
 Open access Proceedings Article DOI:10.1109/CONTEL.2003.176925

Towards scalable and affordable content distribution services — Source link

Thomas Plagemann, Vera Goebel, Laurent Mathy, Nicholas Race ...+3 more authors

Institutions: University of Liège

Published on: 11 Jun 2003 - International Conference on Telecommunications

Topics: Replication (computing)

Related papers:

 Performance evaluation in trust enhanced decentralised content distribution networks

 A novel P2P and cloud computing hybrid architecture for multimedia streaming with QoS cost functions

Advanced delay assured numerical heuristic modelling for peer to peer project management in cloud assisted
internet of things platform

 Scalable Media Coding Enabling Content-Aware Networking

 Building Content Distribution Network: A Solution to Achieve QoS on Internet

Share this paper:

View more about this paper here: https://typeset.io/papers/towards-scalable-and-affordable-content-distribution-
4yellvtaip

https://typeset.io/
https://www.doi.org/10.1109/CONTEL.2003.176925
https://typeset.io/papers/towards-scalable-and-affordable-content-distribution-4yellvtaip
https://typeset.io/authors/thomas-plagemann-4iy73hkh0z
https://typeset.io/authors/vera-goebel-31swaan9f1
https://typeset.io/authors/laurent-mathy-48irdvw3z2
https://typeset.io/authors/nicholas-race-12925e16kb
https://typeset.io/institutions/university-of-liege-1wznoudg
https://typeset.io/conferences/international-conference-on-telecommunications-rr2jj1ww
https://typeset.io/topics/replication-computing-3pkp0ldj
https://typeset.io/papers/performance-evaluation-in-trust-enhanced-decentralised-4xxq8ukhhg
https://typeset.io/papers/a-novel-p2p-and-cloud-computing-hybrid-architecture-for-dtjypynndc
https://typeset.io/papers/advanced-delay-assured-numerical-heuristic-modelling-for-4i4icdc0lh
https://typeset.io/papers/scalable-media-coding-enabling-content-aware-networking-28vhbjeyku
https://typeset.io/papers/building-content-distribution-network-a-solution-to-achieve-1rs98c47nh
https://www.facebook.com/sharer/sharer.php?u=https://typeset.io/papers/towards-scalable-and-affordable-content-distribution-4yellvtaip
https://twitter.com/intent/tweet?text=Towards%20scalable%20and%20affordable%20content%20distribution%20services&url=https://typeset.io/papers/towards-scalable-and-affordable-content-distribution-4yellvtaip
https://www.linkedin.com/sharing/share-offsite/?url=https://typeset.io/papers/towards-scalable-and-affordable-content-distribution-4yellvtaip
mailto:?subject=I%20wanted%20you%20to%20see%20this%20site&body=Check%20out%20this%20site%20https://typeset.io/papers/towards-scalable-and-affordable-content-distribution-4yellvtaip
https://typeset.io/papers/towards-scalable-and-affordable-content-distribution-4yellvtaip

TOWARDS SCALABLE AND AFFORDABLE CONTENT

DISTRIBUTION SERVICES

Thomas Plagemann1, Vera Goebel1, Carsten Griwodz1,

Pål Halvorsen1, Laurent Mathy2, Nicholas Race2, Michael Zink3

1University of Oslo, Department of Informatics, {plageman, goebel, griff, paalh}@ifi.uio.no

2Lancaster University, Department of Computer Science, {laurent, race}@comp.lancs.ac.uk
3Technical University of Darmstadt, KOM, Michael.Zink@KOM.tu-darmstadt.de

ABSTRACT

Content Distribution Networks (CDNs) are based on
a static infrastructure, and caching and replication in
CDNs are performed in a static manner. We argue that it
is necessary to design future CDNs in such a way that
they are scalable to reach enough customers, their costs
are kept low, and they provide a Quality-of-Service that
satisfies the client requirements. To reach these goals,
more flexibility is needed in CDNs. Flexibility will
enable CDNs to perform faster and better decisions for
caching and replication, and it will reduce the amount of
manual intervention that is necessary to manage and
maintain the CDN. In this paper, we discuss the
application of Peer-to-Peer mechanisms in CDNs that
support advanced caching and replication strategies and
their combination with a dynamic QoS management
hierarchy to reach the needed flexibility in CDNs.

1 Introduction

The support of on-demand services for
entertainment applications, like Video-on-Demand
(VoD), over the Internet has been an important research
topic for a long time. The first proprietary solutions for
content distribution over the Internet for this type of
applications are deployed. These solutions are built as a
set of servers and caches that are logically connected as

an overlay network and are called Content Distribution

Networks (CDNs). CDNs operate on the assumption
that a better service is achieved when the required
multimedia data is stored close to the clients. It is
important to note, that all services that are deployed
provide a rather low quality to the consumer compared
to the quality a TV set in combination with a DVD
player can provide. The fact that today’s CDNs have
partial commercial success must not automatically lead
to the conclusion that this technology can also
successfully be used for future content distribution

services. The reasons for this are as follows: (1) real
costs are not reflected because broadband services and
content distribution services are still promoted with
“special” rates, (2) the costs of storing and managing the
content in various competing proprietary encoding
formats and different quality levels will dramatically
increase with the amount of content, and (3) scaling up
CDNs to penetrate all networked consumers will
dramatically increase the costs for management and
control.

In addition to the prerequisites that will change the
competitiveness of content distribution services we must
realize that future internet services will (1) use much
richer multimedia formats that combine and synchronize
(several) video and audio streams with text, graphics,
animations, etc. and enable the end-user to navigate
interactively in documents, (2) require a much higher
level of interaction for these applications, (3) provide a
variety of quality levels, e.g., for video this might range
from DVD-like quality to low resolution versions for
mobile terminals, and (4) Digital Rights Management
and Copy Protection need to be supported. To establish
and maintain a profitable market for the distribution of
multimedia content over the Internet, it is necessary to
obey the above listed demands and address the following
issues:
• content providers can reach a sufficiently large

number of customers, i.e., CDNs must be scalable,
• the costs of CDNs must be low enough such that the

services can be provided to the customers at
competitive rates (compared to for example
traditional broadcasting, pay-TV and video rentals),

• the Quality of Service (QoS) must satisfy customer
expectations in terms of response time, availability,
etc., but also match their display device capabilities.
An infrastructure for the distribution of interactive

multimedia content can be used for traditional VoD, but
its strength is that it is suitable for a much larger variety

Submitted to the 7th International Conference on Telecommunications (ConTEL), Zagreb, Croatia, 2003

of application domains, such as education (e.g.,
Learning-on-Demand), distribution of information in the
public sector (e.g., laws and regulations), and dis-
tribution of research results to enable tight collaboration
between geographically separated research centers and
institutions, etc.

It is the goal of this paper to analyze and point out
how these high-level requirements for future CDNs, i.e.,
scalability, low cost, and sufficient quality, can be
realized. One important step in this direction are new
advanced caching and replication strategies for CDNs.
This issue is intensively studied by many research
groups worldwide. We believe that these techniques can
only provide the full benefit if they can be utilized in a
dynamic CDN, in which new servers and proxy caches
can be dynamically added and removed. In order to keep
the costs of such a flexibility low, it is very important to
have the proper tools for (semi-) automatic managemtent
of future CDNs. We envision to reach these goals by
using the following three ingrediences in a combined
fashion: Peer-to-Peer (P2P) mechanisms within the
CDN to manage resources and content, advanced
caching and replication strategies in the CDN, and a
dynamic QoS management hierarchy „on top” of the
CDN.

The remainder of the paper is structured as follows:
in Section 2, we argue why flexible selforganizing
CDNs are needed. Afterwards, we show in Section 3
how advanced caching and replication strategies can
function in flexible CDNs. The basic QoS management
hierarchy is described in Section 4, and its utilization for
flexible CDNs is outlined in Section 5. Sections 6 gives
a short conclusion and outlook.

2 The need for flexible selforganizing CDNs

CDNs consist of a number of strategically located
servers that deliver content on behalf of content
providers. CDNs redirect client requests away from
origin servers towards CDN servers, typically using
techniques such as DNS redirection or URL rewriting.
Whilst these mechanisms provide a way for CDN
operators to load-balance between their own servers, the
actual CDN infrastructure is often fairly rigid, requiring
a significant degree of management (thus increasing the
operational costs). Whilst a number of these CDN
systems are currently in operation, there is little evidence
to suggest that an optimal architecture or design has
actually been found [12].

A new research challenge is to pursue a goal towards
the architecture and design of autonomic (i.e. self-
organizing and self-repairing) CDNs that require
minimal management, yet exhibit very good scalability

and performance properties. These autonomic features
should ideally apply to both the interconnection of
components making up the CDN and the content
management within the CDN (i.e., what content to put
where and for how long). Such features would facilitate
the introduction of new content and hardware, and
improve the operational characteristics of the CDNs.
Autonomic CDNs would exhibit better resilience to
failure, offer increased efficiency, whilst simplifying
management and keeping operational costs to a
minimum.

Furthermore, in a world where mobile access is
becoming increasingly commonplace, and emerging
technology such as 3G enables broadband capabilities
everywhere, the design of specific solutions for the
support of mobility within multimedia applications will
become increasingly unsustainable. However, we
believe that by supporting self-organization at the
interconnectivity and content management levels, CDNs
could be designed to support any user, mobile or not,
without distinction nor special provision. This is
because the characteristics of the CDN as perceived by a
moving user, and vice versa, appear to be equivalent to
those perceived by a fixed user in the presence of
failure. Indeed, the loss of connectivity resulting from a
server crash, for example, in a wired network produces
the same effect to the user application as the apparent
loss of connectivity caused by a mobile user moving to a
new network domain and re-connecting to a new content
cache that does not hold the required content: the flow
of media to the user application is interrupted.
Investigating the design and use of autonomic CDNs in
both wired and wireless contexts is therefore important
and timely.

We also claim that the use of ideas from P2P
technologies provides an interesting starting point to
provide self-organizing and resilient (a.k.a autonomic)
overlays [22]. We envisage that such techniques can be
extended and combined with other emerging
technologies, such as active and programmable
networking, to achieve the level of operational
performance needed in production CDNs, while
retaining the self-organizing, highly resilient and very
low management features of existing P2P networks.

3 Advanced caching in flexible CDNs

Originally, caching and replication decisions in
CDNs have either been performed manually or based on
caching approaches that are also well-known from the
web caching world. CDNs that have been designed for
real-time streaming media distribution are based on the
assumption that required bandwidth would be

sustainable between a CDN node and a client.
The intense discussion of the following two topics

showed that this assumption cannot always be made.
The first topic is the demand for TCP friendly [25]
behavior of all networked application. This
consideration requires that media delivery in CDNs
conforms to what is considered appropriate behaviour in
the Internet, both inside the CDN and between CDN
nodes and end-systems. The second topic is the success
of multimedia-capable PDAs and mobile phones. It
makes it highly desirable that the same content is made
available to end-systems with vastly different
capabilities in receiving, processing and presenting
content.

Due to these two considerations, caching and
replication approaches have been developed that make
use a scalable content to adapt to network bandwidth
and to client demands. All of these techniques make use
of subdividing content for more appropriate distribution.
They may aim at one or both of the goals of this
scalability. The existing work can be broadly classified
into two categories of subdivision: temporal subdivision
and quality subdivision. With multimedia content that
provides more structure than video that is supposed to
be consumed linearly from end to end, a new possibility
arises, which is structural subdivision.

3.1 Temporal subdivision

Temporal subdivision requires no special encoding
formats and relies on the distribution of content in
temporal segments. The one example that is currently in
commercial use is prefix caching [19]. It works by
storing the first few minutes of videos on a proxy cache
server close to clients, while the rest of the video is
retrieved from a central server. The use of the terms
prefix and suffix for the initial temporal segment of
video and the remainder, respectively, has become
common. A form of temporal subdivision that works
with asymmetrically organized hierarchies of servers,
variances in customer interest, and an arbitrary number
of caches was introduced by periodic multicast with pre-
storage [5].

Temporally segmented techniques cannot adapt to
network problems beyond a predefined level. They rely
on the delivery of data from a node that holds one
segment to the client in just-in-time, because they are
generally designed under the assumption that buffer
space is valuable and not abundant at end-systems.
Thus, optimized versions of all protocols are vulnerable
to dynamic changes in network conditions. In general,
temporal segmentation ideas have no support for
different end-system capabilities because they are

mainly designed for high quality CBR movie delivery.
Some limitations in the bandwidth of access networks
could be overcome, though Paris et al. demonstrated that
the combination of broadcasting protocols with the pre-
storage of all movies' prefixes at the receiver side would
considerably reduce or even eliminate startup latency
[18]. Other authors noticed that this technique could just
as well be applied to prefix caching.

It is generally true that the results of the broadcast
family of protocols that was spawned by Aggarwal et
al.'s paper [1] and was continued for example by Paris'
Pagoda [17] can be transformed into temporally
segmented on-demand ideas of spawned by patching
[10], all of which can be combined with caching as
shown in gleaning [9] and mpatch [24].

3.2 Quality subdivision

Quality subdivision requires a special encoding
format that allows the delivery of lower quality versions
of the content that requires less storage space and
network bandwidth for delivery than the full version.
This kind of subdivision became known by receiver-
driven layered multicast (RLM) [15], an approach for
scalable live video broadcasting. This approach assumes
a video that consists of several layers, where the lowest
layer provides a low quality version of the video, and
higher layers can be added to increase this quality. It has
subsequently been exploited in conjunction with
caching. TCP-friendly delivery of layered video from
central servers to cache servers is the objective of [27].
Assigning different values to the layers of videos, the
value of caches' content has been optimized in [13]. [28]
uses layering to transport in an adaptable manner from a
cache server to an end-system. Recently, multiple
description coding has attracted attention. In which the
usage of at least two independent base layers increases
error resilience.

3.3 Structural subdivision

Like quality subdivision, structural subdivision
requires content semantics to be well-defined and known
by the nodes of a CDN. Structural subdivision relies on
semantic knowledge of the content, such as which part
of the information contained in a file is relevant, or
frequently retrieved.

One multimedia format that has been developed with
video compression in mind but that does not loose the
structural abilities of other multimedia formats is the
ISO-standardized MPEG-4. MPEG-4 can model scenes
that are interactively explored. This ranges from user
selection of branches of a presentation but may extend to

virtual worlds. Due to this support for navigation, parts
of the presentation will be more frequently demanded
than others. Knowledge of such conditions allows the
selection of a structural part of an MPEG-4 presentation
for caching. Alternatively, MPEG-4 can support the
controlled degradation of the presentation quality of
scenes to adapt to external conditions such as network
load of end-system performance limits. It specifies video
codecs that support fine-grained scalability and by this
means, supports quality subdivision. However, the
ability to construct scenes from several objects makes it
also possible to exclude individual objects from
delivery. For example, it would be possible to exclude
semantically irrelevant eye-catchers, news anchors, or
background scenes when a delivery of the complete
scenes is not possible.

3.4 Next steps

In this overview of techniques for the distribution of
streaming media in CDNs, it becomes clear that
approaches based on caching and streaming are in the
focus of research so far. A frequent complaint about the
mentioned streaming techniques is that they ignore the
reality of downloads at rates lower or higher than the
playback speed. In fact, this distinction is just an
implementation issue at the end-system. Temporal
subdivision approaches can make excellent use of higher
bandwidth and perform just as well as download
techniques. Quality subdivision approaches, on the other
hand, are meant to enable concurrent playback during
download, even if the available bandwidth can not
support full quality streaming.

Alternatives to the use of caching have not been
explicitly discussed above. However, by applying
techniques such as prefix caching, pre-storage and pre-
distribution, an active replication approach is actually
implied. The current schemes do explain the amount of
content that needs to be replicated in detail for
theoretical CDN topologies. For realistic topologies, or
even for dynamically changing topologies, the
appropriate use of replication is an important research
issue. Existing P2P approaches can provide insight into
such dynamically developing systems, even though they
are typically aimed at even more dynamic systems.

From the overview of these existing options for
partial distribution of content in a CDN, we derive a
series of demands that are addressed by our research
work.

• The exploitation of encoding formats that include
such semantic information is the next step towards
more efficient CDNs, which can deliver the same
content over the Internet to a variety of end-systems.

• Beyond the work that exists for the delivery on
scalable media to heterogenous end-systems, we will
consider end-systems that roam during content
reception, such that a change of servers would be
appropriate.

• We will integrate quality- and structural-subdivision
approaches with existing P2P ideas that make use of
temporal subdivision to deliver content from several
sources to overcome network bottleneck.

• Subdivided content can, and structurally subdivided
content in particular must, be amended with meta-
information about the relevance of its parts and
relation among parts. Some of the information can
be generated along with the content, other is
dynamically generated by observing end-user
behavior. We will investigate how this information
can help a better distribution of content.

• To a lesser extent than P2P systems, CDNs have to
deal with service failures and the arrival and
departure of nodes. This requires an investigation of
distribution approaches for their adaptivity to
changes and stability when they occur. Our
distribution approaches will be evaluated for their
performance in this respect.

4 The QoS management hierarchy

The QoS management hierarchy has been developed
in the OMODIS project for QoS support in distributed
multimedia applications, with a focus on distance
learning applications that use Multimedia Database
Management Systems (MMDBMS) and other media
services in a distributed environment [6], [7]. These
applications consist of long-lived sessions where users
submit requests for multimedia presentations and might
specify QoS requirements per session, per request, or
per multimedia object. It is important to note that the
distributed application components that participate in
providing service to the session are dynamically
determined based on the multimedia data to be retrieved
and the multimedia processing to be performed.

With respect to our environment and goals, we
reviewed the state-of-the-art in QoS management
services and observed the following shortcomings in
previous works:

• Static, pre-configured multi-layer QoS solutions:
Several static, three-tiered QoS management
structures have been proposed [14], [20]. These
management structures limit the adaptations that can
be applied. For example, when replacing a
component, the new service component must be
within the scope of one of the previously known
QoS managers or this type of adaptation cannot be

used, i.e., new QoS managers cannot be dynamically
added to the configuration.

• Component-embedded QoS management: Early
works have integrated configurable QoS services
into communication protocols and end-systems in
order to meet new application requirements and to
support end-to-end QoS guarantees, e.g., [4], [16],
[26]. Others have proposed that all QoS service
issues be managed by the application [23] or by end
service systems [2], [3], [8], and [26]. QoS
mechanisms that handle concrete resources, like
CPU time or disk bandwidth, must consider the
particular properties of the resource, resulting in
type-specific QoS management techniques and
mechanisms that are not easily reusable.
The key concept of our QoS management hierarchy

is the dynamic (re-)configuration of a hierarchy of QoS
managers per session [6]. The hierarchy is of arbitrary
depth and consists of application service components
and two types of QoS managers: strategic QoS

managers and tactical QoS managers. Basically, a
strategic manager is responsible to enforce the policies
or higher-order goals of a service provider or policy
domain owner, and a tactical manager performs concrete
control actions on Managed Components (MC). There is
a 1:1 correspondence between strategic managers and
policy domains. A policy domain contains a set of
application services that are governed by a common QoS
policy. A QoS policy is represented by a set of policy
statements. These statements define resource limits
within the domain and specify procedures that control
how QoS contracts are negotiated and how QoS-based
adaptation can be performed within the domain. A
policy domain corresponds to an authority realm. Each
policy can be independently updated depending on the
implementation and the requirements of the domain.

4.1 Managed components

A MC is any system, service, or resource that
presents itself as an atomic entity to a QoS manager.
This means a MC can be a single server, a set of servers
providing an encapsulated service, or a subsystem of
services with an existing QoS management system. MCs
execute on platforms. A platform may host multiple
components concurrently, but for simplicity we assume
that each component executes on a separate platform.

MCs may be QoS-aware or QoS-unaware. Examples
of QoS-aware MCs are Self-adapting components [21]
and QoS-mechanistic components [16]. QoS

mechanisms contained in QoS-aware MCs are service-
specific algorithms for maintaining QoS contracts held
by that component. For example, a QoS-aware network

service can implement flow filtering for multimedia
streams, and channel sharing for specific types of
network traffic. These mechanisms are not generic QoS
management services, but a QoS manager can
selectively invoke these specific mechanisms to achieve
QoS goals as part of its QoS management
responsibilities. We differentiate between three basic
types of MCs [7]: (1) QoS-aware MCs that implement
all messages defined by our QoS management
middleware; (2) QoS-unaware MCs that are wrapped
with component-specific software that implements
messages sent by QoS management middleware; and (3)
QoS-aware, multi-component service or subsystem that
encapsulate MCs and its own QoS management
solution, such as a QuO-managed [23] subsystem for
communications, command, and control applications.

4.2 Management hierarchy and policy domains

A tactical QoS manager provides direct QoS
management to a MC, using a QoS policy that is
specific to that MC. Each component (or wrapped
legacy component) is bound with its tactical QoS
manager at compile time or at load time (by dynamic
binding). Tactical QoS management protocols are uni-
directional (from the manager to the MC). Tactical QoS
managers are coordinated and guided by higher-level
strategic QoS managers. The number of strategic
managers and the depth of the QoS management
hierarchy are determined by the structure of the end-to-
end application and the sets of nested QoS policy

domains over which the application is distributed. A
QoS policy domain is an authority realm containing a set
of application services governed by a common QoS
policy. Each domain contains one strategic QoS
manager that provides QoS management over all tactical
and strategic managers within that domain. The strategic
management hierarchy is rooted at a strategic session

manager. The session manager enforces the QoS policy
in the session domain, which is created when a user
initiates a session and it exists only for the duration of
the session.

A QoS policy is represented by a set of policy
statements that define resource limits within the domain,
define domain-wide QoS goals, and specify procedures
that control QoS negotiation and QoS motivated
adaptation within the domain. For example, QoS policy
statements can specify that clients outside of the local
domain can negotiate only best-effort service between
the hours of 8:00 and 12:00, and that clients may never
be moved between MCs during primary operating hours.
Policy domains are defined, for example, within
corporations, between corporations, by governments,

and by international bodies. They are long-term
authority realms that exist for indefinite time periods.
Each domain policy is independently updateable, online
or offline, depending on the implementation and the
requirements of the domain.

Figure 1 illustrates a sample end-to-end multimedia
application. We use this example to further describe the
essential aspects of our QoS management middleware.
All MCs are represented by gray shaded icons in Figure
1. The MCs work together to provide a service to a
distinguished MC called the end-client. The end-client
initiates an application session, submits an application
request, and is the final sink point for responses to the
application request. The end-user is a human interacting
with an application component executing on the end-
client system. When directed by the end-user, the end-
client sends a request over Net1 to the application
server. The application server parses the request and
determines which backend servers could be used to
service the request (perhaps using a broker or trader,
e.g., [11] to locate appropriate services). In this example,
the application server requests data from the MMDBMS
over Net2, and additional data from a web-server over
Net3. The application server works as a client of the
MMDBMS and the web-server. Upon receiving the
multimedia request, the web-server determines that it
must retrieve some archive data from another media
server over Net3. Each service component has a
corresponding tactical QoS manager that manages QoS
for all clients of the local service. The initial service
configuration is determined during QoS negotiation,
based on the functional and QoS capabilities of each
MC.

Figure 1 shows a hypothetical set of six policy
domains, with strategic managers, overlaying the
services that support the client request. The top-level,
session domain is created dynamically when the client
session is initiated. Three corporate policy domains
(Corp A, Corp B, and Corp C) and their strategic
managers are shown. Corporation C allows company
departments to define QoS policies over their resources.
In this example, two departments control their own
resources (Dept 1 and Dept 2) and define their own
departmental policy domains.

When a client session is initiated, a session-specific
set of QoS management connections among the existing
strategic managers are dynamically configured. The
tactical managers and their respective MCs are the
terminal leaves of the QoS management structure. For
each tactical manager, a unique QoS management chain
is formed by the set of strategic managers responsible
for the nested policy domains containing the tactical
manager’s MC. The management chain includes all

strategic managers between the tactical manager and the
session manager. Each QoS manager, except the session
manager, has a unique parent manager defined by the
management chain from the tactical manager to the
session manager. A QoS management path is a subset of
a QoS management chain. A path begins at a leaf and
ends before reaching the session root. Thus, the
management structure forms a tree, rooted at the
strategic session manager. Each level in the management
hierarchy monitors and manages QoS within its scope.

Strategic
Mgr. Sesssion

Mgr.

 Tactical
Mgr.

Strategic
Mgr.

 Tactical
Mgr.

 Tactical
Mgr.

 Tactical
Mgr.

Strategic
Mgr.

Strategic
Mgr.

Strategic
Mgr.

 Tactical
Mgr.

 Tactical
Mgr.

End-Client App Server

Media Server Web Server

MMDBMS

 Tactical
Mgr. Tactical

Mgr. Net 1

Net 2

Net 3

Dep 1
Domain

Dep 2
Domain

Corp C
Domain

Corp A Domain

Client Session Domain

Corp B Domain

 Figure 1: Policy domains and strategic QoS managers
overlay components in a distributed system.

One important property of our approach is that the

management hierarchy can be dynamically reconfigured,
because the QoS management structure must adapt as
the application structure adapts. Consider for example
the following scenario: the media server in our sample
application becomes overloaded and begins missing
deadlines for delivering video to the web server. This
QoS violation is detected by the tactical QoS manager
for the media server. The manager attempts, without
success, to remedy the problem through local component
adaptation, i.e., increases a client’s priority, taking disk
bandwidth from best effort clients and giving it to the
troubled client. Having exhausted the local adaptation
schemes, the tactical manager escalates the problem to
the strategic QoS manager for policy domain Dept 2.
Based on adaptation policy and the current status of
clients and MCs within the Dept 2 domain, the strategic
manager creates an adaptation plan. For example, the
strategic manager may move some users from the
overloaded media server to another server storing
partially replicated media data. If adaptation is still not
effective, then the strategic manager informs its parent

manager for domain Corp C. This manager may use a
service replacement adaptation to solve the problem and
uses the replacement video server in a new policy
domain, Corp D. In order to successfully perform a
cross-domain replacement, the QoS management
hierarchy must dynamically adapt as the structure of the
distributed application adapts. The strategic QoS
manager for the domain Corp D must be added to the
QoS management hierarchy and the strategic and tactical
QoS managers in the domain Dept 2 must be removed
from the instantiated QoS management hierarchy.

5 Managing flexible CDNs

In this section, we discuss the combination of the
three elements that have been discussed previously, i.e.,
P2P mechnisms for CDNs, caching and replication in
CDNs, and the QoS management hierarchy. P2P
mechnisms, like distributed hash tables, are used to
handle in a scalable manner the dynamic aspects in a
CDN, which include dynamic adding and removing of
computing resources as well as dynamic creation and
removing of multimedia object copies. Furthermore,
lookup services from P2P solutions can be used to
efficiently identify a CDN node that is close to the
client, i.e., to identify those components that together
provide the requested service.

The QoS management hierachy is designed for
dynamic environments and will be used in the context of
this research for two purposes: (1) QoS management,
i.e., QoS contract negotiation, monitoring of sessions,
renegotiation, adaptation, etc., and (2) providing
information to the CDN such that it can make decisions
concerning the dynamic creation, placement, and
removal of data copies in the CDN.

It is important to note, that the QoS management
hierarchy is designed to be independent of any particular
application. This seeems to be in conflict with the goal
of managing a flexible CDN, because many
management decision must be guided by application
semantics. We will discuss this potential conflict and its
resolution by a typical situation CDNs have to cope
with, i.e., changing popularity of data elements. The
popularity of data elements changes over time and is
often also depending on certain user groups. For
example, a cross country skiing event that takes place in
North America is popular in Norway early in the
morning before people go to work, and it is popular in
Germany after people come home from work. A flexible
CDN could adapt to this popularity changes by placing a
copy of the cross country event early in the morning on a
CDN node in Oslo, and one copy in the afternoon on a
CDN node in Frankfurt. In case the popularity is even

that high that it leads to an overload situation for these
nodes, additional replicas could help to satisfy all user
requests with sufficient quality.

The decision when and where a replica of a certain
multimedia object should be generated is clearly driven
by application semantics. The QoS hierarchy must not
understand the semantics of the multimedia object and
its meta data descriptions. On the other hand, it is the
QoS management hierarchy that performs QoS
negotiations and knows whether they are succesful or
not. Furthermore, it monitors all sessions and controls
whether the QoS contracts are fulfilled or not. The
application is entirely relieved from these tasks.

In order to understand the cooperation of CDN and
QoS management hierarchy, it is worthwile to go step-
by-step through the main interactions between a CDN
and the QoS hierarchy for a single session: First, a user
is requesting a multimedia object from the CDN. The
CDN identifies the components that are needed to
establish a session for the user, e.g., the CDN node that
stores the requested multimedia object, the network
between client and node, and the users end-system. If
the CDN has multiple copies of the multimedia object, it
returns a list of all components that hold a copy. This list
is ordered according a predefined criteria, like the
distance function in the P2P lookup service. The client
passes the component list and its QoS requirements to
the QoS management hierarchy. The QoS management
hierarchy requests every involved component to initiate
the establishment of a QoS management chain from
itself to the session manager that roots the hierarchy. For
each encapsulated policy domain there will be the
strategical manager of this domain included in the
hierarchy. When there is a chain from all components up
to the central session manager, the QoS hierarchy is
established. The task of the QoS management hierarchy
is to govern the negotiation of a QoS contract. Each MC
has to find out whether it can accept the QoS contract or
not. This process is than performed the next higher level
in the hierarchy etc. until it reaches the root of the
hierarchy, i.e., the session manager. SMs that have more
than one child must combine the incoming QoS contract
terms and conditions. The same is valid for the session
manager that performs the final decission. Finally, all
MCs are informed from the session manager about the
outcome of the negotiation and in case of a succesful
negiotiation, they can start streaming. In case the
negotiation is not sucessful, the QoS management
hierarchy informs the CDN about the reason for it. By
this, the CDN can collect data that can be considered in
later decissions on the creation and removal of replicas.
For example, if a MC is often refusing QoS contracts, it
indicates that the MC is in an overload situation and a

replica should be created to improve the CDNs QoS. If a
SM is often refusing a contract, it indicates that a replica
in a different policy domain will improve the CDN’s
QoS.

The QoS managament hierarchy is monitoring all
sessions and initiates a QoS renegotiation if QoS
contracts are violated. The information about this could
also be passed to the CDN to support later decissions on
replicas. If there are already existing replicas, the QoS
hierarchy must only be changed in order to include a
MC that holds another copy (the list where given
initially). Thus, a session can automaticlly adapt to
maintain its QoS by using another copy.

6 Conclusions and outlook

In this paper, we have argued that future CDNs must
be more flexible to reach scalability with low costs and
can provide sufficient QoS. We have shown how P2P
mechanisms and advanced caching and replication
strategies can be used in CDNs in combination with the
QoS management hierarchy to realize such CDNs. Our
ongoing and future research is concerned with the
detailed design and implementation of such a flexible
CDN with QoS.

REFERENCES

[1] Charu C. Aggarwal, Joel L. Wolf, and Philip S. Yu.

A permutation-based pyramid broadcasting scheme
for video-on-demand systems. In Proceedings of
the International Conference on Multimedia
Computing and Systems, Hiroshima, Japan, pages
118--126. SPIE, June 1996.

[2] Blake, S., Black, D., Carlson, M., Davies, E.,
Wang, W., Weiss, W., An Architecture for
Differentiated Services, IETF Internet RFC 2475,
December 1998

[3] Braden, R., Clark, D., Shenker, S., Integrated
Services in the Internet Architecture: An Overview,
IETF Internet RFC 1633, June 1994

[4] Campbell, A., Coulson, G., Hutchinson, D., A
Quality of Service Architecture, ACM Computer
Communications Review, Vol. 24, No. 2, April
1994, pp. 6-27

[5] S.-H. Gary Chan and Fourad Tobagi. Distributed
Server Architectures for Networked Video
Services. IEEE/ACM Transactions on Networking,
9(2):125--136, April 2001.

[6] D. J. Ecklund, V. Goebel, T. Plagemann, E. F.
Ecklund, Dynamic End-to-End QoS Management
Middleware for Distributed Multimedia Systems,

ACM/Springer Multimedia Systems Journal,
Volume 8, Number 5, December 2002, pp. 431-442

[7] D. J. Ecklund, V. Goebel, T. Plagemann, E. F.
Ecklund, C. Griwodz, J. Ø. Aagedal, K. Lund, A.
Berre, QoS Management Middleware: A sperable,
Reusable Solution, 8th International Workshop on
Interactive Distributed Multimedia Systems
(IDMS’01), Lancaster (UK), September 2001

[8] Gopalakrishna, G., Parulkar, G., A Real-time
Upcall Facility for Protocol Processing with QoS
Guarantees, 15th ACM Symp. on Operating
Systems Principles (SOSP), December 1995

[9] Carsten Griwodz. Wide-area True Video-on-
Demand by a Decentralized Cache-based
Distribution Infrastructure. PhD thesis, Darmstadt
University of Technology, Darmstadt, Germany,
April 2000.

[10] Kien A. Hua, Yin Cai, and Simon Sheu. Patching:
A Multicast Technique for True Video-on-Demand
Services. In Proceedings of the ACM Multimedia
Conference, Bristol, UK, pages 191--200,
September 1998.

[11] ISO/IEC JTC1/SC21, 1997, ODP Trading
Function, Report: ITU-T X.950 – ISO/IEC 13235

[12] B. Krishnamurthy, C. Wills, Y. Zang, “On the Use
and Performance of Content Distribution
Networks”, Proceedings of ACM SIGCOMM

Internet Measurement Workshop, pp. 169-182,
November 2001.

[13] Jussi Kangasharju, Felix Hartanto, Martin
Reisslein, and Keith W. Ross. Distributing Layered
Encoded Video through Caches. IEEE Transactions
on Computers, 51(6):622--636, 2002.

[14] Li, B., Agilos: A Middleware Control Architecture
for Application-Aware Quality of Services
Adaptations, Ph.D. Thesis, Department of
Computer Science, University of Illinois at Urbana-
Champaign, 2000

[15] Steven McCanne, Van Jacobson, and Martin
Vetterli. Receiver-driven layered multicast. In
{ACM {SIGCOMM}}, volume 26, pages 117--
130, New York, August 1996. ACM Press.

[16] Nahrstedt, K., Smith, J.M., Design,
Implementation, and Experiences of the OMEGA
End-Point Architecture, IEEE Journal on Selected
Areas in Communications, Vol. 14, No. 7,
September 1996, pp. 1263-1279

[17] Jehan-Francois Paris, Steven W. Carter, and
Darrell D. E. Long. A hybrid broadcasting protocol
for video on demand. In Proceedings of the
Multimedia Computing and Networking
Conference (MMCN), San Jose, CA, USA, pages
317--326. SPIE, January 1999.

[18] Jehan-Francois Paris, Darrell D. E. Long, and
Patrick E. Mantey. Zero-Delay Broadcasting
Protocols for Video-on-Demand. In Proceedings of
the ACM Multimedia Conference, Orlando, FL,
USA, pages 189--197, November 1999.

[19] Subhabrata Sen, Jennifer Rexford, and Don
Towsley. Proxy Prefix Caxching for Multimedia
Streams. In Proceedings of the Eighteenth Annual
Joint Conference of the IEEE Computer and
Communications Societies 1999, New York, NY,
USA, pages 1310 --1319, March 1999.

[20] Siqueira, F. Quartz: A QoS Architecture for Open
Systems, Trinity College Dublin, TCD-CS-2000-05,
Ph.D. Thesis, February 2000

[21] Thimm H., Klas W., Walpole J., Pu C., Cowan C.,
Managing Adaptive Presentation Executions in
Distributed Multimedia Database Systems, Proc.
Int. Workshop on Multimedia Database
Management Systems, 1996

[22] D. Tran, K. Hua, T. Do, “ZIGZAG: An Efficient
Peer-to-Peer Scheme for Media Streaming”,
Proceedings of IEEE INFOCOM, March 30th-April
3rd 2003, San Francisco, CA, USA.

[23] Vanegas, R., Zinky, J., Loyall, J., Karr, D.,
Schantz, R., Bakken, D., QuO’s Runtime Support
for Quality of Service in Distributed Objects, Proc.
IFIP Int. Conf. on Distributed Systems Platforms
and Open Distributed Processing (Middleware'98),
The Lake District, England, September 1998

[24] Bing Wang, Subhabrata Sen, Micah Adler, and
Don Towsley. Proxy-based Distribution of
Streaming Video over Unicast/Multicast
Connections. In Proceedings of the 21st Annual
Joint Conference of the IEEE Computer and
Communications Societies 2002, New York, NY,
USA. IEEE Computer Society Press, June 2002.

[25] Jörg Widmer, Robert Denda, and Martin Mauve. A
Survey on TCP-Friendly Congestion Control.
Special Issue of the IEEE Network Magazine
"Control of Best Effort Traffic", 15:28--37,
February 2001.

[26] Wolf, L.C., Resource Management for Distributed
Multimedia Systems, Kluwer Academic Publishers,
1996

[27] Michael Zink, Carsten Griwodz, Jens Schmitt, and
Ralf Steinmetz. Exploiting the Fair Share to
Smoothly Transport Layered Encoded Video into
Proxy Caches. In Proceedings of SPIE/ACM
Conference on Multimedia Computing and
Networking (MMCN), San Jose, CA, USA, pages
61--72. SPIE, January 2002.

[28] Michael Zink, Carsten Griwodz, Jens Schmitt, and
Ralf Steinmetz. Scalable TCP-friendly Video
Distribution for Heterogeneous Clients. In

Proceedings of SPIE/ACM Conference on
Multimedia Computing and Networking (MMCN),
San Jose, CA, USA, pages 102--113. SPIE, January
2003.

