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Abstract

We give methods for Bayesian inference of directed acyclic graphs, DAGs, and the
induced causal effects from passively observed complete data. Our methods build
on a recent Markov chain Monte Carlo scheme for learning Bayesian networks,
which enables efficient approximate sampling from the graph posterior, provided
that each node is assigned a small number K of candidate parents. We present
algorithmic techniques to significantly reduce the space and time requirements,
which make the use of substantially larger values of K feasible. Furthermore,
we investigate the problem of selecting the candidate parents per node so as to
maximize the covered posterior mass. Finally, we combine our sampling method
with a novel Bayesian approach for estimating causal effects in linear Gaussian
DAG models. Numerical experiments demonstrate the performance of our methods
in detecting ancestor—descendant relations, and in causal effect estimation our
Bayesian method is shown to outperform previous approaches.

1 Introduction

Bayesian learning of graphical models aims at assigning any event of interest a posterior probability
given observed data over the variables. In causal directed acylic graph (DAG) models, examples of
such events include presence of a causal path between two variables and the total causal effect of one
variable on another. While the posterior of the former event is quantified by a single number, the latter
is represented by a distribution. The Bayesian approach is particularly attractive in the causal setting
due to its ability to properly account for the often non-negligible uncertainty in the inferred causal
structure. In comparison, non-Bayesian structure learning methods are more limited in this aspect, as
they typically return a single DAG, or Markov equivalence class, without any associated measure
of uncertainty. In the case of linear Gaussian models, the prospects of the Bayesian approach have
recently been demonstrated [31} 2], showing an improved estimation accuracy over the original non-
Bayesian IDA method [22] and some of its later variants. However, the power of Bayesian learning
stems from model averaging which unfortunately has appeared to be computationally intractable in
the combinatorial space of DAGs. Hence, the currently existing and provably accurate algorithms are
feasible only with up to around 25 variables [14} 39137, [31]], and algorithms with somewhat looser
accuracy guarantees to several dozens of variables [20].

There have been several attempts to scale up Bayesian learning of graphical models using Markov
chain Monte Carlo (MCMC). The first methods simulated a Markov chain on the space of DAGs by
applying edge operations (add, remove, and reverse edge), yielding a sample of DAGs approximately
from the posterior [24,[11]]. To improve the sampler’s ability to escape from local optima, subsequent
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Table 1: Space and time requirements with n nodes and K candidate parents per node

Task Space Time Previous work [[19]
Pre-processing O(3% +2%n) 0(3%n) O(3%n) space, O(3% K?n) time
Simulation step 0(2%n) O(n) O(3%n) space
Sampling 7 DAGs ~ O(3% + Knr)  O(3%n + Knr) O(2%nr) time

works collapsed the space of DAGs to linear and partial node orderings covering multiple DAGs
[7, 29]. While the smaller state space and smoother posterior landscape enhanced the reliability
of the order-based samplers, they still suffered from two major drawbacks. First, the sampling
distribution is biased, favoring graphs that are compatible with a larger number of orderings. This is
particularly problematic in the causal setting, since the bias forces one to assign a nonuniform prior
over equivalent DAGs. Markov chains directly on equivalence classes suffer, again, from the large,
combinatorial state space [23[3]. Second, each simulation step is computationally expensive, since it
requires summing over the local scores of all order-compatible parent sets for each node. This issue
is emphasized in linear Gaussian models, where also larger parent sets are more probable a priori, as
the number of parameters for a node grows only linearly with the number of parents.

The two issues were partly resolved in two recent works [16}[19]. The sampling bias was avoided
by sampling ordered node partitions instead of node orderings. The per-step computational cost, in
turn, was dramatically reduced by restricting the parents to a small candidate set (a technique also
proposed earlier [[7]]) and, importantly, precomputing all possible score sums and storing them in a
lookup table. Inspired by this progress, we here make several contributions to further advance the
machinery and its applicability to causal inference. Specifically, we address the following questions.

Q1 How many candidate parents can we afford? The number of candidate parents per node, K,
is a critical parameter. We wish to let K be as large as possible to cover well the space of
DAGs; unfortunately, the memory requirements and preprocessing time grow exponentially
in K. We present several algorithmic ideas to reduce the space and time requirements,
and thereby, to allow for a substantially larger K; see Table|[l| Put otherwise, for fixed,
practical values of K and the number of nodes n, the savings are by 2-3 orders of magnitude
compared to previous work.

Q2 How to select the candidate parents? The method assumes that we can select a moderate
number of candidate parents per node, say K = 15, such that the posterior mass of DAGs is
concentrated on the restricted family of DAGs, even if the number of nodes n is much larger
than K. We study to what extent this assumption holds by (i) formulating the selection task
as an optimization problem, (ii) giving an exact algorithm to solve the problem optimally
for moderate n, and (iii) introducing and empirically comparing various scalable heuristic
algorithms to find good solutions when n is large.

In addition to the above contributions and building upon our sampling method, we introduce a novel
Bayesian approach for estimating causal effects in linear Gaussian DAG models with unknown causal
structure, a subject of recent intensive ongoing research [[22} 12136/ 38} 131}, 12].

Q3 How to obtain the posterior of causal effects? In a Bayesian linear DAG model, the posterior
of a causal effect is obtained by integrating over the unknowns (structure and parameters).
We propose a three-stage sampling-based method to approximate the posterior: (i) we
sample a DAG using our proposed sampling method, (ii) we sample the model parameters
conditional on the DAG, and (iii) we map the model parameters to their implied causal effects
using a matrix inversion technique. Importantly, the key novelty in our estimator compared to
the IDA approach is to make use of the complete DAG structure in the estimation procedure.
Figure [T|shows example posterior distributions obtained by this method.

Like previous works [22], we assume the data to be complete in the sense that there are no hidden
variables (faithfulness and causal sufficiency). The scalability of our methods allows us to present the
first empirical comparison of the Bayesian approach to non-Bayesian methods in higher dimensions.
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Figure 1: (a) A linear DAG model (error variances not shown). (b—d) The posteriors of the linear
causal effect of 21 on xg given observational data, when intervening on {1} in (b), {21, 22} in (c),
and {x1, 23} in (d). The posterior in (b) is a mixture of the posteriors in (c) and (d).

2 Preliminaries

We shall use the following notational conventions. For a tuple (¢1, ta, ..., tx) we may write shorter
tita - -ty or (t;), or just t. If S is a set, we write tg for the tuple (¢; : ¢ € 5).

A directed acyclic graph (DAG) (V, E) consists of a node set V" and an edge set E C V' x V that
contains no directed cycles. If ij € E, call ¢ a parent of j and, conversely, j a child of ¢. Denote the
set of parents of j by pas(j), or by pa(j) when understood as a variable through the referred DAG.
If there is a directed path from ¢ to j, call ¢ an ancestor of j and, conversely, j a descendant of 1.

For a vector of random variables @ = x5 - - - x,,, a Bayesian network (BN) is a pair (G, f), where
G is aDAG on the index set V = {1,2,...,n} and f is a joint distribution that factorizes along G
as f(x) = [[;_, f(zi|zpag)). Specific representations of the conditional distributions yield more
concrete models [15]. Among the most popular models are discrete BNs, in which the support of
each variable is finite with fully parameterized conditional probabilities, and linear Gaussian DAGs
[411 18], in which the local distributions are Gaussians. The latter corresponds to a structural equation
model  := p + B(x — p) + e, with e ~ N (0, Q). Here Q is a diagonal matrix of the error term
precisions and B = (b;;) a matrix of edge weights. The joint distribution of « is then N (p, W),
with the precision matrix W = (I — B)"Q(I — B).

When a BN (G, f) is interpreted as a causal model, G encodes a hypothesis of the direction of causal
relations. From G alone, we can read off whether a node j is an ancestor of 4, and thus z; potentially
has a causal effect on z;. The magnitude is specified by the distribution f. We will focus on linear
Gaussian DAGs, in which the causal effect of x; on x; is quantified by a single scalar a;; obtained by
summing up the weights of all directed paths from j to 7, the weight of a path equalling the product
of the coefficients associated with the edges. In Figure [I[(a), node 1 is an ancestor of node 6 and
ag1 = be2b21 + bes (bs3 + bsabasz)bay.

To learn a BN (G, f), we assume N independent samples @1, o, . . .,y from f. We denote by X
the N x n data matrix. We take a Bayesian approach and specify a joint distribution p(G, f, X) as
the product of the priors p(G) and p(f|G) and the likelihood p(X |G, f) =[], f(xs). We assume
the priors satisfy standard modularity properties, so that the posterior of G can be written as

p(GIX) x w(G) = Hﬂi(pag(i)) , with  7m;(S) := ps(S) 4:(5), (1)

where p; and ¢; are factors of the DAG prior and the marginal likelihood: p(G) o [, p; (pa(i)) and
p(X|G) =TT, ¢ (pa(i)). For example, in our experiments we put p;(S) = 1/(7@1) and composed
the prior p( f|G) from conjugate priors so that ¢;(,S) admits a closed-form expression that is efficiently
evaluated for any given node set S, and that yield the marginal likelihoods known as the BDe and

BGe scores for discrete and Gaussian models, respectively. With these choices the posterior p(G|.X)
is score equivalent, meaning that the posterior probability is the same for Markov equivalent DAGs.

3 Scalable sampling of directed acyclic graphs

To draw a sample of DAGs approximately from the posterior distribution, we adopt the approach of
Kuipers et al. [[16} [19]], implemented in the BiDAG package, with some major modifications.



Algorithm 1 The Gadget method for sampling DAGs

1: Preprocessing. Select a set of candidate parents C; for each node ¢ € V. Build a data structure
that enables fast evaluation of 7;(U,T) forany i € V,T C U C V\{i}.

2: Markov chain simulation. Generate a realization of a Markov chain R°, R', ..., R whose
stationary distribution is the posterior of root-partitions on V' using the Metropolis—Hastings
algorithm. Store every nth sample R°.

3: Postprocessing. Generate a DAG G* per sampled and stored R®.

3.1 Outline

The basic idea is to sample DAGs by simulating a Markov chain whose stationary distribution is the
posterior distribution. However, to enhance the mixing of the chain, we build a Markov chain on the
smaller space of ordered partitions of the node set, each state being associated with multiple DAGs.

Let R = R1 Ry - - - Ry, be an ordered set partition of V. We call R the root-partition of a DAG G if
Ry consists of the root nodes of G, Ry consists of the root nodes of the residual graph G — R, and
so forth; here G — R; is the graph obtained by removing from G the nodes in R; and all incident
arcs. Note that a DAG has a unique root-partition, whereas there may be several topological orders.
For example, the root partition of the example DAG in Figure|I[a) is {1}{2, 3}{4}{5}{6}.

The root-partition of G is R exactly when every node in R; has zero parents and every node in
R;, with t > 2, has at least one parent from the previous part R;_; and the rest from the union
Rit—1:=RiURyU---UR;_;. This is also evident in Figure Eka). Thus, by the factorization ([I]),
the posterior probability of R, i.e., the total probability of DAGs with root-partition R, is given by

k
mR) =[] [] #(Rit-1, Recr), with #(UT):= > m(S).

t=14€R,; SCU:SNT+#0

In words, 7;(U, T') is the sum of local scores of node i over all parents sets that contain at least one
parent from 7" and the rest from U. The factorization enables fast evaluation of 7(R), provided that
the score sums 7;(R; 1, R;—1) can be computed fast. A fast evaluation is crucial for the scalability
of the method, as the evaluation is required in every simulation step of the Markov chain.

The key observation is the following [19]]. If node ¢ can only take parents from a small candidate
parent set C;, then it is feasible to precompute the needed values 7; (U, T'), for they only depend on
the intersections U N C; and T'N C};. The evaluation then corresponds to a (nearly) constant-time table
lookup. In Figure[Ifa), we might discover that Cy = {2,3}, Co = {1}, C5 = {1,4,5}, Cy = {3,5},
Cs = {3,4}, and Cs = {2, 5} are good choices for the candidate parents by simple linear regression.

Finally, we generate DAGs conditionally on the sampled partitions. Generating a single DAG by
enumerating all possible parent sets would require time O(2%n) [[19], which is expensive. Instead,
we will generate DAGs as postprocessing in time O(Kn) per DAG, by investing O(3%) space.

Algorithm T| outlines the three phases of our method, we dub Gadget (Generating Acyclic DiGraphs
Efficiently from Target). We describe the phases in more detail the remainder of this sectionﬂ

3.2 Preprocessing

In what follows, we assume that each node ¢ is assigned a set of candidate parents C; of size K. We
will consider the task of selecting the candidate parents for each node in Section [4]

We aim at building a data structure that enables fast evaluation of the node-wise score sum 7; (U, T')
for any given ¢, U, T'. To this end, for any ¢ € V and J C V'\ {i}, let

n() = Y m(s),
SCJINC;

the sum of all local scores for node ¢ with parents from J N C;. Clearly, 7;(J) = 7(J N C;).
Furthermore, the values 7;(J) are sufficient for instant evaluation of a score sum, by subtraction:

! For the sake of exposition, we here consider simplifications of BiDAG and Gadget that require all parents be
from the K candidates. In experiments we ran extended versions: BiDAG additionally allows one parent outside
the candidates, and Gadget any three or fewer parents; using known techniques [[7, 28] this is still feasible.



Lemma 1. Leti € Vand T C U C V\{i}. Then 7;(U,T) = 7;(U) — 7:(U\T).

(Indeed, if S C U, then either S intersects T or S C U\T, implying 7;,(U) = 7,(U,T) + 7:(U\T).)

Put together, it suffices to precompue for each node i the values 7;(J) for all J C C;. Since 7;
is the zeta transform of 7; over the subset lattice of C;, it can be computed in time O(2X K); see
Supplement A.1. The space requirement is O(2%) per node. This improves upon a brute-force
approach, which requires building time O (3% K?2) and storage size O(3%) per node [19].

When the arithmetic is with fixed-precision numbers, there is a risk of so-called catastrophic cancella-
tion. That is, the outcome of a subtraction may vanish (due to limited precision), even if the exact
value is non-zero. While such cases occured only rarely in our experiments, we build a secondary data
structure to handle them; if there are m cases, the construction takes O(3%n) time and O (3% + m)
space (Suppl. A.2). Note: in Tablewe made the mild assumption that m = O(2%n).

3.3 Markov chain simulation

We follow the partition MCMC method [16} [19] and simulate a Markov chain R', R?, ... RF of
some appropriate length L on ordered set partitions of V' using the Metropolis—Hastings algorithm.
At state R® a candidate R’ for the next state is generated by either splitting a part, merging two
adjacent parts, or swapping nodes in different parts, uniformly at random over the valid choices;
denote this distribution by ¢(R’| R*). The proposal is accepted as the new state R**! with probability
min{1, a}, where a = 7(R) /7 (R?*) x q(R*|R)/q(R'|R?); otherwise R**1 is set to R®.

Instead of simulating a single long chain, we enhance the mixing of the chain by employing Metropolis
coupling [10]: we run M > 1 shorter “heated” chains in parallel, the kth chain with stationary
distribution proportional to 7%/ In every other step, two chains k and [ = k + 1 are selected
uniformly at random, and a swap of their states, R** and R*, is proposed; the acceptance ratio o
equals the Mth root of w(R**)/7(R*"!). In our experiments, we put M := 16.

3.4 Postprocessing

We generate a DAG per sampled partition as postprocessing, in order to save space. The key
observation is that, instead of generating an entire DAG for each partition in turn, we can proceed
one node in turn, and generate the parent sets of the node for all the DAGs we are generating.
This “transposition trick” enables reusing the space we need for efficient sampling of parent sets.
Furthermore, for sampling the parent sets of a fixed node, we introduce a data structure to index
certain weighted sums, enabling efficient sampling of constrained sets.

Recall that the root-partition of the DAG in Figure [Ifa) is {1}{2,3}{4}{5}{6}. Now, consider
generating a random DAG compatible with this partition. Since each node must take at least one
parent from the predecessor part, we must include the edges 5 — 6,4 — 5,1 —+ 2and 1 — 3. In
addition, either 2 — 4 or 3 — 4 is included. The parent sets will be sampled according to the scores
m; as explained below such that these restrictions are satisfied.

For a more technical description, consider generating a DAG G from the posterior distribution given
that the root-partition of GG is R. We can draw G by sampling independently for each node i € R; a
parent set S C R; ;1 that intersects R,_1, with probability proportional to 7;(S). If implemented
in a direct way, this takes time O(2%) per node, but no additional space [[19].

We reduce the time requirement to O(K), by investing O(3%) preparation time per node and O(3%)
space in total. Consider a fixed node 7. The idea is to construct a data structure that, given any node
setsT' C U C C;, enables drawing a parent set S C U that intersects ', with probability proportional
to 7;(S). We draw S in O(|U]) iterative steps, in each step deciding whether a particular node j € U
is included in S or not. To enable this, our data structure stores the sum of 7;(S) over 7" C .S C U’
for all pairs 7/ C U’ C C;; see Supplement A.3 for details.

If the number of sampled DAGs is r, the total space and time requirements of postprocessing are
O(3% + Knr) and O(3%n + Knr), respectively. In contrast to the brute-force approach [19], our
trick makes it feasible to sample large numbers of DAGs.



Table 2: Algorithms for selecting the candidate parents of node 4

Opt Select a K-set C; so as to maximize the posterior probability that pa(i) C C; (cf. Prop.
Top Select the K nodes j with the highest local score 7;({;})
PCb Merge the neighborhoods of 4, excluding children, returned by PC on 20 bootstrap samples
MBb Merge the Markov blankets of ¢ returned by /A on 20 bootstrap samples
GESb Merge the neighborhoods of ¢, excluding children, returned by GES on 20 bootstrap samples
Greedy lIteratively, add a best node to C}, initially empty; the goodness of j is maxscc, mi (S U {j})
Back&Forth  Starting from a random K -set delete a worst and add a best node, alternatingly, until the same

4 Selection of candidate parents

We wish to find a good set of K candidate parents for each node. Our interest is in algorithms that
scale up to hundreds of nodes. While we cannot expect an algorithm that always returns an optimal
set, we can hope for a heuristic that finds sets covering a large fraction of the graph posterior mass.
We formalize this problem, consider the issue of evaluating the performance of a given algorithm,
and finally, briefly describe several alternative algorithms and report on an empirical study.

4.1 The maximum coverage problem

Consider a tuple of candidate parent sets C' = C1C - - - C),. Define the coverage of C as the posterior
probability that the parents of ¢ belong to C; for all nodes i. Likewise, define the mean coverage of C'
as the average of the marginal posterior probabilities that the parents of ¢ belong to C;.

Given a C, we can compute the coverage and mean coverage in time O(3"n) and space O(2"n).
Namely, within this complexity we can evaluate the partition function [39] as well as the marginal
posterior probabilities of all the 2"~ possible parent sets of each node [31]]. Thus exact evaluation
of a given C' is computationally feasible up to around n = 22.

The maximum (mean) coverage problem is to find a C' so as to maximize the (mean) coverage, subject
to the constraint |C;| < K for all i. The mean variant is tractable for small n:

Proposition 2. The maximum mean coverage problem can be solved in time O(3"n).

Proof. Compute first the marginal posterior probabilities g;(S) := p(pa(i) = S|X) for all S C
VA\{i} in time O(3"n) [31]. Then compute g;(T) := > g7 9i(5) forall T C V'\ {i} in time
O(3™n). Finally, for each i return a K -set C; that maximizes g;(C;); this takes time O(2"n). O

4.2 Scalable algorithms for the maximum coverage problem

For larger numbers of nodes n, we have to resort to faster algorithms that are only guaranteed to find
a locally optimal collection of candidate parent sets. We tested several heuristics, summarized in
Table 2] (details in Suppl. C). Some rely on existing sophisticated algorithms for finding the Markov
equivalence class (the PC algorithm, using independence tests [35.|5]]; greedy equivalence search,

#

6 9 12 6 9 12 6 9 12

—

o
~

Mean coverage
o o
(=)} [ee]
o—m—
—
——
—
—
o —Em—
o —L—
—e—
—m~
— o —
—
—a—
.
—
o —TH

e
[N}

(a) Gaussian, N = 50 (b) Gaussian, N = 200 (c) Discrete, varying N

O Opt O Top O PCb [ MBb GESb Greedy Back&Forth

Figure 2: Performance comparison on selecting K = 6, 9, 12 candidate parents with (a, b) synthetic
data over 20 nodes and (c) benchmark data sets over 17—23 nodes with 101 < N < 8124 data points.



Algorithm 2 The Beeps method for sampling from the posterior of linear causal effects
: Sample DAGs {G*}L£_, approx. from the posterior p(G|X), e.g., using Gadget (Section .
: For each G*, sample B* from the posterior p(B|G*, X), each row independently (Eq.[2).
: For each B*, compute the matrix of pairwise causal effects A% via A = (I — B)~!
: Output {A%}E_,.

A W =

GES using the BIC score [4]) or the Markov blanket of a target node (the Incremental Association
algorithm, /A [40]]) of the unknown DAG; we ran the basic algorithms on 20 bootstrap samples
of the data, took the union of the returned neighborhoods, and removed or added the lowest- or
highest-scoring nodes to get exactly K candidates. Other algorithms are more elementary and handle
each node separately, considering parent sets that are either singletons or subsets of an already
constructed candidate set. Our implementations build on standard software [33} 13} 12} [1].

For an empirical comparison of the heuristics, we set n to 20 to enable exact evaluation of the achieved
coverage and comparison to the best possible performance (Opt, cf. Prop. ). We sampled two data
sets of size N = 50 and N = 200 from each of 100 synthetic linear Gaussian DAGs, generated so
that the expected neighborhood size was 4, the edge coefficients and the variances of the disturbances
uniformly distributed on +[0.1, 2] and [0.5, 2], respectively. We observe that the coverage of optimal
sets of K candidates increases with K and N, reaching 0.90 on average at K = 12 and N = 200
(Fig.[2(a, b)). Greedy is the best of the heuristics and gets the closer to Opt, the larger the size K.

To investigate the performance on discrete real data, we also ran the algorithms on 8 data sets obtained
from the UCI machine learning repository [6], with up to 23 variables, using available preprocessed
sets [25]]. In Fig.[2c), we observe that Greedy and its Back&Forth variant achieve coverages close
to Opt; the other algorithms perform worse. GESb is not shown for discrete data, as the employed
software only allowed Gaussian BIC to be used.

S Bayesian estimation of linear causal effects

The ability to sample DAGs (approximately) from the posterior distribution offers us a way to sample
(pairwise) causal effects from the posterior distribution in linear Gaussian models. Algorithm
outlines our method, dubbed Beeps (Bayesian Effect Estimation by Posterior Sampling).

Our goal is to draw a sample from the posterior p(A|X), where A = (a;;) is the matrix of pairwise
causal effects and X the data. Conveniently, A can be expressed as a converging geometric series
w.r.t. the edge weight matrix B, resulting in A = (I — B)~!. Using this relation, A can readily
be computed from samples of B drawn from the posterior p(B|X). To draw B, we view p(B|X)
as a marginal of p(B, G|X), and by the chain rule, draw first G from p(G|X) and then B from
p(B|G, X). In what follows, we assume that G has already been sampled and focus on the latter task.

Recall that we parameterize our linear Gaussian DAG by the mean vector p, the matrix B, and the
diagonal matrix of error term precisions (). Geiger and Heckerman [8}, /9] showed that there is a unique
class of priors over these parameters satisfying the desirable properties of global and local modularity
and the score-equivalence of the marginal likelihood p(X|G), the BGe score. Moreover, for any
prior from this class, we obtain the posterior of B analytically: the rows of B are independent with a
t-distribution whose parameters can be efficiently computed. Since some of the key formulas in the
literature contain small errors and typos; we give a complete derivation below and in Supplement B.

We begin with a normal-Wishart prior on the parameterization by w and the precision matrix W:
pl W~ N, a,W), W~ W(T™H ay) .

Here the scalars «,, o, vector v, and matrix T are hyperparameters, which do not depend on the
DAG G E] By change of variables, this is transformed to a prior over p, B and (), conditional on G [9].
After integrating out g, the marginal prior p(B, Q|G) factorizes, due to global and local parameter
modularity, into a product of p(b;, g;|pa(i)) over the nodes i; here b, is the ith row of B and ¢; the
ith diagonal element of Q). The prior for b; and ¢; given pa(i) is then (see Suppl. B)

bi|gi ~N((Tn) T2, ¢Ti1), @i ~W((Too — To1(T11) 'Th2) ™", aw —n+1),

2With the notation a,, and o, we adhere to the choices in the key references [9} [17].
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Figure 3: Performance comparisons. (a) Bayesian methods on inferring ancestor relations from
discrete data. Estimating (b) marginal and (c) joint causal effects from Gaussian data. (d) Estimating
causal effects from data sets from a benchmark BN. The MCMC methods were ran for 1 and 3 hours
for the 20- and 50-node data, respectively, and 12 hours for (d); the other methods were faster.

where the blocks of T are Ty := T[pa(i), pa(i)], Tia := (To1)" = T[pa(i),i], Taz := T|i,i], and
I —1 is the number of parents of <. This corrects some errors in the formulas of Geiger and Heckerman
[9] for the degrees of freedom (noted also by Kuipers et al. [[17]]) and some typos in the matrices.

The posterior is of exactly the same form, just o, and 7" replaced, respectively, by

N
" — a4+ N and  Ri=T+ 8y + " (y_FN)(v—EN)T
Al =a,+ N an + N+au+N(V Zn)(v—2zN)
where Zy := & >, @s and Sy = Y (@, — Tn)(ws — Zy)'. Finally, integrating out g; yields

al, —n+1
Ry — R21(R11)71312

b; | X, pa(i) ~ t((Ru)_lRm, Ryi, o)y —n+ l) ) )

Beeps differs from IDA-based methods (including the Bayesian ones, BIDA [31] and OBMA [2]),
which estimate the causal effect from x to y by a linear regression of y on = and the parents of x. In
contrast, Beeps takes into account the whole graph structure and estimates of the single coefficients.
This improves accuracy: e.g., the estimate is always exactly zero when x is not an ancestor of y.
Furthermore, our method enables estimation of causal effects under multiple interventions [27] by
replacing the coefficients into the intervened variables in B with zero in Step 3 of Algorithm[2]

6 Experiments on causal inference

We compared our algorithm to state-of-the-art Bayesian and non-Bayesian methods for discovering
ancestor relations and estimating causal effects (marginal and joint). For a complete set of results and
the choices of the various user parameters of the methods, we refer to Supplement D.

We first evaluated the efficiency of Gadget in sampling DAGs from the posterior and detecting ancestor
relations. We considered data on 20 and 50 nodes to enable comparison to an exact algorithm (for
n = 20) [31] and two state-of-the-art MCMC methods, BEANDisco [29] and BiDAG [19]. We
generated 400 data points from 50 binary BNs with av. neighbourhood size 4. We observe that
Gadget closely matches or outperforms the other MCMC methods and the exact algorithm (Fig. [3(a)).

We then evaluated the performance of our Beeps method in estimating causal effects, using either
Gadget or BiDAG as the DAG sampler. To enable an informative comparison to the state-of-the-art
scalable methods, i.e., variants of the IDA method [22], we condense the effect estimates to the mean
value and calculate the mean-squared error [31, 2]. We generated 200 data points from 50 Gaussian
BNs with neighourhood size 4. Our method achieves better accuracy in causal effect estimation
compared to the BIDA method, which uses exact computation (but a different effect estimation
technique (Fig. [3(b)). We evaluated the performance of Beeps also in estimating joint causal effects
(Fig.[3(c)). Our method clearly outperforms the available IDA-based methods [27] in accuracy.

3We provide a Python interface for both algorithms, with many time critical parts implemented in C++. For
source code see https://www.cs.helsinki.fi/group/sop/gadget-beeps.



Finally, we obtained 50 datasets with 100-1600 data points from a benchmark Gaussian BN on gene
expressions of Arabidopsis thaliana with n = 107 nodes [34,130]. We ran the MCMC methods 12
hours or up to 1028 MCMC iterations. Despite data from a single source, the performance of BiDAG
varies considerably: for 200-400 data points it can often reach the limiting 108 iterations but for 800
and 1600 data points BiDAG fails to complete 100 iterations for 4/10 and 8/10 datasets respectively.
Gadget is able to use K = 15 candidate parents for all data sets, and with Beeps provide an improved
accuracy especially with fewer data points (Fig.3[d)). See Supplement D for further experiments.

7 Concluding remarks

We presented Bayesian methods for discovering causal relations and for estimating linear causal
effects from passively observed data. Gadget samples DAGs along a Markov chain, building on
a recently introduced partition MCMC strategy [[16,[19], with several algorithmic modifications to
improve the time and memory requirements. We have demonstrated that our method is feasible
on systems with one hundred variables, and the theory (Table[I)) and simulations suggest that even
larger systems, with several hundreds of variables, should be within reach. Beeps takes as input a
sample of DAGs drawn from a posterior distribution, samples model parameters conditionally on
each sampled DAG to obtain a fully specified BN, thereby yielding a sampling-based approximation
of the joint posterior of the causal effects; Beeps relies on the fact that in a linear model, the effects
can be efficiently computed via matrix inversion. A similar sampling-based approach has recently
been implemented also for non-linear models with binary variables [26} [18]]. However, it requires
either computationally expensive exact or approximate inference in the model. Our empirical results
on causal effect estimation suggest that Bayesian methods outperform non-Bayesian (IDA-based)
ones especially when the data are scarce.

We conclude with two remarks. First, while our data structure for DAG sampling was motivated by a
space saving, we may alternatively trade the saving for quick DAG sampling during the Markov chain
simulation. This would enable a sophisticated edge-reversal move [11]], which has proven beneficial
in partition MCMC [16] but is not implemented in BiDAG, apparently due to its computational cost.
Second, we found that optimal sets of K candidate parents often yield a good coverage of the posterior
with moderate K, and that simple heuristics often achieve nearly optimal performance—but not
always. The problem warrants further research. E.g., could one here successfully employ techniques
that quickly list large numbers of high-scoring parent sets [32]]? We believe our approach to compare
to optimal sets on moderate-size problem instances should be valuable in the quest.
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Statement of broader impact

Our work advances computational methods for learning from data. Specifically, we give more
efficient and reliable methods for Bayesian statistical inference when the stucture of the underlying
graphical model is unknown. A Bayesian posterior is a key enabler in informed and principled risk
management and decision making under uncertainty, e.g., via the principle of expected utility; clearly,
the concept of causality is essential here. We believe that, in the long run, our work will have broad
impact in various areas of other sciences, technology, and in society, by making more efficient use of
the available data and incorporating quantifications of uncertainty.

Positive outcomes:
e This work addresses some of the key methodological challenges in computational causal in-
ference, bringing the relatively new field closer towards high-impact real-world applications.

e Shows the advantages of Bayesian inference, inviting and encouraging to use of similar
approaches also in other domains.



Negative outcomes:

e Making causal predictions based on observational data is inherently difficult even under
rather strong assumptions. Not being aware of these limitations, a non-expert user could
potentially overinterpret the results.

e Our methods contribute to the practice of discovering causal and statistical relations from
data. There is a risk of biased conclusions if the data are biased (cf. fairness in machine
learning).
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