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Abstract
Reinforcement learning is a major tool to realize
intelligent agents that can be autonomously adaptive
to the environment. With deep models, reinforce-
ment learning has shown great potential in complex
tasks such as playing games from pixels. However,
current reinforcement learning techniques are still
suffer from requiring a huge amount of interaction
data, which could result in unbearable cost in real-
world applications. In this article, we share our
understanding of the problem, and discuss possible
ways to alleviate the sample cost of reinforcement
learning, from the aspects of exploration, optimiza-
tion, environment modeling, experience transfer,
and abstraction. We also discuss some challenges in
real-world applications, with the hope of inspiring
future researches.

1 Introduction
Decision making is a basic activity in our everyday life. It is
also an essential feature of intelligent agents. Particularly, the
decision making for a long-term goal requires the intelligence
of long-term vision and less greedy behaviors; the decision
making in an unknown environment requires the intelligence
of adapting the environment. Reinforcement learning [Sutton
and Barto, 1998] studies the decision making for long-term
goals in unknown environments, thus is at the center of artifi-
cial intelligence.

By reinforcement learning, an agent interacts with the envi-
ronment, explores the unknown area, and learns a policy from
the exploration data. In a common setting, the exploration
data contains environment state transitions associated with the
exploration actions and reward signals. From the data, the
quality of the policy can be evaluated by the reward. Rein-
forcement learning algorithms update the policy model from
the evaluations, with the aim of maximizing the reward in total.
This exploration–learning framework is shared among almost
all reinforcement learning algorithms. From the perspective of
policy modeling, these algorithms can be categorized as value-
function estimation algorithms and policy search algorithms.
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The former ones estimate a value-function to approximate the
long-term reward from the current state and action. The pol-
icy is then derived from the value-function straightforwardly.
The latter ones directly learn the policy model. Recent algo-
rithms focus more on learning policy models with the help of
value-functions, known as actor-critic approaches, inheriting
the merits of the both.

The decades of development of reinforcement learning have
achieved significant successes, such as in the AlphaGo system
defeating top human players [Silver et al., 2016] and playing
Atari games exceeding human performance [Mnih et al., 2015].
However, noticing that these successes are mostly in the digital
world, there are still large barriers to applying reinforcement
learning in real-world applications. A noticeable limitation of
current reinforcement learning techniques is the low sample
efficiency, which causes a huge amount of interactions with the
environment. Such amount of interactions in real-world often
means an unbearable cost. Even in complex environments in
the digital world, such as playing the full StarCraft game, the
low sample efficiency blocks the learning of a good policy.

To the best of our understanding, there are multiple reasons
that could limit the sample efficiency. In this article, rather
than making a survey, we share our understanding and discuss
several aspects that could alleviate the limitations: considering
the exploration-learning procedure, how to efficiently explore
the environment and how to better optimize the policy; consid-
ering the environment, how to learn the environment model;
considering multiple environments, how to reuse and transfer
experiences across environments; and more essentially, how
to abstract states and actions. We will discuss each aspect in
a following section. We will also discuss some challenges in
real-world applications that may have been less noticed and
desire more attentions.

2 Exploration
In an unknown environment, the agent needs to visit states
that have not been visited in order to collect better trajectory
data. The agent cannot follow its current policy tightly, which
has been learned from the previous data and may only lead to
follow the previous paths. Exploration strategies are usually
employed to encourage veering off the previous paths. Basic
exploration methods such as ε-greedy and Gibbs sampling
inject some randomness in the output actions, i.e., action space
noise, so that the probability of executing every action, and
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thus visiting every state, is non-zero. A limitation of action
space noise is that the resulting policy (i.e., the latent policy
corresponds to the randomized output) may be far away from
the current policy in the parameter space, or even out of the
parameter space, which makes difficulties to the policy update.

Parameter space noise. Exploration by randomization in
the parameter space, i.e., parameter space noise, could be more
friendly to policy update. Plappert et al. [2018] showed that
parameter space noise can be more efficient than action space
noise. Fortunato et al. [2018] proposed another approach that
could be rewarded as an intermediate approach between action
space noise and parameter space noise. The NoisyNet adds a
randomized neural network to the policy network, particularly,
near the output layers, to induce randomized actions.

Curiosity-driven exploration. All the above exploration
strategies are generally applicable, however, are all blind
searches. The agent may repeatly try a bad path many times,
since it does not know if the path has been explored before.
This might be a major reason that the current general reinforce-
ment learning algorithms require a lot of samples — find a
good path by luck. Curiosity-driven exploration [Singh et al.,
2004] can be much more efficient than random exploration.
The agent records the counts of the visits of every states and
actions. According to the counts, an intrinsic reward is added
to the environment reward to encourage visiting states that are
less visited. This kind of approaches have been addressed a
decade ago, where the state space and action space are small
and discrete. For high-dimensional state space, an obstacle
of implementing the curiosity-driven exploration is that it is
hard to if a state has been visited before. Recently, Pathak et
al. [2017] proposed the Intrinsic Curiosity Module (ICM) to
overcome this obstacle. It employs the state prediction error as
a measure to determine if a state has been visited. Meanwhile,
it employs the self-supervision to learn a low-dimensional
representation of the states. Intrinsic reward, however, is a
delayed feedback to drive the agent. Mechanisms that directly
encourage the exploration might be desired.

3 Optimization
After the exploration step that collects interaction data from
the environment, the learning step updates the model of policy
or value function from the data. Nowadays, neural networks
might be the most popular choice as the models. However, find
an appropriate neural network model is not that straightfor-
ward. Consider the policy search methods, the direct objective
is to maximize the expected long term reward. This objective
can be represented as the reward integrated over the current
state and action distribution, where the distribution is deter-
mined by the policy. Unlike in the supervised learning scenario
where the samples are fixed, optimizing this objective first re-
quires to generate samples by the policy. Once the policy is
updated, the distribution will be changed, and new samples
have to be generated by the updated policy. Therefore, the
optimization faces a non-static context, and achieving the best
objective value on the current samples is not the goal, and
exploration is necessary to find better samples.

Optimization from samples. The mainstream model up-
dating approaches often rely on the gradient of the objective

or surrogate objectives, such as in the TNPG [Duan et al.,
2016] and the TRPO [Schulman et al., 2015] methods. How-
ever, these methods consider only the policy update from the
samples, but do not touch the exploration. Meanwhile, there
is another kind of optimization methods, optimization from
samples, also known as derivative-free optimization, which
can have their own advantages.

Derivative-free optimization algorithms share a common
structure. Initialization from some random samples in the
search space, they learn an area of potential better samples
from these observations previous samples. They then gen-
erate new samples from that area, and repeat this sampling-
and-learning iteration. Representative algorithms include evo-
lutionary algorithms [Beyer and Schwefel, 2002], Bayesian
optimization [Snoek et al., 2012], etc.

Applying derivative-free optimization for reinforcement
learning, a straightforward way is to define the search space
as the policy parameters and the objective function as the
expected long-term reward. A derivative-free optimization
then tries to sample different policy parameters, and learn
where to sample in the next iteration. We may have noticed
that derivative-free optimization methods involve the explo-
ration in the search process. Therefore, they can take part of
the duty of exploration for reinforcement learning, and have
been shown to have better performance on some tasks, both
a decade ago [Whiteson, 2012] and very recently [Pet, 2018].
However, derivative-free optimization algorithms also share
limitations, such as slow convergence, hard to scale up, noisy
sensitive, and no theoretical guarantee. Recent progress in
this direction include theoretical-grounded derivative-free op-
timization methods [Hu et al., 2017], scaling-up methods for
high-dimensional search spaces [Qian et al., 2016], and noise
handling methods [Wang et al., 2018].

Hybrid optimization. Another direction to overcome
the limitations of derivative-free optimization methods is to
combine them with gradient-based methods. Jaderberg et
al. [2017] borrowed the population idea of derivative-free
methods to maintain a sample set of models, while the model
optimization is still by a gradient-based method. Stochastic
gradient Langevin dynamics (e.g., [Raginsky et al., 2017]) re-
cently attracted many attentions. It can be viewed as a hybrid
method too, since the Langevin dynamics is equivalent with
the a kind of random sampling. However, there are only quite
a few studies about the hybrid of the two types of optimization
methods. Hybrid optimization is be an interesting and promis-
ing direction, as it could overcome both the greedy nature of
gradient-based methods and the slow convergence issue of
derivative-free methods.

4 Environment Modeling
While model-free reinforcement learning algorithms have
taken a large body of the research, model-based algorithms
can be much more efficient, as long as the environment model
can be efficiently constructed. An environment model includes
a transition function, telling how the state will change after
taken an action, and a reward function, telling how a transition
would be rewarded. It is easy to see that the environment
model learning is a supervised learning task. From some sam-
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pled paths, a transition data set can be extracted in the way
that the state together with the action at time t are composed
as the input and the state at time t+ 1 as the output. Once the
environment model has been built, planning in the model is
free of real-world samples, thus would be an ideal approach to
improve the sample efficiency. Unfortunately, such supervised
learning approach works well only in discrete or small state
space, but rarely works for large/high-dimensional cases.

Combining model-based and model-free. A trend has
emerged that, since the environment model is hard to be ac-
curately learned, the agent does not fully rely on the learned
environment model to derive the policy, rather it extracts guid-
ing information from an inaccurate model. In [Tamar et al.,
2016], the proposed Value Iteration Network employs a plan-
ning structured network to implement the value iteration, while
the environment transition is learned together with the value
iteration. The planning result from the value iteration is then
used as an augmented features for the policy input, instead
of directly learn a policy by the value iteration. Weber et al.
[2018] proposed the Imagination-Augmented Agents involv-
ing an imagination modular, which learns the environment
model. The roll-out paths in the modular are encoded as aug-
mented features for the policy input. In [Pong et al., 2018],
instead of learning the environment transitions, it learns a Q-
function that predicts the distance to the goal. This function
serves as an immediate reward to guide the learning. We can
see that these approach involve environment model learning
can lead to significant improvement from model-free methods,
and thus are quite promising. Meanwhile, modeling stochastic
environments is still hard, and these methods currently work
in restricted environments and are not yet general enough.

Manually constructed environment. In many applica-
tions, environment models, in other words, simulators, have
been constructed manually, such as the simulators for aircraft
and robot design. These simulators can be employed directly
for training reinforcement learning with cheap cost. How-
ever, there are more sophisticated applications that are hard
to construct simulators for by hand. For example, an online
retail system involve buyers and sellers, which are hard to
be simulated by coarse behavior models. Shi et al. [2018],
based on the recent technique of generative adversarial net-
works, proposed a multi-agent imitation learning approach to
reconstruct human policy from experience data. They showed
that the approach can learn a simulator called Virtual Taobao
that tightly mimic the customer behaviors in the Taobao envi-
ronment, which is the one of the world’s largest online retail
platform. This work inspires that adversarial learning might
have the power to simulate the physical world truthfully, when
the experience data is sufficient. This approach separates the
environment model learning with policy learning, while a
combined one might be more general and powerful.

5 Experience Transfer
Human does not accomplish every task from scratch, but in-
stead continually learn and accumulate experiences from many
tasks. The accumulated experience from previous tasks can
accelerate the learning in future tasks. In the similar way, an
agent can also learn more efficiently in a task if experiences

are available. This is in the subfield of transfer reinforcement
learning, which also has been consistently studied for decades.
Many methods have been proposed from various aspects, such
as transfer of samples [Lazaric et al., 2008], transfer of repre-
sentation [Ferrante et al., 2008], and transfer of skills/options
[Sutton et al., 1999] that is related to the abstraction.

Recent progress includes learning jumpstart models. Finn et
al. [2017] proposed MAML to learn a kind of average model
but is ready to be updated to different tasks. Therefore the
model can be quickly updated to the specific tasks. Meanwhile,
learning a jumpstart model has to assume a narrow distribution
of tasks. Another way to adapt to the task is to sense the
environment. Peng et al. [2018] proposed to employ an LSTM
network to automatically infer the environment parameter
from the interactions. Yu et al. [2018] proposed to obtain
environment parameters by probing the environment through
executing some roughly trained policies. Zhang et al. [2018]
proposed to learn a set of calibration actions to probe the
environment parameters. They showed that 5 probing samples
could be sufficient to find a good policy in a new environment
in their experiments. By sensing the environment, the policy
learning task is reduced to the environment identification task,
which could require only a few samples. But all these methods
work only in restricted cases. General transfer reinforcement
learning approaches are still missing.

6 Abstraction
We believe abstraction is in the core of the sample efficiency
issue. Generally, an abstraction of the state space could lift to
a higher-level state space with lower dimensions. Once this
is possible, the exploration as well as the environment mod-
eling in the abstract-level space can be much more efficient.
However, abstraction has being a long-standing problem in
artificial intelligence, which is far from being well solved.

Hierarchical reinforcement learning. One particular di-
rection of abstraction in reinforcement learning is hierarchical
reinforcement learning, which has been developed for decades.
Early work includes learning with options [Sutton et al., 1999],
where an option is an abstraction of actions and is defined by
the entrance condition, exit condition, and the option sub-
policy; Hierarchical of Abstract Machines (HAMs) [Parr and
Russell, 1997], where predefined automata are sub-policies;
and MaxQ framework [Dayan and Hinton, 1992] which learns
with decomposed subgoals. While there were studies on learn-
ing the hierarchical structure automatically, general applicable
approaches were missing and hierarchical approaches still
relied heavily on hierarchies given as priori knowledge.

Recent studies may reduce the requirement of hand-crafted
hierarchies. SNN4HRL [Florensa et al., 2017] utilized the
information theory to train sub-policies automatically, which
still requires domain knowledge to design the intrinsic reward.
After that, the high-level policy then learns how to utilize the
sub-policies to accomplish tasks. The Option-Critic [Bacon
et al., 2017] employed options but with no predefinitions.
With the policy gradient method, it trains both the high-level
policy of selecting options, and the options. FeUdal network
[Vezhnevets et al., 2017] employed the manager (high-level
policy) and worker (low-level policy) structure. The high-level
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policy sends signals to guide the behavior of the low-level
policy, such that there are no explicitly defined sub-goals or
sub-policies.

Hierarchical reinforcement learning approaches can benefit
from the hierarchies in the way that the high-level policy is
trained with a shorter horizon, and thus are more efficient.
However, how the training horizon should be shorten has not
been clear yet. Most of the approaches force that the high-
level decision making takes place only every fixed steps. In
this way, the high-level policy may not change the sub-policy
on time. Moreover, hierarchical reinforcement learning might
not be best fitted for solving only one task. In a multi-task and
transfer learning scenario, sub-policies may be more defined
as policy segments that can be reused across tasks, as partly
in [Sahni et al., 2017]. It is also noticeable that there are few
studies about multiple levels hierarchies.

Neural network with symbols. Inside the policy model,
it is noticed that, although the commonly employed neural net-
works are capable of abstraction from the raw input to some
concept levels such as recognition the objects in a picture,
they are not capable of operating in the abstraction level. But
once they can, the policy model might be powerful to learn an
abstraction of the state/action internally. It is worth noticing
that a set of recent studies are pushing toward extending such
ability of neural networks. Graves et al. [2016] enabled the
memory ability of neural networks by simulating a memory
cells. Hu et al. [2016] and Evans and Grefenstette [2018]
embedded logic components as differentiable parts in neural
networks. Unfortunately, due to the inability of doing recur-
sions in the current neural network models, a reasoning path
has to be expanded in advance, which makes the model too
large to be stored. Dai et al. [2018] integrated a complete
Prolog system within neural networks, so that the networks
can perform first-order logical deductions using the efficient
discrete search tree. They demonstrated that the new model
that learns from algebra equation pictures can understand the
algebra rules correctly, thus has a strong generalization per-
formance on longer equations. We can imagine that, when a
neural network model can do general abstractions with first-
order logical reasoning ability, it could be possible to model
the environment efficiently and could transfer its high-level
reasoning across tasks.

7 Application Challenges
Other than the aspects discussed above, real-world applica-
tions may pose more challenges to reinforcement learning.
We would like to take recommendation systems as the exam-
ple, which have become a large source of benefit for many
companies. The first challenge could be non-technical: to rec-
ognize that the application problem is a reinforcement learn-
ing problem. It is not until very recently, such as in [Hu et
al., 2018], recommendation systems are accepted as a rein-
forcement learning problem. This is a crucial first step for
recognizing the potential value of reinforcement learning.

Dynamic environment. In real recommendation systems
applications, the customers, which are the main part of the
environment for the recommendation agent, keep changing all
the time. Thus the environment is dynamic instead of static as-

sumed in traditional reinforcement learning algorithms. Chen
et al. [2018] identified two factors of the impact that the dy-
namic environment can lead to, high variance and fake reward,
and used two tricks to alleviate the impact. However, how to
fundamentally improve the learning algorithm so that it can
infer the real outcome of its actions in a dynamic environment
is still an open problem.

Very large action space. A large-scale recommendation
system usually have a large number of items, say tens of thou-
sands, to recommend. The recommendation of each item is
usually formulated as an action. However, by classical algo-
rithms, each discrete action has to be well explored, which
requires many samples. Dulac-Arnold et al. [2016] proposed
to learn an embedded action space, in which each point can be
mapped to a discrete action. Meanwhile, the items commonly
have their description features and categories. These informa-
tion can organize items in a hierarchical tree with a similarity
function, which could be useful for the learning, and might
connect with hierarchical reinforcement learning.

8 Conclusion
This article discusses the sample efficiency issue of reinforce-
ment learning, from multiple aspects. Note that instead of
doing a survey, we only discuss these aspects with some repre-
sentative studies. Also, there are other aspects, such as reward
function design and imitation learning, that are related to the
sample efficiency issue but are not covered. Reinforcement
learning is a fast growing area. New ideas and approaches
are blooming out. Nevertheless, the state-of-the-art is still
far away from the fantastic ultimate goal of reinforcement
learning. We can see there are plenty of room for inventing
novel approaches, which, hopefully, would lead the artificial
intelligence systems to the next level.
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