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Abstract − We discuss the concept of robustness with respect to parsing a

context-free language. Our approach is based on the notions of fuzzy

language, (generalized) fuzzy context-free grammar and parser / recognizer

for fuzzy languages. As concrete examples we consider a robust version of

Cocke−Younger−Kasami’s algorithm and a robust kind of recursive descent

recognizer.
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1. Introduction

Informally, we call a context-free language parser or recognizer robust if it is able to

deal with small errors. But what is a small error? An input for a parsing or recog-

nizing algorithm is either accepted (when it belongs to the language under con-

sideration) or rejected (when it is outside this language). Thus in this traditional

approach there is no room for subtleties like a distinction between a “tiny mistake”

and a “capital blunder”.

Fortunately, the framework of fuzzy language theory enables us to make such a

distinction. Here each language L0 over an alphabet Σ is a fuzzy subset of the set

Σ∗ , i.e. the degree of membership of a string x over Σ is determined by a function

φ: Σ∗ → [0, 1] instead of the usual characteristic function φ: Σ∗ → {0, 1}. So the set

{0, 1} with two elements has been changed into the continuous interval [0, 1] and

now φL0
( x) can take any real value in between 0 and 1. Thus this concept allows for

both “tiny mistakes” (i.e., strings x with 1 − δ ≤ φL0
( x) < 1) and “capital blunders”

(strings x with 0 ≤ φL0
( x) < ∆) with respect to L0 , once we made an appropriate

choice for δ and ∆. In this framework of fuzzy languages we will consider two prob-

lems related to robustness in parsing / recognizing a context-free language.

The first question we address is the type of errors we allow in the input of the

parser (or recognizer) and the way we produce these errors. In the approach we fol-

low, the choice of a fuzzy context-free grammar (§2) or a generalized fuzzy context-

free grammar (§3) is an obvious one. The latter one turns out to be one of the most

general ways to describe context-free languages with both correct as well as errone-

ous sentences generated by a single fuzzy grammar; cf. Corollary 3.4.

The second problem we discuss is the concept of robustness in parsing or recog-

nizing context-free languages (§4). In this paper we restrict ourselves to recognizing
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rather than parsing, but our main results can be easily extended to corresponding

robust parsing algorithms. In §4 we provide a robust version of Cocke−Younger−
Kasami’s recognition algorithm, whereas §5 is devoted to a robust recursive descent

recognizer.

The remaining two sections contain preliminaries on languages, grammars and

their fuzzy counterparts (§2), and concluding remarks (§6).

2. Definitions

We assume familiarity with the rudiments of formal languages, grammars and pars-

ing; cf. e.g. [1, 7, 8]. Fuzzy languages and grammars have been introduced in [10].

Let G = (V, Σ, P, S) be a context-free grammar with alphabet V, terminal alpha-

bet Σ, set of productions P and start symbol S. The set of nonterminal symbols of G

is N = V − Σ. The empty word is denoted by λ. A context-free grammar is called λ-

free if the right-hand side of each production is nonempty.

Remember that a λ-free context-free grammar G = (V, Σ, P, S) is in Chomsky

Normal Form if P ⊆ N × (Σ ∪ N × N). Similarly, a λ-free context-free grammar

G = (V, Σ, P, S) is in Greibach 2-form if P ⊆ Σ × ({λ} ∪ N ∪ N × N).

A fuzzy language L0 over an alphabet Σ is a fuzzy subset of Σ∗ , i.e. it is a pair

(L0 , φL0
) where φL0

is a function φL0
: Σ∗ → [0, 1], the so-called degree of member-

ship function of L0 , and L0 = { w ∈Σ ∗ c φL0
( w) > 0 }. Let L0 be a fuzzy language over

Σ. The crisp language c (L0) induced by L0 —also called the crisp part of L0— is

the subset { w ∈ Σ ∗ c φL0
( w) = 1 } of Σ∗ . So each ordinary language L0 coincides

with its crisp part c (L0). Therefore an ordinary language will also be called a crisp

language. Frequently, we will write φ( x; L0) instead of φL0
( x) for x in Σ∗ .

Remark. Since the function φ has as its codomain the interval [0, 1], each real

number from this interval may occur as value for some argument x. However, using

non-computable reals as value or as a threshold may give rise to undecidable prob-

lems; cf. [5] for details. Therefore we restrict ourselves in the sequel to computable

(or even to rational) elements of [0, 1] only. `

Next we consider operations on fuzzy languages. The operations union and

intersection for fuzzy languages are defined as usual in fuzzy set theory; cf. [10].

Viz. let (L1 , φL1
) and (L2 , φL2

) be fuzzy languages, then for the union of the fuzzy

languages L1 and L2 , denoted by (L1 ∪ L2 , φL1 ∪ L2
) or L1 ∪ L2 for short, we have

φ( x; L1 ∪ L2) = max { φ( x; L1), φ( x; L2) }, for all x in Σ∗ .

Similarly, for the intersection of the fuzzy languages L1 and L2 , denoted by

(L1 ∩ L2 , φL1 ∩ L2
) or L1 ∩ L2 for short, we have

φ( x; L1 ∩ L2) = min { φ( x; L1), φ( x; L2) }, for all x in Σ∗ .

Finally, we consider the operation of concatenation as in [10]; for the concatenation

of fuzzy languages L1 and L2 , denoted by (L1 L2 , φL1 L2
) or L1 L2 for short, holds

φ( x; L1 L2) = sup { min { φ( y; L1), φ( z; L2) } c x = yz }, for all x in Σ∗ .

Once we have defined this operation it is easy to define the operation of Kleene ∗ by

L1
∗ = { λ } ∪ L1 ∪ L1 L1 ∪ L1 L1 L1 ∪ . . . where we require that φ( λ; L1

∗ ) = 1.
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The notion of fuzzy context-free grammar has been introduced in [10]. In

Definition 2.1 we define fuzzy context-free grammars in a different way, but it is

easy to show that 2.1 is equivalent to the definition in [10]. To this end let

G = (V, Σ, P, S) be an ordinary context-free grammar. For each α in V we define

P (α) = { ω c α → ω ∈ P } ∪ { α },

i.e. P (α) is the set consisting of α together with all right-hand sides of those produc-

tions in P with left-hand side equal to α. Thus for each α, P (α) is a finite language

over V that contains α. And P (α) equals { α } whenever α belongs to Σ.

So P may be considered as a mapping from V to finite languages over V; it can

be extended to words over V by P (λ) = {λ}, P (α1
. . . αn) = P (α1) . . . P (αn) where

αi ∈ V (1 ≤ i ≤ n), and to languages L over V by P ( L) = ∪ { P ( x) c x ∈ L }.

Since α ∈ P (α) for each α in V, P is called a nested finite substitution over V [6,

12, 2, 3]. Such a nested finite substitution can be iterated, viz. P0( x) = { x},

P i +1( x) = P (P i( x)), and P ∗ ( x) = ∪ { P i( x) c i ≥ 0 }. Then for each context-free gram-

mar G = (V, Σ, P, S), we have L (G) = P ∗ (S) ∩ Σ∗ .

Definition 2.1. A fuzzy context-free grammar G is a context-free grammar G =
(V, Σ, P, S) where for each α in V, P (α) is a fuzzy subset of V ∗ satisfying

(i) φ(α; P (α)) = 1, i.e., P is nested,

(ii) the support of P (α), i.e. the set { ω c φ(ω; P (α)) ≠ 0 }, is finite, and

(iii) the support of P (α) equals {α} in case α belongs to Σ.

The (fuzzy context-free) language generated by G is the fuzzy set L (G) defined by

L (G) = P ∗ (S) ∩ Σ∗ . `

In this latter expression all operations involved are operations on fuzzy sets (inter-

section, and both union and concatenation via P ∗ ), although Σ∗ is a crisp set.

Note that, if we replace in a fuzzy context-free grammar each fuzzy set P (α) by

a crisp language over V, then we obtain an ordinary context-free grammar.

The language generated by a fuzzy context-free grammar G can also be defined

in terms of derivations consisting of production rules that are applied consecutively;

cf. [10]. A string x over Σ belongs to the language L (G) if and only if there exists

strings ω0 , ω1 , . . . , ωn over V such that S = ω0 ⇒ ω 1 ⇒ ω 2
. . . ⇒ ω n = x. If Ai → ψi

(0 ≤ i < n) are the respective productions used in this derivation, then the degree of

membership of x in L (G) is

φ( x; L (G)) = sup { min { φ(ψi; P ( Ai)) c 0 ≤ i < n } c S = ω0 ⇒ ∗ ωn = x },

i.e., the supremum is taken over all possible derivations of x from S. If such a

derivation is viewed as a chain link of production applications, its total “strength”

equals the strength of its weakest link; hence the min-operation. And φ( x; L (G)) is

the strength of the strongest derivation chain from S to x; cf. [10].

In the sequel c w c denotes the length of the string w.

Example 2.2. Consider the fuzzy context-free grammar G0 = (V, Σ, P0, S) with

N = V − Σ = { S, A, B}, Σ = { a, b}, and P0 is defined by

P0(S) = { S, AB, BA, AA, BB},

P0(A) = { A, AS, SA, a},
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P0(B) = { B, BS, SB, b},

P0(σ) = { σ} if σ ∈ Σ .

The degrees of membership are φ(AA; P0(S)) = 0.1, φ(BB; P0(S)) = 0.9, and equal to

1 in all other instances. The crisp language c (L (G)) is generated by the (ordinary)

context-free grammar G1 = (V, Σ, P1 , S) where P1 is defined by

P1(S) = { S, AB, BA},

P1(A) = { A, AS, SA, a},

P1(B) = { B, BS, SB, b},

P1(σ) = { σ} if σ ∈ Σ .

It is straightforward to show that

g c (L (G0)) = L (G1) = { w c w ∈ { a, b}+, #a( w) = #b( w) }, where #σ( w) denotes the

number of times that the symbol σ occurs in the string w,

g φ(w; L (G0)) = 0.1 if and only if #a( w) ≥ #b( w) + 2 and c w c is even ( w ∈ { a, b}+ ),

g φ(w; L (G0)) = 0.9 if and only if #b( w) ≥ #a( w) + 2 and c w c is even ( w ∈ { a, b}+ ),

g φ(w; L (G0)) = 0 if and only if either w = λ or c w c is odd ( w ∈ { a, b}∗ ).

So the fuzzy context-free grammar G0 describes the set of all nonempty even

length strings over { a, b} with preferably as many a’s as b’s (degree of membership

equal to 1). Occasionally, some a’s in these nonempty even length strings may be

changed into b’s or vice versa; the former happens to be a quite less severe incident

than the latter (degrees of membership 0.9 and 0.1, respectively). `

3. Generalized Fuzzy Context-Free Grammars

In this section we address the question how tiny mistakes and big blunders can be

described within the framework of fuzzy context-free grammars and their generali-

zations. Our main result determines the expressive power of these generalized

fuzzy context-free grammars; cf. Theorem 3.3 and Corollary 3.4.

To be more concrete, let us return to Example 2.2. The principal aim of the

fuzzy context-free grammar G0 is to generate the (crisp) language L (G1). Applying

the rule S → BB instead of either S → AB or S → BA one or more times during a

derivation, results in a terminal string w that satisfies: #b( w) ≥ #a( w) + 2, c w c is

even, and φ( w; L (G0)) = 0.9. So such terminal strings w may be considered as “tiny

mistakes”. On the other hand, using the rule S → AA instead of either S → AB or

S → BA one or more times, yields a w in Σ∗ with #a( w) ≥ #b( w) + 2, c w c is even,

and φ( w; L (G0)) = 0.1. Strings w of this type may be viewed as “big blunders”, since

they “hardly belong” to the fuzzy language L (G0).

Note that P0 results from P1 by allowing a finite number of errors. But in

general there is an infinite number of ways to perform tasks wrongly. So what hap-

pens when we change some P1(α) into an infinite set, i.e. an infinite language over

V? To answer this question we need the notion of language family (Definition 3.1),

and a generalization of fuzzy context-free grammars, the so-called fuzzy context-free

K-grammars (Definition 3.2).

Definition 3.1. Let Σω be a countably infinite set of symbols. A family of languages

over Σω is a set of pairs (L, ΣL) where L ⊆ Σ L
∗ and ΣL is a finite subset of Σω. The
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set ΣL is assumed to be the minimal alphabet of L. A family K is called nontrivial

if K contains a language L with L ∩ Σω
+ ≠ ∅ .

Similarly, a family of fuzzy languages is a set of pairs (L, ΣL) where L is a

fuzzy subset of ΣL
∗ and ΣL is a finite subset of Σω. Again we assume that ΣL is

minimal with respect to L, i.e., a ∈ Σ L if and only if the symbol a occurs in a word x

with φ( x; L) ≠ 0. A family of fuzzy languages K is called nontrivial if K contains a

language L such that φ( x; L) ≠ 0 for some x ∈Σ ω
+ .

For each family K of fuzzy languages, we define c (K) = { c (L) c L ∈ K }. `

Usually, we write L instead of (L, ΣL) for members of a family of (fuzzy)

languages. And henceforth, we assume that each family of (fuzzy) languages is

closed under isomorphism (“renaming of symbols”). Thus for each family K we

assume that for each language L in K over some alphabet Σ and for each bijective

mapping i : Σ → Σ1 —extended to words and to languages in the usual way— we

have i (L) ∈ K.

Examples of simple, nontrivial families of (crisp) languages, which we will need

in the sequel, are SYMBOL = { { α} c α∈Σ ω }, and

FIN = { { w1 , w2 , . . . , wn} c wi ∈Σ ω
∗ , 1 ≤ i ≤ n, n ≥ 0 }. When discussed in the context

of fuzzy languages, we assume that for these families we have φ( α; { α}) = 1 and

φ( wi; { w1 , . . . , wn}) = 1 with 1 ≤ i ≤ n. The family of finite fuzzy languages will be

denoted by FINf. Then c (FINf) = FIN.

Definition 3.2. Let K be a family of fuzzy languages. A fuzzy context-free K-

grammar G = (V, Σ, P, S) consists of

g a finite set V of symbols (the alphabet of G);

g a finite set Σ of symbols with Σ ⊆ V (the terminal alphabet of G);

g a special nonterminal symbol S (the initial or start symbol of G);

g a mapping P : V → K satisfying: for each symbol α in V, P (α) is a fuzzy

language over the alphabet V from the family K with φ(α; P (α)) = 1.

The fuzzy language generated by G is the fuzzy set L (G) defined by L (G) =
P ∗ (S) ∩ Σ∗ . The family of fuzzy languages generated by fuzzy context-free K-

grammars is denoted by Af(K). The corresponding family of crisp languages is

denoted by c ( Af(K)), i.e., c ( Af( K)) = { c (L) c L ∈ Af(K) }. `

For the definition of P ∗ (S) we refer to §2. The mapping P may be called a

nested fuzzy K-substitution and, similarly, P ∗ an iterated nested fuzzy K-substitu-

tion; cf. the corresponding non-fuzzy notions in [6, 12, 2, 3].

Replacing the family K of fuzzy languages in Definition 3.2 by a family of (ordi-

nary, crisp) languages results in the definition of context-free K-grammar [12, 2]; for

the corresponding family of languages A (K) it is straightforward to show that

A (c (K)) = c ( Af(K)). For K equal to the family of finite fuzzy languages we obtain:

A (FIN) = A (c (FINf)) = c ( Af(FINf)) = CF (the family of context-free languages), and

Af(FINf) = CFf (the family of fuzzy context-free languages).

Comparing Definitions 2.1 and 3.1 shows that we removed the requirements (ii)

and (iii) in 2.1 to obtain 3.1. But (iii) is just a minor point, since we assumed that

all the language families involved are closed under isomorphism. Now we turn to
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the main result of this section which is concerned with removing (ii).

Theorem 3.3. Let K be a family of fuzzy languages that is closed under union with

SYMBOL-languages. If K ⊇ SYMBOL, then Af(Af(K)) = Af(K).

Proof: First, we show that Af(Af(K)) ⊇ Af(K). So let L0 be a language in Af(K), i.e.

there exist a fuzzy context-free K-grammar G = (V, Σ, P, S) with L (G) = L0 . Con-

sider the fuzzy context-free Af(K)-grammar G0 = (V0 , Σ, P0 , S0) with V0 = Σ ∪ {S0},

P0(S0) = { S0} ∪ L (G), and P0(α) = {α} for all α in Σ. Then L (G0) = L (G) = L0 , and

for each x in Σ∗ , we have φ( x; L (G0)) = φ( x; L (G)) = φ( x; L0).

Conversely, let G = (V, Σ, P, S) be a fuzzy context-free Af(K)-grammar. So P is

a nested fuzzy Af(K)-substitution over the alphabet V. For each α in V let

Gα = (Vα , V, Pα , Sα ) be a fuzzy context-free K-grammar —i.e. each Pα is a nested

fuzzy K-substitution over Vα— such that L (Gα ) = P (α). Clearly, we may assume

that all nonterminal alphabets Vα − V are mutually disjoint. Thus we have to show

that L (G) ∈ Af(K). To this end we perform the following steps.

(1) We modify each grammar Gα ( α∈ V) in such a way that Pα (β) = { β} holds

for each terminal symbol β in V. Since K is closed under isomorphism, we intro-

duce a specific new nonterminal symbol Aβ with P (Aβ) = { Aβ, β} for each β in Σ and

replace β by Aβ everywhere else by means of the isomorphism i (β) = Aβ.

(2) For each nested fuzzy K-substitution Pα over Vα , we define a correspond-

ing nested fuzzy K-substitution Qα by

Qα ( β) = Pα ( β) iff β ∈ Vα − V

Qα ( β) = { β, Sβ} iff β ∈ V

Qα ( β) = { β} iff β ∈ V1 − Vα

with V1 = ∪ { Vα c α ∈ V }.

Now we have that L (G) = { Qα c α∈ V }∗ ∩ Σ∗ , and it remains to reduce the finite

set { Qα c α∈ V } of nested fuzzy K-substitutions over V1 to a single nested fuzzy K-

substitution.

(3) Consider the fuzzy context-free K-grammar G0 = (V0 , Σ, P0 , S0) defined in

the following way.

g Assume that the alphabet V consists of n symbols. Define n isomorphisms ik

(1 ≤ k ≤ n) on the alphabet V1 . We assume that the alphabets ik(V1) (1 ≤ k ≤ n)

are mutually disjoint. Then we define the alphabet V0 of G0 by V0 = V1 ∪
∪ { ik(V1) c 1 ≤ k ≤ n }.

g S0 = SS. Note that SS ∈ VS, VS ⊆ V1 , and hence S0 ∈ V0 .

g The nested fuzzy K-substitution P0 over V0 is defined by

P0(β) = { β, i1(β)} iff β ∈ V1 ,

P0(β) = { β, ik +1(α)} ∪ Qα iff β ∈ ik(V1), α = ik
−1(β) and 1 ≤ k < n,

P0(β) = { β} ∪ Qα iff β ∈ in(V1) and α = in
−1(β).

Finally, it is tedious but straightforward to verify that for each string x in Σ∗

we have φ( x; L (G0)) = φ( x; L (G)). Consequently, L (G0) = L (G), and hence the

fuzzy language L (G) belongs to the family Af(K), i.e., Af(Af(K)) ⊆ Af(K). `

Corollary 3.4. Af(Af(FINf)) = Af(CFf) = Af(FINf) = CFf.



Robustness in Parsing 7

Proof: By Af(FINf) = CFf and Theorem 3.3 with K equal to FINf. `

According to Corollary 3.4 we may extend the sets P ( α) ( α∈ V) in a fuzzy

context-free grammar G = ( V, Σ, P, S) with a countable infinite number, as long as

the resulting sets P ( α) still constitute fuzzy context-free languages over V. In this

sense we are able to model the case of an infinite number of errors.

Example 3.5. Consider the fuzzy context-free CFf-grammar G2 = (V, Σ, P2, S) with

N = V − Σ = { S, A, B}, Σ = { a, b}, and P2 is defined by

P2( S) = P0(S) ∪ L2 ∪ L3 ∪ L4

P2( α) = P0( α) iff α ≠ S

where P0 is as in Example 2.2; for the languages L2 = { aAnbBn c n ≥ 1 }, L3 =
{ aAn c n ≥ 2}, and L4 = { Bn c n ≥ 3}, we have φ( aAnbBn; L2) = 1 (n ≥ 1), φ( aAn; L3) =
0.1 (n ≥ 2), and φ( Bn; L4) = 0.9 (n ≥ 3). The other degrees of membership are as in

Example 2.2. Then G2 generates the same fuzzy language as the fuzzy context-free

grammar G0 from Example 2.2. `

4. A Robust Version of Cocke−−Younger−−Kasami’s Algorithm

In this section we give a robust version of Cocke−Younger−Kasami’s algorithm (or

CYK-algorithm for short) for recognizing fuzzy context-free languages; cf. Algorithm

4.2 below. Here and in the next section we use a minimal notion of robustness: we

call a parsing or a recognizing algorithm robust if it correctly computes the degree of

membership of its input with respect to a given fuzzy context-free grammar.

Usually, the CYK-algorithm is presented in terms of nested for-loops filling an

upper-triangular matrix; cf. [1, 7, 8]. Here we use an alternative functional formula-

tion from [4] which possesses some advantages: it omits implementation details like

the data structure, reference to the indices of matrix entries and to the length of the

input string; cf. e.g. Algorithm 12.4.1 in [7] and Algorithm 4.1 below.

In this alternative formulation we need two functions f and g. Henceforth, for

each set X, P (X) denotes the power set of X. Given a λ-free context-free grammar

in Chomsky normal form G = (V, Σ, P, S), these two functions f : Σ+ →P (N+) and

g :P (N+) →P (N) are defined by:

g For each nonempty word w in Σ+ the function f is defined as the length-

preserving finite substitution generated by

f ( a) = { A c a ∈ P (A) } (1)

and extended to words over Σ by

f ( w) = f (a1)f (a2) . . . f (an) if w = a1a2
. . . an (ak ∈Σ , 1 ≤ k ≤ n). (2)

g For each A in N we define g ( A) = { A} and for each ω in N+ with c ω c ≥ 2 we have

g (ω) = ∪ { g (χ) ⊗ g (η) c χ, η ∈ N+, ω = χη } (3)

where for X and Y in P (N) the binary operation ⊗ is defined by

X ⊗ Y = { A c BC ∈ P (A), with B ∈ X and C ∈ Y}. (4)

g For each (finite) language M over N, g ( M) is defined by

g ( M) = ∪ { g (ω) c ω ∈ M }. (5)
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The functional version of the CYK-algorithm from [4] now reads as follows.

Algorithm 4.1. Let G = (V, Σ, P, S) be a λ-free context-free grammar in Chomsky

normal form and let w be a string in Σ+. Compute g (f ( w)) and determine whether

S belongs to g (f ( w)).

Clearly, we have w ∈ L (G) if and only if S ∈ g (f ( w)). `

Once we have the CYK-algorithm in this functional version it is easy to obtain

a modification for recognizing fuzzy context-free languages.

Algorithm 4.2. Let G = (V, Σ, P, S) be a λ-free fuzzy context-free grammar in

Chomsky normal form and let w be in Σ+. Extend (1)−(5) in Algorithm 4.1 with

φ( A; f ( a)) = φ( a; P ( A)), (1′)

φ( A; X ⊗ Y) = min { φ( BC; P (A)), φ( B; X), φ( C; Y)}, (3′)

φ( A; g (ω)) = sup { φ( A; g (χ) ⊗ g (η)) c χ, η ∈ N+, ω = χη }, (4′)
whereas corresponding equalities for (2) and (5) follow from the definitions of con-

catenation and finite union, respectively; cf. §2. Finally, compute φ( S; g (f ( w))).

Then, we have φ( w; L (G)) = φ( S; g (f ( w))). `

Example 4.3. Consider the fuzzy context-free grammar of Example 2.2. Applying

Algorithm 4.2 yields

φ( abba; L (G0)) = φ( S; g (f (abba))) = φ( S; g ( ABBA)) =

= φ( S; g ( A) ⊗ g ( BBA) ∪ g ( AB) ⊗ g ( BA) ∪ g ( ABB) ⊗ g ( A)) = . . . = 1

and

φ( abbb; L (G0)) = φ( S; g (f (abbb))) = φ( S; g ( ABBB)) =

= φ( S; g ( A) ⊗ g ( BBB) ∪ g ( AB) ⊗ g ( BB) ∪ g ( ABB) ⊗ g ( B)) = . . . = 0.9 `

5. A Robust Version of a Recursive Descent Recognizer

Both Algorithms 4.1 and 4.2 are bottom-up algorithms for recognizing λ-free (fuzzy)

context-free languages. Functional top-down analogues of Algorithm 4.1 have been

introduced in [4], from which we quote Definition 5.1 and Algorithm 5.2. Then we

give in Algorithm 5.3 a modification of 5.2 which results in a recursive descent

recognizer for fuzzy context-free languages.

Definition 5.1. Let G = (V, Σ, P, S) be a context-free grammar and N = V − Σ. The

set T (Σ, N) of terms over (Σ, N) is the smallest set satisfying

(i) λ is a term in T (Σ, N) and each a (a ∈Σ ) is a term in T (Σ, N).

(ii) For each A in N and each term t in T (Σ, N), A ( t) is a term in T (Σ, N).

(iii) If t1 and t2 are terms in T (Σ, N), then their concatenation t1 t2 is also a term

in T (Σ, N). `

Note that for any two sets of terms S1 and S2 (S1 , S2 ⊆ T (Σ, N)) the entity

S1 S2 , defined by S1 S2 = { t1 t2 c t1 ∈ S1, t2 ∈ S2 }, is also a set of terms over (Σ, N).

Algorithm 5.2. Let G = (V, Σ, P, S) be a λ-free context-free grammar in Chomsky

normal form and let w be a string in Σ+. Each nonterminal symbol A in N is con-

sidered as a function from Σ∗ ∪ {⊥ } to P (T (Σ, N)) defined as follows. (The symbol ⊥
will be used to denote “undefined”.) First, A (⊥ ) = ∅ and A (λ) = { λ } for each A in
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N. If the argument x of A is a word of length 1 (i.e. x is in Σ) then

A ( x) = { λ c x ∈ P ( A) } ( x ∈Σ ) (6)

and in case the length c x c of the word x is 2 or more, then

A ( x) = ∪ { B ( y) C ( z) c BC ∈ P ( A), y, z ∈Σ +, x = yz}. (7)

Finally, we compute S ( w) and determine whether λ belongs to S ( w).

It is straightforward to show that w ∈ L (G) if and only if λ ∈ S (w). `

Algorithm 5.3. Let G = (V, Σ, P, S) be a λ-free fuzzy context-free grammar in

Chomsky normal form and let w be a string in Σ+. For all A in N, φ( λ; A ( λ)) = 1

and φ( t; A (⊥ )) = 0 for each t in P (T (Σ, N)). Extend (6)−(7) in Algorithm 5.2 with

φ( λ; A ( x)) = φ( x; P (A)) ( x ∈Σ ), (6′)

φ( B ( y) C ( z); A ( x)) = φ( BC; P ( A)) with yz = x (y, z ∈Σ +). (7′)
Finally, we compute φ( λ; S ( w)). Then we have φ( w; L (G)) = φ( λ; S ( w)). `

Example 5.4. Applying Algorithm 5.3 to the fuzzy context-free grammar of Exam-

ple 2.2 results in

φ( aabb; L (G0)) = φ( λ; S ( aabb)) =
= φ( λ; A ( aab)B ( b) ∪ A ( aa)B ( bb) ∪ A ( a)B ( abb) ∪

B ( aab)A ( b) ∪ B ( aa)A ( bb) ∪ B ( a)A ( abb) ∪
A ( aab)A ( b) ∪ A ( aa)A ( bb) ∪ A ( a)A ( abb) ∪
B ( aab)B ( b) ∪ B ( aa)B ( bb) ∪ B ( a)B ( abb)) = . . . = 1

φ( aaba; L (G0)) = φ( λ; S ( aaba)) = . . . = 0.1

φ( abb; L (G0)) = φ( λ; S ( abb)) = . . . = 0 `

A version of Algorithm 5.2 based on Greibach 2-form has also been discussed in

[4], but it will not be considered here in any detail or modification.

6. Concluding Remarks

When we want to use Algorithms 4.2 or 5.3 in case of a fuzzy context-free language

specified by a fuzzy context-free CFf-grammar we first have to apply the construc-

tion in the proof of Theorem 3.3 to obtain an equivalent fuzzy context-free grammar

(or fuzzy context-free FINf-grammar). Then after transforming this second gram-

mar into Chomsky normal form, using a main result from [10], we are ready to

apply Algorithms 4.2 or 5.3.

In this paper we treated errors in a rather “macroscopic” fashion: the right-

hand side of a grammar rule may have been replaced erroneously by quite a dif-

ferent string. For a more “microscopic” or local treatment of errors in context-free

and context-sensitive language recognition using fuzzy grammars we refer to [11, 9].

Both this paper and [11, 9] model the production of errors in a limited way.

Actually, fractional degrees of membership attached to grammar rules are only

passed on to terminal strings in the end. So a more subtle treatment of errors like

φ( aAn; L3) = (10 ∗ n)−1 for n ≥ 2 or φ( Bn; L4) = 0.9 ∗ exp (3 −n) with n ≥ 3, in Exam-

ple 2.2 —modeling the unlikeliness of wrongly replacing short strings by very long

strings— is not possible in the present approach.
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Needless to say that there are many aspects of robustness in parsing and recog-

nizing context-free languages which are not touched upon in this paper: correction of

errors, the problems over “overgeneration” and “undergeneration”, etc.

Acknowledgement. I am indebted to Rieks op den Akker for some critical remarks.
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