np de-

notes the parameter vector, and ε(k) represents the dif-
ference between the original system and the model. The
problem is to obtain a parameter estimate vector p̂, as well
as an associated parameter uncertainty required to design
robust fault detection system. The knowledge regarding
the set of admissible parameter values allows obtaining
the confidence region of the model output which satisfies

ỹm(k) ≤ y(k) ≤ ỹM (k), (9)

where ỹm(k) and ỹM (k) are respectively the minimum
and maximum admissible values of the model output that
are consistent with the input-output measurements of the
system. It is assumed that ε(k) consists of a structural
deterministic error caused by the model-reality mismatch,
and the stochastic error caused by the measurement noise
is bounded as follows:

εm(k) ≤ ε(k) ≤ εM (k), (10)

where the bounds εm(k) and εM (k) (εm(k) �= εM (k))
can be estimated (Witczak et al., 2006). The idea under-
lying the bounded error approach is to obtain a feasible
parameter set P (Milanese et al., 1996) that is consistent
with the input-output measurements used for parameter
estimation. The resulting P is described by a polytope
defined by a set of vertices V. Thus, the problem of deter-
mining model output uncertainty can be solved as follows:

rT (k)pm(k) ≤ rT (k)p ≤ rT (k)pM (k), (11)

where

pm(k) = arg min
p∈V

rT (k)p,

pM (k) = arg max
p∈V

rT (k)p.
(12)

As has been mentioned, the neurons in the l-th (l > 1)
layer are fed with the outputs of the neurons from the
(l−1)-th layer. In order to modify the above approach for
the uncertain regressor case, let us express the unknown
“true” value of the regressor rn(k) by a difference be-
tween a measured value of the regressor r(k) and the error
in the regressor e(k):

rn(k) = r(k) − e(k), (13)

where it is assumed that the error e(k) is bounded as

em
i (k) ≤ ei(k) ≤ eM

i (k), i = 1, . . . , np. (14)

Using (8) and substituting (13) into (14), one can de-
fine the space containing the parameter estimates:

εm(k) − eT (k)p ≤ y(k) − r(k)T p ≤ εM (k) − eT (k)p,
(15)

which makes it possible to adapt the above-described tech-
nique to the error-in-regressor case (Witczak et al., 2006).

The proposed modification of the BEA makes it pos-
sible to estimate the parameter vectors of the neurons from
the l-th layer, l > 1. Finally, it can be shown that the
model output uncertainty has the following form:

ỹm(k) ≤ rT
np ≤ ỹM (k). (16)

In order to adapt the presented approach to the pa-
rameter estimation of nonlinear neurons with an activation
function ξ(·), it is necessary to transform the relation

εm(k) ≤ y(k) − ξ
(
(r(k))T

p
)
≤ εM (k), (17)

using ξ−1(·), and hence

ξ−1
(
y(k) − εM (k)

)
≤ (r(k))T

p

≤ ξ−1 (y(k) − εm(k)) .
(18)

Knowing the model structure and possessing the
knowledge regarding its uncertainty, it is possible to de-
sign a robust fault detection scheme with an adaptive
threshold. The model output uncertainty interval, calcu-
lated with the application of the GMDH model, should
contain the real system response in the fault-free mode.
Therefore, the system output should satisfy

ỹm(k) + εm(k) ≤ y(k) ≤ ỹM (k) + εM (k). (19)

This means that robust fault detection boils down to
checking if the output of the system satisfies (19). Thus,
when (19) is violated, a fault symptom occurs.

2.4. Theoretical comparison. The main objective of
this section is to compare the design techniques and the re-
sulting neural network fault diagnosis schemes presented
in Section 2. In general, the design techniques described
in Sections 2.1 and 2.3 lead to the same type of a neu-
ral network, i.e., a feedforward neural network with dy-
namic neuron models. The main difference is that the
GMDH network structure (Secton 2.3) is selected auto-
matically while the structure of a network described in
Section 2.1 is arbitrarily selected. Another crucial differ-
ence is that the parameters of GMDH neurons are esti-
mated independently while in the case of the network de-
scribed in Section 2.1 this is realized simultaneously. This
means that the parameter vector associated with a neuron
is optimal for this particular neuron only. On the other
hand, this parameter vector may not be optimal from the
point of view of the entire network. Such circumstances
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rise the need for the retraining of the GMDH neural net-
work after the automatic selection of the model structure.
This leads directly to an obvious equivalence between the
above-mentioned procedures, which makes their empiri-
cal comparison senseless.

A similar line of reasoning can be realized for the
adaptive threshold determination techniques described in
Sections 2.2 and 2.3.1. In particular, in the first case a
neural network is used to determine the interval containing
the possible system response, while in the second case the
output interval is determined with the knowledge about
the parameter uncertainty of a neural model of the sys-
tem. As can be shown (Witczak, 2007), the performance
of such techniques strongly depends on the experimen-
tal conditions employed during the design procedure. In
other words, a direct answer regarding the superiority of
one of these technique cannot be formulated, which makes
their empirical comparison senseless. Thus, they should
be perceived as two alternative design procedures.

Therefore, in the further part of the paper, the model
error modelling procedure is applied to design the FDI
system for a DC motor.

3. Neural network based fault diagnosis of
a DC motor

Electrical motors play a very important role in safe and
efficient work of modern industrial plants and processes.
Early diagnosis of abnormal and faulty states renders it
possible to perform important preventing actions, and it
allows one to avoid heavy economic losses involved in
stopped production, or the replacement of elements or
parts (Chen and Patton, 1999). To keep an electrical
machine in the best condition, several techniques such
as fault monitoring or diagnosis should be implemented.
Conventional DC motors are very popular, because they
are reasonably cheap and easy to control. Unfortunately,
their main drawback is the mechanical collector, which
has only a limited life span. In addition, brush spark-
ing can destroy the rotor coil, generate electromagnetic
compatibility problems and reduce insulation resistance
to an unacceptable limit (Moseler and Isermann, 2000).
Moreover, in many cases, electrical motors operate in
closed-loop control and small faults often remain hid-
den by the control loop. It is only if the whole device
fails that the failure becomes visible. Therefore, there
is a need to detect and isolate faults as early as possi-
ble. Recently, a great deal of attention has been paid to
electrical motor fault diagnosis (Nandi et al., 2005; Li
et al., 2004; Moseler and Isermann, 2000; Xiang-Qun
and Zhang, 2000; Fuessel and Isermann, 2000). In gen-
eral, the elaborated solutions can be splitted into three
categories: signal analysis methods, knowledge based
methods and model based approaches (Xiang-Qun and
Zhang, 2000; Korbicz et al., 2004).

In this section, robust model based fault diagnosis of
the AMIRA DR300 laboratory system is presented. The
laboratory system shown in Fig. 2 is used to control the
rotational speed of a DC motor with a changing load.
The laboratory object considered consists of five main el-
ements: a DC motor M1, a DC motor M2, two digital
increamental encoders and a clutch K. The input signal of
the engine M1 is an armature current and the output one
is the angular velocity. The available sensors for the out-
put are an analog tachometer on an optical sensor, which
generates impulses that correspond to the rotations of the
engine, and a digital incremental encoder. The shaft of the
motor M1 is connected with the identical motor M2 by the
clutch K. The second motor M2 operates in the genera-
tor mode and its input signal is an armature current. The
available measuremets of the plant are as follows:

• motor current Im – the motor current of the DC mo-
tor M1,

• generator current Ig – the motor current of the DC
motor M2,

• tachometer signal T ,

and control signals include:

• motor control signal Cm – the input of the motor M1,

• generator control signal Cg – the input of the motor
M2.

The separately excited DC motor is governed by two
differential equations. The classical description of the
electrical subsystem is given by the equation

u(t) = Ri(t) + L
di(t)
dt

+ e(t), (20)

where u(t) is the motor armature voltage, R is the arma-
ture coil resistance, i(t) is the motor armature current, L
is the motor coil inductance, and e(t) is the induced elec-
tromotive force. The counter electromotive force is pro-
portional to the angular velocity of the motor:

e(t) = Keω(t), (21)

Fig. 2. Laboratory system with a DC motor.
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where Ke stands for the motor voltage constant and ω(t)
is the angular velocity of the motor. In turn, the mechani-
cal subsystem can be derived from a torque balance:

J
dω(t)

dt
= Tm(t) − Bmω(t) − Tl − Tf (ω(t)), (22)

where J is the motor moment of inertia, Tm is the motor
torque, Bm is the viscous friction torque coefficient, Tl is
the load torque, and Tf (ω(t)) is the friction torque. The
motor torque Tm(t) is proportional to the armature current

Tm(t) = Kmi(t), (23)

where Km stands for the motor torque constant. The fric-
tion torque can be considered as a function of the angular
velocity and it is assumed to be the sum of the Stribeck,
Coulumb and viscous components. The viscous friction
torque opposes motion and it is proportional to the angular
velocity. The Coulomb friction torque is constant at any
angular velocity. The Stribeck friction is a nonlinear com-
ponent occuring at low angular velocities. Although the
model (20)–(23) has a direct relation to the motor physi-
cal parameters, the true relation between them is nonlin-
ear. There are many nonlinear factors in the motor, e.g.,
the nonlinearity of the magnetization characteristic of the
material, the effect of material reaction, the effect caused
by an eddy current in the magnet, residual magnetism, the
commutator characteristic, mechanical frictions (Xiang-
Qun and Zhang, 2000). These factors are not shown in the
model (20)–(23). Summarizing, the DC motor is a non-
linear dynamic process, and to model it suitably nonlinear
modelling, e.g., dynamic neural networks (Patan, 2007a),
should be employed.

The motor described works in closed-loop control
with the PI controller. It is assumed that the load of the
motor is zero. The objective of system control is to keep
the rotational speed at the constant value equal to 2000.
Additionally, it is assumed that the reference value is cor-
rupted by additive white noise.

Motor modelling. A separately excited DC motor was
modelled by using the dynamic neural network (1) pro-
posed in Section 2.1. The model of the motor was selected
as follows:

T = f(Cm). (24)

The following input signal was used in the experiments:

Cm(k) =3 sin(2π1.7k) + 3 sin(2π1.1k − π/7)
+ 3 sin(2π0.3k + π/3).

(25)

The input signal (25) is persistantly exciting of order 6
(Ljung, 1999). Using (25), a learning set containig 1000
samples was formed. The neural network model (1) and
(5) had the following structure: one input, three IIR neu-
rons with first order filters and hyperbolic tangent activa-
tion functions, six FIR neurons with first order filters and

linear activation functions, and one linear output neuron
(Patan, 2007b; Patan et al., 2007). The neural model struc-
ture was selected using the “trial and error” method. The
quality of each model was determined using the Akaike
Information Criterion (AIC) (Ljung, 1999). This crite-
rion contains a penalty term and makes it possible to dis-
card too complex models. The training process was car-
ried out for 100 steps using the Adaptive Random Search
(ARS) algorithm (Walter and Pronzato, 1997; Patan and
Parisini, 2002) with the initial variance v0 = 0.1.

Decision making. To estimate the uncertainty associ-
ated with the neural model, the MEM technique, discussed
in Section 2.2, is applied. To design the error model, the
classical linear ARX model is utilized. In order to select
a proper number of delays, several ARX models were ex-
amined and the best performing one was selected using the
AIC. The parameters of the ARX model were the number
of past outputs na = 20 and the number of past outputs
nb = 20. The sum of squared errors calculated for 3000
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Fig. 3. Residual and constant thresholds (a) and confidence
bands generated by model error modelling (b).
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Fig. 4. Fault detection using model error modelling: fault f1
1 –

confidence bands (a) and decision logic without the time
window (b).

testing samples for the ARX model was equal to 0.0117.
Using the procedure described in Section 2.2 and assum-
ing the confidence level equal to β = 0.05, two bands
were calculated. The results are presented in Fig. 3(b). To
evaluate the quality of the proposed solution, another de-
cision making technique based on constant thresholds is
also applied (Patan and Parisini, 2005). Decision mak-
ing using constant thresholds is illustrated in Fig. 3(a).
In both methods, a number of false alarms represented
by the false detection rate rfd was monitored (Patan and
Parisini, 2005). The achieved indices are rfd = 0.012 in
the case of adaptive thresholds and rfd = 0.098 in the
case of constant ones.

Fault detection. Two types of faults were examined
during the experiments:

• f1
i – tachometer faults were simulated by increas-

ing/decreasing rotational speed, in turn by ±20%,
±10% and ±5%,

• f2
i – mechanical faults were simulated by increas-

ing/decreasing motor torque, in turn by ±20%,
±10% and ±5%.

As a result, a total of 12 faulty situations were inves-
tigated. Each fault occurred at the tfrom = 4000 time step
and lasted to the ton = 5000 time step. In order to perform
a decision about the faults and to determine the detection
time tdt, a time window with the length 0.25 s was used.
The results of the fault detection are presented in Table 1.
All faults were reliably detected using model error mod-
elling, contrary to the constant threshold technique. In the
latter case, problems were encountered with the faults f1

4 ,
f2
5 and f2

6 (marked with boxes). An interesting situation
is observed for the fault f1

6 . Due to the moving window
with the length of 50, false alarms were not raised just be-
fore the 4000-th time step, but in practice from the 3968-
th time step the residual exceeded the threshold, which
means a false alarm. Summarizing, the MEM technique
demonstrates more reliable behaviour than simple thresh-
olding. The example of fault detection is illustrated in
Fig. 4 for the case of adaptive thresholds.

Fault isolation. Fault isolation can be considered as a
classification problem where a given residual value is as-
signed to one of the predefined classes of system be-
haviour. In the case considered here, there is only one
residual signal and 12 different faulty scenarios. Firstly,
it is required to check the distribution of the symptom
signals in order to verify the separability of the faults.
The symptom distribution is shown in Fig. 5. Almost all
classes are separable except the faults f1

1 (marked with
‘o’) and f2

6 (marked with ‘∗’), which overlap each other.
A similar situation is observed for the faults f1

2 (marked
with ‘·’) and f2

5 (marked with ‘+’). As a result, the
pairs f1

1 , f2
6 , and f1

2 , f2
3 can be isolated, but as a group

of faults only. Finally, 10 classes of faults are formed:
C1 = {f1

1 , f2
6 }, C2 = {f1

2 , f2
5 }, C3 = {f1

3 }, C4 = {f1
4 },

C5 = {f1
5 }, C6 = {f1

6 }, C7 = {f2
1 }, C8 = {f2

2 },
C9 = {f2

3 } and C10 = {f2
4 }. To perform fault isolation,

the well-known multilayer perceptron was used. The neu-
ral network had two inputs (the model input and the resid-
ual) and four outputs (each class of the system behaviour
was coded using a 4-bit representation). The learning set
was formed using 100 samples per each faulty situation,
then the size of the learning set was equal to 1200. As the
well-performing neural classifier, the network with 15 hy-
perbolic tangent neurons in the first hidden layer, ten hy-
perbolic tangent neurons in the second hidden layer, and
four sigmoidal output neurons was selected. The neural
classifier was trained for 200 steps using the Levenberg-
Marquardt method. Additionally, the real-valued response
of the classifier was transformed to the binary one. A sim-
ple idea is to calculate the distance between the classifier
output and each predefined class of system behaviour. As
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Table 1. Results of fault detection for model error modelling.

f1
1 f1

2 f1
3 f1

4 f1
5 f1

6

Model error modelling

rtd [%] 97.9 99.6 98.8 99.7 99.6 99.5
tdt 4074 4055 4077 4053 4058 4075

Constant thresholds

rtd [%] 98.1 99.4 98.8 99.4 98.9 100

tdt 4072 4067 4064 3147 4063 4018

f2
1 f2

2 f2
3 f2

4 f2
5 f2

6

Model error modelling

rtd [%] 99.2 99.3 99.2 98.8 99.1 81
tdt 4058 4100 4060 4061 4060 4357

Constant thresholds

rtd [%] 99.5 99.7 99.3 99.1 99.9 98.4

tdt 4056 4059 4057 4059 3726 3132

a result, the binary representation giving the shortest Eu-
clidean distance is selected as the classifier binary output.
This transformation can be represented as follows:

j = arg min
i
||x − Ki||, i = 1, . . . , NK , (26)

where x is the real-valued output of the classifier, Ki is the
binary representation of the i-th class, NK is the number
of predefined classes of system behaviour, and || · || is the
Euclidean distance. Then, the binary representation of the
classifier can be determined in the form x̄ = Kj . Recog-
nition accuracy (R) results are presented in Table 2. All
classes of faulty situations were recognized surely with
accuracy greater than 90%. True values of recognition ac-
curacy are marked with boxes. There are situations of mis-
recognizing, e.g., the class C4 was classified as the class
C2 with the rate 5.7%. Misrecognizing can be caused by
the fact that some classes of faults are closely arranged
in the symptom space or even slightly overlap each other.
Such a situation is observed for the classes C4 and C9.
Generally speaking, the achieved isolation results are sat-
isfactory. It is neccesary to mention that such high iso-
lation rates are only achievable if some faulty scenarios
can be treated as a group of faults. In the case considered,
there were two such groups of faults, C2 and C1.

Fault identification. In this experiment, the objective of
fault identification was to estimate the size (S) of detected
and isolated faults. When analytical equations of residuals
are unknown, fault identification consists in estimating the
fault size and the time of fault occurrence on the basis of
residual values. An elementary index of the residual size
assigned to the fault size is the ratio of the residual value

rj to a suitably assigned threshold value Tj . In this way,
the fault size can be represented as the mean value of such
elementary indices for all residuals as follows:

S(fk) =
1
N

∑

j:rj∈R(fk)

rj

Tj
, (27)

where S(fk) represents the size of the fault fk, R(fk) is
the set of residuals sensitive to the fault fk, N is the size
of the set R(fk). The threshold values are given at the
beginning of this section. The results are shown in Ta-
ble 3. Analyzing them, one can observe that quite large
values were obtained for the faults f1

5 , f1
6 and f2

1 . These
faults were arbitrarily assigned to the group large. An-
other group is formed by the faults f1

3 , f1
4 , f2

2 , f2
3 and f2

4 ,
possessing similar values of the fault size. This group was
called medium. The third group of faults consists of f1

1 ,
f1
2 , f2

5 and f2
6 . The fault sizes in these cases are distinctly

smaller than in the cases already discussed, and this group
is called small. The small size of the faults f2

5 and f2
6

somewhat explains problems with their detection using a
constant threshold (see Table 3).

4. Conclusions

The paper discusses neural network based methods for
robust fault diagnosis. Both methods considered give a
prescription how to estimate the uncertainty of a neural
network composed of dynamic neuron models. The first
method, model error modelling, makes it possible to ob-
tain a description of an existing neural model, which then
can be used for robust fault diagnosis, while the second
approach, the robust GMDH neural network, renders it
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Table 2. Fault isolation results.

R [%] C1 C2 C3 C4 C5 C6 C7 C8 C9 C10

f1
1 100 – – – – – – – – –

f1
2 0.3 99.7 – – – – – – – –

f1
3 0.2 0.5 99.3 – – – – – – –

f1
4 – 5.7 0.7 93.6 – – – – – –

f1
5 0.9 – – 0.9 94.1 – 0.5 – – 3.4

f1
6 – 0.2 – – 1.1 95.9 – – 2.1 0.7

f2
1 – – – – 0.4 1.4 97.5 – 0.7 –

f2
2 – – – – – – 1.6 98.4 – –

f2
3 – – 0.2 3.9 – – – 1.8 94.1 –

f2
4 0.2 0.7 3.0 – – – – – 2.1 94.1

f2
5 – 97.7 – – – – – – – 2.3

f2
6 97.5 2.5 – – – – – – –

Table 3. Fault identification results.

S f1
1 f1

2 f1
3 f1

4 f1
5 f1

6 f2
1 f2

2 f2
3 f2

4 f2
5 f2

6

small 2.45 3.32 2.28 1.73
medium 5.34 6.19 8.27 8.61 8.65
large 10.9 11.64 17.39
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possible to obtain a model with a possibly small uncer-
tainty as well as to estimate its uncertainty, which then
can be used for robust fault diagnosis. The characteris-
tics and a comparison of both methods are provided in
Section 2.4.

The paper also presents experimental studies includ-
ing robust fault detection, fault isolation and fault identi-
fication of a DC motor. Using the novel cascade structure
of the dynamic neural network, quite an accurate model of
the motor was obtained which can mimic a technological
process with a pretty good accuracy. It was shown that
the proposed robust fault diagnosis procedure carried out
by using model error modelling significantly reduces the
number of false alarms caused by an inaccurate model of
the process. Due to the estimation of model uncertainty,
the robust fault diagnosis system may be much more sen-
sitive to the occurrence of small faults than standard deci-
sion making methods such as constant thresholds.

The supremacy of MEM may be evident in the case
of incipient faults, when a fault develops very slowly and
a robust technique performs in a more sensitive manner
that constant thresholds. Moreover, comparing false de-
tection ratios calculated for normal operating conditions
for adaptive as well as constant thresholds, one can con-
clude that the number of false alarms was considerably
reduced when model error modelling was applied. Furher-
more, fault isolation was performed using the standard
multi-layer perceptron. Preliminary analysis of the symp-
tom distribution and splitting faulty scenarios into groups
make it possible to obtain high fault isolation rates.

The last step in the fault diagnosis procedure was
fault identification. In its framework, the objective was
to estimate the fault size. This was done by checking
how much the residual exceeded the threshold assigned
to it. The whole fault diagnosis approach was success-
fully tested on a number of faulty scenarios simulated on a
real plant, and the achieved results confirm the usefulness
and effectiveness of artificial neural networks in designing
fault detection and isolation systems. It should be pointed
out that the presented solution can be easily applied to on-
line fault diagnosis.
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