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Abstract

Virtual assistants such as Google Assistant, Alexa and Siri
provide a conversational interface to a large number of ser-
vices and APIs spanning multiple domains. Such systems
need to support an ever-increasing number of services with
possibly overlapping functionality. Furthermore, some of
these services have little to no training data available. Existing
public datasets for task-oriented dialogue do not sufficiently
capture these challenges since they cover few domains and
assume a single static ontology per domain. In this work, we
introduce the the Schema-Guided Dialogue (SGD) dataset,
containing over 16k multi-domain conversations spanning 16
domains. Our dataset exceeds the existing task-oriented dia-
logue corpora in scale, while also highlighting the challenges
associated with building large-scale virtual assistants. It pro-
vides a challenging testbed for a number of tasks including
language understanding, slot filling, dialogue state tracking
and response generation. Along the same lines, we present a
schema-guided paradigm for task-oriented dialogue, in which
predictions are made over a dynamic set of intents and slots,
provided as input, using their natural language descriptions.
This allows a single dialogue system to easily support a large
number of services and facilitates simple integration of new
services without requiring additional training data. Building
upon the proposed paradigm, we release a model for dia-
logue state tracking capable of zero-shot generalization to
new APIs, while remaining competitive in the regular setting.

1 Introduction
Virtual assistants help users accomplish tasks including but
not limited to finding flights, booking restaurants and, more
recently, navigating user interfaces, by providing a natural
language interface to services and APIs on the web. The re-
cent popularity of conversational interfaces and the advent of
frameworks like Actions on Google and Alexa Skills, which
allow developers to easily add support for new services, has
resulted in a major increase in the number of application do-
mains and individual services that assistants need to support,
following the pattern of smartphone applications.

Consequently, recent work has focused on scalable dia-
logue systems that can handle tasks across multiple applica-
tion domains. Data-driven deep learning based approaches
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for multi-domain modeling have shown promise, both for
end-to-end and modular systems involving dialogue state
tracking and policy learning. This line of work has been
facilitated by the release of multi-domain dialogue corpora
such as MultiWOZ (Budzianowski et al. 2018), M2M (Shah
et al. 2018) and FRAMES (El Asri et al. 2017).

However, existing datasets for multi-domain task-oriented
dialogue do not sufficiently capture a number of challenges
that arise with scaling virtual assistants in production. These
assistants need to support a large (Kim et al. 2018), con-
stantly increasing number of services over a large number of
domains. In comparison, existing public datasets cover few
domains. Furthermore, they define a single static API per do-
main, whereas multiple services with overlapping function-
ality, but heterogeneous interfaces, exist in the real world.

To highlight these challenges, we introduce the Schema-
Guided Dialogue (SGD) dataset1, which is, to the best of our
knowledge, the largest public task-oriented dialogue corpus.
It exceeds existing corpora in scale, with over 16000 dia-
logues in the training set spanning 26 services belonging to
16 domains (more details in Table 1). Further, to adequately
test the models’ ability to generalize in zero-shot settings,
the evaluation sets contain unseen services and domains. The
dataset is designed to serve as an effective testbed for intent
prediction, slot filling, state tracking and language genera-
tion, among other tasks in large-scale virtual assistants.

We also propose the schema-guided paradigm for task-
oriented dialogue, advocating building a single unified di-
alogue model for all services and APIs. Using a service’s
schema as input, the model would make predictions over
this dynamic set of intents and slots present in the schema.
This setting enables effective sharing of knowledge among
all services, by relating semantically similar concepts across
APIs, and allows the model to handle unseen services and
APIs. Under the proposed paradigm, we present a novel ar-
chitecture for multi-domain dialogue state tracking. By us-
ing large pre-trained models like BERT (Devlin et al. 2019),
our model can generalize to unseen services and is robust
to API changes, while achieving competitive results on the
original and updated MultiWOZ datasets (Eric et al. 2019).

1The dataset has been released at github.com/google-research-
datasets/dstc8-schema-guided-dialogue
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Metric ↓ Dataset → DSTC2 WOZ2.0 FRAMES M2M MultiWOZ SGD

No. of domains 1 1 3 2 7 16
No. of dialogues 1,612 600 1,369 1,500 8,438 16,142
Total no. of turns 23,354 4,472 19,986 14,796 113,556 329,964

Avg. turns per dialogue 14.49 7.45 14.60 9.86 13.46 20.44
Avg. tokens per turn 8.54 11.24 12.60 8.24 13.13 9.75
Total unique tokens 986 2,142 12,043 1,008 23,689 30,352

No. of slots 8 4 61 13 24 214
No. of slot values 212 99 3,871 138 4,510 14,139

Table 1: Comparison of our SGD dataset to existing related datasets for task-oriented dialogue. Note that the numbers reported
are for the training portions for all datasets except FRAMES, where the numbers for the complete dataset are reported.

2 Related Work

Task-oriented dialogue systems have constituted an active
area of research for decades. The growth of this field has
been consistently fueled by the development of new datasets.
Initial datasets were limited to one domain, such as ATIS
(Hemphill, Godfrey, and Doddington 1990) for spoken lan-
guage understanding for flights. The Dialogue State Track-
ing Challenges (Williams et al. 2013; Henderson, Thomson,
and Williams 2014a; 2014b; Kim et al. 2017) contributed to
the creation of dialogue datasets with increasing complex-
ity. Other notable related datasets include WOZ2.0 (Wen et
al. 2017), FRAMES (El Asri et al. 2017), M2M (Shah et
al. 2018) and MultiWOZ (Budzianowski et al. 2018). These
datasets have utilized a variety of data collection techniques,
falling within two broad categories:

• Wizard-of-Oz This setup (Kelley 1984) connects two
crowd workers playing the roles of the user and the sys-
tem. The user is provided a goal to satisfy, and the system
accesses a database of entities, which it queries as per the
user’s preferences. WOZ2.0, FRAMES and MultiWOZ,
among others, have utilized such methods.

• Machine-machine Interaction A related line of work ex-
plores simulation-based dialogue generation, where the
user and system roles are simulated to generate a com-
plete conversation flow, which can then be converted to
natural language using crowd workers as done in Shah et
al. (2018). Such a framework may be cost-effective and
error-resistant since the underlying crowd worker task is
simpler, and annotations are obtained automatically.

As virtual assistants incorporate diverse domains, recent
work has focused on zero-shot modeling (Bapna et al. 2017;
Xia et al. 2018; Shah et al. 2019), domain adaptation and
transfer learning techniques (Yang, Salakhutdinov, and Co-
hen 2017; Rastogi, Hakkani-Tür, and Heck 2017; Zhu and
Yu 2018). Deep-learning based approaches have achieved
state of the art performance on dialogue state tracking tasks.
Popular approaches on small-scale datasets estimate the di-
alogue state as a distribution over all possible slot-values
(Henderson, Thomson, and Young 2014; Wen et al. 2017;
Ren et al. 2018) or individually score all slot-value com-
binations (Mrkšić et al. 2017; Zhong, Xiong, and Socher
2018). Such approaches are not practical for deployment in
virtual assistants operating over real-world services having
a very large and dynamic set of possible values. Address-

ing these concerns, approaches utilizing a dynamic vocab-
ulary of slot values have been proposed (Rastogi, Gupta,
and Hakkani-Tur 2018; Goel, Paul, and Hakkani-Tür 2019;
Wu et al. 2019).

3 The Schema-Guided Dialogue Dataset

An important goal of this work is to create a benchmark
dataset highlighting the challenges associated with building
large-scale virtual assistants. Table 1 compares our dataset
with other public datasets. Our Schema-Guided Dialogue
(SGD) dataset exceeds other datasets in most of the met-
rics at scale. The especially larger number of domains, slots,
and slot values, and the presence of multiple services per
domain, are representative of these scale-related challenges.
Furthermore, our evaluation sets contain many services, and
consequently slots, which are not present in the training set,
to help evaluate model performance on unseen services.

The 20 domains present across the train, dev and test splits
are listed in Table 2. We create synthetic implementations of
a total of 45 services or APIs over these domains. Our simu-
lator framework interacts with these services to generate di-
alogue outlines, which are a structured representation of di-
alogue semantics. We then used a crowd-sourcing procedure
to paraphrase these outlines to natural language utterances.
Our novel crowd-sourcing procedure preserves all annota-
tions obtained from the simulator and does not require any
extra annotations after dialogue collection. In this section,
we describe these steps in detail and then present analyses
of the collected dataset.

3.1 Services and APIs

We define the schema for a service as a combination of in-
tents and slots with additional constraints, with an example
in Figure 1. We implement all services using a SQL engine.
For constructing the underlying tables, we sample a set of
entities from Freebase and obtain the values for slots defined
in the schema from the appropriate attribute in Freebase. We
decided to use Freebase to sample real-world entities instead
of synthetic ones since entity attributes are often correlated
(e.g, a restaurant’s name is indicative of the cuisine served).
Some slots like event dates/times and available ticket counts,
which are not present in Freebase, are synthetically sampled.

To reflect the constraints present in real-world services
and APIs, we impose a few other restrictions. First, our
dataset does not expose the set of all possible slot values
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Domain #Intents #Dialogs Domain #Intents #Dialogs

Alarm2,3 2 (1) 324 Movies1,2,3 5 (3) 2339

Banks1,2 4 (2) 1021 Music1,2,3 6 (3) 1833

Buses1,2,3 6 (3) 3135 Payment3 2 (1) 222

Calendar1 3 (1) 1602 RentalCars1,2,3 6 (3) 2510

Events1,2,3 7 (3) 4519 Restaurants1,2,3 4 (2) 3218

Flights1,2,3 10 (4) 3644 RideSharing1,2,3 2 (2) 2223

Homes1,2,3 2 (1) 1273 Services1,2,3 8 (4) 2956

Hotels1,2,3 8 (4) 4992 Train3 2 (1) 350

Media1,2,3 6 (3) 1656 Travel1,2,3 1 (1) 2808

Messaging3 1 (1) 298 Weather1,2,3 1 (1) 1783

Table 2: The total number of intents (services in parentheses)
and dialogues for each domain across train1, dev2 and test3

sets. Multi-domain dialogues contribute to counts of each
constituent domain. The domain ‘Service’ includes salons,
dentists, doctors etc. The ‘Alarm’, ‘Messaging’, ‘Payment’
and ‘Train’ domains are only present in the dev or test sets
to test generalization to new domains.

for some slots. Having such a list is impractical for slots like
date or time because they have infinitely many possible val-
ues or for slots like movie or song names, for which new val-
ues are periodically added. Our dataset specifically identifies
such slots as non-categorical and does not provide a set of all
possible values for these. We also ensure that the evaluation
sets have a considerable fraction of slot values not present
in the training set to evaluate the models in the presence of
new values. Some slots like gender, number of people, day
of the week etc. are defined as categorical and we specify
the set of all possible values taken by them. However, these
values are not assumed to be consistent across services. E.g.,
different services may use (‘male’, ‘female’), (‘M’, ‘F’) or
(‘he’, ‘she’) as possible values for gender slot.

Second, real-world services can only be invoked with a
limited number of slot combinations: e.g. restaurant reser-
vation APIs do not let the user search for restaurants by date
without specifying a location. However, existing datasets
simplistically allow service calls with any given combina-
tion of slot values, thus giving rise to flows unsupported by
actual services or APIs. As in Figure 1, the different service
calls supported by a service are listed as intents. Each in-
tent specifies a set of required slots and the system is not al-
lowed to call this intent without specifying values for these
required slots. Each intent also lists a set of optional slots
with default values, which the user can override.

3.2 Dialogue Simulator Framework

The dialogue simulator interacts with the services to gener-
ate dialogue outlines. Figure 2 shows the overall architec-
ture of our dialogue simulator framework. It consists of two
agents playing the roles of the user and the system. Both
agents interact with each other using a finite set of actions
specified through dialogue acts over a probabilistic automa-
ton designed to capture varied dialogue trajectories. These
dialogue acts can take a slot or a slot-value pair as argument.
Figure 4b shows all dialogue acts supported by the agents.

At the start of a conversation, the user agent is seeded
with a scenario, which is a sequence of intents to be ful-

Figure 1: Example schema for a digital wallet service.

filled. We identified over 200 distinct scenarios for the train-
ing set, each comprising up to 5 intents. For multi-domain
dialogues, we also identify combinations of slots whose val-
ues may be transferred when switching intents e.g. the ‘ad-
dress’ slot value in a restaurant service could be transferred
to the ‘destination’ slot for a taxi service invoked right after.

The user agent then generates the dialogue acts to be out-
put in the next turn. It may retrieve arguments i.e. slot values
for some of the generated acts by accessing either the service
schema or the SQL backend. The acts, combined with the
respective parameters yield the corresponding user actions.
Next, the system agent generates the next set of actions using
a similar procedure. Unlike the user agent, however, the sys-
tem agent has restricted access to the services (denoted by
dashed line), e.g. it can only query the services by supplying
values for all required slots for some service call. This helps
us ensure that all generated flows are valid.

After an intent is fulfilled through a series of user and
system actions, the user agent queries the scenario to pro-
ceed to the next intent. Alternatively, the system may sug-
gest related intents e.g. reserving a table after searching for
a restaurant. The simulator also allows for multiple intents
to be active during a given turn. While we skip many imple-
mentation details for brevity, it is worth noting that we do
not include any domain-specific constraints in the simula-
tion automaton. All domain-specific constraints are encoded
in the schema and scenario, allowing us to conveniently use
the simulator across a wide variety of domains and services.

3.3 Dialogue Paraphrasing

The dialogue paraphrasing framework converts the outlines
generated by the simulator into a natural conversation. Fig-
ure 3a shows a snippet of the dialogue outline generated by
the simulator, containing a sequence of user and system ac-
tions. The slot values present in these actions are in a canon-
ical form because they obtained directly from the service.
However, users may refer to these values in various differ-
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Figure 2: The overall architecture of the dialogue simulation
framework for generating dialogue outlines.

ent ways during the conversation, e.g., “los angeles” may be
referred to as “LA” or “LAX”. To introduce these natural
variations in the slot values, we replace different slot values
with a randomly selected variation (kept consistent across
user turns in a dialogue) as shown in Figure 3b.

Next we define a set of action templates for converting
each action into a utterance. A few examples of such tem-
plates are shown below. These templates are used to convert
each action into a natural language utterance, and the result-
ing utterances for the different actions in a turn are concate-
nated together as shown in Figure 3c. The dialogue trans-
formed by these steps is then sent to the crowd workers. One
crowd worker is tasked with paraphrasing all utterances of a
dialogue to ensure naturalness and coherence.

REQUEST(location) → Which city are you in?

INFORM(location=$x) → I want to eat in $x.

OFFER(restaurant=$x) → $x is a nice restaurant.

In our paraphrasing task, the crowd workers are instructed
to exactly repeat the slot values in their paraphrases. This not
only helps us verify the correctness of the paraphrases, but
also lets us automatically obtain slot spans in the generated
utterances by string search. This automatic slot span genera-
tion greatly reduced the annotation effort required, with little
impact on dialogue naturalness, thus allowing us to collect
more data with the same resources. Furthermore, it is im-
portant to note that this entire procedure preserves all other
annotations obtained from the simulator including the dia-
logue state. Hence, no further annotation is needed.

3.4 Dataset Analysis

With over 16000 dialogues in the training set, the Schema-
Guided Dialogue dataset is the largest publicly available an-
notated task-oriented dialogue dataset. The annotations in-
clude the active intents and dialogue states for each user ut-
terance and the system actions for every system utterance.
We have a few other annotations like the user actions but we
withhold them from the public release. These annotations
enable our dataset to be used as benchmark for tasks like
intent detection, dialogue state tracking, imitation learning
of dialogue policy, dialogue act to text generation etc. The
schemas contain semantic information about the APIs and
the constituent intents and slots, in the form of natural lan-
guage descriptions and other details (example in Figure 1).

The single-domain dialogues in our dataset contain an av-
erage of 15.3 turns, whereas the multi-domain ones contain

Figure 3: Steps for obtaining paraphrased conversations. To
increase the presence of relative dates like tomorrow, next
Monday, the current date is assumed to be March 1, 2019.

23 turns on an average. These numbers are also reflected
in Figure 4a showing the histogram of dialogue lengths on
the training set. Table 2 shows the distribution of dialogues
across the different domains. We note that distribution of di-
alogues across the domains and services covered is largely
balanced, with the exception domains which are not present
in the training set. Figure 4b shows the frequency of dia-
logue acts contained in the dataset. Note that all dialogue
acts except INFORM, REQUEST and GOODBYE are specific
to either the user or the system.

4 The Schema-Guided Approach

Virtual assistants aim to support a large number of services
available on the web. One possible approach is to define
a large unified schema for the assistant, to which different
service providers can integrate with. However, it is difficult
to come up with a common schema covering all use cases.
Having a common schema also complicates integration of
tail services with limited developer support. We propose the
schema-guided approach as an alternative to allow easy in-
tegration of new services and APIs.

Under our proposed approach, each service provides a
schema listing the supported slots and intents along with
their natural language descriptions (Figure 1 shows an ex-
ample). These descriptions are used to obtain a semantic
representation of these schema elements. The assistant em-
ploys a single unified model containing no domain or ser-
vice specific parameters to make predictions conditioned on
these schema elements. For example, Figure 5 shows how
dialogue state representation for the same dialogue can vary
for two different services. Here, the departure and arrival
cities are captured by analogously functioning but differ-
ently named slots in both schemas. Furthermore, values for
the number stops and direct only slots highlight idiosyn-
crasies between services interpreting the same concept.

Using a single model facilitates representation and trans-
fer of common knowledge across related services. Since the
model utilizes semantic representation of schema elements
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(a) Histogram of lengths of training set dialogues.

(b) Distribution of dialogue acts in training set.

Figure 4: Detailed statistics of the SGD dataset.

as input, it can interface with unseen services or APIs on
which it has not been trained. It is also robust to changes
like addition of new intents or slots to the service.

5 Zero-Shot Dialogue State Tracking

Models in the schema-guided setting can condition on the
pertinent services’ schemas using descriptions of intents and
slots. These models, however, also need access to represen-
tations for potentially unseen inputs from new services. Re-
cent pretrained models like ELMo (Peters et al. 2018) and
BERT (Devlin et al. 2019) can help, since they are trained
on very large corpora. Building upon these, we present a
simple prototype model for zero-shot schema-guided DST.

5.1 Model

We use a single model2, shared among all services and do-
mains, to make these predictions. We first encode all the in-
tents, slots and slot values for categorical slots present in
the schema into an embedded representation. Since differ-
ent schemas can have differing numbers of intents or slots,
predictions are made over dynamic sets of schema elements
by conditioning them on the corresponding schema embed-
dings. This is in contrast to existing models which make pre-
dictions over a static schema and are hence unable to share
knowledge across domains and services. They are also not
robust to changes in schema and require the model to be
retrained with new annotated data upon addition of a new
intent, slot, or in some cases, a slot value to a service.

Schema Embedding This component obtains the embed-
ded representations of intents, slots and categorical slot val-

2Our model code is available at github.com/google-
research/google-research/tree/master/schema guided dst

ues in each service schema. Table 3 shows the sequence pairs
used for embedding each schema element. These sequence
pairs are fed to a pretrained BERT encoder shown in Fig-
ure 6 and the output uCLS is used as the schema embedding.

Sequence 1 Sequence 2

Intent service description intent description
Slot service description slot description
Value slot description value

Table 3: Input sequences for the pretrained BERT model to
obtain embeddings of different schema elements.

For a given service with I intents and S slots, let {ij},
1 ≤ j ≤ I and {sj}, 1 ≤ j ≤ S be the embeddings of all
intents and slots respectively. As a special case, we let {snj },
1 ≤ j ≤ N ≤ S denote the embeddings for the N non-
categorical slots in the service. Also, let {vkj }, 1 ≤ j ≤ V k

denote the embeddings for all possible values taken by the
kth categorical slot, 1 ≤ k ≤ C, with C being the number of
categorical slots and N + C = S. All these embeddings are
collectively called schema embeddings.

Utterance Encoding Like Chao and Lane (2019), we use
BERT to encode the user utterance and the preceding sys-
tem utterance to obtain utterance pair embedding u = uCLS
and token level representations t1, t2 · · · tM , M being the
total number of tokens in the two utterances. The utterance
and schema embeddings are used together to obtain model
predictions using a set of projections (defined below).

Projection Let x,y ∈ R
d. For a task K, we define l =

FK(x,y, p) as a projection transforming x and y into the
vector l ∈ R

p using Equations 1-3. Here, h1,h2 ∈ R
d, WK

i

and bKi for 1 ≤ i ≤ 3 are trainable parameters of suitable
dimensions and A is the activation function. We use gelu
(Hendrycks and Gimpel 2016) activation as in BERT.

h1 = A(WK
1 x+ bK1 ) (1)

h2 = A(WK
2 (y ⊕ h1) + bK2 ) (2)

l = WK
3 h2 + bK3 (3)

Active Intent For a given service, the active intent denotes
the intent requested by the user and currently being fulfilled
by the system. It takes the value “NONE” if no intent for
the service is currently being processed. Let i0 be a trainable
parameter in R

d for the “NONE” intent. We define the intent
network as below.

l
j
int = Fint(u, ij , 1), 0 ≤ j ≤ I (4)

The logits l
j
int are normalized using softmax to yield a dis-

tribution over all I intents and the “NONE” intent. During
inference, we predict the highest probability intent as active.

Requested Slots These are the slots whose values are re-
quested by the user in the current utterance. Projection Freq

predicts logit l
j
req for the jth slot. Obtained logits are normal-

ized using sigmoid to get a score in [0, 1]. During inference,
all slots with score > 0.5 are predicted as requested.

ljreq = Freq(u, sj , 1), 1 ≤ j ≤ S (5)
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Figure 5: The predicted dialogue state (shown with dashed edges) for the first two user turns for an example dialogue, showing
the active intent and slot assignments, with two related annotation schemas. Note that the dialogue state representation is
conditioned on the schema under consideration, which is provided as input, as are the user and system utterances.

Figure 6: BERT encoder, taking in two sequences p and q
as input and outputs an embedded sequence pair representa-
tion uCLS and token level representations {t1 · · · tn+m}. We
use BERT to obtain schema element embeddings and encode
system and user utterances for dialogue state tracking.

User Goal We define the user goal as the user constraints
specified over the dialogue context till the current user ut-
terance. Instead of predicting the entire user goal after each
user utterance, we predict the difference between the user
goal for the current turn and preceding user turn. During
inference, the predicted user goal updates are accumulated
to yield the predicted user goal. We predict the user goal
updates in two stages. First, for each slot, a distribution
of size 3 denoting the slot status and taking values none,
dontcare and active is obtained by normalizing the
logits obtained in equation 6 using softmax. If the status of
a slot is predicted to be none, its assigned value is assumed
to be unchanged. If the prediction is dontcare, then the
special dontcare value is assigned to it. Otherwise, a slot
value is predicted and assigned to it in the second stage.

l
j
status = Fstatus(u, sj , 3), 1 ≤ j ≤ S (6)

l
j,k
value = Fvalue(u,v

k
j , 1), 1 ≤ j ≤ V k, 1 ≤ k ≤ C (7)

l
j,k
start = Fstart(tk, s

n
j , 1), 1 ≤ j ≤ N, 1 ≤ k ≤ M (8)

l
j,k
end = Fend(tk, s

n
j , 1), 1 ≤ j ≤ N, 1 ≤ k ≤ M (9)

In the second stage, equation 7 is used to obtain a logit for
each value taken by each categorical slot. Logits for a given
categorical slot are normalized using softmax to get a distri-
bution over all possible values. The value with the maximum

mass is assigned to the slot. For each non-categorical slot,
logits obtained using equations 8 and 9 are normalized using
softmax to yield two distributions over all tokens. These two
distributions respectively correspond to the start and end in-
dex of the span corresponding to the slot. The indices p ≤ q
maximizing start[p] + end[q] are predicted to be the span
boundary and the corresponding value is assigned to the slot.

5.2 Evaluation

We consider the following metrics for evaluation of the dia-
logue state tracking task:

1. Active Intent Accuracy: The fraction of user turns for
which the active intent has been correctly predicted.

2. Requested Slot F1: The macro-averaged F1 score for
requested slots over all eligible turns. Turns with no re-
quested slots in ground truth and predictions are skipped.

3. Average Goal Accuracy: For each turn, we predict a sin-
gle value for each slot present in the dialogue state. The
slots which have a non-empty assignment in the ground
truth dialogue state are considered for accuracy. This is
the average accuracy of predicting the value of a slot cor-
rectly. A fuzzy matching score is used for non-categorical
slots to reward partial matches with the ground truth.

4. Joint Goal Accuracy: This is the average accuracy of
predicting all slot assignments for a turn correctly. For
non-categorical slots a fuzzy matching score is used.

Performance on other datasets We evaluate our model
on public datasets WOZ2.0 and MultiWOZ 2.1 (Eric et al.
2019). As results in Table 4 show, our model performs com-
petitively on these datasets. In these experiments, we omit
the use of fuzzy matching scores and use exact match while
calculating the goal accuracies to keep our numbers com-
parable with other works. Furthermore, for the MultiWOZ
2.1 dataset, we also trained a model incorporating pointer-
generator style copying for non-categorical slots, similar to
Wu et al. (2019), giving us a joint goal accuracy of 0.489, ex-
ceeding the best-known result of 0.456 as reported in Eric
et al. (2019). We omit the details of this model since it is not
the main focus of this work.

8694



Performance on SGD The model performs well for Ac-
tive Intent Accuracy and Requested Slots F1 across both
seen and unseen services, shown in Table 4. For joint goal
and average goal accuracy, the model performs better on
seen services compared to unseen ones (Figure 7). The
main reason for this performance difference is a significantly
higher OOV rate for slot values of unseen services.

Performance on different domains (SGD) The model
performance also varies across various domains. The perfor-
mance for the different domains is shown in Table 5. We ob-
serve that one of the major factors affecting the performance
across domains is still the presence of the service in the
training data (seen services). In most cases, the performance
can be observed to degrade for domains with more unseen
services. Among the unseen services, those in the ‘Rental-
Cars’ and ‘Buses’ domain, have a very high OOV rate for
slot values leading to worse performance. A low joint goal
accuracy and high average goal accuracy for these two do-
mains indicates a possible skew between the performance
of different slots. Among seen services, ‘RideSharing’ do-
main also exhibits poor performance, since it possesses the
largest number of the possible slot values across the dataset.
We also notice that for categorical slots, with similar slot val-
ues (e.g. “Psychologist” and “Psychiatrist”), there is a very
weak signal for the model to distinguish between the differ-
ent classes, resulting in inferior performance.

Dataset Active Int Acc Req Slot F1 Avg GA Joint GA

WOZ2.0 N.A. 0.970 0.920 0.810

MultiWOZ 2.1 N.A. N.A. 0.875 0.434

SGD-S 0.885 0.956 0.684 0.356

SGD-All 0.906 0.965 0.560 0.254

Table 4: Model performance on test sets of the respective
datasets. SGD-Single model is trained on single-domain di-
alogues only whereas SGD-All model is trained on the en-
tire training set. We also report results on MultiWOZ 2.1 and
WOZ2.0. N.A. indicates unavailable tasks.

Figure 7: Performance of the model on all services, services
seen in training data, services not seen in training data.

Domain Joint GA Avg GA Domain Joint GA Avg GA

RentalCars* 0.086 0.480 Restaurants* 0.228 0.558

Buses* 0.097 0.509 Events* 0.235 0.579

Messaging* 0.102 0.200 Flights* 0.239 0.659

Payment* 0.115 0.348 Hotels** 0.289 0.582

Trains* 0.136 0.635 Movies** 0.378 0.686

Music* 0.155 0.399 Services** 0.409 0.721

RideSharing 0.170 0.502 Travel 0.415 0.572

Media* 0.180 0.308 Alarm* 0.577 0.018

Homes 0.189 0.727 Weather 0.620 0.764

Table 5: Model performance per domain (GA: goal accu-
racy). Domains marked with ‘*’ are those for which the ser-
vice in the test set is not present in the training set. Domains
like Hotels marked with ‘**’ has one unseen and one seen
service. For other domains, the service in the test set was
also seen in the training set. We see that the model generally
performs better for domains containing services seen during
training.

6 Discussion

It is often argued that simulation-based data collection does
not yield natural dialogues or sufficient coverage, when
compared to other approaches such as Wizard-of-Oz. We ar-
gue that simulation-based collection is a better alternative
for collecting datasets like this owing to the factors below.

• Fewer Annotation Errors: All annotations are automat-
ically generated, so these errors are rare. In contrast, Eric
et al. (2019) reported annotation errors in 40% of turns in
MultiWOZ 2.0 which utilized a Wizard-of-Oz setup.

• Simpler Task: The crowd worker task of paraphrasing a
readable utterance for each turn is simple. The error-prone
annotation task requiring skilled workers is not needed.
Furthermore, Wizard-of-Oz style collection requires do-
main specific task definitions and instructions, making the
collection of a diverse dataset like ours time consuming.

• Low Cost: The simplicity of the crowd worker task and
lack of an annotation task greatly cut data collection costs.

• Better Coverage: A wide variety of dialogue flows can
be collected and specific usecases can be targeted.

To ensure naturalness of the generated conversations, we
used the conversational flows present in other public datasets
like MultiWOZ 2.0 and WOZ2.0 as a guideline while devel-
oping the dialogue simulator. It was difficult for us to con-
duct a side-by-side comparison with existing datasets since
this is the first dataset to cover many new domains at such
scale, but we plan to explore it in the future.

7 Conclusions

We presented the Schema-Guided Dialogue dataset to en-
courage scalable modeling approaches for virtual assistants.
We also introduced the schema-guided paradigm for task-
oriented dialogue that simplifies the integration of new ser-
vices and APIs with large scale virtual assistants. Building
upon this paradigm, we present a simplistic model for zero-
shot dialogue state tracking achieving competitive results.
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